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Abstract

Nonlinear optical frequency conversion, where optical fields interact with a nonlinear
medium to generate new frequencies, is a key phenomenon in modern photonic sys-
tems. However, a major challenge with these techniques lies in the difficulty of tuning
the nonlinear electrical susceptibilities that drive such effects in a given material. As a re-
sult, dynamic control of optical nonlinearities has remained largely confined to research
laboratories, limiting its practical use as a spectroscopic tool. In this work, we aim to
advance the development of devices with tunable nonlinear responses by exploring two
potential mechanisms for electrically manipulating second-order optical nonlinearity in
two-dimensional materials. Specifically, we consider two configurations: in the first,
the material does not inherently exhibit second-harmonic generation (SHG), but this re-
sponse is induced by an external field; in the second, an external field induces doping in
a material that already exhibits SHG, altering the intensity of the nonlinear signal. In this
work, we have studied these two configurations using a real-time ab-initio approach un-
der an out-of-plane external field and including the effects of doping-induced variations
in the screened electron-electron interaction. We then discuss the limitations of current
computational methods and compare our results with experimental measurements.
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1 Introduction

Low dimensional materials possess a remarkable ability to respond to external environmental
stimuli, such as substrates, doping, strain [1] external electric and magnetic fields [2]. These
stimuli can significantly alter the opto-electronic properties of nanostructures, either bestowing
new characteristics or modifying existing ones.

External electric fields, in particular, have already been used to tune various properties of
low-dimensional materials, including band gaps [3], light absorption [4,5], and emission [6].
Nonlinear optical properties can also be modulated by external stimuli. The simplest nonlinear
response to consider is second-harmonic generation (SHG). In SHG, a material is irradiated
with a laser at a frequency ω, and it emits light at a frequency 2ω. This phenomenon occurs
only in materials lacking inversion symmetry and is highly sensitive to the angle between the
laser and the crystal lattice. Due to this sensitivity, SHG has been employed, for instance, to
determine the number of deposited layers [7] and their orientation [8].

Recently, several experimental groups have increasingly focused on harnessing external
electric fields to either induce or enhance second-harmonic generation (SHG) in 2D materials.
Two powerful strategies have emerged. The first one involves applying an electric field along
the z-direction to actively induce a SHG response in materials that would typically exhibit
inversion symmetry [9–11], breaking this symmetry and unlocking new optical behaviour.
The second approach centers on amplifying and fine-tuning the SHG response in 2D materials
that already display it, achieved by inducing doping through an external electric field and a
conductive substrate, which injects electrons or holes into the system. This method not only
modifies the nonlinear optical behaviour but also opens the door to precise control of the
material’s opto-electronic properties, further enhancing SHG efficiency [12].

Interestingly, these approaches have been combined to induce second harmonic generation
(SHG) in bilayer materials with inherent inversion symmetry [13]. In this experiment, the
external field not only breaks the inversion symmetry but also induces doping that charges the
two layers oppositely, thereby further amplifying the symmetry breaking. This effect is known
as charge-induced SHG which allows tunable frequency doubling, where the frequency and
intensity of the output light can be dynamically adjusted by varying the external field or doping
levels [13].

In this work, we thoroughly investigate both key mechanisms that influence second-
harmonic generation in 2D materials: inversion symmetry breaking and induced doping.
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These two approaches represent fundamental pathways for manipulating the nonlinear optical
properties of materials. To provide a comprehensive analysis, we focus on two well-studied 2D
Transition Metal Dichalcogenides (TMDs) where experimental data are already available. For
the symmetry-breaking mechanism, we examine a bilayer of MoS2, a material whose inherent
inversion symmetry can be disrupted by an external electric field, thereby inducing a SHG re-
sponse where none previously existed. For the induced doping case, we explore a monolayer
of WSe2, a material that naturally exhibits SHG, but whose response can be further modified
and enhanced through doping with electrons or holes supplied by a conductive substrate under
the influence of an external electric field.

To capture the interaction between these materials and external stimuli, we employ a
real-time computational approach. This method allows us to accurately calculate the second-
harmonic generation response and observe its variation as different external factors, such as
electric fields and doping levels, are applied. By exploring both inversion symmetry breaking
and doping-induced modifications, this study not only deepens our understanding of how SHG
can be controlled in 2D materials but also highlights the potential of these mechanisms for the
design of next-generation optoelectronic devices.

The manuscript is organized as follows: in Sec. 2, we present the computational meth-
ods used to study the ground state and nonlinear responses, along with the corresponding
computational details and parameters required to reproduce the results. In Sec. 3, we discuss
the origin of the induced or modified SHG in 2D materials under the influence of an external
electric field. Finally, in Sec. 4, we present the results and compare the different strategies for
tuning SHG in relation to experimental findings.

2 Theoretical methods

The ground-state properties of both bilayer MoS2 and monolayer WSe2 were studied using
density functional theory (DFT) with the Quantum-Espresso code [14]. All computational de-
tails are provided in Sec. 2.2. Calculations of the optical susceptibilities were performed using
the Yambo code [15]. Quasiparticle corrections to the fundamental band gap were applied as a
rigid shift to all bands [16]. Finally, the nonlinear response was calculated using the real-time
approach implemented in the Yambo code, as described in the following section.

2.1 Nonlinear response

The non-linear susceptibilities of the low dimensional materials studied in this work have been
obtained from the real-time evolution of Bloch-electrons in a uniform time-dependent electric
field following the approach proposed in Ref. [17].

We solved the time-dependent Schrödinger equations using an effective Hamiltonian de-
rived from many-body perturbation theory [17] and the coupling between electrons and the
external field has been treated in length gauge using the dynamical Berry Phase following the
work of Souza et al: [18]

iħh
d
d t
|vmk〉=
�

HMB
k + iE · ∂̃k

�

|vmk〉 , (1)

where |vmk〉 is the periodic part of the Bloch states, HMB
k is the effective Hamiltonian and

E · ∂̃k describes the coupling with the external field E in the dipole approximation [17]. In
many studies, the k-derivative of the time-dependent valence bands is typically expressed in
the crystal momentum representation (CMR). In this framework, it consists of two terms: the
generalized Berry connection and the k-derivative of the crystal momentum wave function
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(see Appendix A of Ref. [18]). The specific form of HMB
k is given below. From the evolution of

|vmk〉 in Eq. (1) we calculate the real-time polarization P∥(t) along the lattice vector a as [18]

P∥(t) = −
e f |a|
2πΩc

Im log
Nk−1
∏

k

detS (k,k+ q; t) , (2)

where S(k,k + q; t) is the overlap between the time-dependent valence states |vnk(t)〉 and
|vmk+q(t)〉, Ωc is the unit cell volume, f is the spin degeneracy, Nk is the number of k points
along the polarization direction, and q= 2π/(Nka) is the discretization of the BZ in the same
direction.

The polarization can be Fourier transformed and expanded in a power series of the incident
field E j as:

Pi(ω) = χ
(1)
i j (ω;ω1)E j(ω1) +χ

(2)
i jk (ω;ω1,ω2)E j(ω1)Ek(ω2) +O(E3) , (3)

where χ(i) are a function of the frequencies of the perturbing fieldsω1,ω2, .. and the outgoing
polarization ω. The calculation is repeated for all ω in the desired frequency range. The
Fourier analysis of the real-time polarization is performed using the YamboPy code [19].

The different correlation effects can be taken into account by constructing the correspond-
ing effective Hamiltonian somehow like in a Lego game. The full many-body Hamiltonian,
HMB

k , available in our calculations, the so-called TD-aGW [20] reads:

HMB
k ≡ HKS

k +∆Hk + Vh(r)[∆ρ] +ΣSEX[∆γ] . (4)

HKS
k represents the Hamiltonian of the unperturbed (zero-field) Kohn-Sham system, while∆Hk

is the scissors operator applied to the Kohn-Sham eigenvalues. The term Vh(r)[∆ρ] is the real-
time Hartree potential while ΣSEX is the screened-exchange self-energy, which accounts for the
electron-hole interaction [21]. More details can be found in the Appendix. Lastly, ∆ρ and∆γ
represent the variations in the density and density matrix, respectively, induced by the external
field.

In our simulations, we apply two external fields: a static one along the z-direction and a
time-dependent in-plane one. The static one is included directly in the Kohn-Sham Hamilto-
nian, at the DFT level, while the time-dependent one is introduced in Eq. (1) to calculate the
non-linear response. For the in-plane field, we choose a external field along the y direction
and the polarization is recorded in the same direction. Notice that, in the MoS2 bi-layer case,
χ(2)(ω) is zero if no perpendicular static field is present, while this is not the case for the WSe2
monolayer.

Then for each intensity of the perpendicular static field, we performed a series of real-time
simulations at different frequenciesω to extract the χ(2)(ω). Finally, in order to obtain a SHG
signal independent of the dimension of the supercell, we rescaled the calculated χ(2)(ω) by an
effective thickness of bilayer MoS2 and monolayer WSe2 — corresponding to half of c lattice
parameter of the bulk structures. We refer the reader to the next section for further details.

2.2 Computational details

In this section, we outline the parameters used in the various computational steps to obtain
the nonlinear response.

Ground-state properties of both bilayer MoS2 and monolayer WSe2 were studied us-
ing density functional theory (DFT) with the Quantum-Espresso code [14]. We employed
the Perdew-Burke-Ernzerhof (PBE) functional [22] with scalar-relativistic optimized norm-
conserving pseudopotentials from the PseudoDojo repository (v0.4) [23]. Atomic structures
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Table 1: This table presents all the parameters used in the linear and nonlinear re-
sponse calculations for both bilayer MoS2 and monolayer WSe2. It includes the k-
point sampling, the range of bands considered, and for WSe2, it also specifies the
double-grid approach used for calculating the doped dielectric constants. Addition-
ally, the table provides details on the parameters used in constructing ε−1

G,G′(ω = 0),
the scissor operator [∆Esc] applied to the Kohn-Sham band structure, and the effec-
tive layer thickness used in the SHG calculations.

System k-points Bands εG,G′ size εG,G′ bands ∆Esc Eff. tick.

2H-MoS2 42× 42 19-34 5 Ha 200 1.316 eV 1.23 nm

WSe2 21× 21 (70× 70) 19-26 4 Ha 600 0.55 eV 0.648 nm

were relaxed using a cutoff of 120 eV, a k-point sampling of 32× 32× 1, and the FIRE mini-
mization algorithm [24], with a force convergence criterion of 10−5 atomic units. An electric
field in the z-direction, perpendicular to the layers, was applied using a saw-like potential, as
implemented in Quantum-Espresso. We ensured that the layers were situated in the region
where the electric field is constant.

Optical susceptibilities were calculated using the Yambo code [15]. Quasiparticle correc-
tions to the fundamental band gap were applied as a rigid shift to all bands. Parameters for
the linear and nonlinear response are detailed in Table 1. For WSe2, to accurately sample the
doped configurations, we employed a double-grid approach for the dielectric constant calcu-
lation, as described in Ref. [25].

To include excitonic effects, we used the approach described in Appendix A and employed
1 and 5 G-vectors to model the excitonic response in bilayer MoS2 and monolayer WSe2,
respectively. This is sufficient to reproduce the lowest excitons in WSe2 and the C-exciton in
the MoS2 bilayer, which is responsible for the SHG response. For further details, refer to the
discussion in the Appendix. We verified that increasing the number of bands in the calculations
does not affect the spectra within the energy range considered here, as shown in Fig. S1 of the
SI [26].

3 Inducing and tuning SHG

In this section, we delve into the two physical effects considered in this manuscript that affect
the tunability of the SHG response. First, we examine the impact of an external out-of-plane
electric field, then the effects of induced doping. We will discuss how each of these factors
influences the second-order response functions. Numerical results will be presented in the
following section.

3.1 Electronic and ionic contribution to the SHG

We start by discussing the general case of a system subjected to an external field, without
any induced doping. The i-th component of the macroscopic second-order polarization can be
written as:

P(2)i (2ω) =
∑

jk

χ
(2)
i jk (−2ω;ω,ω)E j(ω)Ek(ω) . (5)

5

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.081


SciPost Phys. Core 7, 081 (2024)

This term is zero for materials with inversion symmetry, such as the bilayer MoS2 studied
here. However, in the presence of a finite external static electric field ∆El , an additional term
contributes to the response at 2ω:

P(2)i (2ω) =
∑

jk

(

χ
(2)
i jk (−2ω;ω,ω) +

dχ(2)i jk (R(E),E)

dEl
∆El

)

E j(ω)Ek(ω) , (6)

where the last derivative can be split in two terms, an electronic and a ionic one:

dχ(2)i jk (R(E),E)

dEl
=
∂ χ

(2)
i jk (R0,E)

∂ El

�

�

�

�

�

�

El=0

+
∑

nα

∂ χ
(2)
i jk (R,E = 0)

∂ τnα

�

�

�

�

�

�

R=R0

∂ τnα

∂ El
, (7)

where τnα = Rnα − R0,nα represents the displacement of the atom n in the direction α. The
first term in Eq. (7) is obtained by considering the atoms in their equilibrium positions and ac-
counting only for the electronic contribution to the SHG induced by the external field∆El . The
second term corresponds to the contribution to the SHG arising from the displacement of the
atoms in the presence of the external field. The first term is referred to as electric field-induced
second harmonic (EFISH) generation and can be expressed as a third-order polarizability:

∂ χ
(2)
i jk (R0,E)

∂ El

�

�

�

�

�

�

El=0

= χ(3)i jkl(−2ω;ω,ω, 0) . (8)

The two terms in Eq. (7) can be calculated directly using the approach described, for
example, in Ref. [27]. However, since our goal is to study a system under the influence of
a finite field, and given the special configuration of the 2D material that allows us to directly
apply a finite electric field in the z-direction, we opted to evaluate the two terms numerically.

In order to evaluate the first term, we calculate the non-linear response while keeping
the ions in their equilibrium positions. For the second term, we relax the atomic structure in
presence of the external electric field and then calculate the SHG from the distorted structure
without the external field, to highlight the ionic contribution. Finally, we discuss the combined
effects of both contributions.

Notably, the applied electric field does not affect the linear response of the system at any
level of theory, as demonstrated in Fig. S2 in the SI. [26] Although the field modifies the band
structure by lifting the degeneracy of the valence and conduction bands, it does not alter the
optical onset. Consequently, the intensity of the peaks remains essentially unchanged.

3.2 Induced doping and SHG

Doping a material can significantly alter its optical response in several ways. First, doping
affects the electronic structure, such as causing the electronic band gap to narrow. Local or
semi-local functionals often do not adequately capture this effect; instead, GW-type corrections
are necessary. These corrections directly depend on doping due to changes in the dielectric
constant, which influences the definition of W . Specifically, doping increases screening, which
reduces W and causes the GW gap to approach the DFT gap [28]. This reduction in the gap has
been observed in various experiments [29]. Additionally, doping affects the atomic structure
by altering bonding and lattice constants. However, these effects are not considered here
because they depend also on the substrate, which is not included in the present calculations.

Beyond gap reduction, doping induces other effects in the optical response. The electron-
hole interaction, which depends on the screening ε(ω), is reduced, but this effect is offset by
the gap shrinking. Consequently, the exciton peak position remains nearly constant for small
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doping levels, while its intensity decreases [30]. At higher doping densities, this compensation
fails, and the exciton peak position increases linearly with energy [30]. Doping also affects the
availability of electron-hole transition channels due to partial filling (or emptying) of conduc-
tion (or valence) bands, leading to the Pauli blocking effect, which is significant for the lowest
excitons. Furthermore, in doped systems, dynamical effects and the formation of trions can
become important. However, our current real-time dynamics approach does not account for
these effects; for a discussion, see Refs. [30,31].

In summary, as the dynamical Berry phase approach is not applicable to metallic systems,
in our real-time approach we will only consider doping effects through changes in the dielectric
constant and hence the SEX self-energy, which is responsible for exciton formation in our real-
time dynamics

ΣSEX[∆γ](r, r′, t) =W (r, r′)∆γ(r, r′, t) , (9)

W (r, r′) = ε−1(ω= 0)v(r− r′) . (10)

For each doping level, the screened interaction W and consequently the self-energy ΣSEX are
recalculated. The real-time dynamics, described by Eq. (1) to determine the corresponding
SHG response, is performed. Note that the change in W induces a small shift in the exciton
position, which in principle should be offset by the shrinking of the gap. However, since
we employed a rigid shift approximation, this compensation does not occur. Nonetheless,
our primary focus is on studying the changes in the SHG intensity, and this shift is generally
negligible in the final results. A detailed discussion of this aspect is provided in the next section.

4 Results

Here we present results for both the MoS2 bilayer and the WSe2 monolayer under the effect of
an external electric field and the doping. The induced/modified second harmonic generation
is discussed and compared with the pristine systems.

4.1 Bilayer MoS2

We begin our discussion with the case of bilayer MoS2. In Fig. 1, we present the ionic and
electronic contributions to the SHG induced by an external electric field along the z-direction.
Panel (b) displays the electronic contribution, corresponding to the first term in Eq. (7), ob-
tained without relaxing the atomic structure, while panel (a) shows the ionic contribution,
which corresponds to the second term in Eq. (7). The results are normalized to an effective
thickness, as explained in Sec. 2.

We find that the ionic contribution is relatively small compared to the electronic counter-
part. This small contribution can be rationalized as follows: to induce an atomic displacement,
the external electric field must first cause a change in density, which, at first order, is propor-
tional to δρ∝ χzEz . However, due to depolarization effects, the response χz of a bilayer in
the perpendicular direction is quite small, explaining the minor ionic contribution. In other
words, the mode polarity of the phonons along the z-direction is expected to be quite small.
In contrast, the electronic contribution is much larger because the electric field directly influ-
ences the χ(3), even without considering the induced-density effect. From these results, it is
clear that, differently from many 3D materials [27], the ionic contribution in this case can be
considered negligible. Therefore, in the following analysis, we will use only the equilibrium
geometry and exclude the ionic effect on χ(2).
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Figure 1: Ionic (a) and electronic (b) contributions to the induced SHG χ(2) in bilayer
MoS2. In panel (a), we show the contribution due to the displacement of the atoms
generated by the external field. Note that after atomic relaxation, the external field
is turned off to consider only the ionic contribution. In panel (b), we present the
electronic contribution to the χ(2) induced by the external electric field for frozen
ions.

Figure 2: The two highest peaks (b) of the induced SHG (a) in bilayer MoS2 as a
function of the external field.

In Fig. 2, we present the two highest peaks of the induced SHG as a function of the ex-
ternal field. Our observations reveal a linear dependence for small fields and a quadratic
dependence at higher fields, consistent with the experimental findings reported in Ref. [9].
We also attempted to incorporate excitonic effects into the SHG response using the parame-
ters listed in Table 1. However, due to the very small signal induced by the external field, the
results were quite noisy, and we decided not to include them in this manuscript. Nonetheless,
even from these noisy results, we are confident that excitonic effects have the potential to more
than double the SHG response in these low-dimensional systems. Recently, these effects have
been investigated using a simplified model for gated bilayer graphene. Despite its relatively
simple excitonic structure, this model captures many of the physical effects we observed in
bilayer MoS2 [32].
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Figure 3: SHG in WSe2 for the pristine undoped, positively doped with n = 0.05e
(holes), and negatively doped with n = −0.05e (electrons) cases. Doping modifies
the screened interaction W , Eq. (10) that enters in Eq. (4).

4.2 Monolayer WSe2

The monolayer WSe2 lacks inversion symmetry and therefore exhibits a second-harmonic sig-
nal even in the absence of external fields. However, recent studies have explored the possibility
of tuning the SHG through induced doping. In its optical response, WSe2 exhibits prominent
bright exciton peaks that have been extensively studied both theoretically and experimentally
(see Ref. [33] and references therein). The SHG response is maximized at frequencies reso-
nant with the exciton peaks or at half of their energies. The lowest bright exciton peak in the
linear response, known as the A-exciton, appears around 1.65 eV and is also observable in SHG
at half this energy. Using a field-effect transistor configuration, researchers have been recetly
able to modify the intensity of the A-resonance in SHG by several orders of magnitude [12].

As explained in the previous section, doping introduces two primary effects on the non-
linear response. First, the occupation of certain conduction (or valence) bands by electrons
(or holes) makes these levels unavailable for valence-conduction transitions, leading to the
so-called Pauli blocking effect [34]. Second, doping increases the screening of the electron-
electron interaction, which reduces the excitonic resonances. This latter effect can also be
achieved by depositing the material on different substrates—metallic, semiconductor, or insu-
lator—thereby altering the dielectric constant of the system.

In this work, we focus solely on the effect of doping on the dielectric constant as we expect
that this approach is equivalent to deposit the system under study on a metallic substrate.

To simulate doping, we introduced additional electron (hole) carriers along with a neutral-
izing uniform background charge. Specifically, we added a net charge doping of ≈ ±0.05e,
corresponding to a charge density of ±5 × 1013 e/cm2, where e is the elementary electric
charge. We observed only a minor change at the DFT level, and the dielectric constant is only
slightly affected by the doping. However, as we will demonstrate below, these small changes
are sufficient to significantly alter the SHG response.

In Fig. 3, we present results for three cases: undoped, positively doped with n = 0.05e
(holes), and negatively doped with n = −0.05e (electrons). We consider these extreme dop-
ing cases that could be realized in a field-effect configuration, with intermediate doping values
expected to fall between these extremes. Our findings indicate that doping can diminish the
SHG response at the A-resonance in WSe2 by up to 20% of its intensity. This is significantly less
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than the order of magnitude reduction observed experimentally [12], suggesting that other ef-
fects, such as Pauli blocking, play a crucial role in the observed reduction. This is expected
since A excitons are the lowest energy states and are most affected by doping. Additionally,
experiments have shown that some of the intensity may be transferred to positively and neg-
atively charged trions, which are not included in our calculations.

Finally, we note that our calculations show a slight shift in the exciton position with doping,
which is not observed in experiments. This discrepancy arises because we used a rigid shift
for the QP structure. Ab initio calculations would account for this effect [30], as explained in
the previous section.

5 Conclusions

In conclusion, this manuscript presents an ab initio study of two strategies for tuning the
SHG response in 2D systems. In the first case, we investigated a system with no intrinsic
SHG due to presence of inversion symmetry. An external field can induce an SHG response,
which remains very weak compared to the intrinsic response of a 2D system. For this case,
we found that the ionic contribution is negligible, while excitonic effects have the potential to
enhance the SHG response. In the second case, we examined a system with an intrinsic SHG
response and explored how doping affects its environment. We demonstrated that changing
the dielectric constant can reduce the excitonic peak response up to 20%. This effect could be
observed in TMD deposied on metalic substrates or in TMD/graphene heterostructures [35],
which also suppresses responses from charged excitons. When we compare our result with
the measurements of K. L. Seyler et al. [12], they find a reduction in the SHG response at
excitonic resonance of more than 80%. However, for a correct comparison other effects should
be taken into account such as Pauli blocking and the transfer of part of the spectral weight to
the trions. These effects could be excluded by using heterostructure that generate a remote
carrier screening without induce a charge on the material [36]. Overall, our findings illustrate
how 2D materials can be employed for nonlinear optical switching. This work demonstrates
the feasibility of fully ab initio simulations for predicting nonlinear optical responses in 2D
materials.
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A Approximated electron-hole interaction

In real-time simulations, time-dependent electric fields are essential for computing the time
evolution of the polarization response. However, introducing a time-dependent electric field
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breaks time-reversal symmetry. This presents a significant challenge, particularly for systems
with a large number of electrons, such as when SOC is included, and when dense k-grids are
used. Most computational codes for simulating periodic systems rely on symmetries to reduce
computational costs and enhance performance, making the inclusion of time-dependent fields
computationally demanding. Additionally, as discussed in Sec. 3 for bilayer MoS2, a static
electric field can induce a non-linear response, further breaking additional symmetries. This
adds to the complexity of simulating such systems.

To incorporate excitonic effects into real-time dynamics, we derive a simplified screened
exchange term, which we defined as long-range screened exchange (LSEX). As a starting point,
we refer to the Appendix of Ref. [20]. The Kadanoff-Baym equation includes the matrix ele-
ments 〈m,k|Σ̂SEX|m′,k〉:

ΣSEX
mm′,k(t) = i
∑

n,n′

∑

G,G′,q

ρmn(k,q,G′)ρ∗m′n′(k,q,G)WG,G′(q)∆γ nn′
k−q
(t) , (A.1)

where ∆γ is the variation of the density matrix, and:

ρmn(k,q,G) =

∫

ϕ∗m,k(r)ϕn,k−q(r)e
i(G+q)·r .

The LSEX approximation retains only the long-range component of the screened interaction,
i.e., W (q) =WG=0,G′=0(q). Therefore, Eq. (A.1) simplifies to:

ΣLSEX
mm′,k(t) = i
∑

n,n′

∑

q

ρmn(k,q)ρ∗m′n′(k,q)W (q)∆γ nn′
k−q
(t) . (A.2)

By noting that the density matrix can be expanded as:

∆γnm,k(t) =
Nv
∑

l=1

〈um|vlk〉〈vlk|un〉 −δnm f (εnk) ,

where l is an index running over valence bands, n, n′, m, m′ are indexes running over all bands,
and f (εnk) are the occupation functions, we can rewrite Eq (A.2) as:

ΣLSEX
mm′,k = i
∑

l,n,n′

∑

q

ρmn(k,q)ρ∗m′n′(k,q)W (q) 〈un′ |vl,k-q〉〈vl,k-q|un〉 −Σ
eq
mm′,k , (A.3)

where Σeq is the self-energy at equilibrium, defined as:

Σ
eq
mm′,eq = i
∑

n

∑

q

ρmn(k,q)ρ∗m′n′(k,q)W (q) f (εn,k−q) .

We then define the oscillators ρ between time-dependent valence bands and Kohn-Sham states
as:

ρ̃ml(k,q) =
∑

n

ρmn(k,q)〈vl,k-q|un〉 ,

and Eq. (A.3) reduces to:

ΣLSEX
mm′,k = i
∑

l

∑

q

ρ̃ml(k,q)W (q) ρ̃∗m′ l(k,q)−Σeq
mm′,k . (A.4)

To be consistent with this approximation, we excluded the local-field effects in the dynamics.
This approach is similar to that used in simple models, with the key difference that we explicitly
calculate the matrix elements of the Coulomb interaction between different bands at finite q.

11

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.081


SciPost Phys. Core 7, 081 (2024)

We tested this approximation on monolayer WSe2 and bilayer MoS2, comparing the results
with available experimental measurements. We found that only a few G-vectors (see Eq. (A.1))
are required to reproduce the first excitons, while peaks at higher energies demand a larger
number of G-vectors. This makes the approach less appropriate, if compared to the one in
Ref. [20], for the description of the full spectrum, but very advantageous if one is interested
only in the lowest excitonic peaks, see for instance Fig. S5 in SI [26].
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