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Abstract

We study a one-dimensional mixture of two-color fermions and scalar bosons at the hard-
core limit, focusing on the effect that the intraspecies next-neighbor interactions have
on the zero-temperature ground state of the system for different fillings of each carrier.
Exploring the problem’s parameters, we observed that the nearest-neighbor interaction
could favor or harm the well-known mixed Mott and spin-selective Mott insulators. We
also found the emergence of three unusual insulating states with charge density wave
(CDW) structures in which the orders of the carriers are out of phase between each other.
For instance, the immiscible CDW appears only at half-filling bosonic density, whereas
the mixed CDW state is characterized by equal densities of bosons and fermions. Finally,
the spin-selective CDW couples the bosons and only one kind of fermions. Appropriate
order parameters were proposed for each phase to obtain the critical parameters for the
corresponding superfluid-insulator transition. Our results can inspire or contribute to
understanding experiments in cold-atom setups with long-range interactions or recent
reports involving quasiparticles in semiconductor heterostructures.

Copyright F. Gómez-Lozada et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2024-07-26
2024-12-10
2025-01-21

Check for
updates

doi:10.21468/SciPostPhysCore.8.1.007

Contents

1 Introduction 2

2 Model 3

3 Fermionic next-neighbor interactions 5
3.1 Two thirds fermionic filling (ρF = 2/3) 6
3.2 Two fifths fermionic filling (ρF = 2/5) 9
3.3 Four fifths fermionic filling (ρF = 4/5) 11
3.4 Phase diagram for nonzero spin-population imbalance 15

4 Bosonic next-neighbor interactions 16

1

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.007
mailto:jsilvav@unal.edu.co
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCore.8.1.007&amp;domain=pdf&amp;date_stamp=2025-01-21
https://doi.org/10.21468/SciPostPhysCore.8.1.007


SciPost Phys. Core 8, 007 (2025)

5 Conclusions 17

A Particle-hole symmetry 19

B Order of the phase transitions 21

References 22

1 Introduction

The development of quantum simulators over the last few decades has allowed the control of
many-body quantum systems’ interactions and dynamics to a great extent [1, 2]. This paved
the way to understanding the physics behind Bose–Fermi mixtures: composition of particles
with both bosonic and fermionic statistics, which have been studied for decades with one
of the first examples being the 3He-4He combination [3–5]. Here the development of cold-
atom simulators has been crucial [6–8], as it has been possible to produce an amalgam of
degenerate mixtures of gases [9–26] which exhibit novel and fascinating phenomena such as
Bose–Fermi superfluidity [27–30] or dual Mott insulators [31]. Likewise, recent experiments
of dipolar excitons in 2D materials [32] present a promising alternative in the simulation of
long-range interacting Bose–Fermi mixtures, since this type of interaction is inherent to these
quasiparticles which enriches the physics of the system [33–39].

To perform a theoretical study of these mixtures, it is usual to describe fermions and bosons
using the Hubbard model and coupling terms that account for interspecies interactions. Within
this framework, there have been abundant numerical and analytical studies, which have re-
sulted in the prediction of diverse kinds of carriers’ configurations, such as Luttinger liquids,
charge density waves (CDW), and Mott insulators (MI), among others [40–65]. Of particular
interest for this research are the superfluid-insulator transitions, where it is well known that
the insulator phases are characterized by commensurable relations between the fixed fermionic
(ρF) and bosonic (ρB) densities. Specifically, for a two-color fermion and scalar boson mixture
with repulsive interspecies interactions, there is always one mixed Mott insulator (MMI) char-
acterized by the relation ρB +ρF = n (n being an integer) and a spin-selective Mott insulator
(SSMI) that follows ρB +ρ

↑,(↓)
F = n, which indicates that for a population imbalance, this last

insulator is divided in two [66–70]. It is important to note that flavor-selective Mott phases
have been observed experimentally in SU(3) Fermi Hubbard models where the symmetry is
explicitly broken by adding an inter-band hopping [71].

Long-ranged interactions have enriched the ground-state phase diagram of both bosonic
and fermionic systems allowing diverse carrier configurations. Specifically, adding next-
neighbor interactions to a bosonic system led to the emergence of exotic phases including
supersolid, Haldane, and solitonic ones, and the charge density wave phase for integer and
half-integer densities [72–78]. On the other hand, the one-dimensional phase diagram of
fermions under short and long-ranged interactions is well-known for half-filling. However, it
is controversial and little studied for other fillings [79–86]. At half-filling, a charge density
wave phase emerges when the long-range interaction prevails over the on-site one, and a spin
density wave when the opposite happens. In addition, other phases appear, such as a bond
density wave when both interactions are of the same order, a phase separation for attractive
interactions, and certain superconductor phases, singlet and triplet.
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Motivated by the latter, we propose an exploration of the extended Bose–Fermi Hub-
bard model with two-color fermions and scalar bosons at the hardcore limit, including next-
neighbor intraspecies interactions. Here we wish to discover what new phenomena can emerge
from the interplay between long-range interactions and disparity of particle statistics. More-
over, the inclusion of spinful fermions allows the appearance of spin-selective phases, which
are also of high interest [66–70], and the restriction in the form of the hardcore limit keeps
a tractable Hilbert space for simulation while also allowing the extrapolation of its results to
soft-core models, as shown in previous articles [67, 68]. There are only a few studies where
these effects are considered for Bose–Fermi mixtures, with one example being an investiga-
tion with polarized fermions [87], so we believe the present study will significantly expand
our understanding of this topic. Furthermore, the convergence of on-site and long-range inter-
actions leads us to a multi-parameter model that could be essential for describing the physics
of recent Bose-Fermi mixtures present in semiconductor heterostructures, where stripes and
diverse bidimensional patterns have been observed [33–39].

In the following, we obtained a phase diagram for each type of long-ranged interaction,
bosonic or fermionic, which summarizes the different insulator phases that can appear at a
given filling (see Fig. 1). The latter contains the well-known mixed and spin-selective Mott
insulators, as well as three unusual insulators that appear when taking into account the next-
neighbor intraspecies interactions, all of which have charge density wave (CDW) orders for
each species that are out of phase between each other. These correspond to the immiscible
charge density wave (ICDW), a CDW phase with a period of two sites that only appears for
half filling of the bosons ρB = 1/2, the mixed charge density wave (MCDW) in which both
bosons and fermions have the same density, that is ρB − ρF = 0, and the CDW order is char-
acterized by a wave vector proportional to said density, and the spin-selective charge density
wave (SSCDW) that corresponds to an analogous phase to the latter where the bosons only
couple to one of the fermionic spin components

�

ρB −ρ
↑,(↓)
F = 0
�

.
Therefore, the main objective of this article is to study the conditions under which these

CDW insulators appear, as well as to expose the main properties that characterize their struc-
ture. To achieve this, in Sec. 2 we first present the extended Bose–Fermi Hubbard model to
be used, along with a discussion of our numerical techniques, which are matrix product states
(MPS) optimization algorithms for finding the ground state. The main results are found in
Sec. 3, where we perform the analysis of Fig. 1(a) by choosing three representative fermionic
densities given by ρF = 2/5, 2/3, 4/5, each of which shows a particular CDW insulator for
nonzero fermionic next-neighbor interactions along with the principal characteristics from the
phase diagram. Accordingly, in each subsection, we study the corresponding ρB − µB and
µB − VFF diagrams in conjunction with appropriate density profiles as a means of analyzing
the properties of the different incompressible phases and their dependence on the fermionic
next-neighbor interaction, with a particular focus on the ones of CDW type. In Sec. 4 we take
a look at Fig. 1(b) and the role of bosonic next-neighbor interactions. Finally, in Sec. 5 we give
some final remarks and future perspectives for research.

2 Model

A mixture of bosonic and fermionic atoms is commonly described by taking into account a
local interaction term between bosons and fermions plus a Hubbard-type Hamiltonian for each
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Figure 1: Phase diagram as a function of the bosonic ρB and fermionic ρF densities
for a balanced (ρ↑F = ρ

↓
F) Bose–Fermi mixture with intraspecies next-neighbor inter-

actions between only fermions (a) and bosons (b), respectively. Here we consider
only rational values for both densities, guaranteeing that the number of carriers is
always commensurate with the chain. Each non-vertical line corresponds to the den-
sity combinations necessary for the emergence of a particular insulator state, while
the rest of the diagram shows a superfluid phase. The insulators correspond to the
well-known mixed Mott insulator (MMI) at ρB + ρF = 1 (dark blue line) and the
spin-selective Mott insulator (SSMI) at ρB + ρF/2 = 1 (dark green line), as well as
the three phases found: the immiscible charge density wave (ICDW) at ρB = 1/2
(purple line), the mixed charge density wave (MCDW) at ρB −ρF = 0 (brown line)
and the spin-selective charge density wave (SSCDW) at ρB − ρF/2 = 0 (light green
line). The vertical lines signal special densities that are related to Fig. 2, 4, 6 and
11, here each time these vertical lines intersect with another non-vertical one an in-
sulator phase appears in the corresponding phase diagram (for suitable values of the
couplings). The graph only includes part of the range ρF > 1, since this region cor-
responds to a reflection of the ρF < 1 diagram thanks to the particle-hole symmetry
of the Hamiltonian shown in Appendix A.

species, leading to the following expression:

Ĥ = ĤB + ĤF + ĤBF , (1)

ĤB = −tB

∑

〈 j,l〉

�

b̂†
j b̂l +H.c.
�

+
UBB

2

∑

j

n̂B
j

�

n̂B
j − 1
�

+ VBB

∑

〈 j,l〉

n̂B
j n̂B

l , (2)

ĤF = −tF

∑

〈 j,l〉,σ

�

f̂ †
σ, j f̂σ,l +H.c.
�

+ UFF

∑

j

n̂F
↑, j n̂

F
↓, j + VFF

∑

〈 j,l〉

n̂F
j n̂

F
l , (3)

ĤBF = UBF

∑

j

n̂B
j n̂F

j , (4)

which is defined on a one-dimensional chain of length L with open boundary conditions for
numerical efficiency. In the above Hamiltonian b̂†

j , b̂ j

�

f̂ †
σ, j , f̂σ, j

�

are the creator and annihi-
lator boson (fermion with spin σ =↑, ↓) operators at the j-th site with their corresponding
number operators n̂B

j = b̂†
j b̂ j , n̂F

σ, j = f̂ †
σ, j f̂σ, j and n̂F

j = n̂F
↑, j + n̂F

↓, j . The hopping integral for
bosons (fermions) is tB (tF), where 〈 j, l〉 indicates next-neighbor pairs, and UBB (UFF) is the
intensity of the local boson-boson (fermion-fermion) interaction, while the magnitude of the
local interspecies interaction is given by UBF. Knowing that next-neighbor interactions are rel-
evant, we consider the corresponding intraspecies terms for both fermions and bosons with
strengths quantified by VFF and VBB, respectively.
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Additionally, the previous Hamiltonian admits a set of appropriate Abelian quantum num-
bers given by the boson number NB and the fermion number NσF with spin σ =↑, ↓. From
them we define useful quantities for the rest of the study, such as the total fermion num-
ber NF = N ↑F + N ↓F , the global boson density ρB = NB/L, and the global fermion densities
ρσF = NσF /L, and ρF = NF/L. We also define I = |ρ↑F − ρ

↓
F|/ρF as the imbalance of spin

population, then we refer to the case of I = 0 as a balanced mixture.
Since the local Hilbert space for bosons is computationally intractable, we perform a cut in

this local dimension by assuming the hardcore limit, which implies that there can be at most
one boson per site. The latter set a local basis of dimension 8 given by all of the combina-
tions |nB〉
�

�nF↑
� �

�nF↓
�

where each carrier number is either 0 or 1. Also, the hardcore limit is
equivalent to assuming an infinite on-site boson interaction (UBB→∞), and hence we do not
consider this process for the rest of the paper. To further simplify our analysis, we suppose
that tB = tF = 1, while also establishing our energy scale; therefore, all quantities are mea-
sured with respect to them. This last assumption is supported by the fact that these mixtures
are usually constructed with isotopes of the same atom, for example with the 6Li-7Li [88] or
171Yb-174Yb [89] combinations.

To achieve insight into the physics of this model, we perform a ground-state energy search
for a given set of particle fillings E(NB, N ↑F , N ↓F ) and different interaction strengths, using a two-
site density matrix renormalization group (DMRG) algorithm based on the MPS language [90]
with the help of the TeNPy library [91]. We employ a sweep-dependent maximum bond di-
mension that starts at a given value between 500 and 1000 and increases every 10 sweeps
by 100. The two-site DMRG algorithm truncates the Schmidt coefficients up to a maximum
error of 10−14 or to the maximum bond dimension of the corresponding sweep; nevertheless,
since the addition of next-neighbor interactions gives rise to a need for extra degrees of entan-
glement, the latter situation is the general case for our simulations. The stop criteria for the
algorithm are determined by the energy and entropy errors, given by

∆En =

�

�

�

�

En − En−1

max(En, 1)

�

�

�

�

, (5)

∆Sn =

�

�

�

�

Sn − Sn−1

Sn

�

�

�

�

. (6)

Here, En and Sn are the ground-state energy and the entanglement entropy at the middle of the
lattice at sweep n. The denominator in ∆En is chosen to avoid numerical overflow if En ≈ 0,
which is not necessary in the case of entropy. In our program, we set maximum energy and
entropy errors of 10−5 and 10−3, respectively, so when the wave function has errors above
these bounds, the optimization stops, which proved to be enough to achieve convergence.

3 Fermionic next-neighbor interactions

The key findings of this work are shown in the phase diagrams from Fig. 1, where the different
insulator phases that can appear at a given filling are summarized. Each diagram assumes that
all densities attain rational values, which guarantees the commensurability between the chain
and each component density. Moreover, since all density relations that define the possible
configurations that a certain insulator can have are linear functions of ρB, ρ↑F, and ρ↓F (see
Sec. 1), each insulator is represented by a straight line in the phase diagram. This schematic
also includes the results already known for the single component models: For ρB = 0 we
have the band insulators at ρF = 0 and 2, and the Mott insulator at half-filling (ρF = 1),
well known from the original Fermi-Hubbard model [92]. On the other hand, for ρF = 0
we find the analogous band insulator at ρB = 0 and the bosonic Mott insulator at unit-filling

5

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.007


SciPost Phys. Core 8, 007 (2025)

0 2 4 6 8 10
µB

0

0.5

1.0
ρ B

(a)
ρF=2/3
UFF=4
UBF=6

0 1 2 3
1/L (10−2)

0

1

2

3

Δ
B VFF=2

ρB=2/3
ρB=1/2
ρB=1/3

VFF=0
VFF=2

25 30 35 40 45 50
Site (j)

0.0

0.5

1.0

1.5
(b) ρB=1/2 ⟨ ΔnFj ̂ ⟨ ΔnBj ̂

Figure 2: (a) Bosonic density ρB vs. bosonic chemical potential µB at the thermo-
dynamic limit for a balanced mixture with a fermionic density ρF = 2/3 and local
interactions UFF = 4, UBF = 6. Here we compare the behavior with and without
next-neighbor interaction between fermions, using VFF = 0, 2. The inset shows the
bosonic charge gap ∆B as a function of the system size L for each plateau found
for VFF = 2. In (b), we show the density profile for bosons 〈n̂B

j 〉 (red circles) and
fermions 〈n̂F

j 〉 (blue diamonds) for L = 75 at the plateau with ρB = 1/2 found in (a).
The points correspond to DMRG results, and the lines are visual guides.

(ρB = 1) [74, 93–96]. In the case of VBB ̸= 0 (Fig. 1(b)) the CDW insulator is found for
bosonic chains with next-neighbor interactions at ρB = 1/2, which has been found in previous
works [50,76,77].

Now we focus our analysis on nonzero fermionic next-neighbor interactions only at three
essential fermionic densities given by ρF = 2/3, 2/5, 4/5 at zero population imbalance I = 0,
showing for each of them the emergence of an unknown insulator, along with a discussion on
how the next-neighbor interactions between fermions affect the already well-known insulator
phases. For these investigations, we fix the on-site interactions at UFF = 4 and UBF = 6, while
we choose a next-neighbor interaction, which will be within the range 0≤ VFF ≤ 6. It has been
shown in previous work that the presence of a next-neighbor interaction in the model leads
to finite-size effects that perturb the ground-state energy if the number of sites is even [74],
hence we restrict L to be always odd. We also look at the imbalanced case I ̸= 0 and how this
affects the insulating phases of the model.

To detect the insulator phases, we measure the bosonic chemical potential

µB(NB, N ↑F , N ↓F ) = E(NB, N ↑F , N ↓F )− E(NB − 1, N ↑F , N ↓F ) , (7)

while varying the bosonic density from zero to one and looking for plateaus in the ρB − µB
curve, which indicates the presence of an insulator, along with an extrapolation to the ther-
modynamic limit to determine the corresponding gap

∆B(NB, N ↑F , N ↓F ) = µB(NB + 1, N ↑F , N ↓F )−µB(NB, N ↑F , N ↓F ) . (8)

3.1 Two thirds fermionic filling (ρF = 2/3)

In Fig. 2(a), we show the bosonic density ρB as a function of the bosonic chemical potential
µB for VFF = 0 (black open squares) and VFF = 2 (red filled circles). For the turned-off next-
neighbor interaction, we found a monotonous increase in µB as we continuously add bosons to
the system in the majority of the graph, which corresponds to the presence of superfluid (SF)
phases since they have nonzero compressibility. In particular, this behavior finds its exceptions
at ρB = 1/3, 2/3 where the graph is discontinuous; we found incompressible phases. Each
plateau in the ρB − µB curve represents the presence of an insulator state, where we denote
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its charge gap ∆B as the length of the plateau according to (8). At ρB = 1/3, we obtained a
charge gap of∆ρB=1/3

B = 1.16 corresponding to the well-known mixed Mott insulator (MMI) in
which the interplay between commensurability of both bosons and fermions and their mutual
interaction generate the presence of an incompressible phase. On the other hand, forρB = 2/3,
a plateau with a charge gap of ∆ρB=2/3

B = 2.01 appears, which we identify as a spin-selective
Mott insulator (SSMI) that has an analog behavior as does the previous phase, but instead, the
association is between bosons and only one type of fermion (spin up or down). These insulator
phases are already known in the literature [31, 66–70] and follow the relations ρB + ρF = 1
for the MMI and ρB +ρF/2= 1 for the SSMI in a balanced Bose–Fermi mixture.

After turning on the next-neighbor interaction, we found ourselves in a similar context,
where most of the graph is in a SF phase. We still observe both previously mentioned insula-
tors, but their charge gaps have changed. For the MMI, we found that the gap decreases to
∆
ρB=1/3
B = 0.34, less than a third of its original value. A homogeneous distribution of carri-

ers is expected in the absence of next-neighbor interaction, making it expensive to increase
the number of particles, but allowing long-ranged coupling between fermions leads to the
formation of composites between bosons and fermions, which have a less homogeneous dis-
tribution of charge along the lattice, diminishing the energy gap. On the other hand, the SSMI
slightly increases its gap to ∆ρB=2/3

B = 2.81, showing that this phase benefits from the long-
ranged fermion interaction. In this case, only half of the fermions are coupled to the bosons
�

ρ
↑,(↓)
F = 1/3
�

; however, the excess in the number of bosonic carriers makes the distribution of
charge more homogeneous, making the effect of the next-neighbor interactions less dramatic.

On observing Fig. 2(a) for VFF = 2, we notice that an additional incompressible phase
at ρB = 1/2 emerges with a charge gap of ∆ρB=1/2

B = 0.71. To characterize this mysterious
insulator, we show the corresponding bosonic and fermionic density profiles in Fig. 2(b). Since
the fermions repel each other, the optimal configuration is to leave space between them, which
produces the characteristic oscillating pattern from the CDW phase. Moreover, the bosons
also interact with the fermions locally, hence they locate themselves between them, which
generates another CDW order. Since the patterns are out of phase with each other, we call this
insulator an immiscible CDW (ICDW). This curious insulator always appears at ρB = 1/2 (see
Fig. 1(a)), since only for this bosonic density is the CDW structure stable for both species. That
is, if there were more bosons, they could not fit between the fermions, and if there were fewer
bosons, the fermions could flow freely through the spaces left behind by the missing bosons,
removing the insulator condition. A similar bi-dimensional pattern was observed with neutral
and charged dipolar excitons of GaAs bilayers recently [34], which allows us to confirm the
relevance of the next-neighbor interactions in this Bose–Fermi system.

Let’s analyze what happens when we vary the next-neighbor interaction. To do this, in
Fig. 3(a) we show the evolution of the respective charge gaps from each phase as we increase
the value of the next-neighbor interaction from VFF = 0 to VFF = 4. First, we observe that
for the ICDW phase at ρB = 1/2 there exists a critical value V ∗FF

ρB=1/2 ≈ 0.7 from which the
insulator appears; to put it another way, for VFF ≥ V ∗FF

ρB=1/2 we find a nonzero charge gap
associated with this incompressible phase. Moreover, this charge gap increases with VFF, since
the stability of the CDW order improves for a larger next-neighbor interaction.

To characterize this transition, we introduce the following order parameter OICDW for the
ICDW phase

OICDW =
−1
L2

L
∑

j,l

(−1) j+l
¬

n̂B
j −ρB

¶




n̂F
l −ρF

�

, (9)

This signals the simultaneous CDW order of both species as the multiplication of the in-
traspecies CDW order parameters, with a minus sign representing the out-of-phase mutual
oscillation, exhibited in Fig. 2(b). Moreover, we subtract the total density from each cor-
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Figure 3: (a) Phase diagram of the bosonic chemical potential µB vs. next-neighbor
fermion interaction magnitude VFF at the thermodynamic limit for a fermionic density
ρF = 2/3 without spin imbalance and local interactions UFF = 4 and UBF = 6. Here
we show the evolution of the respective charge gaps from each insulator phase shown
in Fig. 2(a) which include the MMI at ρB = 1/3, the SSMI at ρB = 2/3 and the
ICDW at ρB = 1/2. The points are extrapolations of the chemical potential to the
thermodynamic limit. (b) Order parameter of the ICDW phase OICDW as a function of
VFF in the thermodynamic limit for the same parameters as (a). The vertical dashed
line denotes the critical value V ∗FF

ρB=1/2 of the SF-ICDW transition obtained from the
order parameter calculation. The inset shows the dependence of OICDW on ρB for
a chain of L = 45 and for VFF = 0 (black squares) and VFF = 2 (red circles). Here
ρB = 1/2 is indicated as a dotted line. Horizontal dashed and dotted lines are added
to highlight the zero value of the order parameter. Solid lines are visual guides.

responding density profile to remove the contributions of flat profiles. We show OICDW for
0 ≤ VFF ≤ 2 extrapolated to the thermodynamic limit in Fig. 3(b) where we can see the sud-
den change from zero to positive values after the critical point V ∗FF

ρB=1/2 ≈ 0.7 (indicated by
the vertical line) which agrees with the one obtained from the gap calculation. The depen-
dence on the number of bosons is also shown in the inset of Fig. 3(b) as we vary ρB and
observe that the main nonzero contribution occurs close to half-filling for VFF = 2 (red dots)
while for VFF = 0 (black squares) the order parameter is close to zero, as expected. Since we
restrict ourselves to odd values of L we observe a deviation of the maximum from ρB = 1/2,
nevertheless by increasing the system size this finite-size effect disappears as the maximum
gets closer to the expected value. Some remarks regarding the order of the transition can be
found in Appendix B, a topic which falls outside the scope of this work.

On the other hand, for the MMI at ρB = 1/3, we see that the charge gap decreases
monotonously until it vanishes at a critical value of V ∗FF

ρB=1/3 ≈ 3.5, as anticipated from the
formation of composites that destroy the crystal order mentioned beforehand. For the SSMI,
even though we observed an initial increase in its charge gap, here we find that after a certain
value, the gap starts to decrease monotonously. This behavior is persistent until the charge
gap vanishes at a very high VFF value, not shown here. Although the excess of bosonic carriers
and the fact that these tie only one kind of fermion together try to maintain a homogeneous
distribution of charge in the system, large values of the next-neighbor interaction will force
the emergence of compounds that diminish the ground-state energy and finally destroy the
crystalline order.

It is worth noting that the ICDW phase does not appear for every fermionic density. Specif-
ically, for ρF < 1/2, the system does not have enough fermions to build the sub-lattice for the
CDW order. This is independent of the spin-population imbalance since the CDW order can be
established independently of the number of fermions in each orientation. On the other hand,
for I ̸= 0 there is another limitation. Consider the case where ρ↑F or ρ↓F are larger than half
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Figure 4: (a) Progress of the bosonic chemical potential of a balanced mixture as the
number of bosons grows for a fermionic density ρF = 2/5 (ρB − µB curve). Here,
we consider that UFF = 4, UBF = 6, and compare the behavior with and without
next-neighbor interaction between fermions, using VFF = 0, 5. The inset shows the
charge gap ∆B as a function of the system size L for VFF = 5 at ρB = 2/5, 1/2. In
(b), we show the density profile for bosons 〈n̂B

j 〉 (red circles) and fermions 〈n̂F
j 〉 (blue

diamonds) with respect to the corresponding densities ρB, ρF for L = 205 at the
plateau with ρB = 2/5 found in (a), along with dotted lines that only act as visual
guides for the oscillating pattern. The points correspond to DMRG results, while the
lines are visual guides.

filling; then all of the fermions with the corresponding spin do not fit in the CDW order, and
hence it is not possible to construct the insulating phase. Both restrictions can be summarized
with the mathematical condition that the ICDW phase only appears for 1/2≤ ρF ≤ 1/(1+ I).
The case I = 1, that is of spin-polarized fermions, has already been reported in the litera-
ture [87], and according to this study, there is only one possible density combination in which
the insulator can appear, namely ρF = ρB = 1/2. This emphasizes that a mixture with a larger
number of fermionic degrees of freedom admits a more general family of density combinations
for the emergence of the ICDW state.

The presence of a non-zero bosonic gap shows the insulating characteristic of this mix-
ture’s component, so it is important to discuss the compressibility of the fermions in the sys-
tem. Given that ρB = 1/2, the conditions for the emergence of the ICDW phase, that is
1/2≤ ρF ≤ 1/(1+ I), delineate a region in the ρ↓F−ρ

↑
F plane, inside of which we expect there

to be no fermionic charge gap, since small deviations in the fermionic densities do not affect
the conditions for the insulator to emerge. On the other hand, we do expect a fermionic gap
at the boundaries, where the transition to the superfluid phases occurs, as is known to happen
for half-filling (ρB = ρF = 1/2), where the state corresponds to the MMI [68], as an example.
This is reminiscent of the supersolid phase, where crystalline and superfluid orders are present
simultaneously [72,73]. Nevertheless, a further characterization falls outside the scope of this
study.

3.2 Two fifths fermionic filling (ρF = 2/5)

From this point on, we will explore a lower fermionic density, ρF = 2/5, like that of Sec. 3.1;
therefore, we plot theρB−µB graph forρF = 2/5 in Fig. 4(a), but in this case, the next-neighbor
interaction is tuned between VFF = 0 and 5. Without long-ranged interactions (black open
squares), we obtain the already expected plateaus related to the MMI and SSMI at ρB = 3/5
and ρB = 4/5 respectively, with gaps ∆ρB=3/5

B = 1.57 and ∆ρB=4/5
B = 2.05. In the presence

of next-neighbor interactions (red-filled circles), we can predict certain behaviors based on
the previous discussion. Since we find ourselves in a region that fulfills ρF < 1/2, according
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Figure 5: (a) Evolution of the insulating lobes with the next-neighbor fermion inter-
action for a Bose–Fermi mixture with a fermionic density ρF = 2/5 and local inter-
actions UFF = 4 and UBF = 6. The insulators are the ones shown in Fig. 4(a) which
include the MMI at ρB = 3/5, the SSMI at ρB = 4/5 and the MCDW at ρB = 2/5.
(b) MCDW order parameter OMCDW

ρ at the corresponding density ρ = 2/5 as a func-
tion of VFF in the thermodynamic limit for the same parameters as (a). The vertical
dashed line denotes the critical value V ∗FF

ρB=2/5 after which OMCDW
ρ differs from zero.

A horizontal dashed line is added to highlight the zero value of the order parameter.
Solid lines are visual guides. The inset shows the extrapolation to the thermodynamic
limit of the wave vector of the largest contribution in the continuous Fourier trans-
form kmax/2π of the bosonic (red) and fermionic (blue) density profiles, for VFF = 2.
The dots correspond to extrapolations from DMRG results, while the lines are visual
guides.

to Fig. 1(a) we do not observe a plateau associated with the ICDW, which is further empha-
sized by considering the thermodynamic limit extrapolation shown in the inset of Fig. 4(a).
Instead, the MMI and SSMI still emerge, but in this case the first one increases its charge
gap to ∆ρB=3/5

B = 2.15, while the latter decreases its gap to ∆ρB=4/5
B = 0.40 when the long-

ranged interaction is turned on, which is contrary to what happens in Fig. 2. For the MMI,
since ρF < 1/2, the number of bosons is larger than the number of fermions, making it easy
to insert bosons between fermions, which reduces the relevance of the next-neighbor interac-
tion and makes it expensive to add bosons in an almost homogeneous distribution of carriers.
On the other hand, the SSMI has a charge gap decrease due to the itinerant fermions, which
modify the distribution of carriers, affecting the insulator. The above scenario remains as the
fermionic next-neighbor interactions increase, as can be seen in Fig. 5(a).

Furthermore, because of the long-ranged interaction, an unusual incompressible phase
emerges at ρB = 2/5, with a charge gap of ∆ρB=2/5

B = 0.67 and whose thermodynamic limit
extrapolation is shown in the inset of Fig. 4(a). This particular insulator fulfills the relation
ρB − ρF = 0, as shown in Fig. 1(a), which means, among other things, that a change in the
number of fermions removes the insulator condition, hence a fermionic charge gap is expected,
also given that this corresponds to the MMI for half-filling (ρB = ρF = 1/2) where such non-
zero gap is known to appear [68]. For the sake of getting insight into this particular insulator,
we take a look at the respective boson and fermion density profiles shown in Fig. 4(b), where
we recognize two sets of CDW orders: a global one, which encloses both density profiles and
a local CDW order analog to the ICDW insulator. Here the global order has a periodicity of
five sites, with two particles of each species in every period, imposed by the mutual density
ρB = ρF = 2/5. In comparison, the local order always has a period of two sites characteristic
of a typical CDW phase. The latter behavior was checked for different fermionic density values
from the respective phase line of Fig. 1(a); hence it corresponds to a key characteristic of the
phase, and because of that, we will denote it a mixed CDW (MCDW).
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When looking at the continuous Fourier transform of both the bosonic and fermionic pro-
files in the MCDW phase, we observe that the wave vector of the maximum contribution in the
thermodynamic limit converges at k = 2πρ with ρ = ρB = ρF = 2/5 for each species, which
can be seen for VFF = 2 in the inset of Fig. 5(b). Based on this, we propose the following order
parameter OMCDW

ρ for the MCDW phase with ρ = ρB = ρF

OMCDW
ρ =

−1
L2

L
∑

j,l

ei2πρ( j+l)
¬

n̂B
j −ρB

¶




n̂F
l −ρF

�

, (10)

where we extend definition (9) to wave vectors different from k = π/2 and instead propor-
tional to the mutual density as k = 2πρ. Due to the inversion symmetry of the Hamiltonian
(10), the above order parameter is always real in the thermodynamic limit, this is not true
in general for an arbitrary finite lattice, hence for each simulation, we consider the absolute
value of the order parameter, while the minus sign is assumed from the alternate order be-
tween species observed in the density profiles (Fig. 4(b)). In Fig. 5(b), we show OMCDW

ρ=2/5 in the
MCDW phase for different VFF values, here we can see that the order parameter differs from
zero after V ∗FF

ρB=2/5 ≈ 1.2 which agrees with the gap opening of this phase as VFF increases

shown in Fig. 5(a). In this case, the numerical calculation of ∆ρB=2/5
B for small VFF shows to

be numerically unstable, then the order parameter is best suited to obtain the critical value for
the corresponding SF-MCDW transition. It is worth noting that the MCDW lobe grows as the
next-neighbor interaction increases, as can be seen in Fig. 5(a). Analog to the ICDW analysis,
we provide some insight into the order of the transition in Appendix B.

There is an additional finite-size effect associated with this phase. For a finite chain of size
L the system exhibits the properties of the MCDW phase at density ρ for a reduced number
of bosons given by N ′B = ρL − 1. This was taken into account for the calculation of the corre-
sponding bosonic charge gaps, density profiles, and order parameters from Fig. 4 and Fig. 5.
For the thermodynamic limit extrapolation, the latter effect vanishes as N ′B/L ≈ ρ +O (1/L).
In particular, to obtain the most characteristic order parameter we first calculate OMCDW

ρ′
for a

range of reference densities ρ−1/L ≤ ρ′ ≤ ρ and use the value of maximum magnitude from
this set as the finite-size value for the subsequent extrapolations to the thermodynamic limit.

The emergence of the MCDW phase requires nonzero next-neighbor interactions and a
balance of the carrier densities (bosons and fermions), which suggest the formation of Bose–
Fermi composites to establish this peculiar insulator state. Another interesting fact is that
this incompressible phase can only appear for ρB + ρF ≤ 1, meaning that all fermions must
cooperate to form this unique insulator. The limit case when ρB +ρF = 1 corresponds to the
mutual half-filling situation ρB = ρF = 1/2 where both orders attain a two-site periodicity,
turning into the ICDW as OMCDW

ρ=1/2 =OICDW from (9) and (10). The large unit cell of this CDW
insulator and the fact that the corresponding densities are in general rational (in contrast to
the MMI and SSMI, where the sum of two densities is an integer, and the ICDW, where the unit
cell size is two, as expected from a usual CDW phase) shows similarity to ground states found
in frustrated magnetism models characterized by rational magnetization plateaus [97–99]. In
this sense, the high nearest-neighbor interaction could be interpreted as a source of frustration
that will reduce the effective kinetic energy of the carriers, thus enhancing the stability of the
non-trivial CDW insulator (see Fig. 5(a)). While this topic may deviate from the primary focus,
it offers a promising avenue for future research on the characterization of this insulator.

3.3 Four fifths fermionic filling (ρF = 4/5)

As can be seen in Fig. 1(a), there is an unknown insulator state that has not been discussed
yet; therefore, we fix the fermionic density at ρF = 4/5 and calculate the bosonic chemical
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Figure 6: Bosonic density ρB vs. bosonic chemical potential µB at the thermodynamic
limit for a fermionic density ρF = 4/5. The local repulsion couplings are UFF = 4, and
UBF = 6, and we compare the behavior with and without next-neighbor interaction
between fermions using VFF = 0, 2. The inset shows the charge gap ∆B as a function
of the inverse of the system size L for VFF = 2 at ρB = 2/5, 1/2. In (b), we show the
density profile for bosons 〈n̂B

j 〉 (red circles) and one color of fermions 〈n̂F
σ, j〉, that is

eitherσ =↑ or ↓, (blue diamonds) with respect to the corresponding densities ρB, ρσF
for L = 205 at the plateau with ρB = 2/5 found in (a), along with dotted lines that
only act as visual guides of the oscillating pattern. The points correspond to DMRG
results and the lines are visual guides.

potential as the number of bosons grows, which is displayed in Fig. 6(a). Also, we follow
the evolution of the respective charge gaps from each plateau as we vary the next-neighbor
interaction according to 0≤ VFF ≤ 4 in Fig. 7(a). In the case of null next-neighbor interaction
between fermions, we find the expected MMI and SSMI plateaus at ρB = 1/5, 3/5 with charge
gaps of ∆ρB=1/5

B = 1.12 and ∆ρB=3/5
B = 2.02. By including the long-ranged interaction, the

ICDW insulator predicted in Sec. 3.1 emerges with a nonzero charge gap for next-neighbor
interactions higher than the critical value V ∗FF

ρB=1/2 ≈ 0.5, calculated using the ICDW order
parameter (9) and corroborated by the gap calculations (see Fig. 7(a)). Then, as we increase
VFF we observe that the charge gap from the ICDW insulator also increases monotonously,
with the specific value of ∆ρB=1/2

B = 1.09 for VFF = 2 corresponding to Fig. 6(a). On the other
hand, in the presence of nonzero next-neighbor interactions, the MMI decreases its charge
gap to ∆ρB=1/5

B = 0.21 for VFF = 2 as a consequence of the formation of composites between
fermions and bosons. The latter continues as we increase VFF until the corresponding plateau
vanishes at V ∗FF

ρB=1/5 ≈ 2.7 (see Fig. 7(a)). Also, we note that the charge gap of the SSMI state

increases to∆ρB=3/5
B = 3.75 for VFF = 2, but as the next-neighbor interaction grows further, the

gap starts to decrease, which is expected, since the free fermions of the spin-selective phase can
disturb more the insulating structure with higher VFF values, hence reducing its stability. All of
these scenarios are akin to the results found in Sec. 3.1 for the three corresponding insulators,
since between ρF = 2/3 and ρF = 4/5 there are no particular changes in their behavior.

Nevertheless, we do find a peculiar plateau in Fig. 6(a), not seen in previous sections,
when we turn on the next-neighbor interaction, which is located at ρB = 2/5 and has a charge
gap of ∆ρB=2/5

B = 0.83. This particular incompressible phase appears when the density of the
bosons equals half the density of the fermions; that is, ρB − ρF/2 = 0. As a means to shed
light on its nature, in Fig. 6(b) we show its corresponding boson and fermion density profiles,
where we can see similar behavior to the MCDW phase of Fig. 4(b) only with a difference in
the oscillation amplitudes of each species and the charge of each period, which in this case
is of two bosons and four fermions. In this case, the synchronization is between bosons and
only half of the fermion population, we corroborate this by looking at the wave vector of the
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Figure 7: (a) Phase diagram of the bosonic chemical potential µB vs next-neighbor
fermion interaction magnitude VFF at the thermodynamic limit for a fermionic den-
sity ρF = 4/5 without spin imbalance and local interactions UFF = 4 and UBF = 6.
The colored regions exhibit the evolution of the insulator states shown in Fig. 6(a),
which are surrounded by SF regions and include the MMI at ρB = 1/5, the SSMI at
ρB = 3/5, the ICDW at ρB = 1/2 and the SSCDW at ρB = 2/5. (b) SSCDW order
parameter OSSCDW

σ,ρ at the corresponding density ρ = 2/5 for a balanced mixture as
a function of VFF in the thermodynamic limit for the same parameters as (a). The
vertical dashed line denotes the critical value V ∗FF

ρB=2/5 after which OSSCDW
ρ differs

from zero. A horizontal dashed line is added to highlight the zero value of the order
parameter. The inset shows the extrapolation to the thermodynamic limit of the wave
vector of the largest contribution in the continuous Fourier transform kmax/2π of the
bosonic (red) and fermionic (blue) density profiles, for VFF = 2. The critical value
V ∗FF
ρB=1/2 for the ICDW phase is calculated using the corresponding order parameter

(9). The dots correspond to extrapolations from DMRG results, while the lines are
visual guides.

highest contribution in each species profile, which extrapolated to the thermodynamic limit at
VFF = 2 tends to k = 2πρ with ρ = ρB = ρF/2 = 2/5 (see inset of Fig. 7(b)). This scenario is
analogous to what happened with the MMI and SSMI phases in a balanced mixture [67], then
we denote this insulator as a spin-selective CDW (SSCDW), in the following we will show that
it has the properties of a spin-selective insulator.

Next, we explore the behavior of the system at the given fermionic density as we consider
nonzero spin-population imbalance. Therefore, in Fig. 8(a) we exhibit the ρB − µB graph for
ρF = 4/5 with a next-neighbor interaction of VFF = 1 and different cases of spin-imbalance
given by I = 0 and I = 1/6. Without spin imbalance (black open squares), we observe the
expected plateaus corresponding to the MMI with gap ∆ρB=1/5

B = 0.82, the SSMI with gap

∆
ρB=3/5
B = 3.57, and the SSCDW with a gap of ∆ρB=2/5

B = 0.56. We do not clearly see the
ICDW plateau, not because there is none, but because its charge gap has a small value of
∆
ρB=1/2
B = 0.09, which is difficult to note at this scale. After increasing the spin-population im-

balance to I = 1/6, we find that the charge gap of the MMI barely changes to ∆ρB=1/5
B = 0.86,

while the SSMI splits into two plateaus at ρB = 8/15, 2/3 with corresponding charge gaps of
∆
ρB=8/15
B = 2.00 and ∆ρB=2/3

B = 1.97. On top of that, we notice that the plateau associated
with the SSCDW phase at ρB = 2/5 also splits into two incompressible phases at ρB = 1/3,
7/15 with charge gaps of ∆ρB=1/3

B = 0.11 and ∆ρB=7/15
B = 0.54, respectively, which is further

emphasized by the inset in Fig. 8(a).
We show the corresponding density profiles for the insulator at ρB = 7/15 in Fig. 8(b),

here we observe the characteristic CDW coupling between spin-up fermions and bosons with
seven particles per period of each coupled component, indicating that it also corresponds to
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Figure 8: Bosonic density ρB vs. bosonic chemical potential µB at the thermodynamic
limit for a fermionic density ρF = 4/5, local interactions UFF = 4, UBF = 6, and next-
neighbor interaction VFF = 1. Here we compare the behavior with and without spin
imbalance using I = 0, 1/6. The inset shows a close-up of the region where the
SSCDW splits because of the nonzero spin-population imbalance. In (b) we show
the density profile for bosons 〈n̂B

j 〉 (red circles) and spin-up fermions 〈n̂F
↑, j〉 (blue

diamonds) with respect to the corresponding densities ρB, ρ↑F for L = 205 at the
plateau with ρB = 7/15, found in (a), along with corresponding dotted lines that
only act as visual guides. The points correspond to DMRG results, while the lines are
visual guides.

a SSCDW phase. The insulator at ρB = 1/3 also follows an analogous behavior with the
corresponding periodicity, not shown here. Moreover, by looking at the bosonic correlation
function



b̂†
x b̂x+y

�

1 in Fig. 9(a) for the imbalanced case from Fig. 8(a) at ρB = 2/5 we see
a potential decay indicating its SF nature until an edge effect appears as a sudden decrease
in the correlation function, while the SSCDW plateaus at ρB = 1/3, and 7/15 possess an
exponential decay, characteristic of an insulator state, hence the SSCDW states are separated
by a superfluid phase.

Now we focus on one of the splitted SSCDW insulators, specifically ρB = 1/3, and show
that the uncoupled fermionic spin component is not insulating. For this we fix ρB = ρ

↓
F = 1/3

and study the dependence ofρ↑F on its corresponding chemical potential µ↑F, which we calculate
in an analog way as (7). This graph, shown in Fig. 9(b), exhibits the MMI and SSMI phases

at ρ↑F = 1/3, 2/3, respectively with corresponding gaps ∆
ρ
↑
F=1/3

F,↑ = 0.93 and ∆
ρ
↑
F=2/3

F,↑ = 2.12,

nevertheless for ρ↑F = 7/15, density at which the bosonic charge gap is nonzero (see Fig. 8(a)),
the spin-up fermionic gap is closed in the thermodynamic limit, emphasized by the inset of
Fig. 9(a). This indicates that the spin-up fermions are in a gapless phase inside this SSCDW
insulator.

After establishing the spin-selective character of the SSCDW phase, we propose a corre-
sponding order parameter OSSCDW

σ,ρ as an extension of (10)

OSSCDW
σ,ρ =

−1
L2

L
∑

j,l

ei2πρ( j+l)
¬

n̂B
j −ρB

¶¬

n̂F
σ,l −ρ

σ
F

¶

, (11)

where we specify the spin asσ =↑, ↓.2 In Fig. 7(b), we show OSSCDW
σ,ρ=2/5 for a range of VFF values

1The correlation functions



b̂†
x b̂x+y

�

are calculated by averaging over x to remove finite size effects due to the
CDW oscillations in the system.

2The SSCDW phase exhibits the same finite-size effect as the MCDW phase where one has to measure its prop-
erties with one boson less than the expected, then we use the same procedure from Sec. 3.2 for the calculation of
the bosonic gaps, density profiles, and order parameters.
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Figure 9: (a) Bosonic correlation function



b̂†
x b̂x+y

�

averaged over x as a function

of y for a lattice of size L = 135 at the fermionic densities ρ↑F = 7/15, ρ↓F = 1/3
and different bosonic densities ρB = 1/3 (light blue), 2/5 (orange) and 7/15 (dark
blue). We use a log-log scale to emphasize the superfluid or insulating behavior of the
correlation functions and consider the interaction parameters UF F = 4, UBF = 6 and
VF F = 1. (b) Spin-up fermionic density ρ↑F vs the corresponding fermionic chemical
potential µ↑F at the thermodynamic limit with interactions UFF = 4, UBF = 6, VFF = 1
and the rest of the densities given by ρB = 1/3 and ρ↓F = 1/3. The inset shows the
extrapolations of the fermionic charge gap∆↑F for ρ↑F = 1/3, 7/15 and 2/3. The lines
are visual guides, while the points correspond to DMRG results.

with the parameters of the balanced case from Fig. 7(a) for which we use either σ =↑ or ↓ and
ρσF = ρF/2. We note that after the critical value V ∗FF

ρB=2/5 ≈ 0.1 both the order parameter and
the corresponding gap (Fig. 7(a)) increase from zero. For an imbalanced case, we checked
that the definition (11) also works as an order parameter using the corresponding coupled
fermionic component. Inside the balanced SSCDW phase, half of the fermions are uncoupled
from the insulator structure, this decreases its stability with higher VFF as seen in a reduction
of both the gap and order parameter in Fig. 7. For large enough VFF, we expect this behavior
to break the insulator and transition the ground state to a SF phase. Even then, the SSCDW
phase appears only for ρB+ρF ≥ 1 since in this region the chain gets saturated with all of the
carriers, which forces the coupling to only contain one type of fermion and not both, in contrast
to what happens with the MCDW. This condition is also independent of the spin-population
imbalance since it only deals with the complete fermionic and bosonic densities.

3.4 Phase diagram for nonzero spin-population imbalance

According to the previous sections, there are two spin-selective phases in the present long-
ranged mixture model, so it is of great value to analyze how the phase diagram from Fig. 1(a)
changes as we increase the spin-population imbalance. This is depicted in Fig. 10, where
we exhibit the phase diagram for I = 0, 1/6, 1/2 and 1, using the corresponding density
relations for non-zero spin-population imbalance found in previous sections. Here, we observe
that the phase space configuration of the MMI (dark blue) and MCDW (brown) insulators is
invariant under the change of the spin-population imbalance, which further emphasizes its
spin-independent nature. On the other hand, as we increase I , we can see the splitting of the
spin-selective phases. In the case of the SSMI (dark green), the separation grows until the
spin-up insulator follows ρB = 1 while the other one matches the MMI line. For the SSCDW
(light green), there is an additional constraint, ρB+ρF ≥ 1; hence as the imbalance increases,
the spin-down phase shortens until it vanishes at I = 1, while the spin-up phase follows the
relation ρB−ρF = 0. In the case of the ICDW (purple line), the condition 1/2≤ ρF ≤ 1/(1+ I)
limits its phase space line as I grows until it converges at the point ρB = ρF = 1/2. Hence, for
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Figure 10: Phase diagram of the possible insulator phases that can appear in a Bose–
Fermi mixture with next-neighbor fermionic interactions for different values of the
spin-population imbalance I = 0, 1/6, 1/2, 1. The phases correspond to the MMI
(dark blue line), MCDW (brown line), SSMI (dark green line), SSCDW (light green
line), and ICDW (purple line and dot).

polarized fermions at half-filling the three different insulators found in this study follow the
single condition ρB − ρF = 0. This emphasizes how a study with spinor fermions can show
different emergent behaviors that can be elusive in an investigation with only scalar particles.

4 Bosonic next-neighbor interactions

Up to this point, we have only considered nonzero next-neighbor fermionic interactions, then
a good question is what happens when the long-ranged interaction is between the bosons only.
In order to answer this, we plot in Fig. 11 the ρB −µB graph for ρF = 2/5, 2/3, 4/5, keeping
the local interactions constant at UFF = 4 and UBF = 6 while turning on the next-neighbor
bosonic interaction VBB for values in the range 0 ≤ VBB ≤ 6. For ρF = 2/3 (Fig. 11(a)) and
VBB = 2 we find once again three plateaus corresponding to the MMI at ρB = 1/3, the SSMI at
ρB = 2/3 and the ICDW at ρB = 1/2 with charge gaps ∆ρB=1/3

B = 1.27, ∆ρB=2/3
B = 2.51 and

∆
ρB=1/2
B = 1.18, respectively. In this case, the main difference concerning VFF ̸= 0 is that the

plateaus of the MMI increase slightly, instead of decreasing as it happens in Fig. 4(a), which
shows that the charge gap has a dependence on the associated particle statistics of the long-
ranged interactions. Apart from that, for 1

2 ≤ ρF ≤
2
3 we found that just as Fig. 11(a), the

phase diagram for fermionic next-neighbor interactions is the same for bosonic next-neighbor
interactions (See Fig. 1).

On the other hand, at ρF = 2/5 (Fig. 11(b)) we do observe an additional incompress-
ible phase besides the ones in Fig. 4(a) when we turn on the long-ranged interaction to
VBB = 6. This new plateau is located at ρB = 1/2 and corresponds to the ICDW with charge
gap ∆ρB=1/2

B = 6.64. Here, since the bosons possess long-ranged interactions they can form
the CDW structure even in the absence of fermions, then in this case the ICDW appears for
any fermionic filling, as can be seen in Fig. 1(b). Apart from this insulator, we still find the
MMI and SSMI at ρB = 3/5 and ρB = 4/5 with gaps ∆ρB=3/5

B = 2.09 and ∆ρB=4/5
B = 2.31,

respectively. For this instance, both of them increase their stability with higher VBB. In Sec. 3.2
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Figure 11: Bosonic density ρB vs. bosonic chemical potential µB at the thermody-
namic limit for fermionic densities (a) ρF = 2/3, (b) ρF = 2/5 and (c) ρF = 4/5. The
local repulsion couplings are UFF = 4, and UBF = 6, and we compare the behavior
with and without next-neighbor interaction between bosons using VBB = 0, 2, 3, 6.
Each inset shows the charge gap ∆B as a function of the inverse of the system size L
for the corresponding nonzero VBB at characteristic bosonic densities ρB. The points
correspond to DMRG results and the lines are visual guides.

for VFF ̸= 0 we found that the long-ranged interactions reduced drastically the spin-selective
phase gap since the free fermions are enhanced by this interaction, and hence can disturb the
insulating structure. In this case, only the bosons have long-ranged interactions, and because
of that the stability of the phase is not damped. The MCDW phase still appears in the phase di-
agram but with a tiny charge gap of∆ρB=2/5

B = 0.26, considering the high value of the bosonic
interaction in this case, this suggests that the MCDW structure is more favorable for VFF ̸= 0.

Finally, in Fig. 11(c) we show the case for ρF = 4/5, which has analogous results as the
previous two fermionic densities. The ICDW appears with a charge gap of ∆ρB=1/2

B = 3.16, as

expected from Fig. 1(b). For the MMI and SSMI, their charge gaps increase to∆ρB=1/5
B = 1.16

and ∆ρB=3/5
B = 2.88, respectively, the same way as it happened for Fig. 11(a). On the con-

trary, the SSCDW arises with a small charge gap of ∆ρB=2/5
B = 0.26 similar to the MCDW in

Fig. 11(b).
In summary, the most relevant change to the phase diagram when we consider next-

neighbor interactions between bosons is the presence of the ICDW phase for all values of
the fermionic density ρF, which is depicted in Fig. 1.

5 Conclusions

In the present study, we have introduced three CDW insulators that emerge after taking into
account next-neighbor intraspecies interactions for a Bose–Fermi mixture model of two-color
fermions and scalar bosons at the hardcore limit. We used an MPS-based DMRG method to
obtain the ground state for given carrier densities and interaction parameters and subsequently
constructed plots of the bosonic density against the bosonic chemical potential to determine
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the presence of the corresponding incompressible phases. We proposed order parameters, as
well as constructed multiple density profiles and phase diagrams, varying the next-neighbor
interaction between fermions or bosons to characterize the properties of the cited insulators.

The effect of the long-ranged interactions on the well-known mixed Mott insulator
(MMI) [31,66] and the spin-selective Mott insulator (SSMI) [67–70] was studied, noting that
those insulators tend to disappear or remain stable, depending on whether the value of the
fermionic density is greater or less than ρF = 1/2 and the kind of species under long-ranged
interactions. For instance, we observed that for ρF < 1/2 and next-neighbor interactions
between fermions, the MMI (SSMI) phase remains stable (tends to disappear) when the long-
ranged coupling grows, while the opposite happens for ρF > 1/2. The above scenario is
exchanged if we consider long-ranged interaction between bosons instead of fermions.

An immiscible charge density wave (ICDW) phase emerges at ρB = 1/2, which has a CDW
order for both fermions and bosons that are completely out of phase. It was established that
this insulator only appears for 1/2≤ ρF ≤ 1/(1+I), which is associated with the system having
just enough fermions to create the characteristic dimerized lattice from the CDW order. The
gap from this incompressible phase grows with increasing next-neighbor fermion interaction
since this long-ranged repulsion provides stability to the CDW structure. The presence of
the phase was clarified by employing an order parameter constructed from a product of the
traditional CDW order parameter for each species, with a minus sign that accounts for the out-
of-phase oscillation. This quantity agrees with the gap opening and gives a stronger argument
for the determination of the critical point. Exchanging fermions with bosons for the next-
neighbor interaction removes the left border of this phase, allowing this phase to occur at any
fermionic density.

On the other hand, another non-trivial insulator appears for the condition ρB − ρF = 0,
where both species have CDW orders with a characteristic wave vector proportional to the
density of both species, which we denote as mixed charge density wave (MCDW). We charac-
terize its critical transition using an order parameter analog to the ICDW one where we change
the wave vector to the corresponding one for the MCDW phase, which we corroborate with
the bosonic gap calculations. This phase only appears for ρB + ρF ≤ 1 and for a fermionic
density of ρF = 2/5 it has a unit cell of length five sites that contains two particles of each
species. This phase is favored, and its bosonic gap increases with the next-neighbor interaction
between fermions or bosons.

A total number of carriers greater than the lattice size (ρB +ρF ≥ 1) and interactions open
the possibility to spin-selective states, a fact that was corroborated by the emergence of the
spin-selective charge density wave (SSCDW) insulator when turning on the long-ranged inter-
action between fermions or bosons. In this state, one kind of fermion is itinerant, while the
other couples with the bosons to establish an insulator state that fulfills ρB−ρ

↑,(↓)
F = 0 and ex-

hibits interleaved CDW profiles with a global pattern. We showed explicitly the spin-selective
character of this state by breaking the SU(2) symmetry, i.e., under a spin-population imbal-
ance, this state splits into two SSCDW insulators, which are separated by a superfluid phase.
Finally, a spin-selective order parameter was proposed and used to identify the superfluid-
SSCDW critical point.

The present study unearthed three different CDW insulators induced by long-ranged inter-
actions, however, some aspects need to be explored in the future. For instance, what happens
if the hardcore approximation is relaxed? In this case, we anticipate that the new CDW insula-
tors will emerge along with the MMI and SSMI states between every two trivial bosonic Mott
insulators (ρB = n, with n being an integer). This has already been observed for the MMI and
SSMI phases, where the relations that they follow change to ρB +ρF = n and ρB +ρ

↑,(↓)
F = n,

respectively [68]. Either way, we do not discount the appearance of other insulators that could
emerge from reducing the hardcore restriction.
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This study is focused on a particular set of values for the local interspecies and intraspecies
interactions, but it is important to think of the effect that changing these parameters can have
on these insulators. By setting UFF, the insulator states are expected to arise from critical
values of the Bose–Fermi couplings, which will depend on each phase, as has been shown in
previous studies without long-ranged interactions [66–70]. For instance, we observed that
for ρF = 4/5, the stability of the SSCDW and ICDW insulators increases for higher values
of the local interspecies interaction UBF, since this parameter modulates the mutual behavior
between species that characterize these CDW insulators. On the other hand, a small increase in
the local fermionic interaction UFF can lead to a charge gap increase in the ICDW phase, due to
the localization of the fermions in the CDW order, and a decrease in the SSCDW phase stability
because of stronger perturbations caused by the free fermions on the insulator. However, a
more thorough study has yet to be done.

The ground state evolution under the simultaneous effect of the next-neighbor interaction
between fermions or bosons and/or the inclusion of interspecies long-ranged couplings was
not widely explored. However, some preliminary results suggest that the insulator states un-
earthed in this paper will emerge. Moreover, we do not disregard the possibility of finding
new states under these conditions. Nevertheless, this falls outside the scope of this work.

We trust that our investigation can inspire future research on the extended Bose–Fermi
Hubbard model and specifically the previously shown incompressible phases since their CDW
character presents an opportunity to observe new emerging behavior in mixtures that could
give rise to possible applications in industry [100]. Fortunately, the ICDW phase has been
observed in the excitonic system of GaAs bilayers recently [34], then an experimental obser-
vation of the other insulators would be a crucial input for the research on this topic. The latter
could be done in the same condensed matter system where the long-ranged interactions of
the dipolar excitons play a crucial role [33–37], while cold-atom setups also present a great
opportunity, here the long-ranged interaction can be fulfilled using polar molecules [101,102]
which could be potentially loaded in an optical lattice, or Rydberg-dressed atoms [103–105]
where proposals of extended Hubbard models have been made. These possible experimental
realizations along with the present proposal of phases with long-ranged interactions open the
pathway to an amalgam of new strongly-correlated insulators in low-dimensional systems.
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A Particle-hole symmetry

In this appendix, we will show that the Hamiltonian (1)-(4) has a particle-hole symmetry in
the hardcore limit for the bosons which allows us to simplify the phase diagrams in Fig. 1.
First, we consider the symmetry of the fermions in the system and then we address the case
for the bosons.
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We introduce the charge conjugation operator P̂ which changes each filled Fock state for
a vacuum one and vice-versa

P̂ |1〉 → |0〉 , (A.1)

P̂ |0〉 → |1〉 . (A.2)

Because of the Pauli exclusion principle, this operator is well-defined for each fermionic site.
To generalize the concept for a set of fermionic sites the charge conjugation operator is defined
through its effect on the creation and annihilation operators f̂ †

σ, j and f̂σ, j , respectively [106]

P̂ f̂ †
σ, jP̂

−1 = (−1) j f̂σ, j , (A.3)

P̂ f̂σ, jP̂−1 = (−1) j f̂ †
σ, j , (A.4)

for each spin σ =↑, ↓ and site j. With these expressions, we see that the fermionic number
operators n̂F

σ, j transform under P̂ as

P̂ n̂F
σ, jP̂

−1 = (−1)2 j f̂σ, j f̂ †
σ, j (A.5)

= 1− n̂F
σ, j . (A.6)

Now let us show that the fermionic Hamiltonian (3) is invariant under the effect of P̂ . The
fermionic hopping term shows directly this property

P̂
�

f̂ †
σ, j f̂σ, j+1 +H.c.
�

P̂−1 = (−1)2 j+1 f̂σ, j f̂ †
σ, j+1 +H.c. (A.7)

= f̂ †
σ, j f̂σ, j+1 +H.c. (A.8)

On the other hand, the fermionic on-site interaction term from (3) transforms as

P̂
�

n̂F
↑, j n̂

F
↓, j

�

P̂−1 =
�

1− n̂F
↑, j

��

1− n̂F
↓, j

�

(A.9)

= n̂F
↑, j n̂

F
↓, j + 1−
�

n̂F
↑, j + n̂F

↓, j

�

. (A.10)

In this case, the interaction exchange is not directly invariant under the transformation. Nev-
ertheless, the extra terms that appear are either constant or of the form of a chemical potential
contribution, since we are working in a number-conserving Hilbert space these do not change
the ground state of the Hamiltonian as their main effect is to shift the zero in the energy and
chemical potential scales. For the fermionic next-neighbor interaction, we recover an analog
result

P̂
�

n̂F
j n̂

F
j+1

�

P̂−1 =
�

2− n̂F
j

��

2− n̂F
j+1

�

(A.11)

= n̂F
j n̂

F
j+1 + 4− 2
�

n̂F
j + n̂F

j+1

�

, (A.12)

where the factors of 2 appear because n̂F
j = n̂F

↑, j + n̂F
↓, j .

For the bosons the charge conjugation operator (A.1) and (A.2) is ill-defined since there can
be more than two states per site, nevertheless for the hardcore limit we extend the definition
to the bosonic Hilbert space as

P̂ b̂†
j P̂
−1 = b̂ j , (A.13)

P̂ b̂ jP̂−1 = b̂†
j , (A.14)

where we omit the (−1) j factor due to the bosonic nature of the many-body wave function.
This does not affect the result from (A.5)-(A.6) since the hardcore bosons have the same on-site
anti-commutation relations as the fermions, hence P̂ n̂B

j P̂
−1 = 1− n̂B

j .
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With (A.13)-(A.14) it is direct to show that

P̂
�

b̂†
j b̂ j+1 +H.c.
�

P̂−1 = b̂†
j b̂ j+1 +H.c. (A.15)

Moreover, the general bosonic interaction transforms as

P̂
�

n̂B
j n̂B

l

�

P̂−1 = n̂B
j n̂B

l + 1−
�

n̂B
j + n̂B

l

�

. (A.16)

Then, the bosonic Hamiltonian (2) is also invariant under this extended charge conjugation
operator.

When we look at the interspecies Hamiltonian (4) it is noted that both definitions (A.3)-
(A.4) and (A.13)-(A.14) together have the following effect on the interaction term

P̂
�

n̂B
j n̂F

l

�

P̂−1 = n̂B
j n̂F

l + 2−
�

2n̂B
j + n̂F

l

�

. (A.17)

Hence, we conclude that (1)-(4) is invariant under the charge conjugation transformation
up to constant and chemical potential terms. This means that if we find the corresponding
ground state to a given set of parameters and densities of particles ρB, ρ↑F and ρ↓F because
of the particle-hole symmetry this will also be the ground state for the fillings 1−ρB, 1−ρ↑F
and 1 − ρ↓F, respectively. The ground-state energies will differ because of the extra terms in
the transformation of the interactions, but this will only apply a shift in both the energy scale
and the chemical potential scale in the ρB −µB curves used along the present work, meaning
that the physical properties of the system remain invariant. Because of this we only need to
analyze half of the phase diagrams from Fig. 1.

B Order of the phase transitions

In the main text, three different CDW insulators are characterized, and we suggest that future
work should consider the study of the associated superfluid-insulator transition. Here, we
provide a first insight into this topic by analyzing the system’s ground-state energy as we
increase the model’s long-range interactions.

For each of the three fermionic densities from Sec. 3.1, 3.2, 3.3 we plot in Fig. 12 the ground
state energy E scaled by the system size and extrapolated to the thermodynamic limit as a
function of VFF ∈ [0, 2] for each corresponding highlighted CDW insulator, which are the ICDW
(ρF = 2/3,ρB = 1/2), MCDW (ρF = 2/5,ρB = 2/5) and the SSCDW (ρF = 4/5,ρB = 2/5),
respectively. At VFF = 0 the systems start in a superfluid phase, and as we increase VFF the
superfluid-insulator transition occurs at a critical interaction showed as a vertical line of the
corresponding color and line style. In all cases shown, the energy curve is smooth across
the transition, from which we discard a first-order transition where a discontinuity in the
energy’s first derivative would generate a nudge in the curves. This agrees with previous
literature on CDW phases which affirm its transition to be of second order [107]. Even then,
a more meticulous study should be developed in the future for the present mixture system to
characterize the nature of the phase transition.
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Figure 12: Ground state energy E scaled by the system size in the thermodynamic
limit as a function of VFF. Three density combinations are shown, each associated
with the emergence of a CDW insulator, corresponding to ρF = 2/3, ρB = 1/2 (pur-
ple, ICDW), ρF = 2/5, ρB = 2/5 (orange, MCDW) and ρF = 4/5, ρB = 2/5 (cyan,
SSCDW), with onsite interactions UFF = 4 and UBF = 6. Vertical lines with the corre-
sponding color and line style show the critical point of the transition for each insu-
lating state, obtained in Sec. 3.1, 3.2, 3.3.

References

[1] I. M. Georgescu, S. Ashhab and F. Nori, Quantum simulation, Rev. Mod. Phys. 86, 153
(2014), doi:10.1103/RevModPhys.86.153.

[2] E. Altman et al., Quantum simulators: Architectures and opportunities, PRX Quantum 2,
017003 (2021), doi:10.1103/PRXQuantum.2.017003.

[3] A. F. Andreev and E. P. Bashkin, Three-velocity hydrodynamics of superfluid solutions, J.
Exp. Theor. Phys. 42, 164 (1975).

[4] G. E. Volovik, V. P. Mineev and I. M. Khalatnikov, Theory of solutions of a superfluid Fermi
liquid in a superfluid Bose liquid, J. Exp. Theor. Phys. 42, 342 (1975).

[5] C. Andreani, C. Pantalei and R. Senesi, Mean kinetic energy of helium atoms in fluid 3He
and 3He-4He mixtures, J. Phys.: Condens. Matter 18, 5587 (2006), doi:10.1088/0953-
8984/18/24/001.

[6] I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod.
Phys. 80, 885 (2008), doi:10.1103/RevModPhys.80.885.

[7] I. Bloch, J. Dalibard and S. Nascimbène, Quantum simulations with ultracold quantum
gases, Nat. Phys. 8, 267 (2012), doi:10.1038/nphys2259.

[8] C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Sci-
ence 357, 995 (2017), doi:10.1126/science.aal3837.

[9] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge and R. G. Hulet,
Observation of Fermi pressure in a gas of trapped atoms, Science 291, 2570 (2001),
doi:10.1126/science.1059318.

22

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.007
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/PRXQuantum.2.017003
https://doi.org/10.1088/0953-8984/18/24/001
https://doi.org/10.1088/0953-8984/18/24/001
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1038/nphys2259
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.1059318


SciPost Phys. Core 8, 007 (2025)

[10] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles and C.
Salomon, Quasipure Bose-Einstein condensate immersed in a Fermi sea, Phys. Rev. Lett.
87, 080403 (2001), doi:10.1103/PhysRevLett.87.080403.

[11] Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A. Görlitz and
W. Ketterle, Two-species mixture of quantum degenerate Bose and Fermi gases, Phys. Rev.
Lett. 88, 160401 (2002), doi:10.1103/PhysRevLett.88.160401.

[12] G. Roati, F. Riboli, G. Modugno and M. Inguscio, Fermi-Bose quantum degenerate
40K-87Rb mixture with attractive interaction, Phys. Rev. Lett. 89, 150403 (2002),
doi:10.1103/PhysRevLett.89.150403.

[13] C. Silber, S. Günther, C. Marzok, B. Deh, P. W. Courteille and C. Zimmermann, Quantum-
degenerate mixture of fermionic lithium and bosonic rubidium gases, Phys. Rev. Lett. 95,
170408 (2005), doi:10.1103/PhysRevLett.95.170408.

[14] K. Günter, T. Stöferle, H. Moritz, M. Köhl and T. Esslinger, Bose-Fermi mix-
tures in a three-dimensional optical lattice, Phys. Rev. Lett. 96, 180402 (2006),
doi:10.1103/PhysRevLett.96.180402.

[15] M. Zaccanti, C. D’Errico, F. Ferlaino, G. Roati, M. Inguscio and G. Modugno, Con-
trol of the interaction in a Fermi-Bose mixture, Phys. Rev. A 74, 041605 (2006),
doi:10.1103/PhysRevA.74.041605.

[16] J. M. McNamara, T. Jeltes, A. S. Tychkov, W. Hogervorst and W. Vassen, Degen-
erate Bose-Fermi mixture of metastable atoms, Phys. Rev. Lett. 97, 080404 (2006),
doi:10.1103/PhysRevLett.97.080404.

[17] Th. Best, S. Will, U. Schneider, L. Hackermüller, D. van Oosten, I. Bloch and D.-S. Lüh-
mann, Role of interactions in 87Rb-40K Bose-Fermi mixtures in a 3D optical lattice, Phys.
Rev. Lett. 102, 030408 (2009), doi:10.1103/PhysRevLett.102.030408.

[18] T. Fukuhara, S. Sugawa, Y. Takasu and Y. Takahashi, All-optical formation of quantum de-
generate mixtures, Phys. Rev. A 79, 021601 (2009), doi:10.1103/PhysRevA.79.021601.

[19] B. Deh, W. Gunton, B. G. Klappauf, Z. Li, M. Semczuk, J. Van Dongen and K. W. Madi-
son, Giant Feshbach resonances in 6Li-85Rb mixtures, Phys. Rev. A 82, 020701 (2010),
doi:10.1103/PhysRevA.82.020701.

[20] M. K. Tey, S. Stellmer, R. Grimm and F. Schreck, Double-degenerate Bose-Fermi mixture
of strontium, Phys. Rev. A 82, 011608 (2010), doi:10.1103/PhysRevA.82.011608.

[21] T. Schuster, R. Scelle, A. Trautmann, S. Knoop, M. K. Oberthaler, M. M. Haverhals,
M. R. Goosen, S. J. J. M. F. Kokkelmans and E. Tiemann, Feshbach spectroscopy and
scattering properties of ultracold Li + Na mixtures, Phys. Rev. A 85, 042721 (2012),
doi:10.1103/PhysRevA.85.042721.

[22] S.-K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang and P. S. Julienne, Ultracold mix-
tures of atomic 6Li and 133Cs with tunable interactions, Phys. Rev. A 87, 010702 (2013),
doi:10.1103/PhysRevA.87.010702.

[23] V. D. Vaidya, J. Tiamsuphat, S. L. Rolston and J. V. Porto, Degenerate Bose-
Fermi mixtures of rubidium and ytterbium, Phys. Rev. A 92, 043604 (2015),
doi:10.1103/PhysRevA.92.043604.

23

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.007
https://doi.org/10.1103/PhysRevLett.87.080403
https://doi.org/10.1103/PhysRevLett.88.160401
https://doi.org/10.1103/PhysRevLett.89.150403
https://doi.org/10.1103/PhysRevLett.95.170408
https://doi.org/10.1103/PhysRevLett.96.180402
https://doi.org/10.1103/PhysRevA.74.041605
https://doi.org/10.1103/PhysRevLett.97.080404
https://doi.org/10.1103/PhysRevLett.102.030408
https://doi.org/10.1103/PhysRevA.79.021601
https://doi.org/10.1103/PhysRevA.82.020701
https://doi.org/10.1103/PhysRevA.82.011608
https://doi.org/10.1103/PhysRevA.85.042721
https://doi.org/10.1103/PhysRevA.87.010702
https://doi.org/10.1103/PhysRevA.92.043604


SciPost Phys. Core 8, 007 (2025)

[24] R. Onofrio, Physics of our days: Cooling and thermometry of atomic Fermi gases, Phys.-
Uspekhi 59, 1129 (2016), doi:10.3367/UFNe.2016.07.037873.

[25] Y.-P. Wu, X.-C. Yao, H.-Z. Chen, X.-P. Liu, X.-Q. Wang, Y.-A. Chen and J.-W. Pan, A quan-
tum degenerate Bose-Fermi mixture of 41K and 6L, J. Phys. B: At. Mol. Opt. Phys. 50,
094001 (2017), doi:10.1088/1361-6455/aa658b.

[26] F. Schäfer, N. Mizukami, P. Yu, S. Koibuchi, A. Bouscal and Y. Takahashi, Experimental
realization of ultracold Yb-7Li mixtures in mixed dimensions, Phys. Rev. A 98, 051602
(2018), doi:10.1103/PhysRevA.98.051602.

[27] I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy
and C. Salomon, A mixture of Bose and Fermi superfluids, Science 345, 1035 (2014),
doi:10.1126/science.1255380.

[28] M. Delehaye, S. Laurent, I. Ferrier-Barbut, S. Jin, F. Chevy and C. Salomon, Critical veloc-
ity and dissipation of an ultracold Bose-Fermi counterflow, Phys. Rev. Lett. 115, 265303
(2015), doi:10.1103/PhysRevLett.115.265303.

[29] X.-C. Yao, H.-Z. Chen, Y.-P. Wu, X.-P. Liu, X.-Q. Wang, X. Jiang, Y. Deng,
Y.-A. Chen and J.-W. Pan, Observation of coupled vortex lattices in a mass-
imbalance Bose and Fermi superfluid mixture, Phys. Rev. Lett. 117, 145301 (2016),
doi:10.1103/PhysRevLett.117.145301.

[30] R. Roy, A. Green, R. Bowler and S. Gupta, Two-element mixture of Bose and Fermi super-
fluids, Phys. Rev. Lett. 118, 055301 (2017), doi:10.1103/PhysRevLett.118.055301.

[31] S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita and Y. Takahashi, Interaction
and filling-induced quantum phases of dual Mott insulators of bosons and fermions, Nat.
Phys. 7, 642 (2011), doi:10.1038/nphys2028.

[32] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand and B. Urbaszek,
Colloquium: Excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys.
90, 021001 (2018), doi:10.1103/RevModPhys.90.021001.

[33] D. A. Ruiz-Tijerina, Bose-Fermi mixtures in 2D solid-state superstructures, Nat. Mater. 22,
153 (2023), doi:10.1038/s41563-022-01469-x.

[34] C. Lagoin, S. Suffit, K. Baldwin, L. Pfeiffer and F. Dubin, Dual-density waves with
neutral and charged dipolar excitons of GaAs bilayers, Nat. Mater. 22, 170 (2022),
doi:10.1038/s41563-022-01409-9.

[35] Y. Zeng, Z. Xia, R. Dery, K. Watanabe, T. Taniguchi, J. Shan and K. F. Mak, Exci-
ton density waves in Coulomb-coupled dual Moiré lattices, Nat. Mater. 22, 175 (2023),
doi:10.1038/s41563-022-01454-4.

[36] B. Gao et al., Excitonic Mott insulator in a Bose-Fermi-Hubbard system of Moiré WS2/WSe2
heterobilayer, Nat. Commun. 15, 2305 (2024), doi:10.1038/s41467-024-46616-x.

[37] Z. Lian et al., Valley-polarized excitonic Mott insulator in WS2/WSe2 Moiré superlattice,
Nat. Phys. 20, 34 (2023), doi:10.1038/s41567-023-02266-2.

[38] C. Zerba, C. Kuhlenkamp, L. Mangeolle and M. Knap, Tuning transport
in solid-state Bose-Fermi mixtures by Feshbach resonances, (arXiv preprint)
doi:10.48550/arXiv.2409.18176.

24

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.007
https://doi.org/10.3367/UFNe.2016.07.037873
https://doi.org/10.1088/1361-6455/aa658b
https://doi.org/10.1103/PhysRevA.98.051602
https://doi.org/10.1126/science.1255380
https://doi.org/10.1103/PhysRevLett.115.265303
https://doi.org/10.1103/PhysRevLett.117.145301
https://doi.org/10.1103/PhysRevLett.118.055301
https://doi.org/10.1038/nphys2028
https://doi.org/10.1103/RevModPhys.90.021001
https://doi.org/10.1038/s41563-022-01469-x
https://doi.org/10.1038/s41563-022-01409-9
https://doi.org/10.1038/s41563-022-01454-4
https://doi.org/10.1038/s41467-024-46616-x
https://doi.org/10.1038/s41567-023-02266-2
https://doi.org/10.48550/arXiv.2409.18176


SciPost Phys. Core 8, 007 (2025)

[39] P. Upadhyay et al., Giant enhancement of exciton diffusion near an electronic Mott insu-
lator, (arXiv preprint) doi:10.48550/arXiv.2409.18357.

[40] A. Albus, F. Illuminati and J. Eisert, Mixtures of bosonic and fermionic atoms in optical
lattices, Phys. Rev. A 68, 023606 (2003), doi:10.1103/PhysRevA.68.023606.

[41] M. A. Cazalilla and A. F. Ho, Instabilities in binary mixtures of one-
dimensional quantum degenerate gases, Phys. Rev. Lett. 91, 150403 (2003),
doi:10.1103/PhysRevLett.91.150403.

[42] M. Lewenstein, L. Santos, M. A. Baranov and H. Fehrmann, Atomic Bose-
Fermi mixtures in an optical lattice, Phys. Rev. Lett. 92, 050401 (2004),
doi:10.1103/PhysRevLett.92.050401.

[43] L. Mathey, D.-W. Wang, W. Hofstetter, M. D. Lukin and E. Demler, Luttinger liquid of
polarons in one-dimensional boson-fermion mixtures, Phys. Rev. Lett. 93, 120404 (2004),
doi:10.1103/PhysRevLett.93.120404.

[44] R. Roth and K. Burnett, Quantum phases of atomic boson-fermion mixtures in optical
lattices, Phys. Rev. A 69, 021601 (2004), doi:10.1103/PhysRevA.69.021601.

[45] H. Frahm and G. Palacios, Correlation functions of one-dimensional Bose-Fermi mixtures,
Phys. Rev. A 72, 061604 (2005), doi:10.1103/PhysRevA.72.061604.

[46] M. T. Batchelor, M. Bortz, X. W. Guan and N. Oelkers, Exact results for the one-
dimensional mixed boson-fermion interacting gas, Phys. Rev. A 72, 061603 (2005),
doi:10.1103/PhysRevA.72.061603.

[47] Y. Takeuchi and H. Mori, Mixing-demixing transition in one-dimensional boson-fermion
mixtures, Phys. Rev. A 72, 063617 (2005), doi:10.1103/PhysRevA.72.063617.

[48] L. Pollet, M. Troyer, K. Van Houcke and S. M. A. Rombouts, Phase diagram of Bose-
Fermi mixtures in one-dimensional optical lattices, Phys. Rev. Lett. 96, 190402 (2006),
doi:10.1103/PhysRevLett.96.190402.

[49] L. Mathey and D.-W. Wang, Phase diagrams of one-dimensional Bose-Fermi mixtures of
ultracold atoms, Phys. Rev. A 75, 013612 (2007), doi:10.1103/PhysRevA.75.013612.

[50] K. Sengupta, N. Dupuis and P. Majumdar, Bose-Fermi mixtures in an optical lattice, Phys.
Rev. A 75, 063625 (2007), doi:10.1103/PhysRevA.75.063625.

[51] A. Mering and M. Fleischhauer, One-dimensional Bose-Fermi-Hubbard
model in the heavy-fermion limit, Phys. Rev. A 77, 023601 (2008),
doi:10.1103/PhysRevA.77.023601.

[52] K. Suzuki, T. Miyakawa and T. Suzuki, p-wave superfluid and phase sep-
aration in atomic Bose-Fermi mixtures, Phys. Rev. A 77, 043629 (2008),
doi:10.1103/PhysRevA.77.043629.

[53] D.-S. Lühmann, K. Bongs, K. Sengstock and D. Pfannkuche, Self-trapping of
bosons and fermions in optical lattices, Phys. Rev. Lett. 101, 050402 (2008),
doi:10.1103/PhysRevLett.101.050402.

[54] M. Rizzi and A. Imambekov, Pairing of one-dimensional Bose-Fermi mixtures with unequal
masses, Phys. Rev. A 77, 023621 (2008), doi:10.1103/PhysRevA.77.023621.

25

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.007
https://doi.org/10.48550/arXiv.2409.18357
https://doi.org/10.1103/PhysRevA.68.023606
https://doi.org/10.1103/PhysRevLett.91.150403
https://doi.org/10.1103/PhysRevLett.92.050401
https://doi.org/10.1103/PhysRevLett.93.120404
https://doi.org/10.1103/PhysRevA.69.021601
https://doi.org/10.1103/PhysRevA.72.061604
https://doi.org/10.1103/PhysRevA.72.061603
https://doi.org/10.1103/PhysRevA.72.063617
https://doi.org/10.1103/PhysRevLett.96.190402
https://doi.org/10.1103/PhysRevA.75.013612
https://doi.org/10.1103/PhysRevA.75.063625
https://doi.org/10.1103/PhysRevA.77.023601
https://doi.org/10.1103/PhysRevA.77.043629
https://doi.org/10.1103/PhysRevLett.101.050402
https://doi.org/10.1103/PhysRevA.77.023621


SciPost Phys. Core 8, 007 (2025)

[55] P. P. Orth, D. L. Bergman and K. Le Hur, Supersolidity of cold-atom Bose-Fermi mixtures
in optical lattices, Phys. Rev. A 80, 023624 (2009), doi:10.1103/PhysRevA.80.023624.

[56] X. Yin, S. Chen and Y. Zhang, Yang-Yang thermodynamics of a Bose-Fermi mixture, Phys.
Rev. A 79, 053604 (2009), doi:10.1103/PhysRevA.79.053604.

[57] S. Sinha and K. Sengupta, Phases and collective modes of a hardcore Bose-Fermi mixture in
an optical lattice, Phys. Rev. B 79, 115124 (2009), doi:10.1103/PhysRevB.79.115124.

[58] E. Orignac, M. Tsuchiizu and Y. Suzumura, Competition of superfluidity and den-
sity waves in one-dimensional Bose-Fermi mixtures, Phys. Rev. A 81, 053626 (2010),
doi:10.1103/PhysRevA.81.053626.
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