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Abstract

The problem of a local impurity in a Luttinger liquid, just like the anisotropic Kondo
problem (of which it is technically a cousin), describes many different physical systems.
As shown [1] by Kane and Fisher, the presence of interactions profoundly modifies the
physics familiar from Fermi liquid theory, and leads to non-intuitive features, best de-
scribed in the Renormalization Group language (RG), such as flows towards healed or
split fixed points. While this problem has been studied for many years using more tradi-
tional condensed matter approaches, it remains somewhat mysterious from the point of
view of entanglement [2], both for technical and conceptual reasons. We propose and
explore in this paper a new way to think of this important aspect. We use the realization
of the Kane Fisher universality class provided by an XXZ spin chain with a modified bond
strength between two sites, and explore the difference of (Von Neumann) entanglement
entropies of a region of length ℓ with the rest of the system - to which it is connected
with a modified bond - in the cases when ℓ is even and odd. Surprisingly, we find out
that this difference δS ≡ Se − So remains of O(1) in the thermodynamic limit, and gives
rise now, depending on the sign of the interactions, to “resonance” curves, interpolating
between − ln 2 and 0, and depending on the product ℓTB, where 1/TB is a characteristic
length scale akin to the Kondo length in Kondo problems [3]. δS can be interpreted as
a measure of the hybridization of the left-over spin in odd length subsystems with the
“bath” constituted by the rest of the chain. The problem is studied both numerically
using DMRG and analytically near the healed and split fixed points. Interestingly - and
in contrast with what happens in other impurity problems [4] - δS can, at least to lowest
order, be tackled by conformal perturbation theory.
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1 Introduction

1.1 Generalities

The effect of localized impurities on interacting systems of condensed matter physics is one
of the most studied incarnations of true many body physics, with a wealth of related theoret-
ical developments (see e.g. [5–8]) as well as experimental applications (see e.g. [6,9,10] for
general reviews, or [11,12] for more recent work). Maybe no such incarnation is more spec-
tacular than the Kane Fisher problem [1] - which can be considered as the effect of a localized
impurity in a 1D Luttinger liquid, or equivalently, via the magic of the Jordan-Wigner transfor-
mation, the effect of a modified bond in an XXZ spin chain. Thanks to more reformulations,
this problem finds experimental applications in the physics of one-channel conductors in an
Ohmic environment [13], in the physics of tunneling between edges in the fractional quantum
Hall effect [14–16], in the physics of quantum Brownian motion [17], in the physics of small
Josephson junctions [18], and more. It has also recently given rise to quantum simulations as
in [19,20].

The main physics of the Kane-Fisher problem can be expressed in a nutshell through the
renormalization group language: in the presence of repulsive (resp. attractive) interactions
between 1d spinless electrons, an arbitrarily weak impurity flows to a large barrier (resp.
becomes invisible) at low-energy. In what follows, we will use the equivalent language of
antiferromagnetic spin chains of XXZ type, where repulsive (resp. attractive) corresponds to
the Jz coupling being positive (resp. negative). In this context, it is customary [21] to refer to
the two possible end points of the RG flow as split (resp. healed). Note of course the sharp
difference with the non-interacting case, where an impurity behaves as the same barrier at all
scales, leading to energy independent properties.
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Of course the RG flow is just a tool to encapsulate the behavior of the system at low-energy.
Low-energy may mean, depending on the context, low temperatures (e.g. when considering
the conductance of the 1d electron gas), large distances (e.g. in considering Friedel oscilla-
tions [22, 23]), long times (e.g. in considering quenches [24, 25]), or low frequency (e.g. in
considering shot noise features [26, 27]). Note also that healing at low energy in the Kane
Fisher problem is similar qualitatively to what happens in the Kondo model, where the impu-
rity is absorbed by the electron bath at low-energy. The two problems are in fact also very
close technically [28–30].

Among all the probes at our disposal to study this physics, entanglement - while one of the
most fundamental as it directly probes the nature of the wave functions themselves - is one of
the most difficult to address (let alone measure experimentally). While it would be natural,
in quantum impurity problems, to consider measures of the entanglement of the impurity
with the rest of the system - for instance, in the XXZ language, entanglement of the two spins
across the impurity bond with the rest of the chain, or, in the Kondo case, entanglement of the
impurity spin with the electron bath - this quantity turns out not to present any interesting
crossover, ultimately because it (via the reduced density matrix) involves only a finite number
of particles (or spins) [2]. To get a non-trivial crossover, one needs to explore the whole extent
of the screening cloud [31], i.e. have another length scale in the system. This is technically
difficult. A possibility is to consider the entanglement of a region of length ℓ centered on
the impurity with the rest of the system [32]: in this case, the RG flows affects the behavior
of the O(1) terms, which are technically difficult to extract from data. Another possibility
is to consider the entanglement between two regions separated by the impurity. This was
considered in [33] (and in [34] in the random case, where the physics is partly, but not entirely
different). In this case, the RG flow affects the (slope of the) entanglement linear dependency
with lnℓ.

We propose in this paper another way to characterize the RG flow using entanglement for
the Kane-Fisher problem. The idea mimics, in a certain sense, what happens in the Kondo
model: isolated regions of length ℓ contain, when ℓ is odd, a “left-over” spin (since their
ground-state is twice degenerate), which should get hybridized with the “bath” constituted by
the other spins in an infinite chain when the region is coupled to it by a modified bond. No such
hybridization should take place when ℓ is even. This suggests comparing the entanglement
of subsystems of even and odd length, and, specifically, studying how their difference δS
behaves along the RG flow. As we shall see below, δS indeed exhibits the expected behavior,
interpolating between − ln2 and 0 (or the other way around, depending on the interactions)
as energy is lowered, and providing an interesting new way to probe the underlying physics.

We emphasize that, apart from this physical motivation, the study of quantities such as δS
– which is, technically, a term of O(1) in the entanglement – is of ever increasing interest. These
terms encode indeed features of topological phases in higher dimensions [35], or of topological
defects in one dimension [36]. Issues about the role of the position of the entanglement
cut [37], or the boundary conditions induced in the effective field theory by this cut [38] on
such terms of O(1) have been raised [39], as well as questions about the role of zero modes
and finite-size effects [40, 41], or of localized excitations [42]. We will see in this paper that
terms of O(1) can arise due to parity effects, and, moreover, can be controlled analytically
using conformal perturbation theory.

1.2 Set-up in this paper

The simplest way to observe parity effects in the Kane-Fisher problem is to consider an impurity
at a distance ℓ from the boundary of the system (a similar effect without boundary would
require two impurities, as discussed in the conclusion). In an earlier work [43] we studied
such parity effects for the XX chain where, however, a modified bond behaves as a conformal
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defect, and there is no RG flow. In this paper, we extend the analysis of [43] to the interacting
case, where the physics, as discussed above, is profoundly different

To be more specific, the system we consider here is an XXZ spin chain of length L with
free boundary conditions at either end, and a modified coupling at position ℓ (see below for
a fully accurate description of the model). This is equivalent, thanks to the Jordan-Wigner
transformation, to a Luttinger liquid with a modified tunneling amplitude on one bond (and,
in some variants, a modified Coulomb interaction, see below).1 Without interactions - i.e., in
the XX chain - the modified coupling translates into an exactly marginal perturbation from an
RG point of view. The entanglement of the region A starting at the boundary and ending at the
modified bond was found in in this case [43] to possess, on top of the expected lnℓ term with
a factor proportional to the effective, coupling dependent central charge, a term of O(1) that
differs between the even and the odd cases. The corresponding difference δS was found to
be a universal function with interesting properties, interpolating between − ln 2 and 0. In the
case with interactions, the modified coupling induces, as discussed above, an RG flow, with
two possible fixed points, the fully split chain and the healed chain. Depending on the sign
of Jz , one of these is stable and the other one unstable. Under a relevant perturbation of the
stable fixed point by a modified coupling at position ℓ, the entanglement now has a lnℓ term
whose slope depends on an effective central charge, and can be expressed as a function of ℓTB
where TB is a characteristic energy scale akin to the Kondo temperature in Kondo-like impurity
problems. It is not this slope we are interested in here, but rather the terms of O(1), which
turn out to differ between the even and odd cases, while the corresponding difference δS is
now a universal quantity depending, like the effective central charge, on the product ℓTB. Just
as in the non-interacting case Jz = 0, δS interpolates between − ln2 and 0.

As commented in the conclusions, similar parity effects would be observed in the periodic
case: we emphasize they have conceptually nothing to do with the presence of a boundary. It
is interesting to reflect a bit more on their physical meaning. The best way to start is to think
of Kondo physics from the point of view of entanglement. As mentioned earlier, while it is
tempting to think that, as the Kondo impurity gets screened by conduction electrons at low
energy, it becomes more entangled with them, this clearly cannot be: the entanglement of the
Kondo impurity as measured by the Von Neumann entropy of the corresponding spin with the
rest of the system (the “single site impurity entanglement entropy” [2]) is (in the absence of a
magnetic field) fixed at ln 2 irrespective of the Kondo coupling. To be able to define non-trivial
quantities (that can be used later on to provide signatures of the screening cloud [44]) one
needs to introduce another (length) scale. In the Kondo literature, it is common to consider for
this an interval (in the s-wave language) of the system extending a distance r from the impurity
[2,45], or, in related purely one-dimensional problems, an interval of length L centered on the
impurity [4]. The physics at play can then be understood in terms of valence bonds originating
from the impurity and reaching out to the rest of the system. Roughly, the “impurity part” [2]
of the entanglement reaches ln2 when r ≲ ξK (with ξK the Kondo length) that is, when r is
smaller than the typical length of the valence bond originating from the impurity spin.

The physics we have in our case is somewhat similar and could be intuitively interpreted
in a valence bond picture [46]. Think for instance of the Hamiltonian (1) below. As illustrated
in Fig. 1(a), in the limit of very small λ (corresponding to a very small impurity bond) and
in the simplified valence bond picture, valence bonds “prefer” not to stretch over the weak
link: only one is forced to do so in the odd length case, contributing − ln 2 to the difference of
entanglements between even and odd. On the contrary, if λ∼ 1, there are a lot of such valence
bonds, and even though the parity of their numbers is odd in the odd case and even in the even
case, the difference averages to a small term that decays with L. Fig. 1(b) shows the constant
terms in even and odd cases when Jz=0 which confirms our qualitative arguments (it is difficult

1In what follows, we will freely use interchangeably the spin or electron language.
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Figure 1: (a). Valence bond formation for λ≈ 0 (λ≈ 1) for both even and odd cases.
The bonds separating the regions of the bipartition are illustrated by grey lines, and
inter- (intra-) subsystems valence bonds are depicted by black (dark blue) curved
lines. (b). The constant (ℓ independent) O(1) terms for even and odd subsystems
when Jz = 0.

to define unambiguously the O(1) terms when Jz ̸= 0, see below). In the intermediate region,
the result depends on the average length of the valence bonds, which in this interpretation
becomes 1/TB, the equivalent of ξK .

Interestingly, while the underlying physics is the one of the Kane-Fisher [1, 47] problem,
from the point of view of entanglement we have results akin to the Kondo problem, with
entanglement curves always interpolating between − ln2 and 0, and a “resonance” as can be
seen e.g. in Fig. 4. In a certain sense, we are thus re-interpreting the Kane-Fisher problem as
screening of the delocalized spin 1/2 in our subsystem of odd length.

1.3 Organization

The paper is organized as follows. In section 2, we discuss the vicinity of the split fixed point
and in section 3 the vicinity of the healed fixed point. In both cases, we provide “ab-initio”
numerical results together with comparison with (conformal) perturbative calculations, espe-
cially of the entanglement. Most detailed calculations are done in subsections 3.3,3.5 where
some subtle aspects - including the renormalization between bare and renormalized couplings
- are investigated in detail. We find in particular that, even though the entanglement cut and
the location of the perturbation essentially coincide, no non-universal effects seem to be en-
countered. This is in contrast with the current expectation for entanglement across topological
defects [48] when the cut is at the same location as the defect. In section 4 we discuss several
interesting symmetry properties obeyed by δS. Section 5 contains a few conclusions. together
with a preliminary discussion of what happens in the case without boundary. A short appendix
provides technical details about the DMRG calculations.

Finally, to help the reader who may not be familiar with some of the vocabulary we use
we recall below the definition of a few terms [21]:

• Split and healed: refers to a spin chain with one (or several) bond being associated to
a coupling of modified strength. When this coupling vanishes, the chain is split: in the
RG language, this corresponds to a fixed point referred to as “split fixed point”. When
the modified coupling is identical with the others, the chain is homogeneous: in the RG
language, this happens to correspond to another fixed point which we call “healed fixed
point”.
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• UV and IR: we refer to the high-energy or short distance or short time regions of the
parameter space as the UV region, and the low-energy or large distances or long times
as the IR region.

We also emphasize that this paper deals only with the case where the defect is not con-
formal, and thus Jz ̸= 0. The non-interacting case Jz = 0 corresponds to a conformal defect
instead, where the is no RG flow, and the bulk behavior of the entanglement involves an inter-
action dependent central charge [49]. Terms of O(1) in this case have been studied in [43].

2 Physics around the split fixed-point

We start by considering physics around the split fixed-point, that is, when the chain is almost
cut in half at the impurity bond. After a qualitative general discussion, we report numerical
results for both the relevant and irrelevant cases. We then carry out a conformal perturbation
calculation of the shifts in energy and entanglement due to the impurity. We show in particular
that, while odd and even lengths ℓ give rise to different functional forms for the energy-shift,
the entanglement has a similar analytic structure in both cases, so that δS can be properly
defined and expected to be universal.

2.1 Generalities

We consider first the Hamiltonian

HA =
ℓ
∑

j=1

�

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1

�

+λ
�

σx
ℓσ

x
ℓ+1 +σ

y
ℓ
σ

y
ℓ+1 + Jzσ

z
ℓσ

z
ℓ+1

�

+
L
∑

j=ℓ+1

�

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1

�

, (1)

where the σ’s are Pauli matrices. This Hamiltonian is made of two XXZ chains of length ℓ
and L − ℓ respectively, with a modified interaction between them. In (1) we take the same
form of the modified interaction as in the bulk, but with a different amplitude λ. Later we
shall also consider a modified interaction different from the one in the bulk, and of the type
σxσx +σ yσ y , see below (eq. (8)). We shall only be interested in the regime −1 < Jz ≤ 1
(where the chain is gapless), and in properties in the scaling limit, where ℓ, L→∞. Details of
the results in this limit will depend on the ratio L/ℓ≡ Z , but will be qualitatively independent
of Z . We will in what follows mostly (but not only) consider Z = 2.

In the regime we are interested in, XXZ Hamiltonians can be mapped onto a free boson
theory at low-energy (this is discussed more below). The various local operators can then be
reformulated into exponentials of the free boson and its derivatives. The conformal dimensions
depend on a single parameter which is sometimes taken to be the “Luttinger liquid coupling”
[50], the “boson radius” (see e.g. I. Affleck’s lectures in [51]) or the “coupling constant” [52]
- this is the wording (and associated notation) we shall use below. Setting

g = 2−
2
π

arccos(Jz) , (2)

we see that g > 1 for Jz > 0 and g < 1 for Jz < 0. Near what we call the split fixed point
λ = 0, a small nearest-neighbor interaction as in (1) can be interpreted as the coupling of a
local bulk operator of dimension (leng th)−g . This means that

near the split fixed point λ is relevant if Jz < 0 ,

near the split fixed point λ is irrelevant if Jz > 0 . (3)
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Figure 2: The different types of flows near the split fixed-point (λ small). In one
case the system appears totally split at low energy, while in the other it appears
homogeneous (“healed”).

The RG flows are thus as in Fig. 2. Writing the perturbation as λO, this product must have
dimension (length)−1 and thus, if O has dimension (length)−g , we find

dim [λ] = (length)g−1 . (4)

Hence we can construct a quantity of dimension (length)−1 (a temperature) by considering2

TB ≡ λ1/(1−g) . (5)

In the relevant case, it is well known [3] that the chain at large distances appears healed -
meaning, its physics is the same as the one of a homogeneous chain. This can be clearly seen
if we consider the entanglement of the region of size ℓ to the left of the cut with the rest of
the system: the leading (“bulk”) behavior of the entanglement should interpolate from S = 0
to S ≈ 1

6 lnℓ as ℓ is increased at fixed λ (for earlier studies of this problem, see [53]). This
is illustrated in Fig. 3 where we have plotted the derivative of the entanglement entropy for
the system in the particular case Z = 2 (L = 2ℓ) when Jz = -0.5. Recall that, from finite size
scaling results, the entanglement in the healed case always has the leading behavior c

6 ln L
with c = 1 here. This is seen in Fig. 3 as the the two curves approach 6dS/d ln L = 1 at large
distances (that is, in the IR). Note that the results look quite different for odd and even lengths
ℓ (represented by Se and So respectively). It is this difference we shall be interested in in what
follows.

We note that IR physics which we observe here using finite length effects in equilibrium
could also be studied with a quench set-up by going at large times. See for instance [25,33] -
in these references however, parity effects are not investigated.

Like in [43]we expect to have, for an infinite system (more complicated formulas involving
ℓ/L are required for a finite system, see below)

dSe
A,imp+bdr

d lnℓ
= F(ℓTB) + f e(ℓTB) ,

dSo
A,imp+bdr

d lnℓ
= F(ℓTB) + f o(ℓTB) , (6)

where F, f e, f o are non-trivial, universal functions. Note that in [43], the forms (6) were
encountered when considering a non-interacting system with a dot-like impurity - that is, two

2Note that definitions of TB differing by numerical factors may appear in the literature.
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Figure 3: Crossover in the (slope of) the bulk entanglement entropy for Hamil-
tonian 1 illustrating healing at low-energy (meaning, the slope goes to 1

6) when
Jz = −0.5. TB is defined in (5).

successive bonds modified. This case gave rise to a non-trivial RG flow, just like the case of a
single modified bond in the presence of interactions that we study in this paper.

In (6), F encodes a sort of effective central charge, while f e,o are “terms of O(1)”. This
name might sound inadequate from (6), but as discussed in detail in [54], only derivatives
of the entanglement obey proper scaling. After taking derivatives, the (parity independent)
“bulk” term c

6 lnℓ ceases to dominate the expression for the entanglement, due to the fact that
d

d lnℓ lnℓ = 1. Like in our earlier work [43] we shall focus on the difference f e − f o, which
originates from terms in Se,o whose difference does not decay as ℓ → ∞ (as illustrated on
figure 3). In the following we set therefore

δS ≡ Se
A,imp+bdr − So

A,imp+bdr . (7)

We note that, in this context, λ in Hamiltonian (1) being relevant corresponds to a situation
where δS will evolve from something close to (and slightly larger than) − ln 2 to 0 as L in-
creases for a fixed λ (that is, healing occurs). In contrast, λ being irrelevant means δS evolves
from something close to (and slightly larger than) − ln2 to exactly − ln2 as L increases for a
fixed λ.3

As a final remark we stress that the coupling constant g in eq. (2) should not be confused
with the Affleck-Ludwig boundary entropy [55]. While our system indeed does involve a
boundary, we are only interested in the difference between the cases of subsystems of even
and odd length: both parities see the same (free) boundary conditions at the origin (the site
with j = 1), so the corresponding term of O(1) disappears in δS.

2.2 The relevant case

By general field theoretic arguments (see e.g. the discussion in [56]) we expect that in the
limit of small λ and large L, and for the relevant case (g < 1), results should have a universal
dependency on the product LTB. Note that this combination is small when L or λ is small,
large when L or λ are large, and that, since results depend only on LTB, increasing L at fixed
λ in the scaling limit is like increasing λ at fixed L: in other words, the long distance physics

3The different convention δS = So − Se would have avoided the minus signs but we did not make it, in order
to remain consistent with earlier work.
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can be expected to correspond with healing. Scaling per se only occurs formally in the limits
λ→ 0, L→∞ with the product Lλ1/(1−g) finite.

While this phenomenology is well understood in general, we focus here on aspects of
entanglement in the presence of a boundary that have not been studied before except in the
special free fermion case Jz = 0 [43]. Results confirming the qualitative RG picture are given
below. Our numerical results are obtained by using the TeNPy package [57] where the density
matrix renormalization group (DMRG) algorithm is used, details are in appendix A.

We consider the difference δS of entanglements with the subsystem starting at the
left boundary and ending in the middle of the modified bond (i.e. containing the spins
j = 1, . . . , j = ℓ) for the cases ℓ even and ℓ odd, and we recall that we set δS ≡ Se − So.
The total system size is taken to be L = Zℓ, with Z a factor taken to be Z = 2 unless otherwise
specified.

We note now that there are many natural variants of the problem, since a priori nothing
forces us to have the tunneling interaction be of the same nature than the bulk one. As long
as the most relevant contribution to the tunneling interaction remains unchanged however,
the RG flow in the continuum limit will be unchanged. In the Luttinger liquid language for
instance, there may or may not be a Coulomb interaction between the two halves of the system:
in the latter case the Jz coupling would be absent. This is the situation we consider as an
example in what follows, described by the Hamiltonian

HB =
ℓ
∑

j=1

�

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1

�

+λ
�

σx
ℓσ

x
ℓ+1 +σ

y
ℓ
σ

y
ℓ+1

�

+
L
∑

j=ℓ+1

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1 . (8)

We see that in the case of (8), the small bond connecting the two chains only allows spin
exchange, while in (1), an extra zz interaction is also allowed. Since the Jz term is irrelevant
near the split fixed point, this modification should not affect the universal limit of our results,
as we will see below.

We first give results for Hamiltonian (8) in Fig. 4. Totally identical results are obtained
in the scaling limit for the Hamiltonian (1) as shown in Fig. 5. In particular, the value of TB
is the same for the two curves. This coincidence is easily understood since the σz

ℓ
σz
ℓ+1 term

is irrelevant near the split fixed point [21]: while it affects corrections to scaling, it simply
disappears in the limit λ→ 0,ℓ→∞.

We note that in Fig. 5 the data corresponding to (8) is a little “fuzzy” while the two curves
are slightly off for LTB ≳ 1. This is due to the difficulty of reaching the scaling limit in the
deep IR region, where values of L unreachable by DMRG would, strictly speaking, be necessary
(since the scaling limit is a double limit process L →∞, ℓ, L →∞, ℓ/L finite or infinite).
This is a familiar problem in the study of interacting systems. It practice, we take the small
difference between the two curves in Fig. 5 as a measure of the uncertainty about the true
location of the scaling curve.

Varying Z does not change results much, even though of course the exact curve does,
indeed, depend on Z (see below for a detailed study near the fixed points). For the sake of
brevity, we refrain from showing numerical results confirming this.

2.3 The irrelevant case

In this case we start from a small tunneling term but are driven at low-energy to the situation
where the system is split. This can be seen in the fact that LTB increases at fixed λ when
increasing L but increases at fixed L when decreasing λ. Hence, large L behaves like small λ,
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Figure 4: Healing flow for Jz = −0.5. Here, Z = 2, and the Hamiltonian is (1). The
top figure shows how the difference δS = Se−So, starting from (close to)− ln 2 in the
UV vanishes in the IR (large LTB), which is expected for an homogeneous (healed)
chain. The bottom figure shows the derivative of δS, which has a characteristic
resonance shape.

Figure 5: Healing flow for the same parameters Jz = −0.5 and Z = 2 as in figure 4.
This time we compare the results obtained for Hamiltonians (1) and (8), illustrating
the fact that healing occurs irrespective of the zz interaction in the hopping term, and
with identical universal properties. In the data shown, λ is varied between values
0.04 and 0.4. See the comments in the text about the slight “fuzz” in the IR.
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Figure 6: Flow for Jz = 0.5. Here, Z = 2, and the Hamiltonian is (8). The split fixed-
point is recovered in the IR. The behavior in the UV is not universal, as expected for
an irrelevant perturbation. (In particular, the healed fixed-point is not reached in the
UV.)

and the split-fixed point is reached at large distances. Going to small LTB is formally equivalent
to increasing λ and thus, one would hope, to getting closer to the healed fixed-point. However,
in this limit, other irrelevant operators will start playing a role, and there is no chance to reach
this fixed-point without fine tuning. In practice, this simply means that the left-hand side
of the curves plotting δS as a function of LTB are not universal [58]. See Figs. 6 for some
illustrations. In the following, we will mostly restrict to the study of relevant perturbations.

2.4 Some perturbative calculations

The first question to ask is how δS varies as a function of λ at small λ. In order to answer this
question we need to think first about the situation at λ = 0, i.e. when the two systems are
totally decoupled. The difference between even and odd is then spectacular. In the even case,
both sides have an even number of spins and are in a (non-degenerate) ground-state of total
spin Sz = 0 (we set Sz = 1

2

∑

j σ
z
j ). In contrast, in the odd case, both sides have a remaining

spin 1/2 degree of freedom, and thus have a ground-state degenerate twice, with Sz = ±1/2.
This means in particular that the shift in ground-state energy due to the presence of the λ ̸= 0
term exhibits different dependencies with λ in the even and odd cases.

2.4.1 The shift in energy

For the even case, this difference of ground-state energies between the λ ̸= 0 and the λ = 0
cases can be obtained from non-degenerate perturbation theory and thus, by conservation of
Sz , is quadratic in λ at small coupling. In contrast, for the odd case, the shift comes from

11

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.002


SciPost Phys. Core 8, 002 (2025)

degenerate perturbation theory, and since states with spin Sz = ±1/2 have the same-energy,
conservation of Sz does not preclude the presence of a term linear in λ. It is interesting to push
these considerations a bit further by using field theoretic techniques. First, we fermionize our
spin chain (we will follow standard conventions such as those in [21] whenever possible),
leading to the two possible Hamiltonians

HA =
ℓ
∑

j=1

�

c†
j c j+1 + h.c.+ Jz(c

†
j c j − 1/2)(c†

j+1c j+1 − 1/2)
�

+λ
�

c†
ℓ
cℓ+1 + h.c.+ Jz(c

†
ℓ
cℓ − 1/2)(c†

ℓ+1cℓ+1 − 1/2)
�

+
L
∑

j=ℓ+1

�

c†
j c j+1 + h.c.+ Jz(c

†
j c j − 1/2)(c†

j+1c j+1 − 1/2)
�

, (9)

and

HB =
ℓ
∑

j=1

�

c†
j c j+1 + h.c.+ Jz(c

†
j c j − 1/2)(c†

j+1c j+1 − 1/2)
�

+λ
�

c†
ℓ
cℓ+1 + h.c.
�

+
L
∑

j=ℓ+1

�

c†
j c j+1 + h.c.+ Jz(c

†
j c j − 1/2)(c†

j+1c j+1 − 1/2)
�

, (10)

where c†
j , c j are the usual creation/annihilation operators with {c j , c†

j′} = δ j j′ . We recall the
formulas for the decomposition of lattice fermions into continuous fields (see e.g. [21] for
discussion of related problems)

c j 7→ eiKF jψR + e−iKF jψL . (11)

At half-filling, KF =
π
2 (we set the lattice spacing equal to unity). For a chain starting at

j = 1, we have formally c j = 0 for j = 0 to take into account the chain termination, so at that
extremity the boundary conditions are ψL = −ψR. Meanwhile, the conditions at the other
extremity depend on the parity of the length. If the last site is l, we set

cl+1∝ψR + e−2iKF (l+1)ψL = 0 , (12)

so at half-filling this becomes

ψR(l + 1) + (−1)l+1ψL(l + 1) = 0 . (13)

We see that if l is odd we get the same boundary conditions at l+1 than at 0, while if l is even
we get opposite boundary conditions.

Using bosonization formulas

ψR∝ exp(i
p

4πφR), ψL∝ exp(−i
p

4πφL) , (14)

and handling the four-fermion term in the usual way [21] we get the continuum theory with
bulk Hamiltonian

H =
v
2

∫

d x
�

Π2 + (∂xΦ)
2
�

. (15)

The compactification radius of the boson (so Φ is identified with Φ+ 2πR) is given by

R≡
s

g
4π

, (16)
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while the sound velocity is

v =
π

2

Æ

1− J2
z

arccosJz
. (17)

Note that v = 1 if Jz = 0. The boundary conditions for the bosons follow from the bound-
ary conditions for the fermions. At the origin and in the non-interacting case, one has
Φ = φR + φL =

πp
4π

, which becomes Φ(0) = πR in general. From (13) we see that, on
the right side we have Φ(l + 1) = πR for l odd and Φ(l + 1) = 0 for l even (all these modulo
2πR). So to summarize we can simply write

Φ(0) = πR, Φ(l + 1) = 2πRSz , (18)

with Sz integer (half an odd-integer) for l even (odd).
We now consider perturbation around the almost split fixed point, with Hamiltonian HA

(1) or HB (8). To all orders in perturbation theory, the correlators we need to evaluate are
factorized into correlators for two decoupled sub-systems - two open chains of equal length
ℓ in our set-up with Z = 2. Let us now consider the shift in ground-state energy due to
the tunneling. We start with the case ℓ even where the ground-state of either half is non
degenerate. The Hamiltonian we must consider is

H =
v
2

∫ ℓ

0

d x
�

(Π(1))2 + (∂xΦ
(1))2
�

+
v
2

∫ 2ℓ

ℓ

d x
�

(Π(2))2 + (∂xΦ
(2))2
�

+λZλ cos
β
p

2
(Φ̃(1)(ℓ)− Φ̃(2)(ℓ)) ,

(19)

where Zλ is the renormalization factor between the renormalized and the bare couplings (a
thorough discussion of such factors is provided in the next section), where we have used Z = 2
so L = 2ℓ, and we have set

β =
p

2πg . (20)

Note that the tunneling term is expressed in terms of the dual field Φ̃= φR−φL since the field
Φ takes a fixed value on either side of the tunneling bond.

The general strategy in this kind of (conformal perturbation theory) calculation is to com-
pute partition functions and extract quantities such as the energy by looking at the leading
behavior of large systems [58]. To do this, we need to introduce (imaginary) time, and thus
discuss propagators in a geometry corresponding to a strip [59] (since we deal with finite sys-
tems in the space direction). Specifically, we need correlators of (exponentials of) the dual
field Φ̃ with Dirichlet boundary conditions, which are the same as correlators of (exponentials
of) the field Φ itself with Neumann boundary conditions. Denoting by y the imaginary time
coordinate on a strip of width ℓ, we find the propagator on the edge (i.e. for points on the
right (or left) boundary) to be

〈Φ̃(i)(y)Φ̃(i)(y ′)〉= −
1

2π
ln

�

�

�

�

ℓ

π
sinh

πv
ℓ
(y − y ′)

�

�

�

�

2

(21)

(with i = 1,2), so we have

〈ei βp
2
(Φ̃(1)(y)−Φ̃(2)(y))e−i βp

2
(Φ̃(1)(y ′)−Φ̃(2)(y ′))〉=

1
�

�

ℓ
π sinh πv

ℓ (y − y ′)
�

�

β2
π

, (22)

where one should note the apparition of the sound velocity v on the right-hand side -
due to the fact that the continuum limit of the lattice Hamiltonian is not isotropic in
space/(imaginary)time.
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Going back to the shift of the ground state-energy, the first order correction vanishes be-
cause, in the ground-state with Dirichlet boundary conditions, 〈eiβΦ̃〉 = 0. To get the second
order, we determine the partition function in an annulus geometry with the imaginary time
length Λ≫ ℓ. It follows that the shift in energy is proportional, for g < 1

2 , to the finite integral

λ2
Z2
λ

2

�

ℓ

π

�−2g ∫ ∞

−∞
d y

1
| sinh πv

ℓ y|2g
=
λ2Z2

λ

v

�

ℓ

2π

�1−2g Γ (g)Γ (1− 2g)
Γ (1− g)

. (23)

Since λ∝ T1−g
B , this goes as ℓ−1(ℓTB)2−2g . Note that in (23) we did not worry about the UV

cutoff (the fact that our system is defined on a lattice), which adds a non-universal term. This
term is in fact crucial to render the integrals finite when 1

2 < g < 1, and the integral is UV
divergent. It contributes in general

λ2

v

Z2
λ

2

�

ℓ

π

�−2g � ℓ

π

�2g ∫

a

d y
y2g
=
λ2

v

Z2
λ

2
a1−2g ,

and thus (choosing origins of energies so that the decoupled system has vanishing energy) we
obtain the change in energy due to the modified bond

Ee ≈ λ2
�

c1ℓ
1−2g + c2

�

, (24)

where c1 is a universal constant, while c2 is not.
In the odd case the ground state is degenerate four times, since each half has a leftover

spin 1/2. Ground states can be written symbolically (see below eq. (38) |Ω〉αβ = |α〉 ⊗ |β〉,
with α,β = ±1. In each of the subsystems, the raising/lowering spin at the extremity has
non-zero matrix elements between | ± α〉. Carrying out degenerate perturbation theory we
expect a shift in energy proportional to λ, whereas the non-zero matrix elements should scale
as L−g by dimensional analysis. Hence in this case

Eo ≈ λ
�

c3ℓ
−g + c4λ
�

, (25)

where we added a pure λ2 correction just like in the even case.
In conclusion, we see that the behaviors of the energy for even and odd cases are quite

different, with, in the scaling limit,

Ee∝ ℓ−1(ℓTB)
2−2g ,

Eo∝ ℓ−1(ℓTB)
1−g . (26)

These results have been checked numerically - an example is provided on figure 7.

2.4.2 The entanglement

The full perturbative computation of the entanglement near the split fixed point would involve
some technical aspects that are best discussed elsewhere. We shall content ourselves with
carrying out a schematic analysis of the problem, which will reveal nevertheless the most
important facts.

We start by considering the simplest case Z = 2 and ℓ even (recall that ℓ is the length of
the subsystem and L = Zℓ). When λ = 0, the subsystem and its complement are both in a
ground-state which mimics the case ℓ = 2: the spin on either side of the cut is up or down,
and since the total Sz for each subsystem vanishes, the remaining ℓ− 1 spins have a total Sz

that is down or up. In other words, the ground state of each subsystem can be written

|0〉=
|(+)−〉− |(−)+〉

p
2

, (27)

14

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.002


SciPost Phys. Core 8, 002 (2025)

Figure 7: Study of the change in energy Ee/o=Ee/o(λ)-Ee/o(λ = 0) at small λ,
Jz = −0.3, for Hamiltonian (1). (a) Even case (b) Odd case. Observe how the two
parities give rise to different dependencies.

where (+) and (−) stand for the state of the remaining ℓ−1 spins with this total magnetization
(in this section in general, the terms within parenthesis in bras or kets will be short-hand
descriptions of the remaining ℓ−1 spins on both sides of the modified bond). By Z2 symmetry,
(−) is obtained from (+) by flipping all spins. The ground state for the whole system is then
|Ω〉= |0〉 ⊗ |0〉.

Imagine now calculating the ground state when λ ̸= 0 is small by using perturba-
tion theory. Restrict for simplicity to the case of the Hamiltonian HB. The perturbation
λV ≡ λ

2

�

σ+
ℓ
σ−
ℓ+1 + h.c.
�

acting only on the extremity spins of the two subsystems couples
to eigenstates of the decoupled system where one side has spin one and the other spin minus
one. Call the corresponding eigenstates |1n〉 and | − 1n〉, with energy En. Similarly, two inser-
tions of V couple to eigenstates where both sides have vanishing spin. Call the corresponding
eigenstates |0n〉 (with |00〉= |0〉). To second order we have then

|Ω〉= |0〉 ⊗ |0〉+λ
∑

n,m

anm (|1n〉 ⊗ | − 1m〉+ | − 1n〉 ⊗ |1m〉) +λ2
∑

n

bn (|0n〉 ⊗ |0〉+ |0〉 ⊗ |0n〉) , (28)

where from first order perturbation theory,4

anm =
1
2
〈1n|(+)+〉〈−1m|(−)−〉
(En − E0)(Em − E0)

. (29)

Taking the trace on the second subspace of the full density operator ρ = |Ω〉〈Ω| gives the
contribution to the reduced density operator for one half of the system

ρA ≡ TrBρ = (1+λ
2(b0 + b∗0))|0〉〈0|+λ

2
∑

nm

Anm (|1n〉〈1m|+ | − 1n〉〈−1m|)

+λ2
∑

n>0

bn|0n〉〈0|+ b∗n|0〉〈0n| ,
(30)

where Anm =
∑

p anpa∗pm.
The reduced density matrix is thus the sum of three operators acting on different subspaces,

and whose products are all vanishing. Symbolically we write

ρA = TrBρ = (1+λ
2(b0 + b∗0))|0〉〈0|+λ

2A+λ2B , (31)

4We do not use this exact form below, and only give it to illustrate the point.
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so that the ratio [60]

Rp ≡
Tr ρP

A

(Tr ρA)p
, (32)

has the structure

Rp =
(1+λ2(b0 + b∗0))

p +λ2p (TrAp + TrBp)

(1+λ2(b0 + b0)∗ +λ2 (TrA+ TrB))p
. (33)

By standard arguments Rp is the Renyi entropy of order p and we can obtain from it the (Von

Neumann) entanglement entropy5 as S = − d
dp RP

�

�

�

p=1
. Based on the foregoing schematic

calculation we get

S = −
d

dp
RP

�

�

�

�

p=1
= −2|X |2λ2
�

−
1
2
+ ln |X |2λ2
�

, (34)

where X is a coefficient that would follow from an explicit calculation of the coefficients bn, Anm
above. Our purpose here is not to obtain quantitative results but only the general perturbative
structure of S. We thus contend ourselves by concluding from this series of arguments that the
entanglement entropy in the even case has a leading term going as λ2 lnλ.

It is now useful to summarize the foregoing discussion in more general terms. In the even
case,the ground state of each of the two decoupled systems is non-degenerate and has spin
Sz = 0. Since the full Hamiltonian commutes with the total spin

[H, Sz
A+ Sz

B] = 0 , (35)

the reduced density matrix ρA commutes with the spin Sz
A [61]:

[ρA, Sz
A] = 0 . (36)

Right at the decoupled point, ρA only has matrix elements between the factorized ground-state
and itself, both at Sz

A = 0. However, under the tunneling perturbation, the new ground-state
acquires components onto states which, while having total spin Sz

A + Sz
B = 0, have Sz

A = ±1.
After tracing over the B degrees of freedom, and writing ρA in block diagonal form with blocks
labelled by Sz

A, this means that, two second order in perturbation theory, we have the structure

ρA = TrBρ =















ρ(0) 0 0 . . .

0 ρ(1) 0 . . .

0 0 ρ(−1) . . .

. . . . . . . . . . . .















, (37)

where the superscript refer to values of Sz
A and the dots on the diagonal contain blocks of

higher charge. The crucial point now is that ρ(±n) for n ̸= 0 is a contribution of order λ2n

since it takes n actions of the perturbation to produce a state with spin Sz = ±n starting from
a state of vanishing spin. We thus see immediately that we can expect a structure as in (37)
and consequently, after calculating the Reny entropy and taking the limit p→ 1, generate the
leading term λ2 lnλ. Note meanwhile that, were we to carry out the perturbative expansion
to higher orders, only terms even in λ would be encountered.

We now consider the case ℓ odd. Things are then a bit different. Exactly at λ = 0 there
is a potential ambiguity since the left and right hand sides are now both degenerate twice.

5We use here the formulation of the Von Neumann entropy as the derivative of the Renyi entropies as a function

of n as n→ 1. This is of course identical with the maybe more familiar definition S = − ln 1
p−1 ln Rp

�

�

�

p=1
.
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The entanglement is not even defined at this point without specification of the state of the full
system. However, as soon as λ ̸= 0, this degeneracy is broken, and the ground state becomes
unique and has Sz = 0. It is easy to identify this state in the case Z = 2, where the system with
or without perturbation is symmetric under exchanges of the two sides and conserves the total
spin: the ground state at finite λ remains in the sector antisymmetric under the exchange, and
with Sz = 0.

When λ= 0 we can write the (normalized) ground states of each side as combinations

|+〉= λ++|(0)+〉+λ
+
−|(++)−〉 ,

|−〉= λ−−|(0)−〉+λ
−
+|(−−)+〉 , (38)

where once again (0), (++), (−−) stand for states of the remaining ℓ−1 (now, an even number)
spins. We then choose the ground state of the whole system to be

|Ω〉=
|+−〉− | −+〉
p

2
. (39)

The density matrix of the lhs then reads schematically, in the basis (38)

TrBρ =
1
2







(λ++)
2 λ++λ

+
− 0 0

λ++λ
+
− (λ+−)

2 0 0
0 0 (λ−+)

2 λ−+λ
−
−

0 0 λ−+λ
−
− (λ−−)

2






. (40)

Using that the ground states (38) are normalized we can easily calculate from this the Reni
entropy and show that it gives, as expected, rise to S = ln2.

Now going through the same charge conservation arguments as before, we see that, when
perturbing the ground state we will have to carry out a calculation similar to the one of the
even case, resulting in a charge resolved structure for the density matrix now of the type

TrBρ =





















ρ(1/2) 0 0 0 . . .

0 ρ(−1/2) 0 0 . . .

0 0 ρ(3/2)) 0 . . .

0 0 0 ρ(−3/2)) . . .

. . . . . . . . . . . . . . .





















, (41)

where the terms ρ(
1
2+n) will come with factors λ2n. Once again we will get in the end terms

that are even in λ, with a leading correction going as λ2 lnλ2.
We thus conclude from this discussion that both in the even and odd cases the entanglement

entropy varies at small coupling as

Se,o ≈ −ke,oλ2 ln (const |λ|) . (42)

Note how different this is from the behavior of the energy, where the leading behaviors at
small λ were given respectively by (24) and (25). Comparing energy shifts on the even and
odd cases would not have made much sense since they have a different functional form, in
contrast with the case of the entanglements.

Numerical results fully confirm the results in (42) (see figure 8). We also give below a
determination of the slopes of the leading terms, although we do not have a full analytical
derivation at this stage. To conclude, we see that, in contrast with the energy, the entangle-
ment at small λ behaves similarly (but not identically) in the even and odd cases.
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Figure 8: Study of the entanglement at small λ, Jz=-0.5, L=400 for Hamiltonian (1),
confirming the same dependency S∝−λ2 ln |λ|. (a) Even case. (b) Odd case.

Figure 9: The slopes of the λ2 ln |λ| leading term as a function of Jz for Hamiltonian
(1). (a) Even case. (b) Odd case.

3 Physics around the homogeneous fixed-point

Like in the previous section, we discuss some generalities and numerical results. We then
launch into a full perturbative calculation6 of δS, and a detailed comparison with our numer-
ics. This involves non-trivial renormalization of the coupling constant.

3.1 Generalities

We can also consider the vicinity of the homogeneous (uniform) fixed point. Here again, sev-
eral natural choices of Hamiltonians are possible. We can in particular imagine a weakened
interaction between sites ℓ,ℓ+ 1, or, in the Luttinger liquid version, a situation where tunnel-
ing is weakened while the Coulomb interaction between the two halves remains unaffected.

6This case is simpler than the vicinity of the split fixed point, as it does not involve degeneracies in the unper-
turbed ground-state.
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Figure 10: The different types of flows near the homogeneous fixed-point (µ small).
Compare with figure 2.

These are the two situations we shall study in more detail, with corresponding Hamiltonians

HA =
ℓ
∑

j=0

�

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1

�

+ (1−µ)
�

σx
ℓσ

x
ℓ+1 +σ

y
ℓ
σ

y
ℓ+1 + Jzσ

z
ℓσ

z
ℓ+1

�

+
L
∑

j=ℓ+1

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1 , (43)

and

HB =
ℓ
∑

j=0

�

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1

�

+ (1−µ)
�

σx
ℓσ

x
ℓ+1 +σ

y
ℓ
σ

y
ℓ+1

�

+ Jzσ
z
ℓσ

z
ℓ+1

+
L
∑

j=ℓ+1

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1 . (44)

Perturbing the coupling near the uniform fixed point corresponds in the continuum limit
to coupling an operator of dimension (length)−g−1

(together with an operator of dimension
(length)−2, see below). We see that the regions of relevance and irrelevance are switched with
respect to the previous section, and that

near the homogeneous fixed point µ is irrelevant if Jz < 0 ,

near the homogeneous fixed point µ is relevant if Jz > 0 . (45)

The corresponding flows are sketched in Fig. 10. We see now that

dim µ= (length)g
−1−1 , (46)

so, using the same kind of scaling argument as for the case of an almost split chain, we now
expect the properties to have a universal dependency on LΘB with

ΘB ≡ µ1/(1−g−1) . (47)

3.2 Numerics for the entanglement

In the relevant case, we now flow from the homogeneous to the split fixed point - this is the
standard situation in the Kane-Fisher problem, where a slightly diminished bond in the chain
gives rise at large distance (small energies) to the same behavior as a chain split in half. As a
result, δS, which vanishes in the homogeneous case flows to − ln2, as is illustrated in Fig. 11
for two different values of the coupling Jz .
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Figure 11: Flow for Jz = 0.5,0.7. Here, Z = 2, and the Hamiltonian is (43). The
weakly perturbed chain flows to the split fixed-point in the IR.

3.3 Some perturbative calculations

We now study some feature of the entanglement in perturbation theory. To carry out the
calculation, we once again turn to bosonization. This time, since we start with a homogeneous
chain, we have to consider a single bosonic theory on the half-line (or a segment of length Zℓ if
the system is finite), instead of two separate systems. We start with (44) and need the crucial
bosonization formula [50]

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 = 2(−1) jc±1 cos

Φ

R
(x = j) , (48)

where c±1 is a constant equal to 1
π in the non-interacting case, but otherwise not known exactly

(see below). Note we only represented the leading term, which is of dimension 1
4πR2 = g−1.

The next term would be proportional to
�

∂Φ
∂ x

�2
, and thus is of dimension 2: it becomes in fact

the most relevant one when g−1 = 2, that is Jz = −
p

2
2 [62]. We will not study this region, and

restrict therefore to g > 1
2 or Jz > −

p
2

2 . In the non-interacting case g = 1, R =
p

4π and we
shall recover the results in [43].

The Hamiltonian corresponding to (44) is then

H =
v
2

∫ ∞

0

d x
�

Π2 + (∂xΦ)
2
�

−
µR

π
(−1)ℓ cos

Φ

R
(x = ℓ) . (49)

Note that in (49) we have introduced a renormalized coupling constant µR. Indeed, while in
the non-interacting caseµR = µ as defined with the lattice Hamiltonian (44) (which is the same
as (43) in this case), in the presence of interactions, renormalization effects lead to µR = Zµµ.
The constant Zµ - essentially the proportionality constant c±1 in (48) - is not universal. Its value
for the XXZ spin chain is not known exactly, but has been determined numerically to a great
accuracy in [63] (for earlier work see [64–66]). We will use the values deduced from Table
I in [63], after the correspondence ZB

µ =
Æ

8π2B±1 =
p

4π2c±1 , while Jz = ∆ (so that ZB
µ = 1
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for Jz = 0). In fact, it will turn out that the relevant quantity is the ratio
ZB
µ

v , where v is given
in (17)

For the Hamiltonian (43), we need one more bosonization formula to complement (48)

σz
jσ

z
j+1 = cz

1(−1) j cos
Φ(x = j)

R
(50)

(where again this holds to leading order and for for Jz > −
p

2
2 ). In this region, the Hamilto-

nian in the continuum limit if still (49) but now with a different value of the renormalization
constant ZA

µ, since

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1 = (−1) j(2c±1 + cz

1) cos
Φ

R
(x = j) . (51)

It follows that the new renormalization constant is ZA
µ =
p

8π2
�

Æ

B±1 +
Jz
2

Æ

Bz
1

�

. After dividing
by v, this gives rise to the values listed in the tables below.

We now use these results to study the entanglement. The strategy is the same as the one
used in [43],7 but for the convenience of the reader we repeat the important steps.

Since the boson sees Dirichlet boundary conditions, we have the non-trivial one-point func-
tion in the half-plane,

〈ei ΦR (x)〉HP =
1

(2x)2h
. (52)

We now consider the Rényi-entropy of the interval (0,ℓ) using the replica approach of [60].
We start by taking L =∞: the case of finite L can then be handled using conformal transfor-
mations. The calculation involves a p-sheeted Riemann surface Rp (with p an integer) with
a cut extending from the origin to the point of coordinates (x = ℓ,τ = 0), where we use τ
to denote (imaginary) time coordinates. We expand the partition function, and thus need for
this the one point function of ei ΦR on the corresponding surface. We obtain it by uniformizing
via two mappings: If w is the coordinate on Rp, the map

u= −
�

w− iℓ
w+ iℓ

�1/p

, (53)

maps onto the disk |u| ≤ 1, while the map

z = −i
u− 1
u+ 1

, (54)

maps the disk onto the ordinary half-plane. Using Eq. (52), we obtain

〈ei ΦR (w,w̄)〉Rp
=
�

2ℓ
p

�2h [(w− iℓ)(w+ iℓ)(w̄− iℓ)(w̄+ iℓ)]h(
1
p−1)

�

(w+ iℓ)1/p(w̄− iℓ)1/p − (w− iℓ)1/p(w̄+ iℓ)1/p
�2h

. (55)

Here, we have used the fact that vertex operators are primary fields, and thus transform with-
out any anomalous terms. Since two transformations are in fact required to map Rp onto the
half-plane w 7→ u 7→ z, we have refrained from writing the intermediate steps, and only given
the final result.

Specializing to the perturbation with coordinates (x = ℓ,τ) we get

〈cos
Φ

R
(w, w̄)〉Rp

=
�

2ℓ
p

�2h [v2τ2[v2τ2 + 4ℓ2]h
�

1
p−1
�

[(v2τ2 + 4ℓ2)1/p − (vτ)2/p]2h
. (56)

7What is called (λ− 1) in eq. 43 in this reference is called µ here, while in eq. 44 of this reference, we have

β = 1
R , so β2

4π = g−1 and h= 1
2 g−1.
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The asymptotic behaviors at large distance are now 〈cos
Φ

R
(w, w̄)〉Rp

≈ (2ℓ)−2h, τ ≫ ℓ and

〈cos
Φ

R
(w, w̄)〉Rp

≈
�

1
p (2ℓ)

−1/pτ
1
p−1
�2h

, τ ≪ ℓ. Like in [43] we calculate perturbatively the

partition function of the system on Rp (for ℓ even):

Rp(µR)≡
Zp

(Z1)p
=

∫

twist[Dφ1] . . . [Dφp]exp
�

−
∑p

i=1

�

A[φ]i −
µ
π

∫

dτi cosβφi(ℓ,τi)
�	

�∫

[Dφ]exp{−
�

A[φ]− πµ
∫

dτ cosβφ(ℓ,τ)
�

}
�p , (57)

and the integral in the numerator is taken with the sewing conditions

φi(0≤ x ≤ ℓ,τ= 0+) = φi+1(0≤ x ≤ ℓ,τ= 0−) . (58)

As usual, we trade this problem of p copies of the field for a single field on Rp [60]. With no
modified bond, we get the known result,

Rp(µR = 0)∝
�

1
ℓ

�2hp

, hp =
c

24

�

p−
1
p

�

, (59)

so

S = −
d
dp

Rp

�

�

�

�

p=1

=
1
6

ln
ℓ

p
(60)

(recall we set the lattice spacing (the UV cutoff) equal to one). This is the usual entanglement
entropy near a boundary - and we have discarded terms of order 1 which are independent
of µ.

We now proceed to calculate the ratios Rp(µR)/Rp(µR = 0). To leading order in |µR| ≪ 1,
one finds

Rp(µR)

Rp(µR = 0)
= 1+

µR

π

� p
∑

i=1

∫

dτi〈cosβφ(ℓ,τi)〉Rp
− p

∫

dτ〈cos
Φ

R
(ℓ,τ)〉HP

�

. (61)

Here, τi parametrizes the p copies (on the p sheets of Rp) of the line along which the pertur-
bation is applied (in the Euclidian formulation).

Like we observed in [43] in the case h = 1
2 , the resulting integral is convergent - in fact,

thanks to the subtraction coming from the denominator, it turns out to be always convergent,
even when the perturbation is irrelevant. Setting vτ= 2ℓ tanθ we have8

Rp(µR)

Rp(µR = 0)
= 1+

2µR

πv
(2ℓ)1−2h

∫ π/2

0

dθ
cos2 θ

�

p1−2h (sinθ )
2h( 1

p−1) cos4h θ

[1− (sinθ )2/p]2h
− p

�

≡ 1+
2µR

vπ
(2ℓ)1−2h Ip ,

(62)

where the second equation defines the integral Ip. Like in [43] we get the correction to the
entanglement by

S =
1
6

ln (ℓ) +
2µR

πv
(2ℓ)1−2h d

dp
Ip

�

�

�

�

p=1
. (63)

Remarkably, the resulting integral differs from the one when h = 1
2 by a simple factor:

d
dp Ip

�

�

�

p=1
(h) = 2h d

dp Ip

�

�

�

p=1
(h= 1

2),
9 and we find in the end the simple result

S =
1
6

ln
�

ℓ

a

�

+
1
3

g−1µR

v
(2ℓ)1−g−1

+O(µ2
R) , (64)

8We note there is an unfortunate typo in eq. 54 of [43]: two of the cosines in the bracket, should be sinuses, as
can be seen by setting h= 1

2 in (62). Also, notice that µ in [43] is equal to µR
π in the present paper.

9It converges at θ = π
2 in all cases.
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where we used that 2h = g−1 and d
dp Ip

�

�

�

p=1
(h = 1

2) =
π
6 . As in [43] the result only holds for

L =∞. When the ratio ℓ
L is finite, finite size effects have to be taken into account - see below

and [43] for the case Z = 2.
Comparing odd and even cases amounts to changing the sign of µ as discussed in [43].

This leads finally to our main result

δS =
2
3

g−1µR

v
(2ℓ)1−g−1

+O(µ2
R) . (65)

In the non-interacting case Jz = 0 we have g = 1 and we find δS = 2
3µ like in eq. 58 of [43].

When the system has finite size L = 2ℓ (so Z = 2), we find, generalizing eq. 60 of [43] for
g = 1 (and µR = µ)10

δSZ=2 = .636779 g−1µR

v

�

4ℓ
π

�1−g−1

= .636779 g−1
Zµ
v
µ

�

4ℓ
π

�1−g−1

(We have put a box around this equation as we consider it the most important result of this
paper). As mentioned above we now observe that the integrals encountered in this calculation
are always convergent, irrespective of the relevance of the perturbation. It follows that (66)
should hold as well when the perturbation is irrelevant, i.e. when Jz > 0. The numerics indeed
do not see anything happening when Jz = 0 is crossed. This is rather unexpected, since one
generally expects that perturbation by an irrelevant operator leads to IR divergences. This
issue may have to do with the behavior of other quantities such as the screening cloud in the
Kondo problem [31,32].

On the other hand, we emphasize that result (66) only makes sense when the hopping term
is the leading (ir)relevant operator. As Jz crosses the value −

p
2

2 , the term of (Jz independent)
dimension 2 dominates, and thus (66) ceases to be valid.

3.4 Comparison with numerics

The numerical analysis is a little tricky because, even in the absence of a local perturbation,
the entanglement is known to already exhibit an alternating dependency upon ℓ (that is, even
odd effects that decrease with ℓ) [67–69], leading to

δSZ=2(µ= 0) = a(g)l−g−1
. (66)

This correction is well identified in the literature, and the exponent usually written as K ,
the Luttinger constant, with K = π

2(π−arccosJz)
= 1

g . It is due to the leading irrelevant bulk
oscillating term in the chain. We have first checked the result (66), as illustrated in Fig. 12
(a).

To leading order, we expect the correction (66) and the correction induced by the µ ̸= 0
perturbation to simply add up, so we can get rid of decaying oscillating terms of [67–69] by
considering the difference

δSZ=2(µ)−δSZ=2(µ= 0) = .636779 g−1
Zµ
v
µ

�

4ℓ
π

�1−g−1

. (67)

10The substitution for the ℓ dependent factor is 2ℓ→ 2L
π sin πℓ

L , so 2ℓ→ 4ℓ
π when L = 2ℓ. Otherwise, finite size

gives rise to the same modified integral Ip as in [43].
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Figure 12: (a) Study of the exponent controlling the decay of δS for a homogeneous
chain as in(66). (b) Study of the exponent controlling the decay of δS for a small
perturbation of the homogeneous fixed point (67). In both cases, the numerics re-
produces well the expected result.

Figure 13: (a) Example of fit of δSZ=2(µ)− δSZ=2(µ = 0) against µ
�4ℓ
π

�1−g−1

when
Jz=-0.1 for Hamiltonian (43). The linear behavior expected from (67) is well ob-
served, and the slope can be measured accurately. (b). Study of the slope of δS near
the homogeneous fixed point obtained by fitting (67) (see figure 13(a) for Hamilto-
nian (43). Blue points are numerical. Orange points are obtained from the values
given in [63](c) Same as (b) but for the Hamiltonian (44).

We have studied the left hand side in what follows. Measures of the exponent obtained
by plotting ln [δSZ=2(µ)−δSZ=2(µ= 0)] − lnℓ for small values of µ give excellent, µ in-
dependent results, as illustrated in Fig. 12(b): To obtain results for the slope itself, we fit
δSZ=2(µ)−δSZ=2(µ= 0) for a series of values of Jz - it turns out the relevant region involves
values of µ as small as 5 10−4. An example of such fit is given in Fig. 13(a).

The resulting slopes are then compared with the best known numerical values in Table 1
and in Figs. 13(b) and 13(c) for the two possible Hamiltonians. Note the excellent agreement
both in the relevant and irrelevant case as long as Jz is not too close to ±1. As expected on
general grounds due to the presence of almost marginal operators as Jz approaches 1, the
quality of the numerical estimates decreases in this limit.11 As for the region of large negative
Jz , we remind the reader that our calculation only considers the region −

p
2

2 < Jz since beyond
this lower bound, the modified bond corresponds to another leading operator in the scaling
limit.

11We note that the question of corrections to scaling to entanglement entropies in general is complex, especially
near when an operator becomes marginal. See [69].
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Table 1: The table compares our results with the best numerical estimates [63]ZA,B
µ /v

for Hamiltonian (43) and Hamiltonian (44).

Jz ZA
µ/v our num. ZA

µ/v ZB
µ/v our num. ZB

µ/v

0.700 0.865 0.886 0.636 0.646
0.600 0.928 0.938 0.700 0.708
0.500 0.970 0.976 0.760 0.763
0.400 1.000 1.001 0.811 0.815
0.300 1.012 1.015 0.861 0.864
0.200 1.017 1.020 0.908 0.911
0.100 1.012 1.016 0.954 0.957
0.000 1.000 1.003 1.000 1.004

-0.100 0.978 0.982 1.047 1.051
-0.200 0.948 0.952 1.097 1.100
-0.300 0.908 0.911 1.150 1.153
-0.400 0.856 0.861 1.208 1.212
-0.500 0.794 0.798 1.277 1.282

3.5 Determination of the renormalization factors

Instead of relying on the literature, we can of course determine Zµ directly by studying the
energy of the model. Indeed, using Hamiltonian (49) together with the result

〈cos
Φ

R
〉=

1
(2ℓ)2h

(68)

(recall 2h= g−1), leads immediately to the term O(1) in energy

E = −
µR

π

(−1)ℓ

(2ℓ)2h
+O(µ2

R) , (69)

and thus to the difference between even and odd

δE = Ee − Eo = −2
µR

π

1
(2ℓ)2h

. (70)

For a finite system we obtain the corresponding shift using a conformal mapping. If the total
system is of length L we have then

〈cos
Φ

R
(ℓ)〉=
�π

L

�2h 1

[2 sin πℓL ]2h
, (71)

and thus for our case Z = 2 we find finally

δE = −2
µR

π

� π

4ℓ

�2h
. (72)

From the definition µR = Zµµ a numerical determination of δE gives access to the renormal-
ization factor (recall Zµ = 1 for Jz = 0).

Note that this time the sound velocity v does not enter. The values of Zµ for Hamiltonians
(43) (44) determined this way are given below in table 2, and compared with those from [63],
with excellent agreement.
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Table 2: The table compares our determination of ZA,B
µ obtained by fitting equation 72

with those form [63].

Jz ZA
µ numerical ZA

µ ZB
µ numerical ZB

µ

0.700 1.220 1.222 0.892 0.890
0.600 1.258 1.256 0.948 0.946
0.500 1.259 1.258 0.985 0.984
0.400 1.237 1.237 1.007 1.007
0.300 1.198 1.198 1.018 1.019
0.200 1.143 1.144 1.020 1.021
0.100 1.076 1.078 1.014 1.015
0.000 1.000 1.002 1.000 1.002

-0.100 0.915 0.917 0.980 0.982
-0.200 0.823 0.825 0.952 0.954
-0.300 0.726 0.727 0.918 0.921
-0.400 0.622 0.624 0.877 0.880

4 Symmetries

We finally discuss in this section some symmetries of the problem, most of them occurring only
in the scaling limit.

4.1 Symmetries between µ and −µ, λ and −λ

The entanglement entropy is expected to possess several interesting symmetries in the scaling
limit. The first such symmetry can be seen from the point of view of the perturbed homo-
geneous chain, where we have seen in section 3.3 that in the field theory Hamiltonian (49),
translation of the cut by one site amounts to µR → −µR. Of course this is true only to first
order in µR, but since the results in the scaling limit are valid in the limit µR→ 0, ℓ→∞ with
µℓ1−g−1

finite, it is only this order that matters. Hence we conclude that, in the scaling limit:

δS(µ) = −δS(−µ) . (73)

The second symmetry is simply
δS(λ) = δS(−λ) . (74)

This follows from the discussion of the perturbation expansion around the split fixed point,
and the fact that to all orders δS was found to be an even function of λ. The relationships
(73) and(74) are illustrated in Fig. 14a and Fig. 14b respectively. Note that, as emphasized
above, the relationships are only expected to hold in the scaling limit, µ→ 0 (resp. λ→ 0)
and L →∞ with the appropriate combinations ΘB (resp. TB) finite. As commented earlier,
the spread of the curves in the IR is due to the difficulty of reaching the scaling limit while
being technically limited to relatively small values of L.

4.2 Symmetries between λ and
1
λ

To see the third symmetry, imagine we consider a chain with λ ≫ 1 i.e. with a coupling
between sites ℓ and ℓ+1 greatly enhanced. To facilitate the discussion we introduce a slightly
more general Hamiltonian for the interactions between sites ℓ− 1,ℓ,ℓ,ℓ+ 1, and ℓ+ 1,ℓ+ 2:

Hℓ = σ
x
ℓ−1σ

x
ℓ +σ

y
ℓ−1σ

y
ℓ
+ Jzσ

z
ℓ−1σ

z
ℓ +λ
�

σx
ℓσ

x
ℓ+1 +σ

y
ℓ
σ

y
ℓ+1 +∆σ

z
ℓσ

z
ℓ+1

�

+σx
ℓ+1σ

x
ℓ+2 +σ

y
ℓ+1σ

y
ℓ+2 + Jzσ

z
ℓ+1σ

z
ℓ+2 ,

(75)
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(a) (b)

Figure 14: (a)Here Jz=0.5 and we compare δS(µ) and -δS(−µ) with Hamilto-
nian(43) when µ is very small and we are well in the scaling limit. (b) Here Jz=-0.5,
and we compare δS(λ) and δS(−λ) with Hamiltonian(1) when λ is very small. In-
sets are for a larger range of LΘB(LTB).

where we have allowed for the coupling with amplitude λ to have a different anisotropy ∆
(instead of Jz). In the limit λ≫ 1, the spins σ⃗ℓ and σ⃗ℓ+1 are almost paired into a singlet.The
Hamiltonian can then be replaced in this limit, by its first-order perturbation theory approxi-
mation [70,71]

Hℓ 7→ −Es +
∑

t i

|〈s|Hℓ|t i〉|2

Es − Et i

, (76)

where the energies of the term coupling spins ℓ and ℓ+1 are Es, Et i
respectively. For the singlet

we have Es = −λ
�1

2 +
∆
4

�

while the “triplet” now splits into states (for spins ℓ,ℓ+1) |++〉 and

| − −〉 with energies Et1
= Et3

= λ∆
4 and |+−〉−|−+〉p

2
with Et2

= λ
�1

2 −
∆
4

�

.
A straightforward calculation then gives, up to an irrelevant additional constant

Hℓ 7→
1
λ

�

σ+
ℓ−1σ

−
ℓ+2 +σ

−
ℓ−1σ

+
ℓ+2

1+∆
+∆2σz

ℓ−1σ
z
ℓ+2

�

. (77)

Observe that, while initially the modified bond was between sites ℓ,ℓ+1, after this renormal-
ization it is now between sites ℓ−1 and ℓ+2 which, after a relabelling starting as usual from
the left, becomes between sites ℓ−1 and ℓ. Hence we have exchanged the odd and even impu-
rity problems. Notice also that the anisotropy of the Hamiltonian is not in general preserved.
This only occurs in the XXX case when ∆= 1, for which we recover an XXX Hamiltonian, and
the coupling has gone from λ to 1

2λ and in the XX case when ∆ = 0 for which we recover an
XX Hamiltonian but the coupling has gone from λ to 1

λ .
The duality is best seen for Hamiltonian HB (8) which corresponds to ∆ = 0. In this case

we expect, in the scaling limit

δS(λ) = −δS
�

1
λ

�

. (78)

In general, since we have argued and checked that dependency of the δS curve on the exact
form of the modified Hamiltonian can entirely be absorbed into a redefinition of TB, we expect
the results for the problem and its dual to be identical (up to the exchange of odd and even)
in the scaling limit. Moreover, in the case of Hamiltonians HA and HB, the redefinition of TB
can be obtained simply by the substitution λ→ 1

λ(1+∆) . This relationship is illustrated in Fig.
15a, while the equation (78) is illustrated in Fig. 15b.
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(a) (b)

Figure 15: For these figures Jz=-0.5, and we compare δS(λ) and -δS
� 1
λ

�

when λ is
very small (and we are well in the scaling limit) (a) With Hamiltonian (1) and after
the rescaling of the coupling by 1

1+∆ . (b) With Hamiltonian (8). In both cases the
insert is for larger values of LTB, where the scaling limit is not fully attained.

5 Conclusions

We have shown in this paper how odd-even effects in the Kane-Fisher problem persist even
in the thermodynamic limit when considering terms O(1) in the entanglement entropy of the
XXZ chain, and how these effects encode a hybridization of the delocalized spin 1/2 remaining
in the odd case with the bath constituted by the rest of the chain. These results can as well
be interpreted in the Luttinger liquid language in terms of an unpaired electron hybridizing
with the electron bath, not unlike what happens in the Kondo problem. This gives rise to
curves for δS with qualitative features that are only dependent on the nature of the interaction
(attractive or repulsive), and always interpolating between − ln 2 and 0. Note however that
details of these curves (such as the slopes at the origins etc) depend on the coupling constants.

The qualitative behavior of δS is quite similar to e.g. the crossover occurring in the
anisotropic Kondo problem when considering the dependency of the impurity entropy on the
coupling and the temperature. We emphasize however that the results presented here are
obtained at vanishing temperature, and explore rather the spatial dependency of the impu-
rity screening. The extent to which finite size and finite temperature effects can be compared
remains to be understood.

Although it may seem a mere technical point, we emphasize the remarkable fact that δS
is, at least to the order we have considered, accessible in UV perturbation theory. This is in
sharp contrast with quantities such as the g-function [32]. The question of the full analytical
structure of δS as a function of ℓTB - and whether it can be calculated exactly using a technique
such as the Bethe-Ansatz - remains open.

While our problem originated in the context of physics near a boundary, the parity effects
we unveiled occur as well in the bulk. Consider indeed a periodic system of length L and a
sub-interval of length ℓ connected on both sides to the rest of the chain by modified bonds as in
(1,8) - this is illustrated in Fig. 16 below. The physics (RG flow towards a healed or split chain)
is expected to be the same as near a boundary. We find that the entanglement for subsystems
of even or odd length (the figure corresponds to the latter case) also differs by terms of O(1).
The details of these terms are a bit intricate, and we plan to discuss them elsewhere. For now
we contend ourselves with the following observation. In the non-interacting case Jz = 0 and
for two slightly different couplings λ and rλ with 0 < r < 1, the difference δS at large L
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Figure 16: (a) Sketch of the PBC system. (b). Comparison of δS for the systems
with different values of the ratio r (where the modified couplings on either side of
the impurity are λ and rλ. Of course, r=0 corresponds to a OBC system, Jz=0.

coincides, even in this periodic geometry, with the curve for the open geometry with a single
modified bond λ: in other words, the weakest of the two modified bonds effectively behaves
as if it were “opening” the system. While it is easy to understand this qualitatively (the system
prefers to form valence bonds over the strongest bond), proving it analytically might be more
difficult.

Another intriguing point is what the behavior of δS can reveal about systems with extended
arrays of modified bonds. In the non-interacting case, it was argued in [43] that the existence
of a topological phase in the SSH model could be inferred from the behavior of δS. Whether
a similar result holds in the presence of interactions remains to be seen, and will be discussed
elsewhere.12

In conclusion, the fine structure of the entanglement in the presence of interactions reveals
many interesting details, and remains to be explored more thoroughly. Going a bit out of the
condensed-matter context, it is particularly intriguing to wonder what happens in the case of
flows between topological defects [73], another topic we hope to discuss elsewhere.
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A Numerical calculation details

Our numerical results are obtained by using the TeNPy package [57], which is a Python library
for the simulation of strongly correlated quantum systems with tensor networks. This pack-
age supports various algorithms like TEBD and DMRG. Specifically we used XXZChain model
and two-site DMRG algorithm TwoSiteDMRGEngine. The maximum energy error is 10−10,

12We note in this respect that very few results are available for staggered XXZ chains (an exception is [72]).
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the smallest Schmidt value is 10−10. In general the bond dimension is max(50, 0.5N), al-
though in some cases such as λ ≈ 0 and Jz < −0.5, the bond dimension is max(75, 0.75L),
where L is the system size. L itself goes from 80 to 860. Finally, we use the package for the
Spin-1/2 XXZ chain that imposes Sz conservation. The initial state we used in all calculations
was alternating spin up and spin down. We checked the final result did not depend on this
choice.
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