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M5-brane prongs, string soliton bound states and wall-crossing
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Abstract

We study Abelian M5-brane field configurations representing BPS bound states of self-
dual string solitons whose locations correspond to the endlines of M2-branes ending on
the M5-branes. The BPS equations are obtained from appropriate Bogomolny comple-
tion of the effective Abelian low energy functional with two transverse scalars, using two
vectors representing the directions along which these endline strings extend. Then we
impose boundary conditions on the scalars near the string soliton cores. This leads to
a molecule-like equilibrium structure of two non-parallel string solitons at fixed trans-
verse separations, with the M5-brane “prong” deformations comprising two “spikes”,
each shaped like a ridge. The resulting picture becomes increasingly accurate as one
approaches the wall of marginal stability, on which these states decay. There are vari-
ous parallels with wall-crossing phenomena for string web configurations obtained from
D3-brane deformations.
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1 Introduction

M5-branes are fascinating objects in M-theory. The theory on a single M5-brane in flat space
is free, comprising a self-dual anti-symmetric 3-form tensor field strength and five scalar fields
and fermions. A stack of coincident M5-branes is described by an interacting non-Abelian 3-
form theory with massless scalars. Since the self-dual 3-form field strength arises from a 2-form
potential which couples to a string-like object, the M5-brane theory appears to be a theory of
interacting self-dual strings: these strings can be thought of as the endlines of M2-branes that
end on the M5-brane. A succinct description of various aspects appears in [1] and some early
nice papers include e.g. [2–5]. While we do not understand this theory fully, we do know
several aspects from various points of view: a classic old review is [6]. More recent reviews of
several aspects include e.g. [7,8]. The extensive investigations of holography [9–11] over the
last several years suggest that the M5-brane (2,0) theory can be aptly regarded as an abstract
conformal field theory (see e.g. [12] for a bootstrap formulation) and the self-dual strings
above are then solitonic objects.

When the M5-branes in a stack are separated, the M2-branes stretched between them lead
to charged massive states in the M5-theory “Higgsed”, loosely speaking (more precisely, the
M5-theory on the tensor branch). A single M2-brane stretched between two parallel separated
M5-branes ends on a line in the M5-worldvolume thus giving rise to a half-BPS self-dual string
soliton state in the worldvolume M5-brane theory [13, 14]. As a field configuration in the
full “Higgsed” M5-brane nonAbelian tensor theory, this is perhaps a line-charge analog of the
BPS ’t Hooft-Polyakov monopole in super Yang-Mills theory (see e.g. [16] for a review), and
can be described at least in the low energy Abelian “Higgsed” theory in a simple way (as
we will review below). Consider the theory of three parallel M5-branes: two non-parallel
M2-branes stretching between one M5 and the other two energetically lead to a nontrivial
M5-M2-M2 bound state. These sorts of states can be recognized readily in a different regime.
They simply correspond to nontrivial string webs stretching between three parallel separated
D3-branes in the IIB string theory obtained by compactifying M-theory on T2: see [17], where
these M2-brane webs in M-theory were in fact already anticipated. The M5-branes become
D3-branes while the M2-branes wrapping appropriate T2-cycles become various (p, q)-strings
(as reviewed in e.g. [18]). The line charges from the M2-branes ending on the M5-brane
compactify to point charges in the Higgsed gauge theory on the D3-branes.

These string webs can in fact be obtained as nontrivial brane deformations in the D3-
brane worldvolume super Yang-Mills theory. As a BPS state, a single string ending on a single
D3-brane is described in the low energy Abelian theory by the BPS bound equation E⃗ = ∇X
with E⃗ the electric field and X one of the transverse scalars. The resulting field configuration
X ∼ qe

|r⃗−r⃗0|
− X0 can be interpreted as a “brane spike” worldvolume deformation emanating

from the D3-brane at the location of the charge [19]. Likewise string web states can also be
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described as more general “brane prongs” in the low energy Abelian theory of three or more
Higgsed D3-branes [20–22]: this low energy description was developed from several previous
investigations of such states including [23] as well as e.g. [25–38] (see also the review [39]).
These are nontrivial molecule-like dyon bound states in the Higgsed vacua of the N=4 U(N)
super Yang-Mills theory on the D3-branes: they decay across walls of marginal stability and the
wall-crossing phenomena are in fact well-described by these brane prong field configurations
in the low energy Abelian theory (the qualitative picture has parallels with similar observations
in BPS black hole bound states [40]).

Motivated by these investigations, in this paper, we consider Abelian M5-brane field config-
urations representing BPS bound states of self-dual string solitons whose locations correspond
to the endlines of M2-branes ending on the M5-branes. A single M2-brane ending on a sin-
gle M5-brane leads to a 1

2 -BPS state described by a ridge-shaped “spike” deformation of the
M5-brane with one transverse scalar excited as X ∼ q

|ρ⃗−ρ⃗0|2
− X0 . This M5-brane “spike” field

configuration characterizes the self-dual string that is the endline of the M2-brane ending on
the M5-brane and was discussed in [13,14] (reviewed in [6]); see also [15] on supergravity-
based work. Appropriate combinations of multiple M2-branes give 1

4 -BPS states described by
M5-brane “prong” deformations: the structure of these is more intricate. They can be thought
of as a superposition of two spikes corresponding to a bound state of two non-parallel string
solitons at fixed separation transverse to their extended directions, which dovetails with non-
trivial boundary conditions on the scalar moduli in the vicinity of the string soliton “cores”.
Under M → I IB duality obtained from compactifying M-theory on T2, they are expected to
reduce to D3-brane prongs representing string webs stretched between multiple parallel non-
coincident D3-branes described above.

The BPS bound equations in the M5-brane are obtained by performing a Bogomolny com-
pletion of the M5-brane energy functional comprising a free self-dual 3-form field strength
Habc and two transverse scalars. This was already set up in a preliminary manner in [23]:
here we will develop this more elaborately. It is convenient to recast Habc in terms of a spa-
tially “dual” 2-form object H̃ab ≡ ⋆5H (where a, b are 5-space indices alone, reflecting the
self-duality of H): this is then Bogomolny-squared with the scalar derivatives using two vec-
tors ζa to obtain BPS bound equations (in one form, these were obtained from supersymmetry
in [24]; our analysis, complementing that, is more fuelled by wall-crossing considerations and
the D3-brane string web descriptions). These ζ-vectors have support only in a 2-dim (4-5)
subspace of the 5-dim worldvolume of the M5-brane: this simulates the intuition that upon
compactifying this 2-subspace as T2 the line charges wrap the ζ-directions becoming point
charges in the noncompact 3-dimensions. In this light, these equations can be decomposed
into components along the 4− and/or 5− directions, and some of these components then re-
semble the BPS equations for the D3-brane. Another crucial ingredient in the M5-description
is the fact that the scalar field configurations are subject to “line source conditions” encoding
translation invariance along the string, reflected in the ridge-shape. These alongwith the BPS
bound equations and the moduli boundary conditions lead us to the spike superpositions in
the prong field configurations.

The moduli boundary conditions in the vicinity of the string cores we impose are Dirichlet
boundary conditions on the scalars at the closest point of approach of the two strings: these
imply fixed separations transverse to the extended directions of the strings. For generic finite
separation, these lead to nontrivial variations in the moduli as we go far along the strings,
which amounts to nontrivial M5-brane bendings. However in the limit of approaching the
wall of marginal stability, we show that these variations become negligible and the moduli
values become near constant all along the strings. Thus our formulation reveals self-consistent
approximate configurations which become increasingly accurate in the marginal stability limit,
as we will describe elaborately.
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In sec. 2, we describe the Bogomolny completion in the M5-brane low energy Abelian the-
ory, while sec. 3 describes the simplest M5-brane prong configurations and the corresponding
string soliton bound states with the effective 1-string tension and the wall-crossing limit in
sec. 3.3 (with some further comments in sec. 3.4). More general states appear in sec. 4. In
sec. 5 we discuss embedding these field configurations in multiple Abelian “Higgsed” M5-brane
theories. A Discussion comprising an overview and related questions appears in 6, and some
technical details in Appendices.

2 Bogomolny completion in M5 effective field theory

To describe the M5-brane spatial worldvolume for the field configurations and states to follow,
we will find it useful to define the notation

ρ⃗ = (x1, x2, x3, x4, x5)≡ (r⃗, x⃗) , ρX ≡ (r⃗, x5) , ρY ≡ (r⃗, x4) ,

ρζ ≡ (r⃗, x⃗) , with x⃗ · ζ= 0 , (1)

i.e. ρ⃗ is the coordinate describing the 5-dimensional spatial worldvolume of the M5-brane
which decomposes into a 3-dim subspace spanned by {x1, x2, x3} and the remaining 2-dim
subspace which {x4, x5} spans. r⃗ ≡ (x1, x2, x3) denotes the coordinate in the 3-dim subspace.
ρ⃗X denotes the coordinate in the 4-dimensional subspace orthogonal to the x4-direction and
likewise ρ⃗Y the coordinate in the 4-dim subspace orthogonal to the x5-direction. In the last
line, we have chosen a general vector ζ ∈ (x4, x5) in the 45-plane and denoted the 4-dim
subspace orthogonal to ζ by the coordinates ρ⃗ζ.

Now we introduce ζ1, ζ2 ∈ (x4, x5) as two unit vectors in the 45-subspace in the 5-dim
worldvolume, and define (with a, .., e only spatial indices {1,2, 3,4, 5})

ζ1, ζ2 ∈ (x4, x5) : H̃ab =
1
6
εabcdeHcde , |H̃|2 = H̃abH̃cdδacδbd ,

|∂ X |2 = δab∂aX∂bX , ∂[aXζ1
b] =

1
2

�

∂aXζ1
b − ∂bXζ1

a

�

. (2)

Since these are all spatial indices with a flat metric, we will not distinguish up/down indices.
The presence of precisely two ζ-vectors dovetails with including only two of the five trans-

verse scalars to the M5-brane. This corresponds to including only two M2-branes ending on
the M5-brane: in an essential sense, this is incomplete from the point of view of M5-M2 sys-
tems. However restricting to this, which reflects the decomposition (1), is adequate from the
point of view of uplifts of D3-brane configurations describing string webs. In other words,
this restriction implicitly encodes this subspace of M → I IB dualities obtained from compact-
ifications of M-theory on T2 ≡ (x4, x5). With this in mind, the energy functional for static
configurations in a single free M5-brane theory comprising the self-dual 3-form field strength
and two transverse scalars is

E = 1
2

�

|∂ X |2 + |∂ Y |2 +
1
2
|H̃|2
�

. (3)

The sum here is over only spatial indices in H̃ : this incorporates the fact that H is a self-dual
3-form field strength with H = ⋆6H. This can be abstracted from a superbrane formulation
as discussed in [6] (see also e.g. [14, 23, 41]). We will find it adequate to focus on the min-
imal low energy point of view of a single free M5-brane and its field content here, obtained
by retaining only the lowest mass dimension terms. The action for an M5-brane with tension
T6 ∼

1
l6
11

(with l11 the 11-dim Planck length) [18] is written in terms of the M5-brane coordi-

nates x I in transverse space: these are redefined to M5-brane worldvolume field theory scalars
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as
1

l6
11

∫

d6s (∂ x I)2 ≡
∫

d6s (∂ X I)2 , X I ≡
1

l3
11

x I , (4)

so the transverse scalar fields X I ≡ X , Y, . . . are manifestly dimension-2, and are the relevant
observables in the field theory regime. The 2-form Bµν has mass dimension-2 (so the Wilson
surface operator

∫

B is dimensionless) and the scalars have mass dimension-2, so all terms in
E are dimension-6.

Upon Bogomolny completion of squares using the above ζ-decomposition, as in fact antic-
ipated in [23] (see Appendix A for some useful details), this gives

E =
�

�

�

�

∂[aXζ1
b] + ∂[aYζ2

b] −
1
2
δacδbdH̃cd

�

�

�

�

2

+
1
2

�

ζ1
a∂aX + ζ2

a∂aY
�2

(5)

+ ∂aX H̃abζ1
b + ∂aY H̃abζ2

b −
∑

a ̸=b

ζ1
aζ

2
b (∂aX∂bY − ∂bX∂aY )−

�

ζ1 · ζ2
�

(∂ X · ∂ Y ) .

Then the energy functional is minimized when the BPS bound equations

∂[aXζ1
b] + ∂[aYζ2

b] −
1
2
δacδbdH̃cd = 0 ,

ζ1
a∂aX + ζ2

a∂aY = 0 , (6)

are satisfied. We will study these equations and the resulting configurations alongwith appro-
priate boundary conditions in what follows. The above essentially ignores the last two sets of
terms in (5): we will argue later in sec. 3.3, sec. 3.4 and sec. 4.3 that these terms in fact give
negligible contribution in the limit of approaching the wall of marginal stability, and thereby
lead to a self-consistent energy minimization via the Bogomolny completion.

The 3-form field strength and its equation of motion can be recast giving

Habc = εabcdeH̃de → d ⋆H = 0 → ∂aH̃ab = 0 . (7)

Thus
∑

a
a ̸=b

∂a(∂aXζ1
b − ∂bXζ1

a) +
∑

a
a ̸=b

∂a(∂aYζ2
b − ∂bYζ2

a) = 0 . (8)

Imposing line source conditions along ζ1,ζ2 directions leads to harmonicity in 4-dim subspaces
orthogonal to the ζ-vectors, and thereby to harmonic field configurations transverse to string
soliton line sources stretched along ζ1,ζ2, roughly “superposing” the two string solitons as we
will describe.

It turns out that these are best described in component form, which we will now proceed
to do. In component form (a = 1,2, 3), we define

Ea = H̃a4 , Ba = H̃a5 , Π= H̃45 , E⃗ = Ea x̂a , B⃗ = Ba x̂a . (9)

It is consistent to set Ka = 1
2ε

abcH̃bc = 0. In terms of the 3-form H, these components are
Ba = 1

2ε
abcHbc4, Ea = 1

2ε
abcHbc5, Π= H123, Ka = Ha45.

Taking ζ1, ζ2 to lie in the {x4, x5}-plane (i.e. no components in {1, 2,3}), the BPS equa-
tions (6) in component form become

Ea = ∂a(Xζ
1
4 + Yζ2

4) , Ba = ∂a(Xζ
1
5 + Yζ2

5) , Π= ∂4(Xζ
1
5 + Yζ2

5)− ∂5(Xζ
1
4 + Yζ2

4) ,

(ζ1
4∂4 + ζ

1
5∂5)X + (ζ

1
4∂4 + ζ

1
5∂5)Y = ∂4(Xζ

1
4 + Yζ2

4) + ∂5(Xζ
1
5 + Yζ2

5) = 0 . (10)
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Defining appropriate X ′, Y ′, leads to somewhat simpler expressions:

X ′ ≡ Xζ1
4 + Yζ2

4 , Y ′ ≡ Xζ1
5 + Yζ2

5 ,

E⃗ =∇X ′ , B⃗ =∇Y ′ , Π= ∂4Y ′ − ∂5X ′ , ∂4X ′ + ∂5Y ′ = 0 . (11)

The equations in this form were also obtained via supersymmetry in [24]. Our analysis of the
resulting field configurations is motivated by wall-crossing phenomena and string webs via D3-
brane prongs: as we will see, the map between X ′, Y ′ and X , Y , involving arbitrary vectors ζ1,2

in the (x4, x5)-plane allows for constructing string-string bound states for arbitrary charges.
The Bogomolny completion (5) can be written as

E = 1
2

�

�E⃗ −∇X ′
�

�

2
+

1
2

�

�B⃗ −∇Y ′
�

�

2
+ E⃗ · ∇X ′ + B⃗ · ∇Y ′

+
1
2
(ζ1

a∂aX + ζ2
a∂aY )2 +

1
2

�

�Π+ ∂5X ′ − ∂4Y ′
�

�

2
+Π(∂4Y ′ − ∂5X ′)

−
∑

a ̸=b

ζ1
aζ

2
b (∂aX∂bY − ∂bX∂aY )−

�

ζ1 · ζ2
�

(∂ X · ∂ Y ) . (12)

The simplest case with two orthogonal vectors ζ1 = (1,0), ζ2 = (0, 1), gives X ′ = X , Y ′ = Y .
Taking further derivatives of the last condition in (11) gives

∂ 2
4 X ′ + ∂4∂5Y ′ = 0 , ∂4∂5X ′ + ∂ 2

5 Y ′ = 0 . (13)

The equations of motion then give

∂aH̃a4 = 0 : ∇ · E⃗ − ∂5Π= 0=∇2
i X ′ + ∂ 2

4 X ′ + ∂ 2
5 X ′ ,

∂aH̃a5 = 0 : ∇ · B⃗ + ∂4Π= 0=∇2
i Y ′ + ∂ 2

4 Y ′ + ∂ 2
5 Y ′ . (14)

In other words, X ′, Y ′ are harmonic in the 5-dim spatial M5-worldvolume. Since X , Y are
linear combinations of X ′, Y ′, this implies that X , Y are also similarly harmonic.

We have in mind two M2-branes ending on the M5-brane: each M2-brane endline defines
a self-dual string soliton in the M5-brane. So we have two string solitons stretching along
the ζ1 and ζ2 directions, which we restrict to lie in the {x4, x5} plane but take as general
otherwise. This suggests that the two scalar field configurations enjoy translation invariance
along ζ1 and ζ2 directions respectively. In the M5-brane effective field theory this implies that
the transverse scalars obey “line source” conditions. One might imagine imposing these line
source conditions on X ′, Y ′, but for various technical reasons, it turns out more natural to
impose

ζ1
a∂aX = 0 , ζ2

a∂aY = 0 , (15)

on X , Y . Thus
∇2

i X + (ζ1⊥
m ∂m)

2X = 0 , ∇2
i Y + (ζ2⊥

m ∂m)
2Y = 0 , (16)

i.e. X , Y are harmonic in 4-dim subspaces transverse to ζ1 and ζ2 respectively. This follows
from the 5-space harmonicity of X , Y upon imposing the line source conditions. So

X =
cX

|ρ⃗ζ1 − ρ⃗0
ζ1 |2
− X0 , Y =

cY

|ρ⃗ζ2 − ρ⃗0
ζ2 |2
− Y0 , (17)

using the notation (1), with cX , cY being arbitrary coefficients here. We then use (11) to write
the field configurations/states. Then (11) shows that the X ′, Y ′ scalars being arbitrary linear
combinations of the “basis” fields X , Y (17) give spike legs at general angles.

We take the two strings to be located at r⃗ = r⃗1 and r⃗ = r⃗2, i.e. separated in the 3-space
directions, and stretched along lines in the (x4, x5)-plane in the ζ1 and ζ2 directions. By using

6
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overall translation invariance along the x4, x5-directions, we can always orient the strings to
pass through the origin (x4, x5) = (0,0). Thus, using (1) we can parametrize the coordinates
of the two strings as

ρ⃗1 = (r⃗, x4, x5)1 = (r⃗1, x1ζ
4
1, x1ζ

5
1) , ρ⃗2 = (r⃗, x4, x5)2 = (r⃗2, x2ζ

4
2, x2ζ

5
2) , ∀ x1, x2 . (18)

Thus the closest point of approach is at (x4, x5) = (0, 0), the separation being |r⃗1 − r⃗2| (see
Figure 1 (c) for a specific case discussed later). Now we impose boundary conditions mapping
the worldvolume core locations and moduli space: it might seem natural to impose moduli
boundary conditions all along the string spatial extents, i.e. for ρ⃗ζ1 → ρ⃗0

ζ1 and ρ⃗ζ2 → ρ⃗0
ζ2 , but

this turns out to be overconstraining at generic points on the M5-vacuum moduli space. Instead
we impose only the weaker boundary conditions below, at the closest approach between the
two string solitons:

ρ⃗→ (r⃗1, 0, 0) :(X , Y )→ (X1, 0) ⇒ (X ′, Y ′)→ (X1ζ
1
4, X1ζ

1
5) ,

ρ⃗→ (r⃗2, 0, 0) :(X , Y )→ (0, Y1) ⇒ (X ′, Y ′)→ (Y1ζ
2
4, Y1ζ

2
5) . (19)

In what follows, we will analyse the consequences of these boundary conditions on the field
configurations and the resulting M5-brane bending geometry.

The boundary conditions suggest that X ′, Y ′ lead to spike legs at angles defined by ζ1 and
ζ2 which being general imply that general prong shapes are captured by the field configu-
rations (11) in terms of X ′, Y ′. Thus we take X ′, Y ′ as the generic transverse scalars to the
M5-brane. We will now illustrate this with several examples. The simplest case (1,0), (0,1)
has X ′ = X , Y ′ = Y , which we will discuss in detail next.

3 The simplest M5-M2 BPS states

A simple family of states is obtained when the two M2-branes end on the M5-brane on orthog-
onal string solitons. Then the ζ-vectors are orthogonal: without loss of generality we can take
them to be

ζ1 = x̂4 ≡ (1,0) , ζ2 = x̂5 ≡ (0,1) . (20)

Then (11) and (6) give

X ′ = X , Y ′ = Y , E⃗ =∇X , B⃗ =∇Y , Π= ∂4Y − ∂5X . (21)

The line source conditions (15) become

ζ1 · ∂ X = ∂4X = 0 , ζ2 · ∂ Y = ∂5Y = 0 . (22)

The 3-form field equations (14) alongwith (22) now give

∇2
i X + ∂ 2

5 X = 0 , ∇2
i Y + ∂ 2

4 Y = 0 , (23)

so the scalars X , Y are harmonic in 4-subspaces orthogonal to x4 and x5 respectively.

3.1 A single string soliton: The M5-brane spike

Consider first a single M2-brane ending on the M5-brane giving a self-dual string soliton
stretched along say the x4-direction so ζX = (1, 0). The field configuration and boundary con-
dition are

X =
qe

|ρ⃗ − ρ⃗0|2
− X0 =

qe

|ρ⃗X − ρ⃗X ,0|2
− X0 ≡

qe

(r⃗ − r⃗0)2 + (x5)2
− X0 ,

H̃a4 x̂a = E⃗ =∇X , H̃45 = Π= −∂5X , ζX = (1, 0) : ρ⃗X = (r⃗, x5) . (24)
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The first expression for X is written in terms of the 5-dim coordinate ρ⃗ while the second
expression specifies the fact that X is harmonic in the 4-dim subspace transverse to the x4-
direction ζX that the string soliton stretches along (the last expression makes this explicit).
We see that there is a 1

ρ2 divergence in X (ρ⃗) at the location of the string, parametrized as

ρ⃗ = (r⃗0, x4, 0) using (18): the M2-brane ending on the M5-brane creates an infinitely long
spike on the M5-brane at the worldvolume string location where the M2-brane intersects the
M5-brane [13,14]. The fact that the M2-brane extends along the x4 direction means that the
“spike” is shaped like a “ridge” with the “flat ridge-top” stretching along x4 in the M5-brane
worldvolume, as reviewed in [6]: Figure 1 (a) (or (b)) shows this ridge-shaped M5-brane
“spike”. We can now impose a boundary condition on the scalar X ,

ρ⃗→ ρ⃗X ,0 : X → X1 . (25)

This represents a long distance cutoff in the X -space transverse to the M5-brane, which trans-
lates to a short distance cutoff around the string soliton core: now the spike is of finite length.
Later we will embed these scalar configurations into the theory of multiple M5-branes sepa-
rated (“Higgsed”) and the cutoff will translate to the distance between the M5-branes.

As ρ⃗ → ∞, we see that X → −X0 : i.e. far from the string soliton core, the M5-brane
deformation becomes vanishingly small and the scalar X relaxes to its modulus value −X0
characterizing the M5-brane vacuum. Now the boundary condition at ρ⃗0

X above gives

qeα00 − X0 ∼ X1 ⇒
1
α00
≡ lim
ρ⃗→ρ⃗+0

|ρ⃗ − ρ⃗0|2 = (r⃗c − r⃗0)
2 + (x5

c )
2 ∼

qe

X0 + X1
, (26)

where ρ⃗+0 means that ρ⃗ approaches ρ⃗0 but is cut off at ρ⃗c = (r⃗c , x5
c ) . This leads to a finite

“core size”: roughly speaking, we obtain a thickened (fuzzy) cylindrical tube. Thus the cross-
sectional size, or thickness, of the string core is given by the inverse length of the M5-brane
spike in transverse (moduli) space.

For what follows we will find it useful to write the configuration (24) more generally as

X =
qe

|ρ⃗ζ − ρ⃗ζ,0|2
− X0 =

qe

(r⃗ − r⃗0)2 + (ζ⊥ · ( x⃗ − x⃗0))2
− X0 , x⃗ · ζ= 0 , (27)

where ζ⊥ ∈ (x4, x5) is a unit vector orthogonal to ζ. For instance ζX = (1, 0) has ζ⊥X = (0, 1)
recovering the field configuration in (24). It is also instructive to note that we can likewise
construct similar M5-brane spike configurations carrying generic dyonic charge (qe, qm): con-
sider

ζ1 =
1
Æ

q2
e + q2

m

(qe, qm)≡ γ(qe, qm) , ζ2 = 0 ,

X ′ =
qe

(r⃗ − r⃗0)2 + (ζ⊥ · ( x⃗ − x⃗0))2
− X ′0 , Y ′ =

qm

(r⃗ − r⃗0)2 + (ζ⊥ · ( x⃗ − x⃗0))2
− Y ′0 ,

H̃a4 x̂a = E⃗ =∇X ′ , H̃a5 x̂a = B⃗ =∇Y ′ , H̃45 = Π= ∂4Y ′ − ∂5X ′ . (28)

We see that (E⃗, B⃗)∝ (qe, qm). We have constructed X ′, Y ′ using a single “basis” field X with
Y = 0: the coefficients in (17) are cX = 1/γ, cY = 0 . This can be thought of as an electric
string “rotated” through a single nontrivial ζ1-vector to give a dyonic string soliton.

3.2 String soliton bound states: M5-brane prongs

Now we describe field configurations given by two scalars on a single M5-brane: the M5-brane
worldvolume deformation, roughly speaking, is now two-pronged. In an essential sense, this
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Figure 1: (a) and (b) depict the M5-brane ridge-shaped spike deformations X ∼ 1
ρ⃗2

X

and Y ∼ 1
ρ⃗2

Y
along the transverse X - and Y -directions respectively (the other

worldvolume directions are suppressed). Fig.(c) shows the string soliton locations
ρ⃗1 = (r⃗1, x1, 0) and ρ⃗2 = (r⃗2, 0, x2) in the M5-worldvolume (the strings are or-
thogonal, stretching along the x4 and x5 axes): the vertical axis represents the 3-
dim subspace r⃗. The M5-brane prong is roughly a superposition of spikes (a), (b).
Fig.(d) shows the shape in (X , Y )-transverse space of the M5 prong stretching out
from the M5-brane at (−X0,−Y0) (with individual spike-legs along X and Y ), in the
limit X0, Y0≪ X1, Y1, near the wall of marginal stability (circle).

arises by trying to superpose two string solitons, each being the endline of an M2-brane ending
on the M5-brane. These are stretched along two distinct non-parallel M5-worldvolume spatial
directions, creating a superposition of two M5-brane spikes, one along the X ′-direction and the
other along the Y ′-direction. Imposing boundary conditions on the scalar moduli in the vicinity
of the string “cores” ensures that the resulting configuration is a molecule-like bound state of
the two non-parallel string solitons with fixed transverse separation along the r⃗-direction, as
we will see. Intuition for these boundary conditions arises from string web states in N=4 SYM
theories arising on D3-branes (a brief recap appears in Appendix B). We will call the resulting
M5-brane deformations as M5-brane “prongs”.
(1,1)− (1,0)− (0,1) prong: The simplest such configuration is described by the

(1, 1) − (1,0) − (0, 1) state: in the D3-brane limit, this is described by the bound state of a
fundamental F1- and D1-string ending on a D3-brane. This can be viewed as M-theory with
the 45-directions compactified on a torus T2

45: in the uncompactified M-theory description we
have an M5-brane with two M2-branes stretched along say the x6- and x7-directions, and end-
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ing on lines stretching along the x4- and x5-directions in the M5-brane worldvolume: upon
compactification the M5-brane becomes the D3-brane while the M2-branes stretched along x4
and x5 become respectively the F1- and D1-string.

The M5-M2 brane orientations are (suppressing directions that do not enter)

0 1 2 3 4 5 6 7
D3 • • • •
F1 • •
D1 • •

. . . ←→

0 1 2 3 4 5 6 7
M5 • • • • • •
M2 • • •
M2 • • •

. . . (29)

In the D3-brane effective field theory, this is described as a bound state representing a (1,1)-
charge molecule, with constituent charges (1, 0) and (0,1): geometrically this can be described
by a “prong web” obtained by deformations of the D3-brane worldvolume with two scalars.
We expect and are looking for a similar prong-web description in the uncompactified M-theory,
with two scalars characterizing nontrivial M5-brane worldvolume deformations representing
a nontrivial bound state of the two string solitons resulting from the end-lines of the two M2-
branes ending on the M5-brane.

We will take the strings to be stretched along the x4 and x5 directions but separated in the
r⃗-directions (Figure 1 (c)): the ζ-vectors and string coordinate parametrizations (18) are

ζ1 = (1,0) : ρ⃗1 = (r⃗, x4, x5)1 = (r⃗1, x1, 0) , ∀ x1 ,

ζ2 = (0,1) : ρ⃗2 = (r⃗, x4, x5)2 = (r⃗2, 0, x2) , ∀ x2 . (30)

We have used the translation symmetry along the x5 direction to set the locations x5
1 and x4

2
of the string solitons to be x5

1 = 0 and x4
2 = 0 : in other words, we have taken the strings to lie

along the x4 and x5 axes, without loss of generality. We expect this system can be described
by the scalar field configurations (using the notation (1))

X =
qe

|ρ⃗X − ρ⃗1
X |2
− X0 =

qe

(r⃗ − r⃗1)2 + (x5)2
− X0 , ρ⃗X · ζ1 = 0 ,

Y =
qm

|ρ⃗Y − ρ⃗2
Y |2
− X0 =

qm

(r⃗ − r⃗2)2 + (x4)2
− Y0 , ρ⃗Y · ζ2 = 0 ,

H̃a4 x̂a = E⃗ =∇X , H̃a5 x̂a = B⃗ =∇Y , H̃45 = Π= ∂4Y − ∂5X . (31)

These are roughly the superposition of an electric spike (24) along X and a magnetic one
along Y , as shown in Figure 1 (a) and (b). (Note that electric/magnetic here are simply la-
bels for 4/5-directions of the strings which are self-dual solitons in 6-dimensions; upon 45-
compactification, these will map to electric/magnetic point charges in 4-dimensions.) They
can be seen to be a valid solution to the BPS bound equations (11) alongwith the line source
conditions (15) with the ζ-vectors above (and thereby also satisfy harmonicity (16) in the
appropriate transverse 4-subspaces). We can rewrite the field configurations (31) as

X =
qe

(r⃗ − r⃗1)2 + (ζ⊥1 · x⃗)2
− X0 , Y =

qm

(r⃗ − r⃗2)2 + (ζ⊥2 · x⃗)2
− Y0 . (32)

The distance elements here correspond to the distance in the subspace transverse to the string
soliton, which thus is conveniently expressed using the unit normals ζ⊥1 , ζ⊥2 to the string ori-
entations ζ1,ζ2 (similar to (27)).

We will now examine the M5-brane deformation geometry described by these field config-
urations. Firstly, as we go out to infinity on the M5-brane, we expect the deformations (31)
become vanishingly small, i.e.

ρ⃗→∞ : (X , Y )→ (−X0,−Y0) , (33)
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which is the location of the M5-brane. The strings extend in one of the x4, x5-directions: if
we go out to infinity in the 3-space directions, the deformations (31) scale as

r⃗ →∞, x4, x5 finite: X ∼
qe

|r⃗|2
− X0 , Y ∼

qm

|r⃗|2
− Y0 . (34)

Thus when
1
qe

X0 =
1

qm
Y0 , (35)

the M5-brane deformation in this asymptotic regime traces a line along (1,1) in the X , Y -
space transverse to the M5-brane in qe, qm-units. Likewise the electric and magnetic field
components in (31) scale as (E⃗, B⃗) ∝ (1, 1), thereby encoding charge (1,1). This relation
(35) on the asymptotic moduli also arises from an understanding of the effective tension of
these configurations, as we will see in Sec. 3.3.

Let us now study the scalar field configurations as we approach string1 stretched along
ρ⃗1 = (r⃗1, x1, 0) in 30). We see that the X scalar displays a spike as expected, similar to (24),
(26). Looking at both scalars, we find in this limit,

X ∼ lim
ρ⃗→ρ⃗+1

qe

|ρ⃗ − ρ⃗1|2
− X0 → X1 , Y ∼

qm

(r⃗1 − r⃗2)2 + (x1)2
− Y0 . (36)

X1 is the cutoff value of the divergent X spike, similar to (25). The Y scalar on the other hand
has no singularity anywhere. Since x1 here labels the coordinate along string1, if we go out to
large x1 along the string, the first term dies and we obtain Y → −Y0. However at x1 = 0 we
obtain

x1 = 0 : Y ∼
qm

(r⃗1 − r⃗2)2
− Y0 . (37)

Likewise as we approach string2 stretched along ρ⃗ = (r⃗2, 0, x2) in 30), we see that the Y scalar
displays a spike as expected, similar to (24), (26), but the X scalar appears finite. The scalars
approach

X ∼
qe

(r⃗1 − r⃗2)2 + (x2)2
− X0 , Y ∼ lim

ρ⃗→ρ⃗+2

qm

|ρ⃗ − ρ⃗2|2
− Y0 → Y1 . (38)

Y1 is the cutoff value of the Y spike similar to (25), and X exhibits no singularity anywhere.
x2 here labels the coordinate along string2, so for large x2 along the string, the first term dies
and we obtain X →−X0. However at x2 = 0 we obtain

x2 = 0 : X ∼
qe

(r⃗1 − r⃗2)2
− X0 . (39)

These points (39), (37), are special: they lie on the closest point of approach between
the two strings. The distance between a point on string1 and any point on string2 is given
by (r⃗1− r⃗2)2+(x1)2+(x2)2 which is minimum when x1 = x2 = 0 : projecting onto the (x4, x5)-
plane, this is simply the intersection of the lines along (x1, 0) and (0, x2).

From similar bound state configurations arising from D3-brane prongs (Appendix B), we
know that the separation between the constituent charge cores is fixed and scales as the in-
verse distance from the wall of marginal stability. Using this intuition, let us imagine that the
transverse distance |r⃗1 − r⃗2| between the strings is fixed. It is then consistent to impose from
(37), (39), that

1
(r⃗1 − r⃗2)2

=
1
qe

X0 =
1

qm
Y0 . (40)

Overall, this suggests the boundary conditions (19),

ρ⃗→ (r⃗1, 0, 0) : (X , Y )→ (X1, 0) , ρ⃗→ (r⃗2, 0, 0) : (X , Y )→ (0, Y1) , (41)

11

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.004


SciPost Phys. Core 8, 004 (2025)

Table 1: The (X , Y ) scalar moduli values at various regimes along the two strings.

(X , Y )→ (X1, 0) r⃗ → r⃗1 x1 = 0
(X , Y )→ (X1,−Y0) r⃗ → r⃗1 |x1| →∞
(X , Y )→ (0, Y1) r⃗ → r⃗2 x2 = 0
(X , Y )→ (−X0, Y1) r⃗ → r⃗2 |x2| →∞
(X , Y )→ (−X0,−Y0) r⃗ →∞ | x⃗ | →∞

imposed at the closest point of approach of the two orthogonal strings. These boundary con-
ditions are equivalent to fixing the transverse separations between the strings as (40). As we
have seen, the scalar moduli values vary in the various asymptotic M5-brane worldvolume
limits (34), (36), (37), (38), (39): these variations, summarized in Table 1, are consistent
with (41) and follow from the field configurations (31).

Now, along with the transverse separations (40), we also obtain the inverse cross-sectional
core sizes of the two string solitons from (36), (38),

αii ≡ lim
ρ⃗→ρ⃗+i

1
|ρ⃗ − ρ⃗i|2

, α11 =
X0 + X1

qe
, α22 =

Y0 + Y1

qm
, (42)

similar to the cutoff core size in (26) for a single spike.
From (40) and (42), we see that

X0, Y0→ 0 : |r⃗1 − r⃗2| →∞ , α−1
11 ∼

qe

X1
, α−1

22 ∼
qm

Y1
, (43)

i.e. the constituent string solitons are infinitely separated in the 3-space directions transverse
to their extended directions, while their core sizes α−1

ii are finite (and small if X1, Y1 are large).
Thus the bound state becomes arbitrarily loosely bound, i.e. it decays and disappears from the
spectrum. There is no physical bound state solution with (r⃗1− r⃗2)2 > 0 to (40) for X0 < 0 (the
other side of the wall).

From Table 1 summarizing the moduli variations, we note from (38) that the M5-brane
X -deformation along string2 varies from X = 0 at x2 = 0 to X = −X0 at large x2, and likewise
the M5-brane Y -deformation along string1 interpolates from Y = 0 at x1 = 0 to Y = −Y0 at
large x1. Thus the M5-brane bending is nontrivial as we go out to infinity along the strings.
Note that this does not happen for a single string soliton obtained from a single M2-brane
ending on the M5-brane (there are some qualitative parallels with the M5-brane descriptions
of N=2 theories [58], although the brane bending is less severe in the present discussions).
Overall however, in the limit of the M5-brane approaching the wall of marginal stability

X0, Y0≪ X1, Y1 , (44)

this variation of X , Y is negligible compared with the individual spike legs which are much
larger. Thus in this limit X0, Y0 ≪ X1, Y1, the shape of the M5-brane in the transverse X , Y -
space resembles Figure 1 (d): this refinement of the scalar boundary conditions and their
asymptotics is similar to that in [20] for D3-brane SYM theories (but with additional intricacies
due to the string-nature of the constituents). There are also parallels in the qualitative picture
of the decay across the wall of marginal stability: wall-crossing amounts to the state becoming
arbitrarily loosely bound, and is qualitatively similar to wall-crossing for black holes [40]. The
limit X0, Y0 → 0 of approaching the wall of marginal stability (circle in Fig. 1 (d)) means the
shortest leg approaches zero size, i.e. the M5-brane at (−X0,−Y0) approaches (0, 0).
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It is also instructive to note that far from both of the string solitons, we obtain

X ∼
qe

(r⃗)2 + (x2)2
− X0 , Y ∼

qm

(r⃗)2 + (x1)2
− Y0 , (45)

and the field configurations appear to describe two string solitons intersecting at
(x1, x2) = (0, 0). In other words the transverse r⃗-separation is not discernable and the two
M2-branes now appear to approximately intersect each other on the M5-brane when viewed
from afar. Note that this appears slightly different from the D3-brane limit where the two
pointlike cores appear to effectively coalesce: the string solitons being extended objects along
orthogonal directions remain orthogonal and extended.

Another interesting point, using the relation (4) between the worldvolume scalars in the
field theory regime and the M5-brane coordinates, is

(r⃗1 − r⃗2)
2 ∼

1
X0
∼

l3
11

x0
. (46)

If we consider holding the M5-brane coordinate distance x0 fixed, taking l11→ 0 implies that
|r⃗1 − r⃗2| → 0 generically, which suggests a junction-like configuration: the exception occurs
when x0 = 0 beyond which point the bound state ceases to exist. This appears to pertain to
comments on M2-brane junctions in e.g. [42] and [43], as well as [17]. On the other hand, we
have been describing the field theory regime, which arises by taking l11→ 0 holding the “field
theory distance” X0 fixed (essentially, as in [9]). In this limit we obtain a smooth description
of the string soliton molecule decaying at the wall of marginal stability as X0 → 0 (with no
“junction” per se). Something similar occurs for D3-branes and string webs in the field theory
regime, as discussed in [20,21].

3.2.1 M5-brane prong for (n, m)− (n, 0)− (0, m)

Along very similar lines, we can describe the (n, m) − (n, 0) − (0, m) M5-brane prong web
representing a charge-(n, m) string soliton molecule, with constituent string solitons of electric
and magnetic charges (n, 0) and (0, m). The ζ-vectors are again orthogonal, as in (30) with
ζ1 = (1,0), ζ2 = (0, 1), so the scalar field configurations again satisfy X ′ = X , Y ′ = Y . This is
a 2-parameter family of string soliton bound states but the description is very similar overall
to the case we just described, with n = 1, m = 1, so we will be brief here. The scalar field
configurations are

X =
nqe

(r⃗ − r⃗1)2 + (x5)2
− X0 , Y =

mqm

(r⃗ − r⃗2)2 + (x4)2
− Y0 , (47)

very similar to (31). The (X , Y )-moduli asymptotically, as ρ⃗ → ∞, trace out a line along
(n, m) in the moduli space when

m
qe

X0 =
n

qm
Y0 . (48)

Imposing the boundary conditions (41) on the scalars leads to

1
(r⃗1 − r⃗2)2

=
1

nqe
X0 =

1
mqm

Y0 , (49)

as the transverse separation between the two orthogonal string solitons in the M5-brane world-
volume. We then also obtain the inverse core sizes

α11 =
X0 + X1

nqe
, α22 =

Y0 + Y1

mqm
. (50)

The asymptotic behaviour of the field configurations, as well as the picture of the decay as the
M5-brane approaches the wall of marginal stability, is very similar to the (1,1)− (1, 0)− (0, 1)
case discussed earlier.
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3.3 1-string tension, marginal stability and wall-crossing

We will now calculate the tension of the string soliton bound states we have been describing.
It is useful to note that the ζ-vectors we have been using admit a rotation by an overall angle
ϕ (which is just an overall rotation of the x4-x5 axes): this gives a slightly more general
representation of the orthogonal ζ-vectors in (30) as

ζ1 = cosϕ x̂4 − sinϕ x̂5 , ζ2 = sinϕ x̂4 + cosϕ x̂5 . (51)

while retaining the geometry and physics of the field configurations. Then using (11), the
Bogomolny completion (12) becomes (with ζ1 · ζ2 = 0)

E = 1
2

�

�E⃗ − cosϕ∇X − sinϕ∇Y
�

�

2
+

1
2

�

�B⃗ + sinϕ∇X − cosϕ∇Y
�

�

2

+
1
2

�

�Π+ cosϕ(∂5X − ∂4Y ) + sinϕ(∂4X + ∂5Y )
�

�

2

+
1
2

�

sinϕ(∂5X − ∂4Y )− cosϕ(∂4X + ∂5Y )
�2

+ E⃗ · (cosϕ∇X + sinϕ∇Y ) + B⃗ · (− sinϕ∇X + cosϕ∇Y )

− Π
�

∂5(cosϕX + sinϕY )− ∂4(− sinϕX + cosϕY )
�

− (∂4X∂5Y − ∂5X∂4Y ) . (52)

We will now show that the cross-terms ∂4X∂5Y − ∂5X∂4Y in (52) upon integrating over
5-space have negligible contribution on-shell. With nonzero ϕ, the expressions for the X and
Y fields using (32) with (51) become

X =
qe

(r⃗ − r⃗1)
2 + (sinϕ x4 + cosϕ x5)2

− X0 , Y =
qm

(r⃗ − r⃗2)
2 + (cosϕ x4 − sinϕ x5)2

− Y0 .

(53)
The cross term under the 5-space integral is

∫

d3rd x4d x5
�

∂4X∂5Y − ∂5X∂4Y
�

. (54)

It is convenient to consider an overall rotation by ϕ in the x4 − x5 plane by defining

x ′4 = cosϕ x4 − sinϕ x5 , x ′5 = sinϕ x4 + cosϕ x5 . (55)

Then (53) takes a simpler form

X =
qe

(r⃗ − r⃗1)
2 + ( x ′5)2

− X0 , Y =
qm

(r⃗ − r⃗2)
2 + (x ′4)2

− Y0 , (56)

and the form of the cross-terms in (54) remains the same
∫

d3rd x ′4d x ′5
�

∂4′X∂5′Y − ∂5′X∂4′Y
�

.1 (57)

The first term ∂4′X∂5′Y vanishes and the second term upon integration by parts gives

−
∫

d3rd x ′4
�

X∂4′Y
�

�

�

∞

x ′5=0+
+ X∂4′Y
�

�

�

x ′5=0−

−∞

�

. (58)

1Essentially these terms have the structure of the corresponding terms in the wedge-product
∫

dX ∧ dY
so they are manifestly unchanged under the coordinate transformation. This can also be checked using
∂4 = cosϕ ∂

∂ x ′4 + sinϕ ∂
∂ x ′5 and ∂5 = − sinϕ ∂

∂ x ′4 + cosϕ ∂
∂ x ′5 and evaluating explicitly.
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In the above, we have introduced boundary values near x5 = 0 value due to string1 when
r⃗ = r⃗1. When r⃗ ̸= r⃗1 the effect of doing this in the integral expression is negligible.
∂4′Y can be factored out here since it is independent of x ′5 and another integration by

parts can be done here w.r.t. d x ′4 giving

−
∫

d3r

�

X
�

�

�

∞

x ′5=0+
+ X
�

�

�

x ′5=0−

−∞

��

Y
�

�

�

∞

x ′4=0+
+ Y
�

�

�

x ′4=0−

−∞

�

. (59)

Since the X and Y fields do not depend on the signs of x ′5 and x ′4 coordinates, we conclude
that the square bracket terms vanish. Note that this vanishing of these cross-terms (last line
in (52)) is on-shell, using (56).

Now, the terms in lines 4 and 5 in (52) upon integrating over 5-space can be recast as
∫

d x4

∫

d3rd x5 H̃a4 (cosϕ∂aX + sinϕ∂aY ) +

∫

d x5

∫

d3rd x4 H̃a5 (− sinϕ∂aX + cosϕ∂aY ) ,

(60)

which upon doing the integration by parts and subsequently using the equation of motion
∂aH̃ab = 0 become
∫

d x4

∮

S3

dŝa H̃a4 (cosϕ X + sinϕ Y ) +

∫

d x5

∮

S3

dŝa H̃a5 (− sinϕ X + cosϕ Y ) . (61)

We are considering two strings with charges

(Qi
E ,Qi

B), i = 1, 2 : Qi
E =

∮

S3
X ,i

H̃a4dsa , Qi
B =

∮

S3
Y,i

H̃a5dsa , (62)

with scalar moduli values at their cores (X ′i , Y ′i ). At spatial infinity far from both strings, charge
conservation gives (Q0

E ,Q0
B) = −
∑

i(Q
i
E ,Qi

B) and the moduli values are (−X0,−Y0). For a sin-
gle string, the asymptotic boundary to the 4-dim transverse space is S3. For the combined
configuration of two strings we are discussing, integrating over 5-space requires incorporating
the appropriate S3

X ,i and S3
Y,i , giving

L
∑

i

cosϕ
�

(X i + X0)Q
i
E + (Yi + Y0)Q

i
B

�

+ sinϕ
�

(Yi + Y0)Q
i
E − (X i + X0)Q

i
B

�

, (63)

with L ≡
∫

d x4 ∼
∫

d x5 the regulated length of both strings. Extremizing w.r.t. ϕ gives

T ≡
M
L
=
r

�

(X i + X0)Qi
E + (Yi + Y0)Qi

B

�2
+
�

(Yi + Y0)Qi
E − (X i + X0)Qi

B

�2
, (64)

as the string tension obtained with the tightest bound, with

tanϕ =
(Yi + Y0)Qi

E − (X i + X0)Qi
B

(X i + X0)Qi
E + (Yi + Y0)Qi

B

. (65)

This extremization analysis for these boundary terms cares only about the transverse (X , Y )-
space and the charges and is very similar to that in the D3-brane case reviewed briefly in App. B.
In the simplest case of one electric and one magnetic string, we have (Q1

E ,Q1
B) = (qe, 0) and

(Q2
E ,Q2

B) = (0, qm), and the moduli values are (X1, 0) and (0, Y1), so

tanϕ =
(0+ Y0)Q1

E − (0+ X0)Q2
B

(X1 + X0)Q1
E + (Y1 + Y0)Q2

B

→ 0 ⇒
1
qe

X0 =
1

qm
Y0 . (66)

15

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.004


SciPost Phys. Core 8, 004 (2025)

This is the moduli constraint (35) encoding the asymptotic shape of the M5-brane deformation.
So

T = (X1 + X0)qe + (Y1 + Y0)qm . (67)

This effective tension can be interpreted in a simple way from the geometry in Figure 1 (d),
as the sum of the tensions of a 3-pronged M2-brane web comprising

leg0 , charge(1, 1) : (−X0,−Y0)→ (0, 0) ,

leg1 , charge(1, 0) : (0,0)→ (X1, 0) ,

leg2 , charge(0, 1) : (0,0)→ (0, Y1) , (68)

Taking the membrane tension of a (m, n) charge M2-brane as
Æ

m2q2
e + n2q2

m , the tension of
the composite M2-brane web above, comprising legs 0,1,2, is

T =
q

q2
e + q2

m

q

X 2
0 + Y 2

0 +
q

q2
e + 0X1 +
q

0+ q2
m Y1 , (69)

which is identical to (67) using (35). We note that as a 1-string state tension, T ≤ T1 + T2,
i.e. T is always less than the 2-string tension

T1 + T2 = qe

Æ

(X1 + X0)2 + (Y0)2 + qm

Æ

(X0)2 + (Y1 + Y0)2 , (70)

which is obtained from the lengths of two independent M2-branes stretched between the
(X , Y )-locations

�

(−X0,−Y0), (X1, 0)
	

and
�

(−X0,−Y0), (0, Y1)
	

respectively (see the trans-
verse geometry in Figure 1 (d)). The location in moduli space where the 1-string state becomes
equal in tension to the 2-string state is the wall of marginal stability (represented by the circle
in X , Y -space in Figure 1 (d)):

X0, Y0→ 0 : T → T1 + T2 . (71)

This confirms the decay process of the string soliton bound state into the 2-string state at the
wall of marginal stability discussed around (43) using the field configurations earlier. It is
worth noting that the effective tension (64) is simply a phrase for the mass per unit length of
this composite object near marginal stability where it can be interpreted as approaching the
combined tension of the two constituent strings.

Finally, to recognize the geometry of the locus of marginal stability as a circle here, it is
helpful to define the 2-dimensional vectors in the (X , Y )-plane,

ξE ≡ (X1, 0)−(−X0,−Y0) = (X1+X0, Y0) , ξB ≡ (0, Y1)−(−X0,−Y0) = (X0, Y1+Y0) . (72)

From Figure 1 (d)), we see that ξE , ξB stretch between the locations {(−X0,−Y0), (X1, 0)} and
{(−X0,−Y0), (0, Y1)} respectively. Then, using the cross-product for 2-vectors, we have

q2
e (ξE · ξE) + q2

m(ξB · ξB) + 2qeqm|ξE × ξB|

= q2
e

�

(X1 + X0)
2 + Y 2

0

�

+ q2
m

�

X 2
0 + (Y1 + Y0)

2
�

+ 2qeqm ((X1 + X0)(Y1 + Y0)− X0Y0)

= (qe(X1 + X0) + qm(Y1 + Y0))
2 + (qeY0 − qmX0)

2 . (73)

This is identical to T2 simplifying T in (64) with the (single electric and single magnetic)
charges (Q1

E ,Q1
B) = (qe, 0) and (Q2

E ,Q2
B) = (0, qm) here, and the corresponding moduli val-

ues (X1, 0) and (0, Y1) respectively.2 Thus, using ξE , ξB in (72), we see that the effective
1-string tension T in (64) and the 2-string tension (70) can be recast as

T =
q

q2
e (ξE · ξE) + q2

m(ξB · ξB) + 2qeqm|ξE × ξB| ,

T1 + T2 = qe

Æ

(ξE · ξE) + qm

Æ

(ξB · ξB) . (74)

2If we use (35), then the last bracket vanishes giving T in (67); the angleϕ amounts to an overall (X , Y )-rotation
ensuring that electric/magnetic string spikes stretch along X/Y -directions respectively.
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Thus T = T1 + T2 when |ξE × ξB| = |ξE ||ξB|, i.e. when ξE is perpendicular to ξB, which is
equivalent to the limit (71). This describes a circle in the (X , Y )-plane (with ξE ,ξB then
subtending an angle π2 on the circle), which is the locus of marginal stability shown in Figure 1
(d). The algebraic manipulations here are of course more or less identical to those in the D3-
brane case (App. B) with point particle bound states in [20–22]: in particular see Fig. 4 in [20].
This apparent similarity in these expressions between the M5-brane and the D3-brane cases
stems from the shape of the M5-prong geometry in the transverse space approaching two
separate spikes in the marginal stability limit. In this limit, as we have seen, the two strings
are well-separated with the moduli variations along the strings “straightening out” (Table 1).
Away from this limit, the shape of the M5-prong configuration is “blob-like” and ill-defined in
the transverse (X , Y )-space. This also reflects in the M5-brane worldvolume, where the two
strings are not well-separated relative to their “thickness”. In the analysis above recasting the
boundary terms in terms of an effective 1-string tension approaching the 2-string tension, it
was crucial to write the boundaries in terms of distinct 3-spheres surrounding the strings. We
will discuss this in greater detail in what follows, obtaining further perspective on this analysis
near marginal stability.

3.4 More on Bogomolny and the 1-string tension on-shell

In the previous section 3.3, we have seen that the effective 1-string tension obtained upon in-
tegrating the energy functional (5) acquires a relatively simple form near marginal stability, as
in eq. (69). In particular, note that the energy functional (5) is not written in strict Bogomolny
form (perfect squares plus boundary terms off-shell, such as in eq.(B.1) in the D3-brane case
reviewed in App. B) since there are extra cross-terms, which however give vanishing contribu-
tion on-shell in the vicinity of marginal stability (note that the 4,5-directions are noncompact
here; compactifying these is tantamount to regarding the 4, 5-component terms as negligible,
which then effectively reduces (52) to (B.1) upon integrating over 5-space). We will discuss
this in a slightly more general way now, noting that near marginal stability we have two well-
separated constituent strings that are loosely bound.

The energy functional (5) contains two sets of cross-terms: the second set containing ζ1 ·ζ2

vanishes when the constituent strings are orthogonal. The first set can be recast as
∑

a ̸=b

ζ1
aζ

2
b (∂aX∂bY − ∂bX∂aY ) =

∑

a ̸=b

�

ζ1
aζ

2
b − ζ

1
bζ

2
a

�

∂aX∂bY

=
∑

a ̸=b

�

∂b

�

�

ζ1
aζ

2
b − ζ

1
bζ

2
a

�

(∂aX )Y
�

−
�

ζ1
aζ

2
b − ζ

1
bζ

2
a

�

(∂b∂aX )Y
�

. (75)

The second set of terms here vanishes (summing symmetric and antisymmetric pieces), leaving
a total derivative term. Integrating the first set of terms over 5-space with boundaries being
S3
∞ and the two S3s enclosing each of the two (well-separated) strings gives
∫

dlstring1

∑

a ̸=b

∫

�

dŜ3
�b ��

ζ1
aζ

2
b − ζ

1
bζ

2
a

�

(∂aX )Y
�

�

�

�

string1

+

∫

dlstring2

∑

a ̸=b

∫

�

dŜ3
�b ��

ζ1
aζ

2
b − ζ

1
bζ

2
a

�

(∂aX )Y
�

�

�

�

string2

, (76)

since the S3 at infinity is at constant modulus value X = −X0 (so its derivative vanishes).
Each string in 5-dimensions is akin to a point particle in the transverse 4-dimensions: we
draw a 3-sphere S3 surrounding the string. The measure dlstringi

is the length element along
the string i with i = 1, 2, and (dŜ3)b are the differential 3-volume elements transverse to
the strings, and the b-index indicates its orientation in the 4-dim spatial boundary defined
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surrounding the respective strings. The string orientations are defined by the ζ-vectors which
lie in the (x4, x5)-plane and the b-index takes values accordingly. Near marginal stability we
have X0, Y0 small: the strings are well-separated. We now recast the above as

∫

dlstring1

∑

a ̸=b⊥1

∫

�

dŜ3
�b=b⊥1
�
�

ζ1
aζ

2
b⊥1
− ζ1

b⊥1
ζ2

a

�

(∂aX )Y
�

�

�

�

string1

+

∫

dlstring2

∑

a ̸=b⊥2

∫

�

dŜ3
�b=b⊥2
�
�

ζ1
aζ

2
b⊥2
− ζ1

b⊥2
ζ2

a

�

(∂aX )Y
�

�

�

�

string2

. (77)

Here b⊥ indicates the direction in the (x4, x5)-plane orthogonal to the respective strings.
Analysing further, in the string-1 terms (second line above), the component ζ1

b⊥1
is zero

(since ζ1 has no component orthogonal to string1), and further ζ1
a∂aX = 0 from translation

invariance along string-1. Thus these string-1 terms in the second line vanish.
Likewise in the string-2 terms (third line above), the component ζ2

b⊥2
is zero (since ζ2 has

no component orthogonal to string2). The remaining term can be rewritten as

−
∑

a ̸=b⊥2

∫

�

dŜ3
�b=b⊥2

∫

dlstring2

�
�

ζ1
b⊥2
ζ2

a

�

(∂aX )
�

�

�

�

string2

× Y1 (78)

(recall that Y1 is a constant cut-off value for the scalar Y near the location of string2). Now we
note that X is an even function along string-2 (symmetric about the point of closest approach
of string-2 with string-1). Thus its derivative ζ2

a∂aX is an odd function along string-2: so
integrating along the entire length of string-2 gives a vanishing contribution. Thus this term
also vanishes.

Let us consider the simplest case of two orthogonal strings to illustrate how the above
arguments work. To compare with our analysis in sec. 3.3, recall that (from (31)) ∂4X = 0, and
X = q

|r⃗−r⃗1|2+(x5)2 − X0. Thus the first set of terms gives

∫

dlstring1

∫

�

dŜ3
�b⊥1

=5 ��
ζ1

4ζ
2
5

�

(∂4X )Y
�

�

�

�

string1

, (79)

which thus vanishes. Note that the S3 here surrounds string1 embedded in the R4 orthogonal
to the x4-direction, so that only b⊥1

= 5 appears in the S3-element above. Likewise, the terms
(78) here become

−
∫

�

dŜ3
�b⊥2

=4
∫

d x5
�
�

ζ1
b⊥2
=4 ζ

2
5

�

(∂5X )
�

�

�

�

string2

× Y1 , (80)

and ∂5X is odd, so the integral vanishes.
Thus overall, we find these extra cross-terms in the Bogomolny completion vanish on-

shell, when integrated over the 5-space with appropriate boundaries around the two well-
separated strings near marginal stability (when the constituent strings are not orthogonal there
are further terms as well, the ζ1 · ζ2 terms in (5)). Of course, in effect we have simply recast
the earlier analysis leading to (69) in a slightly more general manner, but this is perhaps
useful in illustrating these extra terms as vanishing boundary terms on-shell. The essential
ingredients here of course is that the strings are well-separated so one can break up the 5-
space integral into boundary terms over appropriate separate S3s surrounding the two strings.
This is of course justified near marginal stability and becomes increasingly accurate here, and is
consistent with the fact that our entire analysis is only reliable near marginal stability. However
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it begs the question of finding “strict Bogomolny completions” that are manifestly of the form
“perfect-squares plus boundary terms” but at an off-shell level.

From the point of view of regarding one string as background and the other as a probe,
we expect that the probe string will feel larger 3-form and scalar forces near its “bulk” which
is closer to the bulk of the background string. This suggests that it will bend resulting in
curved string profiles, unlike the straight string configurations (Figure 1 (c)) we have been
studying. These bent (or curved) string equilibrium configurations will likely be solutions to
different BPS equations following from some possibly different Bogomolny energy extrem-
ization, holding different boundary terms fixed, with no extra cross-terms (looking for such
bent string configurations appears difficult however!). Near marginal stability, the strings are
well-separated and so will straighten out (with negligible bending), thus coinciding with our
picture of straight non-parallel loosely bound strings near marginal stability. In this light, it is
perhaps not surprising that these cross-terms above only vanish on-shell.

4 More general M5-M2 prong states

We now consider more general M5-M2 prong bound states: in general these have charges
(p1 + p2, q1 + q2) − (p1, q1) − (p2, q2) and corresponding nontrivial angles between the con-
stituent legs. The field configurations can be constructed using two general ζ-vectors with
X ′, Y ′ defined appropriately as in (11). We will however find it more instructive to discuss
these illustrating them with two concrete nontrivial examples.

4.1 (2, 1)− (1, 0)− (1, 1)

Consider the charges (2,1)−(1, 0)−(1, 1). We will keep the factors qe, qm explicit. This config-
uration is captured by the ζ-vectors and the string parametrizations via (x4, x5)-coordinates,

ζ1 = (1,0) : x⃗1 ≡ (x4, x5)1 = x1(1,0) , ∀ x1 , r⃗ = r⃗1 , (81a)

ζ2 =
1
È

1+
q2

e
q2

m

� qe

qm
, 1
�

≡ γ(β , 1) : x⃗2 ≡ (x4, x5)2 = x2(β , 1) , ∀ x2 , r⃗ = r⃗2 . (81b)

We have used the translation symmetry along the x4 and x5 directions to parametrize the
string coordinates so that they always pass through the origin (x4, x5) = (0, 0). Projecting
these lines onto the (x4, x5)-plane, these lines can always be seen to intersect at the origin
which is their closest point of approach in this convenient parametrization.

Using the “basis” field configurations (17) with cY ≡ qm/γ and cX ≡ qe , the BPS equations
(11) give the solutions

X ′ =
qe

(r⃗ − r⃗1)2 + (ζ⊥1 · ( x⃗ − x⃗1))2
+

qe

(r⃗ − r⃗2)2 + (ζ⊥2 · ( x⃗ − x⃗2))2
− X ′0 ,

Y ′ =
qm

(r⃗ − r⃗2)2 + (ζ⊥2 · ( x⃗ − x⃗2))2
− Y ′0 . (82)

The denominators here encode the transverse distance from any point on string1 or string2:
since we have translation invariance along the strings, this means the “equipotential surfaces”
for string1 are concentric cylinders around it, and likewise for string2. Thus if we translate
along the string, the corresponding field configuration must remain constant so the location
along the string should scale away from these expressions: this can be seen explicitly by noting
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Table 2: X ′, Y ′ moduli asymptotics.

(X ′, Y ′)→ (X ′1 , 0) r⃗ → r⃗1 x1 = 0
(X ′, Y ′)→ (X ′1 − β Y ′0 ,−Y ′0) r⃗ → r⃗1 |x1| →∞
(X ′, Y ′)→ (β Y ′1 , Y ′1) r⃗ → r⃗2 x2 = 0

(X ′, Y ′)→ (−
�

X ′0 − βY ′0
�

+ βY ′1 , Y ′1) r⃗ → r⃗2 |x2| →∞
(X ′, Y ′)→ (−X ′0 ,−Y ′0) r⃗ →∞ |x1|, |x2| →∞

that ζ⊥1 · x⃗1 = 0 and ζ⊥2 · x⃗2 = 0 using the parametrizations (81). This gives

X ′ =
qe

(r⃗ − r⃗1)2 + (ζ⊥1 · x⃗)2
+

qe

(r⃗ − r⃗2)2 + (ζ⊥2 · x⃗)2
− X ′0 ,

Y ′ =
qm

(r⃗ − r⃗2)2 + (ζ⊥2 · x⃗)2
− Y ′0 . (83)

These then give the electric and magnetic components E⃗, B⃗ of the field strength. As r⃗ →∞
we have

r⃗ →∞, x4, x5 finite: X ′ ∼
2qe

|r⃗|2
− X ′0 , Y ′ ∼

qm

|r⃗|2
− Y ′0 , (84)

so we find (E⃗, B⃗) = (∇X ′,∇Y ′) ∼ (2, 1) encoding the asymptotic charge of this configuration.
Thus this M5-brane deformation in this asymptotic regime traces a line along (2,1) in the
(X ′, Y ′) moduli space transverse to the M5-brane when

1
qe

X ′0 =
2

qm
Y ′0 . (85)

Now we study the scalar field configurations as we approach the strings. First, analogous
to (41), let us impose the boundary conditions (19). Then from the Y ′ configuration, we have
Y ′→ 0 which gives

1
(r⃗1 − r⃗2)2

=
1

qm
Y ′0 =

1
2qe

X ′0 . (86)

This holds at (x4, x5) = (0,0). Away from this, as we go along string1 stretched along
ρ⃗ = (r⃗1, x1, 0), the Y ′ scalar behaves as

Y ′ ∼
qm

(r⃗1 − r⃗2)2 + γ2 x2
1

− Y ′0
|x1|→∞−−−−−→ −Y ′0 , (87)

using ζ⊥2 = γ(1,−β). Likewise one can analyse the X ′, Y ′ field configurations in various asymp-
totic limits, as we go along string1 or string2. This is most efficiently done using the relations
(11) in terms of the “basis fields” X , Y : using (81) these become

X ′ = X + βγY , Y ′ = γY , (88)

so
Y ′0 = γY0 , X ′0 = X0 + βγY0 , X ′1 = X1 , Y ′1 = γY1 . (89)

The resulting scalar asymptotics on the moduli space for X ′, Y ′, in various limits can be written
by using those for X , Y in Appendix C and are tabulated in Table 2.

It is clear that in the limit of approaching the wall of marginal stability

X ′0, Y ′0 ≪ X ′1, Y ′1 , (90)

the M5-brane bendings “straighten out” and the moduli approach (i) (X ′1, 0) along the entire
string1, i.e. as ρ⃗→ (r⃗1, x1,0), and (ii) (βY ′1 , Y ′1) along the entire string2, i.e. as ρ⃗→ (r⃗2,β x2,x2).
This is similar to the results in the previous section where we discussed the (1, 1)−(1, 0)−(0, 1)
M5-brane prongs.
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4.2 (3, 2)− (1, 1)− (2, 1)

The analysis for this example is similar to the previous case but is a bit more involved. This
configuration has the ζ-vectors and the coordinate parametrizations on the strings,

ζ1 =
1
È

1+
q2

m
q2

e

�

1 ,
qm

qe

�

≡ γ1(1 ,β1) : x⃗1 ≡ (x4, x5)1 = x1(1 ,β1) , ∀ x1 , r⃗ = r⃗1 ,

(91a)

ζ2 =
1
r

1+ (2qe)2
q2

m

�2qe

qm
, 1
�

≡ γ2(β2 , 1) : x⃗2 ≡ (x4, x5)2 = x2(β2, 1) , ∀ x2 , r⃗ = r⃗2 .

(91b)

Using the field configurations in (17) with cX ≡ qe/γ1 and cY ≡ qm/γ2 , the BPS equations
(11) give the solutions

X ′ =
qe

(r⃗ − r⃗1)2 + (ζ⊥1 · x⃗)2
+

2qe

(r⃗ − r⃗2)2 + (ζ⊥2 · x⃗)2
− X ′0 ,

Y ′ =
qm

(r⃗ − r⃗1)2 + (ζ⊥1 · x⃗)2
+

qm

(r⃗ − r⃗2)2 + (ζ⊥2 · x⃗)2
− Y ′0 , (92)

which also give the E⃗, B⃗ components of the field strength tensor. As r⃗ →∞ we see that

r⃗ →∞, x4, x5 finite: X ′ ∼
3qe

|r⃗|2
− X ′0 , Y ′ ∼

2qm

|r⃗|2
− Y ′0 , (93)

and the electric and magnetic field components scale as (E⃗, B⃗) ∝ (3,2), thereby encoding
charge (3,2). The M5-brane deformation in this asymptotic regime traces a line along (3, 2)
in the (X ′, Y ′) moduli space when

2
qe

X ′0 =
3

qm
Y ′0 . (94)

We impose the boundary conditions

ρ⃗→ (r⃗1, 0, 0) : (X ′, Y ′)→ γ1

�

X1,
qm

qe
X1

�

, ρ⃗→ (r⃗2, 0, 0) : (X ′, Y ′)→ γ2

�

Y1
2qe

qm
, Y1

�

. (95)

This fixes the transverse distance between the strings in terms of the scalar moduli values

1
(r⃗1 − r⃗2)2

=
1

2qm
Y ′0 =

1
3qe

X ′0 . (96)

As in the previous example, we can analyse the X ′, Y ′ field configurations in various asymptotic
limits, as we go along string1 or string2. This is most efficiently done using the relations (11)
in terms of the “basis fields” X , Y : using (91) these become

X ′ = γ1X + β2γ2 Y , Y ′ = γ1β1X + γ2 Y , (97)

so

X ′0 = γ1X0 + β2γ2 Y0 , Y ′0 = γ1β1X0 + γ2 Y0 , (98)

X ′1 = γ1X1 , Y ′1 = γ2Y1 . (99)

The resulting scalar asymptotics on the moduli space for X ′, Y ′ are tabulated in Table 3 (see
Appendix C).
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Table 3: X ′, Y ′ moduli asymptotics for (3, 2)− (1, 1)− (2, 1).

(X ′, Y ′)→ (X ′1 ,β1 X ′1) r⃗ → r⃗1 x1 = 0
(X ′, Y ′)→
�

X ′1 −
�

2X ′0 − β2Y ′0
�

, β1X ′1 −
�

β1X ′0 − Y ′0
� �

r⃗ → r⃗1 |x1| →∞
(X ′, Y ′)→ (β2 Y ′1 , Y ′1) r⃗ → r⃗2 x2 = 0

(X ′, Y ′)→
�

β2Y ′1 −
�

β2Y ′0 − X ′0
�

, Y ′1 −
�

2Y ′0 − β1X ′0
� �

r⃗ → r⃗2 |x2| →∞
(X ′, Y ′)→ (−X ′0 ,−Y ′0) r⃗ →∞ |x1|, |x2| →∞

As we approach the wall of marginal stability,

X ′0, Y ′0 ≪ X ′1, Y ′1 , (100)

the moduli approach (i) (X ′1,β1X ′1) along the entire string1, i.e. as ρ⃗→ (r⃗1, x1,β1 x1), and (ii)
(β2Y ′1 , Y ′1) along the entire string2, i.e. as ρ⃗ → (r⃗2,β2 x2, x2). This is similar to the previous
cases, (1, 1)− (1, 0)− (0, 1) and (2, 1)− (1, 0)− (1, 1).

4.3 1-string tension

Along the same lines as in Sec. 3.3, we can calculate the tension of the M2-brane web for the
configurations we have described. For the (2,1)− (1,0)− (1,1) M2-web, we obtain

T(2,1) = L
� �

X ′1 + β Y ′1 + 2X ′0
�

qe +
�

Y ′1 + Y ′0
�

qm

�

, (101)

while for the (3,2)− (1,1)− (2,1) M2-web, we obtain

T(3,2) = L
� �

X ′1 + 2β2 Y ′1 + 3X ′0
�

qe +
�

β1 X ′1 + Y ′1 + 2Y ′0
�

qm

�

. (102)

These can again be interpreted in terms of the tensions of three M2-brane legs of appropriate
charge and shapes, along the lines of (68) and (69), using the (m, n) membrane tension and
the moduli constraints in (85) and (94) respectively. Various details are described in App. C
and specifically App. C.3.

In the formula for energy functional (12) there is another term which could give contribu-
tion to the tensions in (101) and (102). The cross term:

�

ζ1 · ζ2
�

(∂ X · ∂ Y ) in (12) is non-zero
for the examples above with two non-orthogonal strings. However, in the limit where we con-
sider the transverse distance between the line sources to be large, we find that the contribution
from this cross term becomes negligible. Thus near the wall of marginal stability limit (where
X0, Y0 ∼ 0) the collective tensions of the configuration in these examples essentially approach
those in (101) and (102), respectively.

5 Embedding in “Higgsed” M5-brane theories

We now consider embedding our description of M5-brane prongs into the theory of three M5-
branes, parallel and “Higgsed” (i.e. on the tensor branch). The schematics with multiple M5s
here is similar to that with multiple D3-branes in [20,22]. The energy functional is

E = 1
2

∑

i=1,2,3

�

|∂ X (i)|2 + |∂ Y (i)|2 +
1
2
|H̃(i)|2
�

, (103)

where each M5–brane i is regarded as independent of the other two. This is essentially three
copies of (3). This is reasonable in the low energy Abelian approximation where the only
interaction between the branes arises at the locations where the M2-brane spike legs from
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one M5-brane join those from another. These locations necessarily include nonAbelian con-
tributions, lying outside our approximations: we incorporate their effects through the moduli
boundary conditions.

Since the branes are decoupled, we carry out Bogomolny completions (5) independently
within each branei sector, giving (6) for each sector. Componentwise these lead via (10) to
(11) for each branei . Since the M2-brane stretching out from one M5-brane ends on another
M5-brane, the line source conditions (15) for these must be correlated: likewise the boundary
conditions (19) are correlated. It is easiest to illustrate this via simple examples.

A simple electrically charged configuration of a single M2-brane stretching between two
M5-branes is described by juxtaposing two configurations (24). Using the form (27), we have

X (1) =
qe

(r⃗ − r⃗(1)0 )2 + (ζ⊥ · ( x⃗ − x⃗ (1)0 ))2
− X (1)0 , E⃗(1) =∇X (1) , Π(1) = −∂5X (1) ,

X (2) = −
qe

(r⃗ − r⃗(2)0 )2 + (ζ⊥ · ( x⃗ − x⃗ (2)0 ))2
− X (2)0 , E⃗(2) =∇X (2) , Π(2) = −∂5X (2) . (104)

In order that the M5-spike1 joins with M5-spike2, we must have

r⃗(1)0 = r⃗(2)0 , x⃗ (1)0 = x⃗ (2)0 . (105)

The fact that E⃗(1) and E⃗(2) are opposite in sign is tantamount to the statement that the M2-
brane stretching between the two separated M5-branes describes a charge (1, 0)1 − (−1,0)2
from the point of view of the U(1)1 × U(1)2 theory, “Higgsed” from the U(2) theory of two
M5-branes.

Now in addition, the fact that the two spike “cores” join at the same location in moduli
space requires that they be the same “core size” within this Abelian approximation: using (26),
this gives

qeα
(1)
00 − X (1)0 ∼ X (1)1 = X (2)1 ∼ −qeα

(2)
00 − X (2)0 ,

α
(1)
00 = α

(2)
00 ⇒ X (1)0 + X (1)1 = −X (1)1 − X (2)0 ,

⇒ X (1)1 = −
1
2
(X (1)0 + X (2)0 ) ,α

(1)
00 = α

(2)
00 =

1
2qe
(X (1)0 − X (2)0 ) . (106)

The core size thus scales as the inverse distance between the M5-branes which are located
at −X (1)0 and −X (2)0 (where the deformations in (104) vanish). Also, we see that the gluing
location in moduli space is at the midpoint between the two M5-branes. This is the location
of enhanced U(2) symmetry in moduli space where new light nonAbelian tensor modes must
be added to the low energy theory for a nonsingular description.

Along similar lines, we can embed the simplest M5-brane prong configurations in a theory
of three parallel separated M5-branes located as in Figure 2 (drawing this accurately requires
more dimensions than possible(!); the directions are as in (29)), which completes Fig. 1 (d):

M5 0 : (−X (0)0 ,−Y (0)0 ) , M5 1 : (X (1)0 , 0) , M5 2 : (0, Y (2)0 ) ,

X (0)0 , Y (0)0 ≪ X (1)0 , Y (2)0 . (107)

The last condition encodes the fact that M5-brane 0 is near the wall of marginal stability so
its X , Y scalars are turned on in a prong-like field configuration (31). Each constituent spike
leg of this prong is glued onto a corresponding spike (24) from one of the other M5-branes.
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Figure 2: Cartoon of three parallel separated M5-branes with a prong deformation
stretching between them in the transverse (X , Y )-space. The solid red and dashed
green lines depict the non-parallel M2-endlines in the M5-brane worldvolumes (span-
ning {0,1, 2,3, 4,5}). The solid black circles represent the gluing locations, where the
prong legs are joined to the corresponding spike legs.

The field configurations then are (with Y (1) = 0 and X (2) = 0)

E⃗(0) =∇X (0) , X (0) =
qe

(r⃗ − r⃗(0)1 )2 + (ζ
⊥
1 · ( x⃗ − x⃗ (0)1 ))2

− X (0)0 ,

B⃗(0) =∇Y (0) , Y (0) =
qm

(r⃗ − r⃗(0)2 )2 + (ζ
⊥
2 · ( x⃗ − x⃗ (0)2 ))2

− Y (0)0 ,

Π(0) = ∂4Y (0) − ∂5X (0) , (108)

E⃗(1) =∇X (1) , X (1) = −
qe

(r⃗ − r⃗(1)0 )2 + (ζ
⊥
1 · ( x⃗ − x⃗ (1)0 ))2

+ X (1)0 , Π(1) = −∂5X (1) ,

B⃗(2) =∇Y (2) , Y (2) = −
qm

(r⃗ − r⃗(2)0 )2 + (ζ
⊥
2 · ( x⃗ − x⃗ (2)0 ))2

+ Y (2)0 , Π(2) = ∂4Y (2) .

The fact that the E⃗(0), E⃗(1) are of opposite sign (and likewise B⃗(0), B⃗(2)) indicates the fact that
the M2-branes stretching between the three parallel separated M5-branes describes a charge
(1, 1)0− (−1,0)1− (0,−1)2 configuration from the point of view of the U(1)0×U(1)1×U(1)2
theory, “Higgsed” from the U(3) theory of three M5-branes.

In order that the prong leg-X (0) joins with spike1 and correspondingly prong leg-Y (0) joins
with spike2, we must have

r⃗(0)1 = r⃗(1)0 , x⃗ (0)1 = x⃗ (1)0 , r⃗(0)2 = r⃗(2)0 , x⃗ (0)2 = x⃗ (2)0 , (109)

i.e. the string locations in the various M5-branes must match, or equivalently the M2-brane
stretching between M5-brane 0 and M5-brane 1 (and likewise M5-brane 0 and M5-brane 2) cre-
ates endlines whose worldvolume locations must match.
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In addition, the string “core sizes” must match between M5-brane 0 and M5-brane 1 (and
likewise M5-brane 0 and M5-brane 2). Applying (42) and (26) to the M5-branes appropriately,
this matching requires

qeα
(0)
11 − X (0)0 ∼ X (0)1 = X (1)1 ∼ −qeα

(1)
00 + X (1)0 , α

(0)
11 = α

(1)
00 ,

qmα
(0)
22 − Y (0)0 ∼ Y (0)1 = Y (2)1 ∼ −qmα

(2)
00 + Y (2)0 , α

(0)
22 = α

(2)
00 . (110)

Solving for the moduli locations (X (0)1 , 0) and (0, Y (0)1 ) at which we perform the gluing and the
inverse core sizes αii , we obtain

X (0)0 + X (0)1 = −X (0)1 + X (1)0 , Y (0)0 + Y (0)1 = −Y (0)1 + Y (2)0 ,

⇒ X (0)1 =
1
2
(X (1)0 − X (0)0 ) , α

(0)
11 = α

(1)
00 =

1
2qe
(X (0)0 + X (1)0 ) ,

⇒ Y (0)1 =
1
2
(Y (2)0 − Y (0)0 ) , α

(0)
22 = α

(2)
00 =

1
2qm
(Y (0)0 + Y (2)0 ) . (111)

Using the locations (107) of the three M5-branes, we see that the gluing occurs at the midpoint
between M5-brane 0 and M5-brane 1 (and likewise M5-brane 0 and M5-brane 2). These are
the locations of enhanced gauge symmetry where the stretched M2-branes become massless
signalling light nonAbelian degrees of freedom. The inverse core sizes scale as the distance
between the corresponding pairs of M5-branes. Finally, analysing the moduli values in the
vicinity of the string soliton cores as in e.g. (39) suggests the boundary conditions

ρ⃗→ (r⃗(0)1 , 0, 0) : (X (0), Y (0))→ (X (0)1 , 0) ← (X (1), Y (1)) ,

ρ⃗→ (r⃗(0)2 , 0, 0) : (X (0), Y (0))→ (0, Y (0)1 ) ← (X
(2), Y (2)) , (112)

analogous to (41). This leads to the transverse separation between the string solitons on M5 0

as (r⃗(0)1 − r⃗(0)2 )
2 = qe

X (0)0

, analogous to (40), with a similar wall-crossing limit X (0)0 → 0.

6 Discussion

We have constructed and described field configurations representing self-dual string soliton
bound states in the M5-brane Abelian effective field theory. These resemble M5-brane “prongs”
as we have seen: the simplest such configuration is depicted in Figure 1 (to the extent possible:
a more full picture requires more dimensions than can be drawn!). While the Bogomolny
completion (5) and the resulting BPS bound equations (6) appear general and written in terms
of intrinsically M5-brane structures, the explicit field configurations are best expressed and
understood in terms of the component forms (10), (11) and (12), which decompose the self-
dual 3-form tensor field strength (2) into appropriate electric and magnetic components (9).
It may be interesting to understand how our starting point, the effective low energy functional
(3), gels with the recent action formulations of self-dual forms [44,45] (see also [46]).

A single string soliton representing the endline of an M2-brane ending on the M5-brane
is described by an M5-brane spike deformation (24) sourced by a single scalar field: an elec-
tric string has field strength components H̃a4, H̃45 (a = 1,2, 3). Bound states of two string soli-
tons described by M5-brane prong deformations, have nonvanishing field strength components
H̃a4, H̃a5, H̃45, sourced by two scalar fields. To describe bound states of string solitons, oper-
ationally, we wrote down solutions to the BPS equations that describe a superposition of two
non-parallel string solitons (the 6-dim theory has only self-dual strings so “electric/magnetic”
simply label the 4/5-directions that the strings are stretched along; the non-parallelness of
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the strings leads to electric/magnetic in 4-dimensions upon 45-compactification). In the sim-
plest case of two orthogonal strings, these are (31), with behaviour as described subsequently.
We then impose boundary conditions describing the scalar moduli values as we approach the
string locations: these are imposed at the closest point of approach of the two strings, given by
(41) in the simplest case (analogous to (25) for a single string but with more features). This
is equivalent to fixing the separation between the strings transverse to their extended direc-
tions in terms of the distance from the wall of marginal stability, as in (40). As we have seen,
imposing these boundary conditions or more generally (19) at the closest approach becomes
an increasingly better approximation to imposing them all along the strings (i.e. at ρ⃗ζ1 → ρ⃗0

ζ1

and ρ⃗ζ2 → ρ⃗0
ζ2), in the limit of approaching the wall of marginal stability in moduli space,

as we discussed in detail around (41). In this limit, the separation between the solitons in-
creases and eventually diverges (43), so the state then becomes unbound (and disappears from
the spectrum as one crosses the wall). While there are clear parallels with string web states
in super Yang-Mills theories, it may be of importance to understand wall-crossing phenomena
more systematically for such string-string bound state molecules and the role played by the ex-
tended nature of the constituents, for instance in regard to their degeneracies which are likely
to have more features compared with [47,48] (more generally see e.g. [49,50] for discussions
on wall-crossing in relation to black hole microstate counting).

Our description of these bound states has been indirect in a sense: we have used the
BPS bound equations and imposed appropriate boundary conditions whose intuition stems
from the M5-M2-M2 brane geometry we expect in the space transverse to the M5-brane (and
corresponding descriptions of string web states via D3-brane deformations [20, 22]). Our
equilibrium configurations (reliable in the limit of approaching the wall of marginal stability)
suggest that the scalar forces balance the 3-form forces between the constituent string solitons.
It would be most interesting to understand the nature of these bound states more intrinsically
in the M5-brane tensor theory, e.g. in terms of the way the 3-form field lines behave for such
composite configurations and the corresponding forces, more directly, between the constituent
string solitons.

A related point is the following. As we have seen, we have imposed boundary conditions
(41) (and more generally (19)) at the point of closest approach of the two strings: this leads to
the moduli variations and associated brane-bendings, as in Table 1, which become refined as
we approach marginal stability. One might ask if, instead, one could impose boundary condi-
tions that amount to holding the strings fixed far along them (at infinity), and allowing the rest
of the two-string geometry (at finite distances) to be determined by energetics. It would seem
that in this case the scalar configurations will be different from (31), leading to brane-bendings
that reflect in the two strings deformed towards each other in their near regions. This might
possibly be a different energy extremization than (5) with different boundary terms held fixed
(see sec. 3.4 for some comments on strict Bogomolny completions versus the extra terms in
(5)). In a sense this might be more natural if we consider the dynamical problem of a self-dual
string probe moving in the background field of another non-parallel self-dual string: the forces
will be less severe far along the string probe (at infinity) while the string bulk will deform more.
In the limit of approaching marginal stability, from our discussions of the field configurations,
moduli variations and the tension in sec. 3.3 and sec. 3.4, it is clear that the above descrip-
tion will approach our formulation. In some sense this sort of string-string dynamics might be
describable by appropriate string uplifts of the particle dynamics in [35], [36]. It would be
instructive to understand these issues better, and we hope to do so.

Perhaps understanding these string-string effective potentials could be explored building
on [51] (see e.g. [52,53] for some interesting related discussions). One might hope thereby to
gain valuable insight into the dynamics of self-dual string solitons and thence that of self-dual
3-forms in the nonAbelian M5-brane theory (see e.g. [54,55] for nonAbelian self-dual strings,
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which may bear on our discussions in sec. 5 on embedding into multiple Abelian M5-brane
theories). Relatedly, it would be interesting to understand more systematically the role of
supersymmetry with regard to our Bogomolny completion, appropriately generalizing [56]:
this may dovetail with the role of fermionic zero modes in the effective supersymmetric sigma
model for small string-string fluctuations.

It is worth noting that our Bogomolny completion is in a sense tied to the existence of two
ζ-vectors in the (x4, x5)-plane: this means the two M2-branes ending on the M5-brane stretch
in this 2-dim subspace alone so the 3-dim r⃗-subspace is untouched. In some essential sense,
this dovetails with the intuition that the these M5-M2-M2 configurations will compactify to
become appropriate D3-brane string-web configurations with the r⃗-subspace being the D3-
brane worldvolume. On the other hand, one could imagine more general configurations such
as with three or more M2-branes ending on the M5-brane (see [24] for some investigations on
these). These may relate to the D3-brane prong configurations in [20,22] pertaining to three
or more charge centers (see e.g. [57] for multiple center black hole configurations). It would
be interesting to explore these further.

There are also a few other interesting questions that come to mind. One pertains to gener-
alizing these M5-brane prong configurations to less supersymmetric theories such as those in
e.g. [58] and [59], possibly interlinking with [43], [60]: these might be related to D3-brane
prong descriptions [20] of string webs [61–63] in N=2 SYM theories [64], and might exhibit
appropriate s-rules in regard to the BPS spectrum. Another pertains to whether these sorts of
string soliton bound states in the 6-dim (2, 0) theory can be realized explicitly as field config-
urations in the nonperturbative 5-dim SYM theory description discussed in [65, 66]. A third
involves understanding 5-brane webs e.g. [67] (see also [68]) as connected prong-like brane-
deformations. A still further question has to do with whether an M2-brane web (regarded as
an object in itself, with no M5-brane) can be described from the point of view of the M2-brane
worldvolume theory itself [69–72]: in some sense this might be analogous to the description
of a string web (in the absence of a D3-brane) from the point of view of the D-string world-
volume gauge theory [73]. Perhaps more general M2-brane networks in M-theory might be
related to IIB string networks [74].

Our analysis of the M5-brane prong configurations may also be useful in understanding
other BPS observables in the 6d worldvolume theory. The analysis of surface observables
in [75], [76] uses a similar M2-M5 brane construction to study various geometric features
and non-perturbative aspects associated with them in the 6d (2, 0) theory. In this regard,
our single M5-brane spike configuration is similar to the half-BPS surface observable in these
references. But while those works involved the use of AdS7 × S4 holography [75] or used
geometric constructions on special manifolds [76], a detailed analysis in the theory on a single
M5 worldvolume is not done in this way. It would be interesting to see if our configurations
with the M5-prong structures help uncover more about these BPS surface observables.
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A Useful identities

This appendix contains some details on intermediate steps involved in obtaining the Bogomol-
nyi completion in (5) from the energy functional expression (3).
• First we have
�

�

�∂[aXζ(1)b]

�

�

�

2
=

1
2

∑

a ̸=b

(∂aX )2
�

ζ
(1)
b

�2
−

1
2

∑

a ̸=b

�

∂aXζ(1)a

�

�

∂bXζ(1)b

�

. (A.1)

• The expansion of
�

∂aXζ(1)a

�2
is the following

∑

a,b

�

∂aXζ(1)a

�

�

∂bXζ(1)b

�

=
∑

a

(∂aX )2
�

ζ(1)a

�2
+
∑

a ̸=b

�

∂aXζ(1)a

�

�

∂bXζ(1)b

�

. (A.2)

And the sum
�

�

�∂[aXζ(1)b]

�

�

�

2
+ 1

2 ×
�

∂aXζ(1)a

�2
is equal to 1

2 |∂ X |2.

• The dot product (∂[aXζ(1)b] ) · (∂[aYζ(2)b] ) can be expanded as

∂[aXζ(1)b] ∂[cYζ
(2)
d] δ

acδbd =
1
2

∑

a ̸=b

(∂aX∂aY )
�

ζ
(1)
b ζ

(2)
b

�

−
1
2

∑

a ̸=b

�

∂aXζ(2)a

�

�

∂bYζ(1)b

�

. (A.3)

The addition: 2× (∂[aXζ(1)b] ) · (∂[aYζ(2)b] ) +
�

∂aXζ(1)a

�

�

∂bYζ(2)b

�

gives the following answer

∑

a,b

(∂aX∂aY )
�

ζ
(1)
b ζ

(2)
b

�

+
∑

a ̸=b

ζ(1)a ζ
(2)
b (∂aX∂bY − ∂bX∂aY ) . (A.4)

B A brief review: D3-brane prongs and string webs

Here we give a short recap of the D3-brane prong description of string web states in
[20–22]. The low energy Abelian effective action on a D3-brane leads to an energy func-
tional E⃗2 + B⃗2 + (∇X )2 + (∇Y )2 : integrating over 3-space with charge boundary conditions
gives the mass for the configuration as

M=

∫

d3 x
1
2

�

(E⃗ −∇X ′)2 + (B⃗ −∇Y ′)2
�

+

∮

S2
I

da⃗ ·
�

E⃗ X ′ + B⃗ Y ′
�

, (B.1)

where X ′ = X cosϕ + Y sinϕ and Y ′ = −X sinϕ + Y cosϕ. The boundaries S2
I are 2-spheres

around each of several charge cores in the system and one sphere at infinity, and we have
used the divergence-free equations for the electric and magnetic fields ∇⃗ · E⃗ = ∇⃗ · B⃗ = 0 away
from the cores to write the boundary term. We label the I = 0 boundary as the one at infinity
and the I ̸= 0 ones as those around the charge cores. Within the Abelian approximation,
the scalars X , Y can be regarded as taking constant values X i , Yi at the i-th boundary while
at infinity they take their asymptotic vacuum values (−X 0,−Y 0). With the electric/magnetic
charges
∮

S2
i

E⃗ · da⃗ = Qi
E ,
∮

S2
i

B⃗ · da⃗ = Qi
B, of the various cores, the charges at infinity are

(Q0
E ,Q0

B) = −
∑n

i=1(Q
i
E ,Qi

B), by charge conservation. Then (B.1) becomes
∑

i

cosϕ
�

(X i + X0)Q
i
E + (Yi + Y0)Q

i
B

�

+ sinϕ
�

(Yi + Y0)Q
i
E − (X i + X0)Q

i
B

�

. (B.2)
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Extremizing with the angle ϕ gives the tightest bound (with a condition analogous to (65)),
thereby leading to the BPS mass formula

M=
r

�

(X i + X0)Qi
E + (Yi + Y0)Qi

B

�2
+
�

(Yi + Y0)Qi
E − (X i + X0)Qi

B

�2
. (B.3)

This is essentially identical to the right hand side of (64) (the scalars above have mass di-
mension one though, unlike in the M5-case; see comments after (4)). Although we have an
effective particle bound state mass here, rather than the effective string tension in (64), the
algebra of the Bogomolny bound, in particular (63), (65), leading to M is similar (for more de-
tails, see [20–22], and earlier work e.g. [25,26,29]). As an example, a single core dyon charge
(QE ,QB) and a single scalar X givesM =

q

Q2
E +Q2

B (X1 + X0). For the simple case with one
electric and one magnetic particle, we have (Q1

E ,Q1
B) = (qe, 0) and (Q2

E ,Q2
B) = (0, qm), with

moduli values (X1, 0) and (0, Y1). So this gives for ϕ an expression identical to (66), amount-
ing to an overall rotation of X , Y , which leads to an analog of the moduli constraint e.g. (35)
mapping the charge to the asymptotic shape of the D3-brane deformation. We thus obtain the
BPS bound equations

E⃗ =∇X , B⃗ =∇Y , ∇ · E⃗ =∇2X = 0 , ∇ · B⃗ =∇2Y = 0 . (B.4)

so the scalars X , Y are harmonic in the D3-brane spatial worldvolume. The rotation to φ = 0
implies that electric charge configurations are sourced by nontrivial X scalar deformations of
the D3-brane worldvolume (in the transverse X -direction) while magnetic ones are sourced
by nontrivial Y scalar D3-brane deformations. Generic solutions to these represent string web
states in the gauge theory. A simple example is the field configuration

X =
qe

|r⃗ − r⃗1|
− X0 , Y =

qm

|r⃗ − r⃗2|
− Y0 , (B.5)

representing a charge (1,1)− (1,0)− (0,1) state, with one electric and one magnetic charge
center. Its asymptotic behaviour is

|r⃗| →∞ : X ∼
qe

|r⃗|
− X0 , Y ∼

qm

|r⃗|
− Y0 , (B.6)

so (E⃗, B⃗)∝ (1, 1) encodes charge (1, 1) in qe, qm units. This deformation traces a line along
(1, 1) in the moduli space if 1

qe
X0 =

1
qm

Y0. Further as we approach either charge core, we see

r⃗ → r⃗1 : Y ∼
qm

|r⃗1 − r⃗2|
− Y0 , r⃗ → r⃗2 : X ∼

qe

|r⃗1 − r⃗2|
− X0 , (B.7)

while X → X1 and Y → Y1 develop long spikes respectively (which we have cut off). It is then
consistent to impose the boundary conditions on the moduli as

r⃗ → r⃗1 : (X , Y )→ (X1, 0) , r⃗ → r⃗2 : (X , Y )→ (0, Y1) . (B.8)

This leads to fixing the separation between the charge cores

1
|r⃗1 − r⃗2|

∼
1

qm
Y0 =

1
qe

X0 , (B.9)

which is large relative to the core sizes (which scale as 1
X1

and 1
Y1

) in the limit of approaching
the wall of marginal stability, with X0, Y0 ≪ X1, Y1. As we hit this wall, i.e. X0, Y0→ 0, the state
becomes arbitrarily loosely bound and decays. No bound state solutions exist on the other side
of the wall (for X0 < 0).

More general field configurations can be written as solutions to the BPS bound equations,
with similar reliable behaviour near the wall of marginal stability.

More details on mapping these low energy field theory prong configurations to string webs
stretched in the transverse space between D-branes appears in [20–22].
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C Some details on more general M5-M2 states

In this appendix we give some details of use in analyzing the brane deformations presented in
the main section (4). The expression for the “basis fields” X and Y are the following

X =
cX

(r⃗ − r⃗1)2 + (ζ⊥1 · x⃗)2
− X0 , Y =

cY

(r⃗ − r⃗2)2 + (ζ⊥2 · x⃗)2
− Y0 . (C.1)

C.1 (2,1) - (1,0) - (1,1)

For the (2, 1)− (1, 0)− (1, 1) M5-prongs we consider X , Y with cX = qe and cY = qm/γ.
At large radial distance from the string sources |r⃗| →∞ these “basis” fields approach

|r⃗| →∞ : X ∼ −X0 , Y ∼ −Y0 . (C.2)

As we approach string1, with coordinates in (81a), the X field develops a spike while the Y
field is nonsingular:

ρ⃗→ (r⃗1, x1, 0) : X → X1 , Y ∼
cY

(r⃗1 − r⃗2)
2 + γ2 (x1)

2 − Y0 . (C.3)

Analogous to the (1,1)− (1,0)− (0, 1) example, at (r1, 0, 0) we impose

Y = 0 =⇒
cY

(r⃗1 − r⃗2)
2 = Y0 . (C.4)

On approaching string2 (onto (81b)) the Y field develops a spike while X is nonsingular:

ρ⃗→ (r2 ,β x2 , x2) : X ∼
qe

(r⃗2 − r⃗1)2 + (x2)2
− X0 , Y → Y1 , (C.5)

so at (r2, 0, 0), we impose

X = 0 =⇒
qe

(r⃗2 − r⃗1)
2 = X0 . (C.6)

Here we see that the values of X and Y fields interpolate as we move along the two strings
away from the origin. These values are tabulated in Table 1, except they are to be interpreted
as values for the “basis” fields for our purposes now. Using these asymptotics for X , Y and the
relations (88), we obtain the asymptotics for X ′, Y ′ in Table 2.

C.2 (3,2) - (1,1) - (2,1)

For the (3,2)−(1, 1)−(2,1) prongs we consider X , Y in (C.1) with cX = qe/γ1 and cY = qm/γ2.
When the radial distance is large from the string sources |r⃗| →∞ these “basis” fields approach
(−X0,−Y0) as before. As in the previous example as we approach string1 with coordinates in
(91a)), the X field develops a spike and the Y field is nonsingular:

ρ⃗→ (r⃗1, x1,β1 x1) : X → X1 , Y ∼
cY

(r⃗1 − r⃗2)
2 + γ2

2 (x1)
2 − Y0 . (C.7)

Analogous to the previous example, at (r1, 0, 0) we impose

Y = 0 =⇒
cY

(r⃗1 − r⃗2)
2 = Y0 . (C.8)
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x4

r

x5

r2

r1

Figure 3: This depicts the orientations and the positions of the two strings in the
5-dimensional space on the worldvolume. The two strings are not orthogonal when
projected on the x4-x5 plane.

On approaching string2 (see (91b)) there is a spike in the value of the Y field while the X field
is nonsingular:

ρ⃗→ (r2 ,β2 x2 , x2) : X ∼
cX

(r⃗2 − r⃗1)2 + γ2
1(x2)2

− X0 , Y → Y1 . (C.9)

So at (r2, 0, 0), we impose

X = 0 =⇒
cX

(r⃗2 − r⃗1)
2 = X0 . (C.10)

Again we see that the values of X and Y fields interpolate as we move along the two strings
away from the origin. Using their asymptotic values from Table 1 and the relations (97), we
obtain the asymptotics for X ′, Y ′ in Table 3.

C.3 1-string tension

First we consider the (2,1)− (1, 0)− (1,1) web. The boundary terms in (12) upon integrating
become

∫

d x4d x5

∫

d3r H̃a4∂aX ′ +

∫

d x4d x5

∫

d3r H̃a5 ∂aY ′ . (C.11)

In terms of X , Y fields this is
∫

d x4d x5

∫

d3r H̃a4 (∂aX + βγ∂aY ) +

∫

d x4d x5

∫

d3r H̃a5 γ∂aY . (C.12)

We are considering two strings with charges

(Qi
E ,Qi

B), i = 1, 2 : Qi
E =

∮

S3
i

H̃a4dsa , Qi
B =

∮

S3
i

H̃a5dsa , (C.13)

and scalar moduli values at their cores as given in Table (1). At spatial infinity far from
both strings, charge conservation gives (Q0

E ,Q0
B) = −
∑

i(Q
i
E ,Qi

B) and the moduli values are
(−X0,−Y0).
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We do the integration in C.12 over 5-space, and so at appropriate S3
i , gives

L
�

(X1 + X0 + βγY0)qe + βγ
�

Y1 + Y0 +
X0

βγ

�

qe + γ(Y1 + Y0)qm

�

, (C.14)

with L being the regulated length of both strings.
For this particular example:

�

Q1
E ,Q1

B

�

= (qe, 0) and
�

Q2
E ,Q2

B

�

= (qe, qm). Further, the above
formula can also be written in terms of X ′ and Y ′ field values as given in (101) in section 4.3.

Likewise, for the (3, 2)− (1, 1)− (2,1) web, the boundary terms upon integrating become
∫

d x4d x5

∫

d3r H̃a4∂aX ′ +

∫

d x4d x5

∫

d3r H̃a5 ∂aY ′ . (C.15)

In terms of X , Y fields this is
∫

d x4d x5

∫

d3r H̃a4 (γ1∂aX + β2γ2 ∂aY ) +

∫

d x4d x5

∫

d3r H̃a5 (β1γ1 ∂aX + γ2 ∂aY ) . (C.16)

As before, we have two string charges (Qi
E ,Qi

B), i = 1, 2, with scalar moduli values at their
cores as in Table (1). At spatial infinity far from both strings, charge conservation gives
(Q0

E ,Q0
B) = −
∑

i(Q
i
E ,Qi

B). Integrating over 5-space, with appropriate S3
i , gives

L
�

(γ1X1 + γ1X0 + β2γ2 Y0)Q
1
E + (β1γ1 X1 + β1γ1 X0 + γ2 Y0)Q

1
B

�

+ L
�

(β2γ2 Y1 + β2γ2 Y0 + γ1X0)Q
2
E + (γ2 Y1 + γ2 Y0 + β1γ1 X0)Q

2
B

�

. (C.17)

The charge associated here are:
�

Q1
E ,Q1

B

�

= (qe, qm);
�

Q2
E ,Q2

B

�

= (2qe, qm); and we re-write
the above formula using the X ′ and Y ′ field values to obtain (102) in section 4.3.

Finally, the term
�

ζ1 · ζ2
�

(∂ X · ∂ Y ) in (12) is nonvanishing for non-orthogonal strings:
however this can also be shown to vanish near marginal stability X0, Y0 → 0, where we have
large transverse separation |r⃗1 − r⃗2| between the two strings.
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