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Abstract

We study equilibrium states and ordering regimes of a quasi-one-dimensional system of
hard superdisks (anisotropic particles interpolating between disks and squares) where
the centers of the particles are constrained to move on a line. A continuous change from
a quasi-isotropic to a tetratic regime is found upon increasing the density. Somewhat un-
expected, for isobaric states, systems with larger and more anisotropic particles in the
tetratic regime are denser than systems with smaller and less anisotropic particles in a
quasi-isotropic regime. Close packing behaviour is characterised by exponents describ-
ing the behaviour of the pressure, the angular fluctuations and the angular correlation
length. We obtain two universal, shape-independent relations between them.
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1 Introduction
Particle shape and spatial confinement have a fundamental influence on the structural and
phase behavior of colloidal suspensions [1,2] which is particularly intriguing in three dimen-
sions. For instance, rod-like particles such as hard cylinders can undergo a first-order phase
transition from an orientationally disordered isotropic phase to an ordered nematic phase
as the density increases [3]. Onsager’s pioneering work demonstrated that the isotropic-
nematic transition can occur even at vanishingly small packing fractions for infinitely long
hard rods [4]. Moreover, simulations revealed that the particle shape, rather than just the
aspect ratio, is a critical factor in stabilization of different phases. For instance, elongated
rod-like cylindrical particles can stabilize smectic A phases, while more compact ellipsoidal
particles do not [5–7]. In two-dimensional confinement with a variable slit width, it was
shown that a cylindrical shape increases the propensity for nematic ordering compared to an
ellipsoid shape [8]. These findings illustrate the subtle interplay between orientational and
packing entropies arising from the particle geometry [9].

Spatially confining geometries like slits, cylindrical pores, and rough surfaces further en-
rich the phase behavior by inducing inhomogeneous density profiles, anchoring and biaxial
ordering in the vicinity of confining surfaces [10–18]. In the case of strictly two-dimensional
(2D) confinement the freezing is not yet fully understood, even for systems with only ex-
cluded volume interactions [19–23]. A well-known example is the freezing of 2D hard disks,
which has long been debated whether it follows the Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) mechanism involving two continuous phase transitions [24–28]. Simulations sug-
gest that the freezing occurs in two steps, with the first step being a first-order liquid-hexatic
phase transition [22]. The situation becomes more intricate when considering anisotropic
particles like hard squares, rectangles, and pentagons [29–32]. The competition between
packing and orientational entropy further enriches phase behavior with the stabilization of
e.g. tetratic, rhombatic and nematic phases [23, 33]. Simulation studies of two-dimensional
hard squares showed that at high densities they assemble into a square solid phase, formed
in two steps through an intermediate tetratic phase having quasi-long range four-fold orien-
tational and bond orders [29]. For hard pentagons, simulations have uncovered a series of
structural transitions, including the formation of a hexagonal rotator crystal phase, followed
by the emergence of a striped phase due to geometrical frustration [34]. Experiments on col-
loidal systems with square and pentagon shapes pointed out that the ordering transitions do
not always align with simulation predictions [35,36]. Li et al. [37] demonstrated that tetrati-
cally shaped molecules confined on a spherical surface can develop tetratic orientational order
at high molecular density, accompanied by eight disclinations arranged in an anticube config-
uration. Similarly, Walsh and Menon [38] observed a progression of phases in vibrated hard
squares, including a phase with tetratic orientational order, short-range translational correla-
tions, and slowed rotational dynamics.

Here we study quasi-one-dimensional (q1D) systems, bridging the gap between one- and
two-dimensional systems. These systems, while seemingly simple, can exhibit unusual phase
behavior due to the strong impact of particle shape and the constraints of reduced dimen-
sionality [39–43]. In q1D systems, particle centers are confined to very narrow channels, but
retain orientational degrees of freedom. This unique confinement leads again to a rich in-
terplay between translational and rotational degrees of freedom. Systems of hard rectangles
confined to move on a straight line exhibit a diverging orientational correlation length, while
hard ellipses do not [43]. The introduction of some additional transversal positional free-
dom as e.g. for hard disks confined between hard parallel walls can lead to the emergence of
glassy behavior, jamming, and fragile-to-strong fluid crossovers, even without genuine phase
transitions [44–55]. The behaviour of confined hard anisotropic particles such as squares and
rectangles is even more complicated [56,57].
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The study of q1D systems is particularly interesting from a theoretical standpoint due to the
availability of exact solutions. Starting from the equation of state [58] and correlation func-
tions [59] in the Tonks gas of one-dimensional hard rods, analytical results are also available
for wider classes of q1D fluids with attractive interactions [55, 60–63], and even the pair po-
tential can be obtained from pair-distribution functions [64]. In contrast to the more complex
phase behavior observed in 2D and 3D systems of anisotropic particles, the nature of phase
transitions and the crossovers between different regimes in one-dimensional (1D) systems is
generally less controversial [65,66]. Even though seemingly simple 1D hard body models can-
not show genuine thermodynamic phase transitions, they can still exhibit unusual behavior at
high pressures [67].

Tuning the shape between sphere and cube (superballs) and between disk and square
(superdisk) showed that the varying shape allows for the formation of various solid phases
such as plastic and rhombohedral crystals in three dimensions [68] and the so-called Λ1 and
Λ2 phases in two dimensions [69], highlighting the importance of particle geometry in self-
assembly processes. However, to the best of our knowledge, there are no studies that focus
on the effect of continuously tuning the shape on the ordering behaviour of q1D systems. In
addition to this, glassy and jamming behaviors observed in q1D hard disk fluids [44, 49, 70]
are not explored in any q1D anisotropic hard body fluids.

The aim of our work is to investigate the role of particle shape in q1D hard-body systems,
focusing on the change from continuous angular symmetry to discrete 4 -fold symmetry. By
deforming circular disk particles into square shapes, we seek to elucidate the structural, ori-
entational, and thermodynamic signatures near close packing where particles become highly
ordered. With the help of an exact theoretical transfer operator approach and complementary
simulations, we present a detailed analysis of the order parameter, the equation of state, and
the orientational correlation for hard superdisk particles confined to move along a line. Central
results are the divergent behaviour of pressure and the disappearance of angular fluctuations
upon reaching close packing, the peculiar transition behavior from quasi-isotropic to tetratic
states and the appearance of certain shape-independent scaling relations.

2 Hard superdisk model

We investigate a quasi-one-dimensional (q1D) system comprising N freely rotating hard su-
perdisk particles with centers confined to a one-dimensional (1D) line of length L, i.e. the
particles have a positional freedom along the x axis and an orientational one (ϕ) in the x–y
plane as shown in Fig. 1. The border of the hard superdisk is described by

h := |x |n + |y|n − an = 0 , (1)

if the particle’s center is located in the origin of the two-dimensional x–y plane and ϕ = 0.
With the deformation parameter n varying between 2 and∞, the particle shape continuously
varies from a circular disk to a square. Note that a is half of the side length of the superdisk,
which corresponds to the radius of the disk if n= 2.

We define by σ the (closest) contact distance of two adjacent particles. For two superdisks
with orientation angles ϕ1 and ϕ2 at distance σ, their borders are described by

h1 := |x cos (ϕ1) + y sin (ϕ1)|
n + |−x sin (ϕ1) + y cos (ϕ1)|

n − an = 0 , (2a)

h2 := |(x −σ) cos (ϕ2) + y sin (ϕ2)|
n + |−(x −σ) sin (ϕ2) + y cos (ϕ2)|

n − an = 0 . (2b)

Note that h1 describes the border of particle 1, while h2 is for particle 2 (see Fig. 1). When the
two particles are in contact, the gradient of h1 and h2 must have opposite direction, i.e.

∇h1 = −µ∇h2 , (3)
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Figure 1: Schematic representation of hard superdisks with varying deformation pa-
rameter (n). The upper panel demonstrates how the superdisk transforms into the
circumscribing square as n increases, while the lower one shows the contact distance
between two superdisks having orientation angles ϕ1 and ϕ2, which are measured
from the y axis. Superdisks are constrained to move on a straight line (x axis), but
are allowed to rotate freely in the x–y plane.

where µ is a positive constant. Eqs. (2) and (3) together provide 4 equations for the unknown
x , y , σ and µ, where the angles of the neighboring particles and the deformation parameter
(n) are the input and from which σ can be determined numerically. The allowed configura-
tions for particles (1) = (x1,ϕ1), (2) = (x2,ϕ2) , . . . and (N) = (xN ,ϕN ) satisfy the condition
|x i+1 − x i| ≥ σ (ϕi ,ϕi+1). For both ϕ1 and ϕ2 close to zero, the contact distance can be ap-
proximated by the following analytical expression,

σ (ϕ1,ϕ2) = 2a

�

1+
ϕ2
+

2
−
ϕ2
−

2
−
|ϕ+|

n

n
+
(n− 1) |ϕ−|

n/(n−1)

n

�

, (4)

where ϕ+ = (ϕ1 +ϕ2)/2 and ϕ− = (ϕ1 −ϕ2)/2. Obviously, the contact distance is equal to
the diameter of the disk if n = 2, i.e. σ = d = 2a. In the square-limit (n → ∞), Eq. (4)

simplifies to σ = 2a
�

1+
ϕ2
+

2 −
ϕ2
−

2 + |ϕ−|
�

. We will use Eq. (4) in the analysis of the results.

Moreover, in the P →∞ limit, where all the particles are almost perpendicular to the x axis,
the two leading terms are:

σ(ϕ−) = d
�

1+
n− 1

n
ϕ

n/(n−1)
−

�

. (5)

In the following, the side length of the superdisk (d = 2a) is the unit of length and is set
to 1.

3 Theory and simulation method

To study the equilibrium properties of q1D superdisk system, we employ two complementary
approaches: a) the transfer operator method [71, 72] and b) Monte Carlo simulations [73].
These methods can be used to determine the equation of state, the orientation distribution
function, the tetratic order parameter, the angular fluctuations and the orientation correlation
length.

The transfer operator method (TOM) is an analytical approach, which is particularly ef-
fective for systems with first-neighbor interactions, using the one-dimensional pressure (P) as
an input parameter. The core of the TOM involves solving the following eigenvalue problem:

∫ π/2

0

dϕ2 K (ϕ1,ϕ2)ψi (ϕ2) = λiψi (ϕ1) , (6)
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where K (ϕ1,ϕ2) = kB T exp(−Pσ(ϕ1,ϕ2)/kB T )
P is the basic kernel, kB is the Boltzmann constant, T

is the temperature, and σ (ϕ1,ϕ2) is the contact distance between two superdisks. The solu-
tion of Eq. (6) are the eigenvalues (λi) and the corresponding eigenfunctions (ψi (ϕ1)). We

normalize the eigenfunctions as follows:
∫ π/2

0 dϕψ2
i (ϕ) = 1. Note that the angle is restricted

to be between 0 and π/2 due to the fourfold symmetry of the particle shape. Keeping the order
of eigenvalues as λ0 > λ1 > λ2 > . . ., we can determine key thermodynamic and structural
properties using the following equations,

G = −NkB T ln(λ0/ΛdB) , (7)

1
ρ
=

dG/N
dP

, (8)

f (ϕ) =ψ2
0(ϕ) , (9)

S = 2

∫ π/4

0

dϕ cos(4ϕ) f (ϕ) , (10)

and



ϕ2
�

= 2

∫ π/4

0

dϕϕ2 f (ϕ) . (11)

In these equations G is the Gibbs free energy, ΛdB is the de Broglie thermal wavelength,
ρ = N/L is the one-dimensional number density, f (ϕ) is the orientational distribution func-
tion, S is the tetratic order parameter and




ϕ2
�

describes the angular fluctuation. Using the
simplified formula for the contact distance near close packing, Eq. (5), the pressure depen-
dence of the density can be calculated analytically from the eigenvalue equation resulting in

ρ−1 = d + (2− 1/n)/(βP) . (12)

The orientational correlation length (ξ) is related to the orientational correlation function
between particle j and particle j + i as follows

g4(i) =



cos
�

4
�

ϕ j −ϕ j+i

���

− S2 ∼ exp(−i/ξ) . (13)

Using the TOM the orientational correlation length can be obtained with the help of two largest
eigenvalues [74]

1/ξ= ln (λ0/λ1) . (14)

In the case of hard superdisks, the solution of the eigenvalue problem (Eq. 5) requires
numerical methods due to the numerically obtained orientation-dependent contact distance.
We use the trapezoidal rule in the numerical integrations, with dϕ = π/10000, to ensure
accuracy in the vicinity of close packing. The eigenvalues and eigenfunctions are obtained
using a successive iteration method, with an initial guess of ψi(ϕ) =

p

2/π for all systems.
To support and complement our TOM calculations, we perform MC simulations in both

NPT (constant particle number, pressure, and temperature) and NLT (constant particle num-
ber, length, and temperature) ensembles. Our simulations typically involve 2000 particles,
though this number is increased for very correlated systems. We use the numerically obtained
contact distance (the solution of Eqs. (2) and (3)) to implement the overlap condition between
the particles. We initialize the system either from a lattice configuration or from a previously
equilibrated state. In NPT simulations, the system is allowed to equilibrate to its natural den-
sity under the applied pressure. Each simulation consists of 2 ·107 Monte Carlo steps (MCSs).
One MCS comprises N attempted single-particle moves and rotations. In NPT simulations, an
additional length change is attempted at each MCS using the standard acceptance criteria. The
maximum displacement for translations, the maximum angle for rotation, and the maximum
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distance for the length change are adjusted to maintain optimal acceptance ratios, typically
aiming for about 40-50% acceptance for each type of move. We characterize the structural
properties of the confined superdisks using several measures. The orientational distribution
function ( f ) and the order parameter (S) are computed with averaging of f and S over 105

snapshots as the snapshots are taken at every 100 MCSs throughout the simulation. The ori-
entational distribution function is calculated using 100 bins spanning the range of possible
orientations (from 0 to π/2, given the symmetry of the superdisks). The orientational corre-
lation function

�

g4(i)
�

is also computed from the snapshots to probe the long-range decay of
orientational order. The correlation length is determined with plotting ln

�

g4(i)
�

as a function
of i, where a linear fitting is made on the linear part of the curve. With the linear fitting, the
inverse of the negative slope corresponds to the orientational correlation length (see Eq. (13)).

4 Results

The one-dimensional system of hard disks (n= 2) does not exhibit positional and orientational
order in the entire range of the density. The only singularity in its phase behavior is the pressure
divergence at close packing as given by the Tonks-equation [58]

P =
kB Tρ

1−ρσ
, (15)

where σ is the contact distance between two hard disks and ρ = 1/σ is the close packing
density. Intuition suggests that the equation of state of q1D hard superdisks is perhaps similar
to that of hard disks if the contact distance is replaced with the orientationally averaged contact
distance as follows

P =
kB Tρ

1−ρ〈σ〉
, (16)

where 〈σ〉= 4
π2

∫ π/2
0 dϕ1

∫ π/2
0 dϕ2σ (ϕ1,ϕ2). With the same side length, d = 2a, the average

contact distance between two superdisks as well as the area and the average diameter of a
superdisk are monotonically increasing functions of the deformation parameter n. In this
sense, higher n corresponds to “larger” particles. Especially, a superdisk with n > 2 is always
larger than a disk. Thus, the pressure of superdisks should be higher than that of disks at a
given density. Superficially, this can be seen in Fig. 2 (main graph), where the MC simulation
and TOM results are shown together. As the deformation parameter (n) is increased, the curves
are shifted towards higher pressure, but the shape of the curves seems to be qualitatively the
same. However, there are differences which can be eventually linked to differences in the
ordering behavior between superdisks differing in n. We can see this more clearly if Pn/P2 is
plotted as a function of density, where Pn is the pressure of hard superdisks having deformation
parameter n and P2 is the Tonks pressure of hard disks (superdisk with n= 2). It can be seen
in Fig. 3 that the equation of state of superdisks is very different from that of hard disks.
This manifests itself in the intermediate peak and the close packing values of Pn/P2 (see inset
of Fig. 3). Denoting the close packing value of Pn/P2 as α, i.e. α := limρ∗→1 Pn/P2, where
ρ∗ = ρd, Eq. (12) implies that α = 2 − 1/n. This gives α = 3/2 for n = 2 and α = 2 for
n=∞, which agree with the result of Kantor and Kardar obtained for hard ellipses and hard
rectangles, respectively [43] and implies that α is discontinuous at n= 2, showing a jump from
1 to 1.5, related to the fact that the rotational symmetry of the particle changes abruptly from
a continuous SO(2) symmetry to a discrete fourfold C4 symmetry. Interestingly the largest
deviation between n > 2 and n = 2 cases occurs at intermediate densities, where Pn/P2 is
maximal. This is shown in the inset of Fig. 3. In the limit n→ 2, we obtained numerically that
the maximum of Pn/P2 goes to 1.75, i.e. this maximum also exhibits a jump at n = 2 due to
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Figure 2: The effect of the deformation parameter (n) on the equation of state of
q1D hard superdisks. The inset highlights the high-pressure behavior and shows the
TOM (lines) and the MC data (symbols). A dimensionless pressure and density are
defined by P∗ = Pd/kBT and ρ∗ = ρd.

Figure 3: The deviation between the equation of state of hard superdisks and that of
hard disks in the Pn/P2 vs. ρ∗ plane (lines: TOM, symbols: MC data). For squares,
n =∞, the highest pressure simulated is P∗ = 410, while for all other cases it is
only P∗ = 195. It can be seen that at very high pressures, in the vicinity of close
packing density, the simulations are inaccurate. The inset shows the maximum of
Pn/P2 (blue curve from TOM) and the high pressure (close packing) limit of Pn/P2
(black diamonds) as a function of n. The vertical dashed line in the inset indicates
the discontinuities occurring in Pn/P2 at n = 2. The analytic form α = 2 − 1/n is
shown as a continuous black curve.

the change of symmetry in the shape. The last interesting result in Fig. 3 is that some curves
intersect each other and consequently larger particles can have a lower pressure than smaller
ones at equal densities, which contradicts Eq. (16). This peculiar behaviour of hard superdisks
is seen more clearly in Fig. 4 (main graph), where the equation of states of n= 2.1 and n= 4
cases are shown together at high densities. The pressure of the smaller particles (n = 2.1) is
higher than that of larger particles (n= 4) between the two densities at which the two equation
of state curves intersect. This pressure inversion occurs only in a very narrow density window,
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Figure 4: The equation of state in the vicinity of close packing density (ρ∗ = 1) in P∗

vs. ρ∗ (main panel) and Pn/P2 vs. ρ∗ (inset) planes. The vertical dashed lines and
the filled circles delimit the density region where the smaller superdisks (n = 2.1)
have higher pressure than the larger ones (n= 4).

Figure 5: Comparison of the pressure ratios (Pn/P2) of hard superdisks (continuous
curve) and that of hard disks (dashed curve) interacting with the average contact
distance of hard superdisks. The inset shows an estimate, 1/〈σ〉 (continuous curve)
for a maximal isotropic density as a function of deformation parameter (n), while the
diamond symbols indicates ρm, which are the values of ρ∗ obtained by TOM where
(Pn/P2) is maximal.

while the systems exhibit “normal” behaviour below first cross point and above the second
one. The inset of Fig. 4 further shows the pressure ratio for n = 2.1 superdisks compared to
n = 2.5 . . . 4.5 in the intersection region. We observe that the density window of the pressure
inversion shrinks with increasing n, and it disappears completely at n = 4.5. Thus, pressure
inversion occurs only if the difference between the sizes of the smaller and larger particles is
not too high.

To understand the mechanism of pressure inversion, the emergence of the Pn/P2 peak
needs to be clarified. To do this, we plot Pn/P2 coming from Eq. (16) together with the
exact TOM solution of Eq. (6) in Fig. 5. According to Eq. (16), Pn/P2 should diverge at
ρ = 1/〈σ〉. This is however a spurious consequence of assuming an isotropic angular distri-
bution in Eq. (16), which cannot be true at very high densities. If superdisks are ordered fully
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(a) The tetratic order parameter as a function of
density for various n (cross symbols indicate the
state where Pn/P2 is maximal). Inset: the orienta-
tional distribution function as a function of angle
at ρ∗ = 0.9 for n = 2.25 (green, quasi-isotropic
state), n = 4 (blue, transitory state) and n =∞
(black, tetratic state).

(b) The angular fluctuation as a function of pres-
sure (symbols: MC data, lines: TOM). Inset: the
corresponding exponent, β , as a function of n.
(lines: TOM, symbols: fitted values of β from MC
data). The vertical dashed line indicates the dis-
continuity of β at n = 2, while the horizontal one
denotes the limiting value at n=∞.

Figure 6: The effect of deformation parameter (n) on the tetratic ordering.

parallel, the close packing density is the same (1/d) for all n, and ρ = 1/〈σ〉 can be considered
just as a maximal isotropic close packing density. One can see on the inset of Fig. 5 that the
density at which Pn/P2 is maximal decreases with increasing n similarly as 1/〈σ〉 does. There-
fore, the peak in Pn/P2 can be considered as a marker of a structural change from a weakly
ordered quasi-isotropic to an orientationally strongly ordered tetratic regime. The emergence
of the maximum in Pn/P2 is due to the competition between orientational and packing en-
tropies. On the left side of the Pn/P2 peak, the orientational entropy is more dominant than
the packing entropy, while on the right side the opposite occurs. Since the division of entropy
into sums of different terms is somewhat arbitrary, to avoid confusion, we define explicitly
the different entropy terms. The translational entropy is given by St = NkB(1− logρΛ), and
the orientational entropy is So = −NkB

∫

dϕ f (ϕ) log f (ϕ). These two terms give the ideal
part of the free energy, Fid = −T (St + So), while the whole remaining part is called excess
term, i.e. the total (exact) free energy can be written as F = Fid + Fexc . The excess part is
due to the interaction, in our case the hard body repulsion, which restrict how the particles
can be packed avoiding overlaps. Therefore the related entropy is called packing entropy,
Sp = −Fexc/T . Note that the competition between the orientational and packing entropies
gives rise to disorder–order phase transitions in higher dimensions. If the orientation entropy
wins over the packing entropy, the phase is isotropic, whereas if the packing entropy wins,
the phase is ordered [3, 9]. The reason why Eq. (16) worsens in the vicinity of Pn/P2 peak
is that it overestimates (underestimates) the contribution of orientational (packing) entropy.
Therefore Eq. (16) can be considered as an equation of state of the perfect isotropic system,
which cannot describe orientationally ordered system.

To illustrate the relation between orientational ordering and the decrease occurring in
Pn/P2, Fig. 6a shows the tetratic order parameter as a function of density and Fig. 6b the ori-
entation angle fluctuation as function of pressure. At fixed density, tetratic ordering becomes
stronger when moving from disks to squares. For the particular density ρ∗ = 0.9, the in-
set of Fig. 6a demonstrates that the orientational distribution function is practically isotropic
for n = 2.25 (green curve), while it is strongly ordered tetratic for n = ∞ (black curve).
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We can also see in Fig. 6a that the particles are still only moderately ordered (S < 0.75) at
ρ = 1/〈σ〉, while the tetratic order parameter is very low (S < 0.25) at ρ = 1/dmax. Here
dmax is the length of the particle’s diagonal, thus 1/dmax is a characteristic density below which
orientation effects are to be expected unsignificant. Note that even weak tetratic ordering has
an effect on Pn/P2 resulting in some deviation between Eq. (16) and the exact solution (see
Fig. 5). The maximum of Pn/P2 is not a sharp transition point between the isotropic and
tetratic regime (as expected), but it divides the regions of weakly and strongly ordered struc-
tures. Therefore, the left side of the Pn/P2 peak can be considered as a quasi-isotropic regime,
while the right side a tetratic regime. This confirms that the Pn/P2 peak and the correspond-
ing density can be considered as a marker of structural change between quasi-isotropic and
tetratic regime. Interestingly as n is changed between 2 and∞, the order parameter varies
between 0.68 and 0.71 at the Pn/P2 peak (see Fig. 6), i.e. S ≈ 0.7 can be considered as a
second marker of the crossover.

In the light of above, the pressure inversion shown in Fig. 4 can be explained as follows.
The smaller (less anisotropic) superdisks are in a quasi-isotropic regime, while the larger (more
anisotropic) particles form a very ordered tetratic regime at the left border of the pressure in-
version density. This results in a higher effective contact distance between the smaller particles
than the contact distance between the almost parallel larger ones. The right density border of
the pressure inversion appears since also the smaller particles order parallel, and the same an-
gular fluctuations result in a higher contact distance between the larger and more anisotropic
particles than between the smaller ones. Particles with a high n are always “effectively larger”
than particles with a small n (due to angular fluctuations), thus the pressure inversion disap-
pears with increasing size difference (as e.g. superdisks with n> 4.5 compared with n= 2.1).

We now proceed to understand the role of angular fluctuations, which should vanish as
the system becomes perfectly ordered in the tetratic regime (S → 1). From Fig. 6b one sees
that, up to P∗ ≈ 2, 〈ϕ2〉 is constant for all values of n and close to π2/48 ≈ 0.21 which is
the value of the angular fluctuation in the isotropic regime, indicating that the system is in a
“quasi-isotropic” regime. After an intermediate transition regime, 〈ϕ2〉 ∝ Pβ . Our numerical
fit for β is presented in the inset of Fig. 6b. It can be seen that β is discontinuous with a
jump from 0 to −1 at n= 2 and goes to −3/2 with increasing n, which is the limiting value of
hard squares. The simplest equation, which can describe this change is β = 1/n− 3/2. This
equation perfectly fits the numerically obtained data (inset of Fig. 6b). Note that our results
for β are consistent with β = −1 and −3/2 values obtained for hard ellipses and rectangles,
because n= 2 for the ellipse and n=∞ for the rectangle [43]. We observe that the decay of
the angular fluctuations becomes steeper with the increasing shape anisotropy (increasing n)
in the vicinity of close packing.

The pressure dependence of the orientational correlation length is presented in Fig. 7. This
quantity increases linearly above P∗ ≈ 100 for all n values in logξ–log P∗ plane, which means
that ξ is proportional to Pγ. A numerical fit to the linear part of Fig. 7 provides the values of
the exponent γ (inset of Fig. 7), showing that γ starts from 0 and converges to 1/2 for n→∞.
The value γ = 0 obtained for n = 2 is reasonable, because the hard disks are orientationally
uncorrelated, while the value γ= 1/2 for n=∞ is identical with the value obtained for hard
rectangles [43]. The simple form γ= 1/2−1/n fits the numerically obtained results very well.
Note that ξ increases faster than the asymptotic power law up to P∗ ≈ 20, which supports our
finding about the structural change from quasi-isotropic to tetratic order.

The divergence of the orientational correlation length (for n > 2) upon pressure increase
near close packing can be rationalized by an inspection of single-particle, local angular fluc-
tuations δϕloc vs. the global angular fluctuation δϕglob =

p

〈ϕ2〉 [43]. On the one hand, to
obtain the pressure dependence of δϕloc near the close packing, we realize that the local angu-
lar fluctuations are related to the local positional fluctuations, δxloc, via the contact distance,
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Figure 7: The effect of deformation parameter (n) on the orientational correlation
length (ξ). The main panel shows ξ as a function of P∗ (symbols: MC data, lines:
TOM). Inset: corresponding exponent γ (with ξ ∼ Pγ) as a function of n (symbols:
fitted values of γ, continuous curve: the analytic form γ = 1/2− 1/n). The dashed
horizontal line corresponds to the limiting value of hard squares (n=∞).

Figure 8: Part of a MC snapshot of q1D hard squares at ρ∗ = 0.99. For clarity, the
tilt (orientation) angle is coded in the colour of the squares and also shown as points
above the particle (right y axis). Some domains of type (a) with (approximately)
constant tilt angle are marked by red rectangles and a green line shows a defect,
separating two such domains. Other domains of type (b) (where the orientation
angle increases or decreases) are marked by blue rectangles.

δxloc ≈ σ(δϕloc), where σ is given by Eq. (5). From this, we have δϕloc ∝ (δxloc)(n−1)/n.
Moreover, δxloc is nothing else but the average free space between the neighbouring particles,
δxloc = 1/ρ−d∝ 1/P, see Eq. (12), thus we infer a local angular fluctuation∝ P(1−n)/n. On
the other hand, the global fluctuation is δϕglob∝ Pβ/2 = P−3/4+1/(2n). Therefore, the ratio of
local to global fluctuation δϕloc/δϕglob∝ P−1/4+1/(2n) is going to zero towards close packing
for n> 2. Thus, the system can build such global fluctuations only via a large number (going to
infinity at close packing) of correlated local fluctuations [43]. This can be realized in two ways:
(a) via domains of parallel particles, possessing the same orientation, and (b) “rotating” do-
mains in which the particle orientation angle is either increasing or decreasing. For illustration,
we show part of a MC simulation snapshot of squares in Fig. 8 (n=∞, ρ∗ = 0.99, P∗ ∼ 195)

11

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.008


SciPost Phys. Core 8, 008 (2025)

Figure 9: The combinations α+β ,α+2β+γ and β+γ as a function of n. The symbols
are fitted values from the TOM results, while the continuous lines show the constants
resulting from the exact value α= 2− 1/n and the assumptions β = 1/n− 3/2, and
γ= 1/2− 1/n.

where examples of domains of type (a) are marked with red rectangles and those of type (b)
with blue rectangles. Both types of domains, with fixed tilt angle and “rotating” ones, have an
extend of a few particles (less than 10), in accordance with the correlation length 5.6 obtained
from TOM. The domains of type (a) appear to be orientationally locked.

Finally, we present some combinations of the high pressure quantities in Fig. 9. The ana-
lytic formulas for α,β and γ result in constant values for α+β ,α+2β+γ, and β+γ, i.e., these
combinations do not depend on the superdisk deformation parameter. We takeα+β = 1/2 and
β+γ= −1 as basic scaling relations for the universal behaviour of q1D hard superdisks, while
α+2β +γ= −1/2 can be derived from these two equations. The first equation (α+β = 1/2)
couples the close packing behaviour of Pn/P2 and the decay of angular fluctuations at very
high pressures, while the second equation (β +γ= −1) connects the angular fluctuations and
correlations. As α = Pn/P2 in the close packing limit (ρ∗ → 1) is a measure of the deviation
from the q1D hard disks’ (Tonks) equation of state, α+β = 1/2 means that the larger (smaller)
deviation in the equation of states result in a weaker (stronger) angular fluctuations. The re-
lation β + γ = −1 means that a faster (slower) decay of the angular fluctuations is always
accompanied by longer (shorter) orientational correlation.

5 Conclusion

We studied the effect of varying shape on the ordering behavior of quasi-one-dimensional
hard superdisks which encompasses an abrupt change from a continuous SO(2) symmetry
to a discrete fourfold C4 symmetry at the value n = 2 of the deformation parameter. This
discontinuity of the rotational symmetry implies that the behaviour of the angular fluctuations
and the equation of state are discontinuous at close packing as a function of n: α jumps from
1 to 1.5 and β jumps from 0 to −1 at n = 2, where α := limρ∗→1 Pn/P2 and 〈ϕ2〉 ∼ Pβ . The
exponent for the orientational correlation length (ξ ∼ Pγ) is not discontinuous since γ is 0
at n = 2 and the system stays uncorrelated in the limit of vanishing fourfold symmetry. The
most remarkable result of our study is that the close packing exponents (α, β and γ) fulfill
two shape independent relations, namely α+ β = 1/2 and β + γ = −1. This means that the
pressure, the orientational distribution and the angular correlation are closely linked. E.g.,
smaller angular fluctuations give higher pressures at close packing via Pn/P2 = 1/2− β , and
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from ξ〈ϕ2〉 ∼ 1/P one sees that the decay of 〈ϕ2〉 is faster than the divergence of ξ. Regarding
the shape dependence of the exponents, α and γ increase, while β decreases with n. Therefore,
the pressure ratio (Pn/P2) increases as the shape of the particle becomes more anisotropic, i.e.
the pressure of more anisotropic particles is higher than that of less anisotropic ones. Hence,
q1D hard superdisks are never identical to q1D parallel hard superdisks (hard rods), because
effects of angular fluctuations are present even near close packing. The contribution of the
angular fluctuations in the pressure is ∆P = (1 − 1/n)P2, which gives an excess pressure
∆P = P2/2 and ∆P = P2 at close packing for n→ 2 (disk limit) and n→∞ (square limit),
respectively.

The other important result of our study is that the emerging intermediate peak in Pn/P2
can be considered as a marker of isotropic-tetratic crossover. Analyzing Pn/P2(ρ) in a q1D
hard superellipse system could reveal whether this quantity is also capable of marking the
transition between quasi-isotropic and nematic regimes. Moreover, Pn/P2 may constitute a
good marker of other structural changes such as the fluid-zigzag structural change happening
in single-file hard disk systems [47]. Therefore, the density dependence of Pn/P2 should be
examined in other q1D systems without true phase transitions to see the predicting power of
Pn/P2 for structural changes.

In perspective, we speculate that the scaling relations α+β = 1/2 and β+γ= −1 are also
valid for superellipses (interpolating between ellipses and rectangles). In this case, the aspect
ratio (k) and the deformation parameter (n) play the key role in the formation of orientation-
ally ordered structure. If k > 1, the system has two-fold symmetry and the superellipses form
a nematic phase at high pressures. According to Kantor and Kardar [43], α, β and γ do not
depend on the aspect ratio, as α = 1.5 (2), β = −1 (-1.5) and γ = 0 (0.5) for the ellipses
(rectangles), which agree with our α = 2− 1/n, β = 1/n− 3/2 and γ = 1/2− 1/n findings.
The check of the generality of α + β = 1/2 and β + γ = −1 relations for other shapes and
confinement is left for future studies.
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