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Abstract

Understanding the interaction of real- and reciprocal space topology in skyrmion crystals
is an open problem. We approach it from the viewpoint of C ∗-algebras and calculate all
admissible Chern numbers of a strongly coupled tight-binding skyrmion system on a
triangular lattice as a function of Fermi energy and texture parameters. Our analysis
reveals the topological complexity of electronic states coupled to spin textures, and the
failure of the adiabatic picture to account for it in terms of emergent electromagnetism.
On the contrary, we explain the discontinuous jumps in the real-space winding number in
terms of collective evolution in real-, reciprocal, and mixed space Chern numbers. Our
work sets the stage for further research on topological dynamics in complex dynamic
spin textures coupled to external fields.
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1 Introduction

Understanding the electronic properties of noncollinear magnetic systems is crucial for their
implementation as novel, energy-efficient bits of information [1–3]. A rich class of non-
collinear magnets is represented by the family of so-called magnetic multi-q states: peri-
odic arrangements of the local magnetic moments, dominated by their lowest order Fourier
modes [4–6]. The homogeneity of these textures makes them ideal candidates to gain a
deeper insight into the electronic structure of noncollinear magnetic materials and the in-
terplay of topological features in real- and reciprocal space [7–15]. The multi-q texture that
holds the highest significance for the context of our work is the multi-q skyrmion lattice. For
example, skyrmionic states of this type appear in the family of chiral B20 materials such
as MnSi [16, 17] and Fe1 – xCoxSi thin films [18, 19], chiral multiferroic insulators such as
Cu2OSeO3 [20, 21], and have also been discovered in centrosymmetric materials such as
Gd2PdSi3 [22] and GdRu2Si2 [23].

When the length scale of a skyrmionic multi-q texture approaches the lattice constant of its
host material, the resulting interference effects can lead to the formation of gapped topological
states in the electronic system of the host material, manifesting for example, as a quantized
topological Hall effect [7]. Traditionally, this is explained through the language of emergent
magnetic fields [24–26]: using a unitary transformation, a noncollinear magnetic state can
be rotated into a collinear co-moving frame of reference at the price of a modified kinetic
energy which now resembles the presence of an electromagnetic vector potential. In the strong
coupling limit of smooth textures, this analogy becomes exact with a corresponding “emergent”
magnetic field, assuming the form

Bem =
ħh
2e

n̂ · (∂x n̂× ∂y n̂) , (1)

where n̂: R2→ R3 with ∥n̂∥= 1 describes a smooth skyrmion texture in two dimensions. This
implies that a smooth multi-q skyrmion system at strong coupling (i.e. in the adiabatic limit)
can be mapped onto the Hofstadter model [27], which can explain the formation of a gap in
the electronic spectrum and its topological nature [7,28].

Finding a more general description of the effect is desirable. A suitable formalism would
not rely on the adiabatic limit and, therefore, it would have a wider range of applicability [11].
In [10], we argue that all phenomena related to the presence of emergent fields are encoded in
the observable algebra of the multi-q system, irrespective of any assumption about adiabaticity.
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An observable algebra is a so-called C∗-algebra [29] containing all translations of the Hamilto-
nian and other observables which can be represented as bounded, self-adjoint operators on a
physical Hilbert space. For multi-q systems, the observable algebra has a finite number of non-
trivial equivalence classes of projections as described by operator K-theory [30]. Therefore,
the gaps in the energy spectrum and their corresponding Fermi projections can be classified
by a complete set of topological invariants including the ones responsible for quantized con-
tributions to the Hall conductivity. The formalism in [10] can thus provide a topological clas-
sification of electronic states in multi-q magnets without the need to refer to smooth magnetic
textures or the adiabatic limit.

In this work, we demonstrate how to calculate all topological invariants of the observable
algebra, which are real-, reciprocal, and mixed space Chern numbers, and determine them
numerically for the triangular 3q skyrmion lattice over a range of texture parameters. In doing
so, we obtain an exhaustive topological classification that uniquely identifies the K-theory
classes of one of the standard models displaying a quantized topological Hall effect [7] [8,
9]. Our main findings are threefold: first, we find a single electronic band at the van-Hove
singularity carrying the full contribution to the real-space Chern number. The second result
concerns the relationship between the momentum space Chern number and the texture’s real-
space winding, which we find to be more intricate than traditionally assumed. Thirdly, we
study the evolution of the electronic topology across various phase transitions of the magnetic
texture in real-space and find that the observability of associated spectral flow is related to
subtleties of the observable algebra. The existence of these gapless modes is related to the
topology of the point defects which emerge at the transition parameter [31]. In summary, our
work leverages the tools of noncommutative geometry to achieve a fine-grained understanding
of the electronic states in multi-q textures, which we believe to be key for the educated design
of new topological materials based on magnetic structures.

The paper is organized into six sections. Section 2 formalizes the general mathematical
properties of magnetic multi-q textures, which form the basic ingredients for going into the
formulation of the electronic observable algebra, presented in section 3. We focus on the
real-space topological classification and demonstrate how parameter-dependent transitions
between different topological phases occur. Section 3 identifies the observable algebra and its
faithful representations, and we introduce a differential calculus, i.e., a trace and derivations,
from which we construct the Chern characters. For numerical evaluation, the observable al-
gebra and its differential calculus need to be approximated to the finite-volume case. This is
done in section 4 together with a discussion of this approximation and its error bounds. With
this computational method, the Chern numbers of gaps in the skyrmion crystal system are
evaluated in section 5. We determine all Chern numbers for selected gaps and calculate the
corresponding integer labels. This way, we verify their numerical precision and identify the
Chern numbers of further interest. Next, we compute the main Chern numbers in dependence
on the Fermi energy for selected texture parameters belonging to different topological phases
of the texture. From this, we can identify which energy states contribute to which Chern num-
ber and how this depends on the texture’s winding density. Finally, we compute the main
Chern numbers for the Fermi energy in one fixed gap over a range of parameters, probing the
transition between the texture’s topological phases and compiling a phase diagram for the full
range of texture parameters. From this, we identify the order parameters corresponding to
the topological phase transition.
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2 Properties of multi-q magnetic systems

2.1 On the definition of multi-q order

To begin with, we consider a general periodic texture n : Rd → R3 whose Bravais lattice can
be constructed from the vectors L1, . . . , Ld . In other words, these textures are invariant un-
der the action of the discrete translation group {m1L1 + . . . + md Ld |m ∈ Zd} ⊂ Rd . Denote
the basis for the corresponding reciprocal lattice by Q1, . . . ,Qd , characterized by the property
Li ·Q j = 2πδi j . The resulting reciprocal lattice then comes in the form of

Gm = m1Q1 + . . .+mdQd , (2)

with m ∈ Zd . As long as the texture n is integrable within its unit cell, a lattice Fourier series
can be given in the form of

n(x ) =
∑

m∈Zd

nGm
e+iGm ·x , (3)

nGm
=

1
Vuc

∫

Vuc

dx n(x )e−iGm ·x . (4)

The decay rate of the Fourier coefficients nGm
as a function of increasing ∥m∥ is controlled

by the smoothness of the texture. A textbook example is the discontinuous square wave
n(x) = sgn(sin(x)) in one dimension whose Fourier coefficients nm decay only as 1/m. In
contrast, for a sufficiently smooth texture, the Fourier decomposition will be dominated by its
lowest order terms and one can take this as one hallmark of multi-q magnetic order.

In this regime, a periodic magnetic texture can be thought of as a linear superposition of
a few fundamental modes, fully characterized by a set of r coexisting wave vectors q1, . . .q r
together with their initial phase conditionsϕ1, . . . ,ϕr and amplitudes nq1

, . . . ,nq r
at the origin

of some arbitrary, but fixed coordinate system:

n(x )≈
r
∑

i=−r

nq i
ei(q i ·x+ϕi) , (5)

with q−i := −q i , nq−i
:= n∗q i

, and zero mode with q0 = 0, ϕ0 = 0, and nq0
∈ R3. The initial

phase conditions are put in by design to clarify the intended phases at the origin and could be
absorbed by the complex amplitudes. The q-vectors in the summation above can be any of the
reciprocal lattice vectors Gm with the coefficients mi ∈ {−1, 0,1} (see Eq.(2)), i.e., the lowest
order Fourier modes. Thus, r may exceed the dimensionality d. In general, the vector field
n(x ) has lost its normalization after the truncation of higher-order modes. A reconstruction
of the normalization as n̂(x ) = n(x )/||n(x )|| still gives an excellent approximation to the
original vector field albeit for the price of re-introducing higher order modes. Examples of
multi-q textures of this kind include the A-phase of MnSi which is characterized by three q-
vectors [17], or the atomic scale skyrmion lattice in Fe/Ir(111) thin films which exhibits a
superposition of two q-vectors [4]. The most fundamental example, however, is the stationary
spin-wave: a single-q state with only one mode, describing a plane wave of magnetic moments
which manifests itself for example in the helimagnetic phases of MnSi [32–35] or FeGe [36,37].

One can now go as far as to take these stationary spin waves as the fundamental build-
ing blocks for more general magnetic textures by selecting arbitrary q-vectors from possibly
different, and even outright incommensurate reciprocal lattices before assembling them in a
linear superposition. This encompasses the Fourier truncation of lattice-periodic textures as
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a special case but contains more general textures such as e.g. aperiodic Moiré patterns [38].
From now on, we parameterize these more general superpositions as

n(x ) =
r
∑

i=1

�

ψc
i ê

c
i cos(q i · x +ϕi) +ψ

s
i ê

s
i sin(q i · x +ϕi)

�

+mê0 , (6)

which can be seen to be the equivalent trigonometric formulation of Eq. (5) and which is more
commonly used in the literature on multi-q states, e.g., [6,38–40]. Here,ψc

i ,ψ
s
i are the ampli-

tudes of the cosinusoidal and sinusoidal waves with the wave vectors q i , respectively, êc
i and ês

i
are unit vectors, and ê0 is another independent unit vector for the direction of the constant net
magnetization of magnitude m. In case of a normalized texture n̂(x ) = n(x )/||n(x )||, m no
longer determines the actual net magnetization but is still a related parameter. For example,
one has limm→∞ n̂(x ) = ê0, the collinear ferromagnet.

A texture which is constructed this way from r spin waves depends on the r corresponding
phases ωi : Rd → S1, ωi(x ) = (q i · x +ϕi) mod 2π. However, these phases are in general
not independent of one another, as they are determined by the choice of the q-vectors. The
phase values which can be reached at the same point in real-space lie in the image of the map
ω : Rd → T r . Only if one has r R-linear independent q-vectors every point in this phase space
can be accessed, which is only possible for r ≤ d. One can also consider the scenario where
a selection of q-vectors is linearly dependent. The dimension of the image ω(Rd) is then not
immediately apparent: let r̃ denote the dimension of the linear subspace of Rd spanned by the
r wave vectors. In case that the R-linear dependent wave vectors are also linear dependent
over Q, there exists a rational relation between the phases and the texture is periodic. Then,
the image ω(Rd) ⊂ T r is of dimension r̃ and isomorphic to T r̃ . Otherwise, it may be dense in
a submanifold of T r with dimension equivalent to the number of rationally independent wave
vectors. This is the case for q-vectors from incommensurate lattices rendering the texture
aperiodic. A simple example in d = 1 are two spin waves with phases of an irrational slope
ratio, which wrap densely around T2.

2.2 Real-space topological classification of multi-q textures

Coming back to the case of periodic textures, there can be at most d Q-linear independent
q-vectors and one has fixed rational relations between the initial phases. In the following the
periodic case with r̃ = d is assumed. As the texture consists of a finite sum of smooth functions
over S1, it can be considered as an element of C∞(T d ,R3), the space of smooth maps from the
d-torus to R3. Whenever ∥n(x )∥ > 0 for all x ∈ Rd , the normalisation procedure will lead to
a smooth field of unit vectors n̂, and thus C∞(T d , S2). By setting x = 0, one can conveniently
address T r with the corresponding ϕi and restrict it to T d by using the phase relations.

The topological classification of these maps is based on the concept of homotopy. Two maps
f , g ∈ C(T d , S2) are called homotopic if there exists a continuous function H : T d×[0,1]→ S2,
such that H(t, 0) = f (t) and H(t, 1) = g(t) [41, Ch. 7]. Homotopy forms an equivalence
relation on C(T d , S2) with a corresponding quotient space denoted by [T d , S2] - the space of
homotopy classes. The most well-studied example of such quotients is the so-called homotopy
groups of the sphere πn(Sk) = [Sn, Sk]. In dimension two with two linear independent q-
vectors, the elements of [T2, S2] can be classified by their topological degree. Loosely speaking,
the degree of a map f counts the number of times the domain of f is wrapped around the
range of f . Since the texture n̂ ∈ C∞(T2, S2) is smooth in addition to being continuous
(in fact, every element of [T2, S2] is homotopic to a smooth map), the degree of n̂ can be
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calculated as [42, Thm. 17.35]

deg n̂=
1

4π

∫

T2

dϕ n̂ · (∂ϕ1
n̂× ∂ϕ2

n̂) ∈ Z . (7)

If one has two continuous maps f , g : T2 → S2, then deg f = def g if and only if f and g
are homotopic – a result known as Hopf’s theorem [43, p. 51]. Therefore, Hopf’s theorem
provides an isomorphism [T2, S2]∼= Z which provides a means of topological classification.

2.3 Topological phase transitions in real-space

Parameter manipulation, such as tuning the spin waves’ phase relations ϕi or varying the fer-
romagnetic degree of freedom m, changes the superposition in Eq. (6) smoothly. However,
tuning the parameters over certain critical points can lead to destructive interference. In this
case, ∥n(x c)∥ = 0 will occur at critical positions x c in real-space. The normalization proce-
dure is thus undefined at x c and no matter which choice will be made to redefine n̂(x ), the
resulting function n̂(x ) will be discontinuous at the singularities x = x c . This is of significant
consequence, as the spectral properties of an electronic system coupled to this texture are sen-
sitive to the topology of its singularities [31]. In practice, we can regularize the singularity by
making the choice

n̂=
n
∥n∥
−→

n
∥n∥+η

= n̂η , (8)

with η > 0. It is then guaranteed that limη→0+ n̂η = n̂ for all x ̸= x c .
We want to give a simple example that can be worked out exactly and that can serve as a toy

model for more complex magnetic transitions. Consider the isolated skyrmion, parameterized
in polar coordinates by

nsk(φ,ρ) = (
Æ

1− nz(ρ)2 cos(Φ(φ)),
Æ

1− nz(ρ)2 sin(Φ(φ)), nz(ρ))
T , (9)

where the polar angle of the vector direction Φ(φ) = −φ is opposite to the polar angle
φ ∈ [0,2π) of the coordinates, and the z-component nz(ρ) = (2ρ − 1)Θ(1− ρ) +Θ(ρ − 1)
with the Heaviside step function Θ and Θ(0) = 1

2 only depends on the radius ρ ∈ [0,∞),
such that the texture is that of a ferromagnet for radius ρ ≥ 1. To remain consistent with the
framework of multi-q textures, we can envision that this skyrmion occupies the cartesian unit
cell Vuc = [−1, 1]× [−1, 1] ⊂ R2. One has ∥nsk∥ = 1 and a topological charge deg nsk = 1.
We construct a linear interpolation to the ferromagnet by

n(φ,ρ, t) = (1− t)nsk(φ,ρ) + tez , (10)

where ez is the unit vector in z-direction. By design, a singularity occurs for t = 1/2 where
we find n = 0 at the origin. The resulting texture can now be regularized according to Eq. (8)
before we calculate the winding number from formula Eq. (7). The integrals can be computed
analytically. Let tc(η) represent the value of t for which deg n̂η has depleted to the value of
1/2. As the notation indicates, the value of tc(η) will generally depend on η. However, one
has tc(η) → 1/2 ≡ tc for η → 0. Analytically, we then find the asymptotic scaling behavior
(similar to [44,45])

deg n̂η(t)∼ F
�

(t − tc)(η/η0)
−κ� , for η→ 0+ , (11)

where η0 = 1, κ= 1, and where F is the universal scaling function of the transition, explicitly
given by

F(x) =
1
2

 

1−
x

1+ 4x2

1+4|x |

!

. (12)
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Moreover, one finds limη→0+ deg n̂η(t) = Θ(tc − t), for all t ̸= 1/2. In summary, this example
illustrates how topological invariants associated with a normalized multi-q texture in real-
space, such as its winding number, can change discontinuously as a function of the texture
parameters [5, 6]. This is because, at the critical point, the texture ceases to be continuous,
and its topological degree is not defined. The discontinuous transition can be turned into a
continuous one at the price of momentarily leaving the function space C(T2, S2) in favor of
C(T2,R3), thus leaving the door open for a continuous change of the degree.

2.4 Multi-q systems coupled to lattice electrons

Instead of the continuum Rd , multi-q textures are often studied from the perspective of an
electronic tight-binding Hamiltonian which is hosted by its own respective Bravais lattice [7,8].
This Bravais lattice can generally be different from the Bravais lattice of the magnetic texture,
and interesting band structure effects can result from the interference of these two patterns.
Therefore, we choose a different notation for this case and define the d-dimensional electronic
Bravais lattice by specifying its lattice vectors {ai} and reciprocal lattice vectors {b j}, such that
ai · b j = 2πδi j . The r wave vectors {q i} of the multi-q texture can now be decomposed into

q i =
∑d

j θi j b j . Accordingly, the real-space position of the lattice site with integer label m ∈ Zd

is x m =
∑d

j m ja j . This gives

x m · q i =
∑

kl

mkθil ak · bl = 2π
∑

k

mkθik ≡ 2π m · θ i , (13)

where (θ i)k = θik. This way, the coefficients θi j indicate by how much the phase ωi(x m) of
wave i changes if one moves one site along a j . We denote the phase values modulo 2π by
[x] = x mod 2π ∈ [0, 2π) for all x ∈ R. Then, the phase factors can be written as

ωi(x m) = [x m · q i +ϕi] = [2π m · θ i +ϕi] , (14)

where ϕi is the phase of wave i at the origin x0 = 0 [10]. In matrix notation, one can give a
more compact description in terms of

ω(x m) = [2π θm +ϕ] . (15)

The natural action τ of the lattice translation group Zd on the waves phases is defined by

ω(x m+l) = [2πθ (m + l) +ϕ] = [ω(x m) + 2πθ l]≡ τlω(x m) , (16)

with l ∈ Zd . If we take the right-hand side as the definition of τ, we can relate all phase factors
to the origin:

ω(x m) = τmω(x0) = τmϕ . (17)

It is then possible to take a look at the entire orbit under lattice translations

Zdϕ = {τmϕ | m ∈ Zd} ⊂ T r , (18)

and refer to the closure of Zdϕ in T r as the hull Ω of the magnetic pattern. If the translation
action is ergodic on T r , e.g. for r R-linear independent lattice incommensurate wave vectors
with θik ∈ R \Q, then Zdϕ will form a dense subset of T r whose closure is Ω = T r for all
ϕ ∈ T r . For the remainder of this work, we assume either immediately this case or we take
on a periodic multi-q texture with some rationally linear dependent lattice incommensurate
wave vectors. Then, we can replace the dependent phases using the rational phase relations,
thereby reducing r to r̃, the number of R-linear independent wave vectors, to return to the
first case with ergodicity on T r̃ .
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2.5 The hexagonal skyrmion crystal on the triangular lattice

The focus of this work is on the skyrmionic 3q -state, supported by a triangular lattice. Its
spin texture is given by the normalized superposition of r = 3 spin helices in two-dimensional
real-space (d = 2) with wave vectors of equal length q that sum up to zero (120◦ apart from
each other) as illustrated in Fig. 1:

q1 =
�p

3q
2 , − q

2 , 0
�T

, q2 =
�

0, q, 0
�T

, q3 =
�

−
p

3q
2 , − q

2 , 0
�T

. (19)

The respective amplitudes are 1/
p

3 and the unit vectors create a helical wave, i.e., êc
i directs

out of the plane in the z-direction and ês
i is orthogonal to q i and êc

i , such that they form a
right-handed basis ofR3. The constant phase shifts in this scenario provide only one additional
degree of freedom (up to real-space translation): their sum ϕ1 +ϕ2 +ϕ3 = ϕ. The resulting
vector field is given by the normalization n̂ of the superposition n [6]:

n(x ) =
3
∑

i=1

�

1
p

3
êz cos(q i · x +ϕi) +

1
p

3
(q̂ i × êz) sin(q i · x +ϕi)

�

+mêz (20)

=
3
∑

i=1

�

n ie
i(q i ·x+ϕi) + n∗i e−i(q i ·x+ϕi)

�

+mêz , (21)

with n i =
1

2
p

3
(êz − iq̂ i × êz). We consider this texture on a two-dimensional triangular lattice

with real- and reciprocal space lattice vectors:

a1 =
�

1, 0, 0,
�T

, a2 =
�

1
2 ,

p
3

2 , 0
�T

, (22)

b1 = 2π
�

1, − 1p
3
, 0

�T
, b2 = 2π

�

0, 2p
3
, 0

�T
. (23)

As required, it is ai · b j = 2πδi j . Expanding the q-vectors in the reciprocal lattice vector basis,
we find

q1 =
q
p

3
4π

b1 , q2 =
q
p

3
4π

b2 , q3 =
q
p

3
4π
(−b1 − b1) . (24)

Let ϑ = q
p

3
4π , then the decomposition coefficient matrix θ is given by:

θ = ϑ





1 0
0 1
−1 −1



 . (25)

Of course, the third phase factor is artificial in the sense that three coplanar vectors cannot
be linearly independent. As such, it can be eliminated from the whole description of the
texture from the start with r = 2 and the minimal θ -matrix given by θ = ϑ id2. However, the
construction of the hexagonal skyrmion lattice is much simplified with the superfluous, yet
helpful degree of freedom which can also assist in the interpretation of small angle neutron
scattering data for example [16].

The degree of n̂ ∈ C∞(T2, S2), introduced in Eq. (7) is the first important order parameter
characterizing the texture. In Fig. 2 (a), we show how deg n̂ depends on m and ϕ, thereby
reproducing the result of [6, Fig. 6]. Implicit equations for the phase boundaries were already
determined in [6, Eq. (29)]. Another relevant order parameter of n̂ ∈ C∞(T2, S2) for the
interpretation of the electronic phase diagrams later on is the net magnetization

〈n̂〉= lim
|V |→∞

1
|V |

∫

V

d2x n̂(ω(x )) =
1
|T2|

∫

T2

d2ϕ n̂(ϕ) , (26)
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Figure 1: Illustration of a multi-q state generating a skyrmion crystal. Three
helical spin waves with wave vectors summing up to zero in a two-dimensional plane,
the initial phases at the origin are ϕ1 = ϕ2 = ϕ3 = 0, generate a 3q-skyrmion texture
with ϑ = 0.15 on a triangular lattice.

(a) Mapping degree (b) Net magnetization

Figure 2: Phase diagram of the 3q skyrmion lattice. The subfigures show order
parameters of the magnetic texture as a function of m and ϕ which are relevant for
the interpretation of the electronic structure. (a) Gives deg n̂, with phase boundaries
(solid black lines) determined by the condition that n(ϕ) = 0 for some ϕ ∈ T2

(cf. [6, Fig. 6]). (b) shows the net magnetization 〈n̂z〉 with phase boundary (solid
black line) determined by the condition 〈n̂z〉= 0.

where the transition from real-space to the 2-torus of phases is understood in the sense of
section 2.2. One finds 〈n̂x〉= 〈n̂y〉= 0, while 〈n̂z〉 shows a nontrivial dependence on m and ϕ
as demonstrated by Fig. 2 (b). When 〈n̂〉 = 0, the magnetic texture is time-reversal invariant
modulo a proper Euclidean symmetry operation. Since this imposes additional constraints on
the associated electronic system, we plot the resulting phase boundary as a solid black line in
Fig. 2b).
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Mathematically, important topological properties of the electronic system coupled to this
magnetic texture can be discovered when ϑ takes irrational values. In this case, the map

Z2 ∋ (m1, m2) 7→ ([2πϑm1 +ϕ1], [2πϑm2 +ϕ2]) = (ω1,ω2) ∈ T2 , (27)

samples the torus T2 densely. To see that this is true, note the independence of m1 and m2
which are uniquely associated with either ω1 or ω2. We can therefore reduce the proof of the
claim above to the following proposition: The set {[2πϑm+ϕ] | m ∈ Z} is dense in [0, 2π)
for arbitrary ϕ ∈ R and ϑ ∈ R \Q. A proof can be found in [46] and [47, Prop. 1.3.3.]. For
the two-dimensional skyrmion lattice just discussed, the hull of the magnetic pattern is thus
given by

{([2πϑm1 +ϕ1, 2πϑm2 +ϕ2]) | (m1, m2) ∈ Z2} ∼= T2 . (28)

As a consequence, the discrete — but infinite — electron system can “experience” all possible
local realizations of the magnetic texture when ϑ is irrational. This will turn out to have very
useful implications in the following.

3 The electronic observable algebra of multi-q magnets

We claim in [10] that all possible tight-binding Hamiltonians incorporating multi-q magnetic
order are representations of a certain crossed product C∗-algebra A as bounded operators on
the Hilbert space C2 ⊗ ℓ2(Zd). The algebraic structure of A encodes the essential physical
properties of electrons in multi-q magnets. In this section, we want to demonstrate why this
is the case.

The emergence of magnetism in crystalline materials is a complex physical phenomenon,
combining the special theory of relativity (in the form of the electron spin), quantum mechan-
ics (due to the Pauli principle), and electromagnetism. On the level of Kohn-Sham density
functional theory, a magnetic material comprising interacting electrons can be described by an
effective non-interacting Hamiltonian [48,49]

HKS = −
ħh2

2m
∆+ veff(r ) + Bxc(r ) ·σ , (29)

where veff(r ) is the effective scalar potential, while Bxc(r ) captures the exchange-correlation
effects responsible for the emergence of magnetic order. We assume that Bxc(r ) is a contin-
uous vector field. This is the case, for example, in the local spin-density approximation to
the exchange-correlation potential [49]. The basic toy model which describes some essen-
tial aspects of electrons in skyrmion materials can be either seen as a discretization of this
Hamiltonian or as a projection onto local s-orbitals, given by the tight-binding Hamiltonian

H = −λhop

∑

〈i, j〉∈Z2d

|i〉 〈 j |+λxc

∑

i∈Zd

σ · n(x i) |i〉 〈i| , (30)

where 〈i, j〉 indicates the restriction of the sum to nearest-neighbor pairs in the d-dimensional
lattice. The parameter λhop describes the hopping parameter, while λxc describes the coupling
strength to the magnetic texture n with σ representing the vector of Pauli matrices. The
relevant Hilbert space is, therefore, H = C2 ⊗ ℓ2(Zd), but we already want to stress that
generalizations to further orbital and spin degrees of freedom, as well as next-nearest neighbor
coupling and beyond, are possible for the formalism outlined below.

Here, we assume that the spectrum of the discrete tight-binding Hamiltonian exhibits the
same topological features as the lowest part of the energy spectrum for its underlying contin-
uum model. This has been confirmed in [50] for the case of a constant magnetic field perpen-
dicular to a two-dimensional crystal in the strong binding regime, i.e., the integral quantum
Hall effect.

10

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.080


SciPost Phys. Core 7, 080 (2024)

For completely generic, continuous textures n ∈ C(Rd ,R3), the most general algebra which
contains the Hamiltonian as one of its elements is a so-called von-Neumann algebra: B(H) –
the space of bounded operators on H. From the topological point of view, these algebras are
too large to be useful: their K-theory is trivial, i.e., K0(B(H)) = 0 [30, p. 47]. For completely
arbitrary textures, there is thus not much to be said. The case is different for multi-q systems.
This is because their associated textures can be thought of as a composition of maps [10]:

Rd T r R3 ,ω n (31)

withω as in section 2.4 and where n is a continuous function. This structure can be leveraged
to give a very compact description of an algebra of observables which is capable of describing
every tight-binding electron Hamiltonian coupled to multi-q magnetic order. Its definition and
topological classification is the subject of this section: we rewrite the tight-binding Hamilto-
nian of Eq. (30) such that its affiliation to this algebra becomes apparent.

3.1 Crossed product algebra

The fundamental property that allows for a concise algebraic description is the fact that trans-
lations on the electronic lattice can be compensated by continuous shifts of the multi-q texture
— a property referred to as covariance in the mathematical literature. The resulting algebraic
structures with built-in covariance are so-called crossed product C∗-algebras [51, Ch. 7], which
is the content of this section.

As a first observation, the group of lattice translations Zd has a corresponding continuous
action on the algebra of continuous functions on the r-torus, C(T r), given via C∗-automor-
phisms:

α: Zd → Aut(C(T r)), m 7→ αm , (32)

(αm f )(ϕ)≡ f (τ−mϕ) = f (ϕ − 2πθm) , (33)

which we want to use to build the crossed product algebra. Recall that τ are the translations
defined in Eq. (16). If one denotes the abstract generators of Zd by t1, . . . , td , then one can
think of Zd as an abelian group with presentation

Zd = 〈t1, . . . , td | t i t j = t j t i〉 . (34)

We employ a multi-index notation and write tm = tm1
1 . . . tmd

d for m ∈ Zd . The group algebra
CZd then consists of formal summations

∑

m∈Zd cm tm , where only finitely many coefficients
cm ∈ C are different from zero and the multiplication law is inherited from the group structure
by a linear extension.

As a vector space, the crossed product of the algebra C(T r) and the group Zd is then
defined as the C-linear tensor product C(T r)⊗CZd with a typical element in the form of

∑

m∈Zd

fm ⊗ tm , (35)

and where the complex coefficients now have flourished into continuous functions on T r ,
fm ∈ C(T r). Still, only finitely many fm are different from zero. To obtain the algebraic
structure on C(T r)⊗CZd that is characteristic for the crossed product, one declares

( f1 ⊗ tm1)( f2 ⊗ tm2) = f1αm1
( f2)⊗ tm1+m2 . (36)

We denote the resulting algebraic crossed product by Cc(Zd , C(T r),α). While this description
would already be sufficient to represent a wide class of model Hamiltonians H, the same can-
not be said for their physical properties since these are encoded in the single-particle Green’s
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function, the resolvent (z − H)−1 for z ∈ C, which is not representable as an element of
Cc(Zd , C(T r),α). Therefore, we need a meaningful completion of the algebraic crossed prod-
uct to a larger set of observables. This requires an additional structure that is introduced in
the following section.

3.2 The noncommutative torus and its faithful representations

C∗-algebras have a long history in quantum mechanics [52] and provide a suitable framework
to make sense of operators such as the resolvent and the Fermi projection. First, recall that
a Banach algebra is an algebra B over a field that is complete with respect to a norm ∥.∥
fulfilling ∥ab∥ ≤ ∥a∥∥b∥ for all a, b ∈ B. A C∗-algebra A is then a complex Banach algebra
with an anti-multiplicative, anti-linear involution ∗, i.e., a Banach ∗-algebra, for which the
so-called C∗-identity

∥a∗a∥= ∥a∥2 , (37)

is fulfilled for all a ∈ A. There are essentially two different ways to arrive at a C∗-completion
of the algebraic crossed product Cc(Zd , C(T r),α), which are referred to as the full crossed
product C∗-algebra C(T r)⋊θ Zd and the reduced crossed product C∗-algebra C(T r)⋊θ ,r Zd . A
detailed account can be found in [51, Ch. 7] while a brief, educational overview can be found
in [53, Example 2.2.7].

LetH be a Hilbert space with its bounded operators denoted byB(H) and unitary operators
denoted by U(H). A covariant representation π ⋊ ρ of Cc(Zd , C(T r),α) is a representation
π: C(T r)→ B(H) together with a unitary representation ρ : Zd → U(H) such that

(π⋊ρ)( f ⊗ tm) = π( f )ρ(tm) , (38)

ρ(tm)π( f )ρ(t−m) = π(αm( f )) . (39)

C(T r) itself is a C∗-algebra with involution given by the complex conjugation and with the
uniform norm

∥ f ∥T r = sup
ϕ∈T r
∥ f (ϕ)∥ . (40)

We can use this norm to construct the ℓn-norm of a =
∑

m∈Zd fm ⊗ tm as

∥a∥ℓn =

�

∑

m∈Zd

∥ fm∥nT r

�
1
n

. (41)

Denote by ℓ1(Zd , C(T r),α) the Banach *-algebra which is obtained through the completion of
Cc(Zd , C(T r),α)with respect to the ℓ1-norm. The full crossed product C∗-algebra C(T r)⋊θ Zd

is then obtained by completing ℓ1(Zd , C(T r),α) with respect to

∥a∥= sup
π⋊ρ
∥(π⋊ρ)(a)∥B(H) , (42)

defined for all a ∈ ℓ1(Zd , C(T r),α) and with the norm on the right being the operator norm,
while the supremum is taken over all covariant representations π⋊ρ of Cc(Zd , C(T r),α).

Another C∗-algebra completion with closer ties to the physical description is the reduced
crossed product C∗-algebra since it is built around the physical Hilbert space ℓ2(Zd). For
a generic element a ∈ Cc(Zd , C(T r),α) given by a =

∑

m∈Zd fm ⊗ tm , we define a family
{π⋊ϕ}ϕ∈T r of ∗-representations π⋊ϕ = πϕ ⊗ρ by setting

ρ(tm) = T̂m , (43)

πϕ( fm) =
∑

i∈Zd

(α−i fm)(ϕ) |i〉 〈i| , (44)
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where T̂m is the unitary translation operator on ℓ2(Zd) with T̂m |i〉 = |i +m〉 for i, m ∈ Zd .
The covariance is easily observed:

ρ(tm)πϕ( f )ρ(t
−m) =

∑

i∈Zd

(α−i f )(ϕ) |i +m〉 〈i +m|

=
∑

i∈Zd

(α−iαm f )(ϕ) |i〉 〈i|

= πϕ(αm f ) , (45)

for all f ∈ C(T r) and m ∈ Zd . We can use π⋊ϕ to formulate the norm

∥a∥= sup
ϕ∈T r
∥π⋊ϕ(a)∥B(H) . (46)

The completion of Cc(Zd , C(T r),α) with respect to this norm is the reduced crossed product
C∗-algebra C(T r)⋊θ ,rZd . For the noncommutative torus, it turns out that the two completions
discussed in this section give identical C∗-algebras [54, Thm. 7.13], and we can drop the
distinction in the notation from now on.

If the translation action on T r is ergodic, then π⋊ϕ is faithful [55, Prop. 3.8]. This is because

π⋊ϕ(a) = 0 if an only if fm(τnϕ) = 0 for all coefficient functions fm and translates n ∈ Zd .
Since the action is ergodic for all ϕ ∈ T r and the coefficient functions are continuous, one
must have fm(ϕ) = 0 everywhere. The faithfulness shows that our algebra does not contain
any redundant or unnecessary information about the observables. It is the minimal algebraic
structure that describes the essential physical properties of the electronic system: algebraically
distinct observables in C(T r)⋊θ Zd will have physically distinct representations on B(H).

We can think of C(T r) in terms of the universal C∗-algebra

C(T r) = 〈u1, . . . , ur | uiu j = u jui〉 , (47)

where we represent the generators ui as the continuous phase factors u j(ϕ) = eiϕ j . The
generators u j obey the following commutation relation in C(T r)⋊θ Zd

t iu j = αe i
(u j)t i = e−2πiθ ji u j t i = e2πi(−θ T )i j u j t i , (48)

which follows from Eq. (36). This means if we combine the generators of translations t i and
the generators of continuous functions u j into a single notation:

γ= (γ1, . . . ,γr+d) = (t1, . . . , td , u1, . . . , ur) , (49)

then we can give an equivalent description of C(T r)⋊θ Zd in terms of the universal C∗-algebra

Aθ = C(T r)⋊θ Zd = 〈γ1, . . . ,γr+d | γiγ j = e2πiΘi jγ jγi〉 , (50)

where Θ is the (r + d)× (r + d) matrix

Θ =

�

0 −θ T

θ 0

�

. (51)

In conclusion, the observable algebra of spin-1/2 electrons on the Zd lattice in contact with
an ergodic multi-q texture is

A= M2(C)⊗ (C(T r)⋊θ Zd) , (52)

and we can extend πϕ to A by setting

πϕ(m⊗ a) = m⊗πϕ(a) , (53)

for all m ∈ M2(C) and a ∈ C(T r)⋊θ Zd .
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3.3 The canonical form of the tight-binding Hamiltonian

To elucidate that the tight-binding Hamiltonian from Eq. (30) incorporating multi-q magnetic
order is indeed a representation of a noncommutative torus’ algebra element, we rewrite the
Hamiltonian into its canonical form. From a given site i ∈ Zd , denote by d1, . . . ,d c ∈ Zd the
relative position of its nearest neighbors (which we assume to be independent of i) with c
being the coordination number of the lattice. Further we define ϕ =ω(x0). For the hopping
term, one then finds

Hhop = −λhop

∑

〈i, j〉∈Z2d

|i〉 〈 j |= −λhop

∑

i∈Zd

c
∑

j=1

|i + d j〉 〈i|= −λhop

∑

i∈Zd

c
∑

j=1

T̂d j
|i〉 〈i|

= −λhop

c
∑

j=1

πϕ(t
d j ) . (54)

The algebra element

∆=
c
∑

j=1

td j , (55)

is also referred to as the adjacency operator of the lattice. The hopping term is now manifestly
invariant under translations: T̂i Hhop T̂ †

i = Hhop. The behavior of the exchange term is slightly
different. Since

n(ω(x i)) = n(τi(ϕ)) = α−in(ϕ) , (56)

it can be written as

Hxc = λxc

∑

i∈Zd

σ · n(ω(x i)) |i〉 〈i|= λxc

∑

i∈Zd

α−i(σ · n)(ϕ) |i〉 〈i|

= λxc πϕ(σ · n) . (57)

Combined, these results show that the Hamiltonian H = Hhop + Hxc is given by the covariant
representation H = πϕ(h) with

h= −λhop ∆+λxc σ · n , (58)

which is an element of M2(C)⊗ (C(T r)⋊θ Zd).

3.4 Traces on the noncommutative torus and Birkhoff’s ergodic theorem

While it is intuitively clear what we mean by a trace on B(H), we have to do a little bit of work
to unearth the same concept on the algebraic level of the noncommutative torus. As a starting
point, there is a canonical trace on C(T r) given by

τC(T r )( f ) =
1
|T r |

∫

T r

dϕ f (ϕ) , (59)

with the useful property of being invariant under the Zd -automorphisms α:

τC(T r )(αm f ) = τC(T r )( f ) , ∀m ∈ Zd . (60)

On the other hand, there is a unique trace on the group algebra CZd given by

τCZd

�

∑

m∈Zd

γm tm

�

= γ0 . (61)
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Combined, their composition can be used to define a trace T on the observable algebra A by
declaring

T
�

∑

m∈Zd

fm ⊗ tm

�

= τC(T r )(tr f0) , (62)

where tr is the matrix trace of M2(C).
The physical relevance of the trace T is founded in the ergodic properties of the translation

action on T r [55]. Let ΠV be the projector onto a finite cube of volume V centered around the
origin. Using the covariance property of the ∗-representation πϕ , we then can write the trace
per unit volume in terms of the summation

TV (a) =
1
|V |

∑

m∈Zd

tr 〈m|Π†
Vπϕ(a)ΠV |m〉=

1
|V |

∑

m∈V

tr 〈0| T̂ †
mπϕ(a)T̂m |0〉 (63)

=
1
|V |

∑

m∈V

tr 〈0|πτm(ϕ)(a) |0〉 . (64)

By our assumption, τ: T r → T r is ergodic. We then have a measure-preserving ergodic system
(T r ,B ,µ,τ), where B is the Borel σ-algebra of T r , τ are the irrational rotations acting on
T r and µ is the Lebesgue measure on T r , invariant under τ. In fact, τ is uniquely ergodic in
the sense that the Lebesgue measure is the only τ-invariant measure on T r [47, Def. 4.1.7.].
Uniquely ergodic systems fulfill a stronger version of Birkhoff’s ergodic theorem [47, Prop.
4.1.13.] such that

lim
|V |→∞

1
|V |

∑

m∈V

tr 〈0|πτm(ϕ)(a) |0〉=
1

(2π)r

∫

T r

dϕ tr 〈0|πϕ(a) |0〉= T (a) , (65)

converges uniformly for all ϕ ∈ T r and is independent of ϕ. In summary, we thus have

lim
|V |→∞

TV (a) = T (a) . (66)

The trace per unit volume is perhaps the more natural trace to use and has a clear physical
interpretation within the relevant physical Hilbert space. This result, therefore, shows that
this trace is identical to its purely algebraic counterpart in the thermodynamic limit and is
important to establish the physical significance of the algebraic formulation.

3.5 K -theory of the noncommutative torus

Operator K-theory is the noncommutative analog of topological K-theory classifying isomor-
phism classes of vector bundles. While the latter is only equipped to investigate projections
of the C∗-algebra of matrix-valued continuous functions on locally compact Hausdorff spaces,
operator K-theory can also classify projections in more difficult, noncommutative C∗-algebras,
such as the noncommutative torus. The relevance to physical properties is directly inferred
from this: the observable C∗-algebra describing a physical system contains all spectral (Fermi)
projections, which can thus be labeled by topologically invariant numbers, the so-called Chern
numbers. They are closely related to further physical quantities, e.g., transport behavior. The
following overview about K-theory summarizes the relevant concepts for the context of this
work and is based on the textbook account of [30].

Projections are one of the key subjects of K-theory. A projection in a C∗-algebra A is a self-
adjoint, idempotent element p, i.e. p = p∗ = p2. There are several ways to define equivalences
of C∗-algebra elements. From topology we are familiar with homotopy, i.e., two elements are
a, b ∈ A are homotopic a ∼h b, if there exists a continuous map v : [0,1]→ A, t 7→ v(t) with

15

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.080


SciPost Phys. Core 7, 080 (2024)

v(0) = a and v(1) = b. For the equivalence of projections, the image of this map needs to be
a projection at every point. Two additional concepts for equivalence of projections are given
by the Murray-von Neumann equivalence p ∼ q if there exists v ∈ A with vv∗ = p and v∗v = q,
and the unitary equivalence p ∼u q, if there exists a unitary element u in the unitarization A+

with q = upu∗.
Passing to matrix algebras Mn(C) ⊗ A with arbitrary but finite dimension n ∈ N one can

coincide these notions of equivalence of projections from A. Let now P∞(A) be the limit of the
union over all projections in all of these finite-dimensional matrix algebras. On this set, one
can define the equivalence relation p ∼0 q for projections p ∈ Mn(C)⊗ A and q ∈ Mm(C)⊗ A
if there exists v ∈ Mm,n(C)⊗ A such that p = v∗v and q = vv∗. With the direct sum on P∞(A)
given by

p⊕ q = diag(p, q) =

�

p 0
0 q

�

, (67)

the set of equivalence classes P∞(A)/ ∼0 is an abelian semi-group. The notion of an inverse
element which is crucial in the definition of a group is missing as of now.

If the C∗-algebra A is unital, we can straightforwardly generate the Grothendieck group
from this semi-group to define K0(A). One can view this process as similar to the way the
integers are constructed out of natural numbers by “inventing” negative numbers. K0(A) is the
only group, up to a unique group homomorphism, with the property that any two homotopic
projections in Mn(C)⊗ A correspond to the same well-defined group element in a way which
is consistent with addition and the group’s neutral element [30, Prop. 3.1.8]. If A is not unital,
one defines K0(A) as the kernel of the homomorphism K0(A+)→ K0(C), where A+ ∼= A⊕C is
the unitarization of A.

For the observable algebra of spin-1/2 electronsA= M2(C)⊗Aθ with the noncommutative
torus Aθ = C(T r)⋊θ Zd of dimension r + d one finds [55, Prop. 4.2.4]

K0(A) = K0(Aθ ) = Z2r+d−1
, (68)

independent on the matrix θ . For more on the K0-group for higher dimensional noncommu-
tative tori, we refer to [56]. This means, that there are 2r+d−1 generators [eJ], which can
be uniquely labeled by the subsets of indices J ⊆ {t1, . . . , td , u1, . . . , ur} of even cardinality.
The equivalence class of any projection from P∞(A) can be uniquely decomposed into these
generators with integer coefficients nJ :

[p]0 =
∑

J⊆{t1,...,td ,u1,...,ur}
|J | even

nJ[eJ]0 . (69)

If p is homotopically deformed, it stays inside its K0 class, and the integer labels nJ do not
change. They are the complete set of topological invariants associated with the projection
p. For a Fermi projection of a physical observable algebra, they label the energy gap of the
spectrum in which the Fermi energy is located.

3.6 The noncommutative n-th Chern number

To access all the K0 labels of a specific projection p we can pair its corresponding K0 equivalence
class [p]0 with a so-called cyclic cocycle [53,57,58]. They generalize the concept of a bounded
trace by defining group morphisms from the K0 group to C. Cyclic n-cocycles η on an algebra
A are multi-linear maps in HomC(A⊗(n+1),C) which fulfil the additional conditions of being
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cyclic, λη= η, and closed under the Hochschild boundary map, bη= 0, where

λη(a0, . . . , an) = (−1)nη(an, a0, . . . , an−1) and (70)

bη(a0, . . . , an+1) =
n
∑

j=0

(−1) jη(a0, . . . , a ja j+1, . . . , an+1) + (−1)n+1η(an+1a0, . . . , an) , (71)

for a0, . . . , an+1 ∈ A. They can also more conveniently be described as the characters of n-cycles
(Ω, d,

∫

) over the algebra A, which consist of a graded, differential algebra (Ω, d), with Ω0 ∼= A,
and a closed, graded trace

∫

. This way, one obtains a cyclic n-cocycle of the form [57, III.1.α.
Prop. 4]:

η(a0, . . . , an) =

∫

a0da1 . . . dan . (72)

In particular, if we have a linear functional with the trace property, such as the trace of the
noncommutative torus T , as well as n mutually commuting derivations ∂1, . . . ,∂n : A → A
such that T (∂ j(a)) = 0 for any a ∈ A and j ∈ {1, . . . , n}, then a cyclic n-cocycle is given
by [53, Example 3.6.6]

η(a0, . . . , an) :=
∑

σ∈Sn

sgn(σ) T (a0∂σ(1)a1 . . .∂σ(n)an) , (73)

where Sn denotes the permutation group of n elements.
In the case of the noncommutative torus, we can define derivations associated with the

real-space and the phase space. For this, we consider an action of the Lie group T r+d on the
C∗-algebra Aθ = C(T r)⋊θ Zd . Let the action ρ : T r+d → Aut(Aθ ) act on the generators and
their coefficients the following way

ρλ( f )(ϕ) = f (ϕ + ξ) , (74)

ρλ(t i) = e−iki t i , i = 1, . . . , d , (75)

with λ = (ξ, k) ∈ [0,2π]r+d and f ∈ C(T r). This can be extended to a point-wise norm
continuous group of ∗-automorphisms on the noncommutative torus [55, Prop. 3.10.].

Elements of the algebra for which the automorphisms ρλ are n-times differentiable for
λ are called n-times differentiable as well. They form a linear subspace dense in Aθ . The
dense subalgebra Aθ of smooth, i.e., infinitely differentiable, elements is a Fréchet pre-C∗-
algebra [58, Prop. 3.45]. Since its C∗-completion is the full noncommutative torus, the in-
clusion i : Aθ → Aθ induces an isomorphism of K0-groups K0(i) : K0(Aθ ) → K0(Aθ ) [58,
Thm. 3.44]. This means the smooth noncommutative torusAθ has the same K0 group as the
full noncommutative torus C∗-algebra Aθ itself.

Further, the pre-C∗-property implies that the algebra is stable under holomorphic func-
tional calculus, which is crucial for our purpose. It guarantees to us that any Fermi projection
pF of the Hamiltonian h belongs to the smooth noncommutative torus, provided the Fermi
energy EF lies within a gap of the Hamiltonians spectrum σ(h). Let EF /∈ σ(h) and ΓF be the
contour in C which encircles σ(h) ∩ (−∞, EF ) and does not intersect σ(h). Then the Fermi
projection pF may be defined by the Riesz projector

pF =
1

2πi

∮

ΓF

(z − h)−1dz . (76)

The derivations obtained from differentiating the torus action are unbounded, closed ∗-derivations
of the form

∂ u
j a = ∂ u

j

∑

n∈Zd

an ⊗ tn =
∑

n∈Zd

(∂ϕ j
an)⊗ tn , (77)
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and
∂ t

j a = ∂ t
j

∑

n∈Zd

an ⊗ tn = −i
∑

n∈Zd

n jan ⊗ tn . (78)

They mutually commute and the trace of the derivation of any algebra element is zero. Putting
this all together with the proper prefactor and the internal spin degrees of freedom, we ob-
tain the following Chern number from pairing the Chern character with a projection p of the
observable algebra A= M2(C)⊗Aθ [59]:

ChJ ([p]0) =
(2πi)|J |/2

(|J |/2)!

∑

σ∈S|J |

(−1)σT

 

p
∏

j∈J

∂σ j
p

!

, (79)

with J ⊆ {t1, . . . , td , u1, . . . , ur} and |J | even. For the particular case of J = ;, one has
Ch;([p]0) = T (p). Since cyclic cocycles on an algebra induce group homomorphisms from
its K0-group’s generators to C, we can evaluate the Chern number of each projection’s equiv-
alence class by its linear decomposition into the K0-groups generators and the evaluation of
the Chern characters of the generators. For the projection class

[p]0 =
∑

I⊆{t1,...,td ,u1,...,ur}
|I | even

nI[eI]0 , (80)

we obtain the Chern number

ChJ ([p]0) =
∑

I⊆{t1,...,td ,u1,...,ur}
|I | even

nI ChJ ([eI]0) . (81)

The value of the Chern numbers on the generators of K0 can be determined explicitly, and
one finds [60, 61] ChJ ([eI]0) = 1 if J = I , ChJ ([eI]0) = 0 if J ̸⊆ I , and ChJ ([eI]0) = Pf(ΘI\J )
otherwise. The operation Pf denotes the Pfaffian and ΘI\J is the representation of Θ in the
reduced index set I\J . These identities require compatibility of the order of indices established
in Eq. (49) and the sign convention in Eq. (74) and (75). Evaluating the Chern numbers
enables us to extract the corresponding nI ’s. For example, for the 3q skyrmion lattice with
Aθ = C(T2)⋊θ Z2 and K0(Aθ ) = Z8, we can consider

θ = ϑ

�

1 0
0 1

�

, (82)

and find

Ch; = n; − ϑn{t1,u1} − ϑn{t2,u2} − ϑ
2n{t1,t2,u1,u2} , (83)

Ch{t1,t2} = n{t1,t2} , (84)

Ch{t1,u1} = n{t1,u1} − ϑn{t2,u2} − ϑn{t1 t2u1u2} , (85)

Ch{t1,u2} = n{t1,u2} , (86)

Ch{t2,u1} = n{t2,u1} , (87)

Ch{t2,u2} = n{t2,u2} − ϑn{t1,u1} − ϑn{t1 t2u1u2} , (88)

Ch{u1,u2} = n{u1,u2} , (89)

Ch{t1,t2,u1,u2} = n{t1,t2,u1,u2} . (90)
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Moreover, the linear system of equations can be inverted to provide a mapping from the
Chern numbers onto the integer invariants:

n; = Ch; +
−ϑ(Ch{t1,u1} + Ch{t2,u2}) + ϑ

2(ϑ− 3)Ch{t1,t2,u1,u2}

ϑ− 1
, (91)

n{t1,t2} = Ch{t1,t2} , (92)

n{t1,u1} =
Ch{t1,u1} + ϑCh{t2,u2} + ϑ(ϑ+ 1)Ch{t1,t2,u1,u2}

1− ϑ2
, (93)

n{t1,u2} = Ch{t1,u2} , (94)

n{t2,u1} = Ch{t2,u1} , (95)

n{t2,u2} =
Ch{t2,u2} + ϑCh{t1,u1} + ϑ(ϑ+ 1)Ch{t1,t2,u1,u2}

1− ϑ2
, (96)

n{u1,u2} = Ch{u1,u2} , (97)

n{t1,t2,u1,u2} = Ch{t1,t2,u1,u2} . (98)

3.7 Physical interpretation of Chern numbers

The Chern number with the most well-known connection to physics is Ch{t1 t2}, describing the
intrinsic contributions to the anomalous Hall effect:

σ[x y] =
e
h

Ch{t1 t2} . (99)

The K-theory analysis shows that for the skyrmion multi-q texture considered in this work,
Ch{t1 t2} = n{t1 t2} is quantized to integer values as expected [7]. We argue, that Ch{u1u2} de-
scribes the real-space winding number of the spin of the electronic states, and our numerical
Chern number computation reveals, that a single band at the van-Hove singularity carries the
whole contribution to it. Aside from Ch{t1 t2} and Ch{u1u2}, the remaining Chern numbers could
be potentially relevant in a physics context.

For example, the integrated density of states represents the total number of electrons per
unit volume (the charge carrier density), and according to the previous analysis, it obeys the
polynomial equation

IDS= Ch; = n; − ϑn{t1,u1} − ϑn{t2,u2} − ϑ
2n{t1,t2,u1,u2} , (100)

where all coefficients nJ are integers. The IDS is typically fixed by the chemistry of the re-
spective material. Assume two insulators with different IDS harbor the same topological state
in the sense that the Fermi projections belong to the same K-theory class. Then, due to the
different chemistry of the materials, ϑ must change in order to fulfill the constraints imposed
by the polynomial equation above. Imagine the IDS could be tuned by the application of a
gate voltage φ. If the system remains insulating, the only way to accommodate the change in
IDS is a variation of ϑ, i.e.,

∂φϑ = −
∂φIDS

n{t1,u1} + n{t2,u2} + 2ϑn{t1,t2,u1,u2}
. (101)

This means that the topological states enable a magnetoelectric behavior, controlled by the
mixed space Chern numbers. The mixed space Chern numbers are further related to the exis-
tence of mixed space Berry curvature that also has transport manifestations such as the chiral
Hall effect [62,63] and orbital magnetization [64].

Lastly, we want to mention that the Chern numbers can play an important role in shaping
the dynamical properties of topological magnetic materials, as shown in [65]. In essence,
an adiabatic time-dependent modulation of the magnetic order can induce spin and charge
currents of topological origin.
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4 The approximating algebra for computation

The tight-binding Hamiltonian acts on the infinite-dimensional Hilbert space C2⊗ ℓ2(Zd) and
is therefore impossible to implement explicitly for computation. The conventional solution to
this problem is to impose periodic boundary conditions. Mathematically, this boils down to a
description of the group Z as a direct limit of normal subgroups, for example,

Z= p0Z ▷ p1Z ▷ p2Z ▷ . . . , (102)

where p is a natural number greater than 1. The respective quotients Z/pkZ = Zpk are the
integers modulo pk and are finite dimensional. Their direct limit is in general much larger than
Z, but the quotient morphisms Z→ Zpk together with the universal property of the limit imply
the existence of an injective group morphism onto a dense subspace of the direct limit [66,
Chap. 4.1]. One can then be sure that model Hamiltonians taken from the group C∗-algebra of
Zd can be described in terms of a sequence of finite-dimensional, approximate Hamiltonians
with periodic boundary conditions whose resolvent, density of states, etc., converge to the true
bulk limit as k→∞ [66, Chap. 4.3].

If the θ matrix contains irrational values, it seems impossible at first to use the prescription
of converging periodic boundary conditions. Still, we can take a sequence of rational approx-
imations to θ such that the convergence can be equally ensured as k→∞ [55, Ch. 5]. This
can be done, for example, by using an expansion of θ in terms of continued fractions [67]. In
that case, the lattice group action does not act ergodically on the texture and the trace does not
exactly correspond to the integral over the full phase space. Still, it gives a good numerical ap-
proximation for increasingly irrational approximations of θ where bigger and bigger periodic
supercells sample the phase space sufficiently well. The algebra and differential calculus rep-
resentation must be modified accordingly to accommodate these finite approximations. This
will be discussed in the subsequent sections.

4.1 Finite-volume approximating algebra

We consider the periodic approximating algebras in the form of [55, Ch. 4.4]

AN
θ = 〈γ1, . . . ,γr+d | γiγ j = e2πiΘi jγ jγi , γ

Ni
i = 1〉 , (103)

where Ni ∈ N. Consistency among the relations can only be achieved for certain quantized
values of the flux matrix with respect to the system sizes Ni . This is because

γi = γ
N j

j γi = e2πiΘ ji N jγiγ
N j

j = e2πiΘ ji N jγi . (104)

Taking the block structure of the flux matrix into account, the entries of the flux matrix need
to fulfill the quantization condition

[Θ jiN j] = 0⇔ [θi jN j] = 0 , (105)

for i = 1, . . . , r and j = 1, . . . , d. If the θi j coefficients are rational, they can respectively be
expressed with co-prime integers ai j , bi j ∈ N, such that θi j =

ai j

bi j
. We can then always find a

system size with N1, . . . , Nd to meet the above requirements.
For each real-space dimension, j = 1, . . . , d, there exists an N j such that for each i = 1, . . . , r

there is an mi j ∈ N with mi j bi j = N j . The smallest such N j is the least common multiple of
the bi j , i = 1, . . . , r. Then we have N jθi j = mi jai j ∈ N, in other words, [θi jN j] = 0.
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For simplicity, we will only consider the case N j = N = 2L + 1 for all j = 1, . . . , d with
L ∈ N. Let VN denote the cube of length N = 2L + 1 centered at the origin. The canoni-
cal Hilbert space is then ℓ2(VN ) and we have a field {π̂⋊ϕ}ϕ∈T r of covariant ∗-representations

π̂⋊ϕ : AN
θ
→ B(ℓ2(VN )) with π̂⋊ϕ = π̂ϕ ⋊ ρ̂ given by

ρ̂(t i) = T̂i , (106)

π̂ϕ( f ) =
∑

m∈VN

(α−m f )(ϕ) |m〉 〈m| , (107)

for all translation generators t i and all f ∈ C(T r). T̂i is again the translation operator, but this
time on the finite lattice with periodic boundary conditions. Having the super-cell balanced,
i.e. m ∈ Vn implying −m ∈ VN , makes π̂⋊ a ∗-homomorphism. π̂⋊ϕ provides us with a finite-
dimensional matrix, suitable for our numerical computations.

4.2 Approximate differential calculus

The u-derivations are straightforward to compute since they can be obtained directly from the
partial derivatives as

π⋊ϕ(∂
u
j a) =

∑

n∈Zd

∑

m∈Zd

(∂ϕ j
an(τ−mϕ)) |m〉 〈m| T̂n = ∂ϕ j

π⋊ϕ(a) , (108)

for a ∈ Aθ , which we implement numerically using a finite-difference quotient. This recipe
works in exactly the same way for the finite-volume approximating algebras AN

θ
and their

representations π̂⋊ϕ .
The representations of the t-derivations for Aθ are computed from the commutator with the
position operator as

π⋊ϕ(∂
t
j a) = i[π⋊ϕ(a), x̂ j] , (109)

where x̂ j is the position operator acting on ℓ2(Zd), i.e., x̂ has the spectral decomposition

x̂ =
∑

m∈Zd

m |m〉 〈m| . (110)

This requires some care in carrying it over to the finite approximations. For a ∈ AN
θ

one
finds [55, Prop 4.26] that

π̂⋊ϕ(∂
t
j a) = −i

∑

λ2L+1=1

cλ λ
X j π̂⋊ϕ(a)λ

−X j , (111)

where

cλ =

¨

λL+1

1−λ , if λ ̸= 1 ,

0 , if λ= 1 .
(112)

The result follows from the identity

n=
∑

λ2L+1=1

cλ λ
n , for n ∈ {−L, . . . , L} , (113)

which is the discrete Fourier transformation (DFT) of the sequence of 2L+1 complex numbers
c−L , . . . , cL onto the sequence −L, . . . , L.
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The last missing component is now the appropriate trace for the finite-volume approx-
imating observable algebra AN = M2(C) ⊗ AN

θ
. It is given in analogy to the trace of the

noncommutative torus by [55, Prop 4.26]

T̂ (a) = 1
(2π)r

∫

T r

dϕ tr 〈0| π̂⋊ϕ(a) |0〉 . (114)

Since the action on the finite-volume approximation algebra is not ergodic, we cannot use
Birkhoff’s ergodic theorem again to obtain the trace per unit volume. However, T r is still
invariant under the action, which implies

T̂ (a) = 1
(2π)r

∫

T r

dϕ
1
|VN |

∑

m∈VN

tr 〈m| π̂⋊ϕ(a) |m〉 . (115)

For our numerical evaluation, we omit the phase space average and merely compute the finite
trace per unit volume

T̂ ϕVN
(a) =

1
|VN |

∑

m∈VN

tr 〈m| π̂⋊ϕ(a) |m〉 , (116)

for one fixed phase space origin ϕ. In the limit of N →∞ ergodicity is restored and (116)
converges to the trace in the noncommutative torus. The consequences of this approxima-
tion are discussed in section 5. We argue that the finite trace per unit volume is physically
motivated, as long as there is no physical averaging mechanism.

4.3 The approximate n-th Chern number

In order to compute Chern numbers we first need to determine the representation of the Fermi
projection pF ∈AN as defined in Eq. (76). Since the representations π̂⋊ϕ are homomorphisms
they commute with the functional calculus. Thus, we first represent our Hamiltonian h ∈AN

from Eq. (58) as a finite 2N d×2N d matrix π̂⋊ϕ(h), diagonalize it, and use the spectral theorem
to construct the finite Fermi projection

PϕF = π̂
⋊
ϕ(pF ) =

2N d
∑

i=1

χ(−∞,EF )(εi) |εi〉 〈εi| , (117)

where εi and |εi〉, i = 1, . . . , 2N d , are the energy eigenvalues and eigenvectors of π̂⋊ϕ(h) in

C2 ⊗ ℓ2(VN ). The approximate derivations of the Fermi projection can be computed from this
representation as established in section 4.2 and the approximate Chern number we obtain
numerically is then computed as

Ĉh
ϕ

J (pF ) =
(2πi)|J |/2

(|J |/2)!

∑

σ∈S|J |

(−1)σ
1
|VN |

∑

m∈VN

tr 〈m| π̂⋊ϕ(pF )
∏

j∈J

π̂⋊ϕ(∂σ j
pF ) |m〉 . (118)

For readability, we will refer to the numerically evaluated Chern numbers of a specified gap in
section 5 by ChJ .

4.4 Error bounds

In [55, Chap. 6, 8] error bounds are established for the smooth and non-smooth correla-
tion functions evaluated with the finite-volume approximation. These are valid for the finite-
volume approximate algebra with its proper trace. Thus they are only applicable to the phase
space average of our results. Nevertheless, we observe a matching convergence.
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Let h be the Hamiltonian from Eq. (58), EF the Fermi energy located in the spectral gap of
h, and pF the corresponding Fermi projection as given in Eq. (76). Then for any K ∈ N, there
exists a finite constant CK such that

|ChJ (pF )−
1

(2π)r

∫

T r

dϕ Ĉh
ϕ

J (pF )| ≤
CK

(1+ |VN |)K
, (119)

where J is any subset of indices J ⊆ {t1, . . . , td , u1, . . . , ur} of even cardinality. Thus, the
convergence to the thermodynamic limit of the finite-volume approximation with phase space
average is faster than any inverse power of the finite supercell’s size.

5 Results

5.1 Full topological classification of electronic states in the hexagonal SkX
phase

Topological features in the electronic structure are known to appear in the strong coupling
limit ∥λxc/λhop∥ ≫ 1 of two-dimensional skyrmionic crystals in the tight-binding approxima-
tion [7]. This has been the motivation for our previous work [10]. In this section, we want
to complete our program for the hexagonal skyrmion crystal hosted by a triangular lattice as
initiated in [10] and give a full list of all topological invariants that can be attributed to the
observable gaps in the spectrum.

We first want to comment on which topological invariants can be expected to arise from
very general arguments. Based on the discussions of the previous sections, we can view h in
this case as an element of the noncommutative torus C(T2)⋊θ Z2 tensored with the operators
M2(C) that act on the internal spin degree of freedom and write

h/λxc = (1− 2p) + ε∆ , (120)

where we assume λxc > 0, ε= λhop/λxc, and where ∆ is the adjacency operator of the lattice
(the operator which couples nearest neighbors with unit strength). The operator p depends
on the magnetic texture n̂ ∈ C∞(T2, S2) and is given by the projection

p =
1
2

�

1⊗ t0 −σ · n̂(ϕ)⊗ t0)
�

. (121)

When ε= 0, the Hamiltonian h has a gap at zero energy, referred to as the zero energy gap in
the following. For 0 < ∥ε∥ ≪ 1, this gap stays open, and the gap projection operator changes
continuously as a function of ε. For a topological classification of the zero energy gap, we can
thus focus on the limit of ε → 0. The occupied subspace below zero energy belongs to the
eigenspace of p with an eigenvalue equal to one, characterized by a perfect anti-alignment of
the electron spin with the vector field specified by n̂. We compute the Chern numbers

n; = C;([p]0) = 1 , (122)

and

n{u1,u2} = C{u1,u2}([p]0) = −2πi

∫

T2

dϕ
(2π)2

tr (σ · n̂)[(σ · ∂ϕ1
n̂), (σ · ∂ϕ2

n̂)]/8 (123)

=
1

4π

∫

T2

dϕ n̂ · (∂ϕ1
n̂× ∂ϕ2

n̂) (124)

= deg n̂ . (125)
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Figure 3: Electronic spectrum for the 3q skyrmion crystal. The density of states of
the tight-binding Hamiltonian coupled to the 3q skyrmion crystal is computed over
the entire range of length scales ϑ.

The remaining Chern numbers for this gap are zero since p commutes with the position oper-
ator. As the trivial projection 1 has the trace 2 and exhibits 0 for all other Chern numbers, we
can also infer that the unoccupied subspace above zero energy, which is the eigenspace of

p⊥ = 1− p =
1
2

�

1⊗ t0 +σ · n̂(ϕ)⊗ t0)
�

, (126)

carries n; = 1, n{u1,u2} = −deg n̂, and 0 for the remaining Chern numbers.
Another interesting quantity to look at is the spin magnetization. It has the expectation

value

S = T (σp) = −
1

(2π)2

∫

T2

dϕ n̂(ϕ) , (127)

in units of ħh/2. This reproduces Eq. (26) from section 2.5 and the spin magnetization will
follow the phase diagram as shown in Fig. 2.

When the length scale of the skyrmion crystal now approaches the lattice constant, further
energy gaps open inside the two blocks of aligned and anti-aligned states over and under zero
energy. This can be observed by computing the spectrum of the tight-binding Hamiltonian
for a range of ϑ values via exact diagonalization or more sophisticated algorithms such as
the Kernel Polynomial Method (KPM) [68] which makes it computationally viable to evaluate
much larger supercells. In Fig. 3, we used the KPM to evaluate the spectrum of the tight-
binding Hamiltonian from Eq. (30) with parameter λhop = 1 and λxc = 5 on a supercell of
size Nx = Ny = 400. The magnetic texture n̂ ∈ C∞(T2, S2) is implemented as in Eq. (20)
with phase shift and magnetization parameters ϕ1 = ϕ2 = ϕ3 = 0 and m = 0. For the KPM
algorithm, we choose 2048 energy values, 2048 Chebyshev moments, and 10 random states.
The length scale parameter ϑ takes values in a system of size N = 400, i.e., ϑ = i

400 with
i = 1, . . . , 199,201, . . . , 399.
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Table 1: Full topological classification of the 3q skyrmion crystal. For the gaps
labelled by the colored bullet points in the density of states in Fig. 3, we compute
all possible Chern numbers at ϑ = 10

57 in Table (a) and extract the corresponding
K-theory class in Table (b). To a good accuracy, these values are given by integer
numbers as expected.

(a) Chern numbers at ϑ = 10
57 .

ChJ Gap L1 • Gap L2 • Gap 0 • Gap U1 • Gap U2 • Gap U3 •
Ch; 0.03077870 0.06155740 1.00000000 1.03077870 1.06155740 1.09233610

Cht1 t2
-0.99999991 -1.99963888 0.00000000 0.99999435 1.99998349 2.99508127

Cht1u1
0.17543859 0.35084663 -0.00000000 0.17543819 0.35087549 0.52593783

Cht1u2
-0.00000000 -0.00000003 -0.00000000 -0.00000002 -0.00000004 -0.00000006

Cht2u1
-0.00000002 -0.00000003 0.00000000 -0.00000002 -0.00000004 -0.00000005

Cht2u2
0.17543858 0.35084663 0.00000000 0.17543818 0.35087549 0.52593782

Chu1u2
0.00000000 -0.00000000 0.99999993 0.99999993 0.99999993 0.99999993

Cht1 t2u1u2
-0.99999978 -1.99938378 -0.00000000 -0.99999140 -1.99998058 -2.99653455

(b) Labels of K-theory class in K0(A) = Z8.

nJ Gap L1 • Gap L2 • Gap 0 • Gap U1 • Gap U2 • Gap U3 •
n; 0+1.7× 10−8 0+5.2× 10−5 1−1.2× 10−10 1+7.3× 10−7 1+1.3× 10−6 1+2.0× 10−4

nt1 t2
−1+8.9× 10−8 −2+3.6× 10−4 0+2.6× 10−17 1−5.6× 10−6 2−1.7× 10−5 3−4.9× 10−3

nt1u1
0+3.3× 10−8 0+9.4× 10−5 0−5.7× 10−10 0+1.3× 10−6 0+2.1× 10−6 0+2.8× 10−4

nt1u2
0−4.9× 10−9 0−3.5× 10−8 0−3.0× 10−10 0−1.8× 10−8 0−3.6× 10−8 0−6.5× 10−8

nt2u1
0−1.7× 10−8 0−3.1× 10−8 0+1.1× 10−10 0−1.9× 10−8 0−4.1× 10−8 0−4.9× 10−8

nt2u2
0+2.4× 10−8 0+9.4× 10−5 0−5.3× 10−11 0+1.3× 10−6 0+2.1× 10−6 0+2.8× 10−4

nu1u2
0+6.0× 10−11 0−5.7× 10−10 1−7.0× 10−8 1−6.9× 10−8 1−7.0× 10−8 1−6.7× 10−8

nt1 t2u1u2
−1+2.2× 10−7 −2+6.2× 10−4 0−3.4× 10−10 −1+8.6× 10−6 −2+1.9× 10−5 −3+3.5× 10−3

Let us now inspect the gaps in between the aligned states in the upper block (U) and anti-
aligned states in the lower block (L). There are several gaps at finite ϑ, which remain opened
but narrow for ϑ→ 0. We refer to those as being connected to the adiabatic limit. The gaps
between the lowest energy bands in each block are the widest, and some of them have been
marked with dots and numbered from bottom to top for further examination. Besides these
gaps, some gaps open near ϑ = 1/2, which only remain open over a short interval of finite
ϑ. Since those gaps are not connected to the adiabatic limit of smooth textures and are as
such not treatable with commutative geometry, we coin them noncommutative spectral gaps.
To compute all Chern numbers corresponding to the gaps marked with dots, we use the pe-
riodic approximating algebra formalism introduced in section 4. We first perform an exact
diagonalization of the tight-binding Hamiltonian as above on a supercell of size Nx = Ny = 57
for ϑ = 10

57 (the corresponding texture is depicted in Fig. 4 (a)) and from the eigenstates we
construct Fermi projection operators according to Eq. (117) with Fermi energy EF inside the
chosen gaps. They are representations of projections from the periodic approximate algebra of
the noncommutative torus, and we can compute their derivations to evaluate the correspond-
ing Chern numbers as detailed in Eq. (118). The partial derivatives ∂ϕ j

PϕF are numerically im-

plemented as a difference quotient with ∆ϕ j = 10−8. The results are displayed in Table 3 (b).
From these Chern numbers, we can also immediately extract the ϑ-independent coefficients
of the Fermi projection with respect to the K0 group generators by using equations (91)-(98).
This gives us a full set of integer labels for the gaps as displayed in Table 3 (c).
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Figure 4: A skyrmionic multi-q texture at ϑ = 10/57 and ϑ = 20/53. The figure
shows 20×20 parts of multi-q textures with deg n̂= 1 (ϕ = 0, m= 0) for ϑ = 10/57
and for ϑ = 20/53 at which unusual band gap formations were noticed in the DOS
plots of figure 5. While it is difficult to imagine that the texture in (b) still represents
something like a skyrmion lattice, the electronic real-space winding number is indeed
quantized.

It can be seen that the numerically computed coefficients are indeed quantized to integer
values to good accuracy, and the Chern numbers and coefficients of the zero energy gap (Gap
0 •) match our preliminary consideration n; = n{u1,u2} = 1 and 0 for the remaining Chern
coefficients. The ; and {u1, u2} Chern labels of the marked gaps above zero energy (U) are
equal to 1, while the marked gaps below zero energy (L) exhibit 0. This raises the question
which electronic band is responsible for carrying this quantized Chern number. Similarly, some
bands above the highest of our marked gaps need to carry a Chern label contribution of 1 to
n; and −1 to n{u1,u2} to be consistent with our assessment from general principles. The {t1, t2}
Chern label of the marked gaps above zero energy increases by 1 per gap, which means that
the energy bands in between carry a contribution of 1 each. Below zero energy, the sign is
flipped. Since we know that the Chern label of the zero energy gap is 0, the contributions of
these energy bands need to be compensated by some bands in the same block. The same is
true for the block above zero energy. All remaining mixed space first Chern numbers are zero
for all marked gaps. Lastly, the {t1, t2, u1, u2} Chern labels of the marked gaps are similar to
the {t1, t2} Chern labels, but have a negative sign below and above zero energy. Also, some
compensating energy bands need to exist here.

To investigate further which energy bands exactly contribute to the main Chern num-
bers, we compute them in dependence on the Fermi energy on a supercell of size N = 57
for ϑ = 10/57 as well as N = 53 for ϑ = 20/53, as shown in Fig. 5. The density of states
in the middle is computed with the KPM on a system of size 400 and the same Hamiltonian
parameters as before. This way, we can determine which states carry the quantized {u1, u2}
Chern coefficient contributions. Starting at the bottom of the energy range, the first real-space
Chern number Ch{u1,u2} = n{u1,u2} is consistently 0, even outside of gaps, until we get close to
E ≈ −3, at which point it jumps to 1 and stays again stable until E ≈ 7, where it jumps back
two 0. This implies, that a single band at these energies carries the entire block’s contribu-
tion of ±deg n̂. The two energies are correlated with an increased density of states. Indeed,
the DOS shows a pronounced peak persisting in the limit of ϑ → 0, consistent with the van
Hove singularities (VHS) of the triangular electronic lattice, located at the respective energies
EV HS ≈ 2λhop +λxc = 7 and EV HS ≈ 2λhop −λxc = −3 [8].
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Figure 5: Main Chern numbers of the skyrmion crystal at zero shift and magne-
tization. At ϑ = 10

57 and ϑ = 20
53 we evaluate the Chern number in systems of size 57

and 53, respectively, for Fermi energies in the full energy range.

Further, one can observe that the first momentum space Chern number Ch{t1,t2} = n{t1,t2}
of the upper, spin-aligned block of energy states, increases by 1 with each gap connected to
the adiabatic limit of ϑ → 0. For ϑ = 10/57 at the present numerical accuracy, this is well
discernible for this block’s lowest 10 gaps U1, . . . , U10. This trend seems to reverse at higher
energies, and around E = 7 the overall Chern numbers become negative. The Chern labels of
the highest two gaps U−2 and U−1 are perceivable to be−4 and−2, respectively. The gaps are
less pronounced for the lower block of spin anti-aligned energy states, but the Chern numbers
behave the same with a flipped sign and turning point around E = −3. This is consistent with
the known findings from mapping the bands to Landau levels which one finds to contribute 1
to the Chern number when below and 2 when above the VSH [8].

For ϑ = 20/53, the gap formation is even less pronounced, and several gaps are not con-
nected to the limit of smooth textures, ϑ→ 0. They seem to behave differently from the rules
we observe for the connected gaps. While for ϑ = 10/57, the Chern numbers follow a rather
predictable pattern from gap to gap, the same cannot be said for ϑ = 20/53, where no clear
pattern can be identified. A look at the real-space distribution of the spins in Fig. 4 (b) reveals
a texture that does not resemble a skyrmion lattice at first sight. Yet, the electrons’ real-space
winding number Ch{u1,u2} still exhibits quantization. The skyrmionic nature of the texture can
thus only reveal itself through (approximate) ergodicity.

In conclusion, we can deduce from the results of this subsection that the bands at the VHS
carry the whole ±deg n̂ contribution to the first real-space Chern number of the whole block,
as well as the whole Chern number contribution to the first momentum space and the second
mixed space Chern numbers to compensate for all the other bands’ contributions of ±1 and
±2. Electrons at the VHS are characterized by a vanishing group velocity. Their spin can thus
align perfectly with texture n̂. Notably, those seem to be the only states with nontrivial spin
winding.
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Figure 6: Skyrmionic multi-q textures for different parameters. The figure shows
20 × 20 parts of multi-q textures with deg n̂ = −1 (ϕ = π, m = 0) in (a) and (b)
and deg n̂ = −2 (ϕ = 0, m = 0.7) in (c) and (d) for ϑ = 10/57 and for ϑ = 20/53,
respectively. The shift in ϕ in (a) and (b) inverts the spins’ directions and changes
the relative position of the magnetic unit cell in comparison to fig. 4. The magneti-
sation parameter m raises the spins in z-direction. In (c) the winding deg n̂ = −2 is
perceptible in the sharp corners of the rhombic magnetic unit cell.

5.2 Topological phase transitions following a change of real-space winding

In section 2, we demonstrated that the winding number deg n̂ changes discontinuously when
varying the texture parameters ϕ and m as displayed in Fig. 2, reproducing the result from [6].
Some example textures for different deg n̂ are presented in Fig. 6. According to our preliminary
consideration Ch{u1,u2} = n{u1,u2} of the electronic spectrum must change in correspondence.
In this section, we want to inspect this case further and investigate how the electronic topology
will respond to a change in the real-space topology. We first compute the main Chern numbers
of the full Fermi energy range for two different areas of the texture’s topological phase diagram
and then we compute the change of the Chern numbers over a continuous path in parameter
space.

In Fig. 7, we begin with the case ϕ = ϕ1 + ϕ2 + ϕ3 = π and m = 0, for which we get
deg n̂= −1. This change in parameters compared to the previous section is equal to the time-
reversal operation (up to translation) as it switches the overall sign of the entire spin texture.
All other parameters are the same as for Fig. 5 and, thus, the density of states is also the same
as in Fig. 5 forϕ = 0. This is expected as the time-reversal operation does not affect the energy
eigenvalues. Accordingly, the second mixed space Chern number remains unaltered as well.
This is expected for the same reason, since Ch{t1,t2,u1,u2} = n{t1,t2,u1,u2} is the coefficient of the
quadratic term of the integrated density of states in dependence of the length scale parameter,
see Eq. (100). On the other hand, both first Chern numbers switch their sign. This is not
surprising in the case of Ch{u1,u2}, since it corresponds to deg n̂ and therefore it is odd under
the time reversal operation. The same holds true for Ch{t1,t2}.
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Figure 7: Main Chern numbers of the skyrmion crystal at π shift and zero mag-
netization. At ϑ = 10

57 and ϑ = 20
53 , we evaluate the Chern number in systems of size

57 and 53, respectively, for Fermi energies in the full energy range.

Figure 8: Main Chern numbers of the skyrmion crystal at zero shift and 0.7
magnetisation. At ϑ = 10

57 and ϑ = 20
53 we evaluate the Chern number in systems of

size 57 and 53, respectively, for Fermi energies in the full energy range.

Next, we consider the case of ϕ = ϕ1 + ϕ2 + ϕ3 = 0 and m = 0.7, for which we get
deg n̂ = −2, displayed in Fig. 8. Here, the texture is not obtained from a global symmetry
operation and the result is less predictable from general considerations. At this point in pa-
rameter space, only the lowest gaps of each block are sufficiently clear, which gives us less
energy range at which our Chern number calculations converge to integers. Ch{u1,u2} is far
less stable than before, but again starts at 0 at the lower end of the energy range and jumps to
deg n̂= −2 after E = −3 until it goes back to 0 after E = 7. Thus, it still behaves analogously
to the prior cases. However, unexpectedly Ch{t1,t2} is 0 in the gaps U1′, U2′, and U−1′ as well
as in the gaps L1′, L2′, and L−1′, while Ch{t1,t2,u1,u2} is −1 in U1′, −3 in U2′, and 2 in U −1′.
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Figure 9: Density of states evolution across real-space phase transitions. We
perform three different line cuts through the phase space spanned by the texture
parameters (m,ϕ).

This implies that the first energy band of the block carries a contribution of 1 to the mixed
space Chern number, the second band however carries 2, and the last band carries 2 as well.
For the lower block, the L1′ and L−1′ gaps have the same second mixed space Chern numbers
as in the upper block, but in the L2′ gap this Chern number does not converge properly.

To understand what happens between these three points in parameter space which are
characterized by different winding numbers of the magnetic texture, we focus next on the
change of the spectrum and the change of the main Chern numbers in gap U1. In Fig. 9 we
compute the spectrum of the tight-binding Hamiltonian with the KPM in a supercell of size 400
for ϑ = 10

57 and parameters as above for phase shifts ϕ between 0 and π at m= 0 and m= 0.7,
as well as for m between 0 and 1 for ϕ = 0. The spectrum along the m = 0 line in Fig. 9 (a)
is symmetric and returns to its initial shape, as the end point is obtained by the time reversal
of the starting point. For ϕ → π

2 at which point the winding number deg n̂ jumps from 1 to
−1 all gaps in between the blocks of aligned and anti-aligned states close and reopen again.
The ϕ = 0 line in Fig. 9 (b) starts at the same parameter point with deg n̂ = 1. At m = 1p

3

the texture’s winding number jumps to deg n̂ = −2 and at m =
p

3
2 to deg n̂ = 0, however

this is not apparent from the spectrum. The U1 gap closes at an earlier m value and reopens
afterwards to U1′, and the U2 gap closes and stays closed. This makes the U2′ from Fig. 8
a factual continuation of gap U3 from Fig. 5, which explains that it carries the second Chern
number Ch{t1,t2,u1,u2} = −3. For m→ 1 all gaps except U1 have closed. The last line we follow
in Fig. 9 (c) starts with the spectrum which is at m= 0.7 in Fig. 9 (b), where the U1′ and U2′

gaps are wide open and clear in the upper block. At the start we have deg n̂= −2 that jumps
to deg n̂= −1 around ϕ = 0.1π. The U1′ gap closes briefly around ϕ = 0.4π and the second
energy band splits to reopen the U2 gap we had before at m = 0 and ϕ = 0. Also multiple
higher gaps open. This is consistent with our expectations as the spectrum at the endpoint is
in the same area of the winding number phase diagram from Fig. 2 as the spectrum at m = 0
and ϕ = π.

Next, we examine how the main Chern numbers of the first gap U1 or, respectively, U1′,
which is the gap that stays open for most of the parameter range, change along these paths
through the parameter space. For the top row of Fig. 10, we computed the exact diagonaliza-
tion of the tight-binding Hamiltonian on a supercell of size 57 for ϑ = 10

57 and parameters as
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(a) m= 0 (b) ϕ = 0 (c) m= 0.7

Figure 10: Chern number evolution across real-space phase transitions. We per-
form three line cuts through the phase space spanned by the texture parameters
(m,ϕ). We compute the main Chern numbers of the first gap by fixing the IDS to
1+1 ·

�10
57

�2
in a system with 57×57 sites and ϑ = 10

57 , the red dashed line marks the
Fermi energy positioned in the middle of the gap. The inset in subfigure (c) displays
the energy eigenvalues computed in a larger system with 137×137 sites and ϑ = 24

137 .

above and plotted the individual energy eigenvalues. From this diagonalization, we also com-
puted the corresponding main Chern numbers. Since we are particularly interested in their
response to the discontinuities in the texture, we choose a phase space origin position ϕ to
move the singularity onto the site at x 0. For the path along m = 0 and m = 0.7 we choose
[π+ arccos mp

3
+ϕ,π+ arccos mp

3
,−2 arccos mp

3
] and for ϕ = 0 we choose [π,π, 0].

Along the m = 0 line, depicted in Fig. 10 (a), we have a sharp jump from 1 to −1 in
Ch{u1,u2} at ϕ = π

2 , where the winding number switches from 1 to −1 as well. Ch{t1,t2} follows
through, but the transition is less sharp and nearly continuous over a wider parameter range. It
coincides with two states crossing the first gap. The second Chern number Ch{t1,t2,u1,u2} = −1
remains mostly constant but undergoes a peak in the vicinity of the winding number transition.
Similarly, following the ϕ = 0 line in parameter space, shown in Fig. 10 (b), Ch{u1,u2} matches
the winding number of the texture. The first jump from 1 to −2 at m = 1p

3
coincides with

a singularity of Ch{u1,u2}, while the second transition from −2 to 0 at m =
p

3
2 is continuous.

This is caused by the real-space position of the lattice sites and whether the singularity of
the magnetization vector field occurs close by one of them. If we would additionally average
over the phase space, the Chern number would exhibit a singularity at both parameter points.
However, Ch{t1,t2} does not follow suit with the winding number and changes at a lower value
of m: already at ≈ 0.27 a band crossing in the first gap occurs and Ch{t1,t2} changes nearly
continuously from 1 to 0. The second Chern number Ch{t1,t2,u1,u2} = −1 remains again mostly
constant but undergoes a peak in the vicinity of the band crossing and a singularity at the point
of the singularity of Ch{u1,u2} however, does not respond to the second continuous change of
Ch{u1,u2}. The behavior of the Chern numbers along the m= 0.7 line in Fig. 10 (c) holds more
unexpected features. While Ch{u1,u2} exhibits a singularity around ϕ = 0.1π and jumps from
−2 to −1 following the winding number, Ch{t1,t2} changes continuously over a wide range
around ϕ = 0.4π from 0 to −1, while none of the eigenvalues in the system of size 57 crosses
the gap. However, for a change in Chern number to occur in a system there must be a gap
closing [69] in the spectrum, and indeed for a system size of 137, we observe a crossing in the
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Figure 11: Topological phase diagrams. For constant IDS = 1 + 1 ·
�10

57

�2
, these

figures trace the Chern numbers across the phase space spanned by (m,ϕ). Notably,
Chu1u2

is in one-to-one correspondence with the phase diagram obtained through
deg n̂ of the texture. Cht1 t2

has a pronounced correlation with the net-magnetization
of the real-space texture, while Cht1 t2u1u2

seems to be responsive to both of these
qualities of the real-space texture.

eigenvalues. At this point we need to remark, that this is not purely dependent on the system
size, but rather on the ergodicity condition. For some sizes the crossing does appear for others
it does not. This could also be resolved by computing the phase space average. Again for
this path, the second Chern number Ch{t1,t2,u1,u2} = −1 remains mostly constant with a peak
around the band crossing and singularity at the singularity position of Ch{u1,u2}.

Since the parameter position of the band crossing at which Ch{t1,t2} changes does not
coincide with the parameter position of the jumps in winding number, except for at m = 0,
we further scan over the whole relevant area of parameter space to identify its pattern. As
displayed in Fig. 11, we compute the main Chern numbers for the tight-binding Hamiltonian
on a system of size 57 with parameters as above for ϕ ranging from 0 to π and m ranging
from −2 to 2 and a phase space origin set to ϕ = [ϕ, 0, 0].

Here, Ch{u1,u2} perfectly reproduces the winding number phase diagram from Fig. 2, which
we already observed for the three paths. On the border lines between the different areas, it
exhibits singularities at regular distances. Those coincide with the points in parameter space
for which a discontinuity in the magnetization texture lies in the immediate vicinity of a lattice
site. Due to the different choices of ϕ these positions do not coincide with the singularities
observed along the paths above. Computing the average over the phase space would cause
singularities along the whole border. Interestingly, the sharp change in Ch{t1,t2} at which band
crossings occur coincides with the parameter line in which the net magnetization 〈n̂z〉 is zero.
Precisely at those positions, the system is time-reversal invariant (modulo lattice symmetry),
and thus Ch{t1,t2} is forced to vanish by reasons of symmetry. The borders of the areas with
Ch{t1,t2} = ±1 for |m| → 2 resemble the areas of Ch{u1,u2} but are more fuzzy which might be a
finite system size effect. As for the paths before, the second Chern number Ch{t1,t2,u1,u2} = −1
remains mostly constant. At the transition borders of the other Chern numbers it is affected
by peaks or singularities but does not change, except for the outside border for |m| → 2 for
which it transitions to 0.
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Figure 12: Density of states evolution across real-space phase transitions with
regularization. We perform three different line cuts through the phase space
spanned by the texture parameters (m,ϕ). The texture is regularized with η= 0.1.

5.3 On the existence of topological spectral flow

While all transitions of Ch{t1,t2} are accompanied by a band crossing, we do not observe band
crossings that correspond to the change in Ch{u1,u2}, especially no closing of the zero energy
gap. This is due to the singular nature of the transition as discussed in section 2.2. To make
the transition continuous, we regularize the singularity with a parameter η= 0.1 as described
in Eq. (8). This leads to a shift in energy close to the transition, a shift of the critical parameter
point (ϕc ,mc) at which the transition occurs, and a crossing of energy eigenstates. We compute
the spectrum of the tight-binding Hamiltonian with regularized magnetic texture analogous
to Fig. 9 with the KPM on a system of size 400 as displayed in Fig. 12.

Indeed, along the m= 0 path in Fig. 12 (a) we clearly see the band crossing at ϕ = π. The
bands of the upper block bend downwards and the bands of the lower block bend upwards.
At the top of the lower block, a single band bends upwards until it touches the bottom band
of the upper block, crossing the zero energy gap. Similarly, in Fig. 12 (b) we also see band
crossings along ϕ = 0 at the parameter positions of the winding number jumps, however with
a lower density of states. Since the phase space origin ϕ of the texture for this computation
was chosen in a way, that the first former singularity would be sitting right on the lattice site
with label 0, the first band crossing fully closes the gap while the second crossing leaves a
small gap open. In Fig. 12 (c), we choose ϕ to position the former singularity on the origin
lattice site as well. Also here, we can see how states from the lower block bend upwards and
cross the gap around 0.1π where the winding number transition takes place.

Finally, we need to examine the effect of the regularization on the Chern number transi-
tions, which we do in Fig. 13 computed analogously to Fig. 10, but with the regularization
procedure applied. We can observe the behavior of the individual energy eigenstates from
the tight-binding Hamiltonian for system size 57 and the corresponding main Chern numbers.
Along m = 0 in Fig. 13 (a), we see how a high number of states is bent upwards such that
several states close the gap. The transition of the Chern numbers is nearly identical to that in
Fig. 10 (a), except for Ch{t1,t2,u1,u2} which exhibits a broader peak than before. In Fig. 13 (b),
we see a single energy state close the gaps for the first transition, due to the choice of the
phase space origin, and a few states bend only halfway upwards to close the gaps for the sec-
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(a) m= 0 (b) ϕ = 0 (c) m= 0.7

Figure 13: Chern number evolution across real-space phase transitions with reg-
ularization. We perform three different line cuts through the phase space spanned
by the texture parameters (m,ϕ). We compute the main Chern numbers of the first
gap by fixing the IDS to 1+ 1 ·

�10
57

�2
in a system with 57× 57 sites and ϑ = 10

57 , the
red dashed line marks the Fermi energy positioned in the middle of the gap.

ond transition. The Chern numbers behave very similarly to those in Fig. 13 (b), except for
the position of the Ch{t1,t2} transition which happens at around m ≈ 0.375 in comparison to
m ≈ 0.275 for the texture which was not regularized. The regularization predominantly im-
pacts the magnetization and therefore also the parameter position for which 〈n̂z〉 goes to zero.
Ch{t1,t2,u1,u2} exhibits a new dip at the second transition. In Fig. 13 (c), we also only have a
single energy state which nearly closes the gap at the position where formerly the singularity
occurred. The position of the Ch{t1,t2} transition is shifted from around ϕ = 0.4π to around
ϕ = 0.27π, which is also due to the change in magnetization.

The reason why the spectral flow [70] over the phase transition does or does not ap-
pear in real-space can be found in algebraic arguments. Namely, the observable algebra
M2(C) ⊗ (C(T2) ⋊θ Z2) itself requires the continuity of the magnetic texture as a function
of the phase space T2, which also implies continuity on the real-space R2. However, it is im-
possible to keep the texture normalized to a field of unit vectors n̂(x ) = n(x )/||n(x )|| and
maintain continuity across the transition. There must exist a critical point along the reaction
path at which the texture exhibits a discontinuous singularity somewhere in real-space. With
this point, we no longer have a continuous path of Hamilton operators, which at each point are
given by the covariant representation of an element from the observable algebra. Therefore,
the Fermi projections before and after the critical point are no longer homotopic within the
space of projections from the observable algebra, even without closing the spectral gap, and
the gap labels no longer need to be preserved.

This point of zero measure will stay unnoticed by a generic computation, as it will almost
surely fall somewhere in between the lattice sites and thus go unnoticed. And if it were to fall
on a lattice site, the program would crash due to the undefined behavior. Once the texture
singularity is regularized, the texture can remain continuous along the reaction path, and the
K-theory of the observable algebra enforces the existence of the spectral flow: the continuous
path of the Fermi projections must be interrupted by a gap closure to allow the gap labels to
be changed.
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6 Discussion

In this work, we provide a C∗-algebraic view on the interaction of real- and reciprocal space
topology in skyrmion crystals. As first shown in [10], and elaborated here, the electronic
observables of multi-q textures form a C∗-algebra Aθ , known as the noncommutative torus.
For the case of a skyrmionic 3q -state hosted by a two-dimensional triangular lattice [8, 9],
we have determined the precise equivalence class of projections in K0(Aθ ) = Z8 for the main
series of spectral gaps. To a good accuracy, a numerical computation of noncommutative
Chern numbers for a given spectral gap indeed produces a series of eight integers, identifying
the respective class in K0(Aθ ): the first main result of this work.

By observing the dependence of Chern numbers as a function of the Fermi energy, one
observation stands out: the Chern number describing the real-space winding of the electronic
spin is carried by electrons at the van Hove singularity. They are characterized by a vanishing
group velocity likely facilitating the perfect alignment of the electronic spin with the imposed
magnetic texture. Most bands producing a quantized anomalous Hall response have a trivial
real-space winding number. This observation might challenge some possible preconceptions
about the physical origin of the Hall response.

Inspired by the work [6], we set out to study the evolution of electronic states across various
topological phase transitions of the magnetic texture. A first idea of the physics of noncollinear
textures is typically obtained through the language of emergent electromagnetism. Our results
indicate that this picture can only serve as a first guess into the adiabatic behavior, but can-
not account for the true complexity of the electronic spectrum away from the limit of strong
coupling and smooth textures. We could not identify a simple rule that ties the quantized
Hall response to the electrons’ real-space winding. A change in a band’s quantized anomalous
Hall response also occurs away from the real-space transitions and generally coincides with
a spectral flow between the neighboring, participating bands. Whether or not spectral flow
occurs in the electronic system as one passes through the real-space transitions depends not
only on the topological labels but also on the nature of the critical point itself. Since it is im-
possible to maintain continuity of the texture in passing from one topological configuration to
another without sacrificing spin normalization, this leaves the door open for a brief exit out of
the observable algebra at which the change of the electronic topology can occur unbeknownst
to the observer. A real-world possibility is that the texture is not truly ergodic. In this case,
a Bloch point singularity in the magnetic textures can occur in between lattice sites, and no
spectral flow would be visible in the experiment. Ultimately, this question could be treated
experimentally in the future: whether or not spectral flow is visible will hinge on the details
of the magnetic configurations close to the phase transition.

Since the formalism naturally incorporates the possibility of applied magnetic fields and
multi-q textures are often stabilized with the help of such external fields, we see this as a nat-
ural next step for our investigation into the relation between noncommutative geometry and
noncollinear magnetism. Recently, antiferromagnetic multi-q textures have been proposed as
another route toward realizing topological electronic states via complex magnetic order. Fun-
damentally, no change in the observable algebra is needed. It is still described by the same
noncommutative torus and we therefore see this as another fruitful application for our for-
malism. Lastly, the dynamical aspect should not be overlooked as spin and charge currents
adiabatically induced by time-dependent magnetism have close connections to the underlying
electronic topology [65]. Overall, we believe that our work showcases the usefulness of C∗-
dynamical systems such as the noncommutative torus in the description of magnetic multi-q
order, where they can assist in disentangling the complex electronic structure and the associ-
ated topological features.
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