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Abstract

Motivated by the significant influence of the defects in the dynamics of the natural or
man-made transportation systems, we propose an open, dynamically disordered, totally
asymmetric simple exclusion process featuring bulk particle attachment and detach-
ment. The site-wise dynamic defects might randomly emerge or vanish at any lattice
location, and their presence slows down the motion of the particles. Using a mean-field
approach, we obtain an analytical expression for both particle and defect density and
validate them using Monte Carlo simulation. The study investigates the steady-state
characteristics of the system, including phase transitions, analysis of boundary layers,
and phase diagrams. Our approach streamlines the defect dynamics by integrating two
parameters into one called the obstruction factor, which helps in determining an effective
binding constant. The impact of the obstruction factor on the phase diagram is explored
across various combinations of binding constants and detachment rates. A critical value
of the obstruction factor is obtained, about which an infinitesimal change results in a
substantial qualitative change in the structure of the phase diagrams. Further, the effect
of the detachment rate is studied, and critical values along which the system observes
a quantitative transition of the stationary phases are obtained as a function of the ob-
struction factor. Overall, the system shows stationary phases ranging from three to seven
depending upon the value of the obstruction factor, the binding constant, and the detach-
ment rate. Moreover, we scrutinized the impact of the obstruction factor on the shock
dynamics and found no finite-size effect.
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1 Introduction

Transport has an indispensable role in our everyday lives and over the decades, there has
been a surge of interest to explore stochastic transport phenomena of various complex non-
equilibrium systems ranging from natural to man-made such as vehicular traffic flow, pedes-
trian motion [1–5]. In eukaryotic cells, vehicles are molecular motors that proceed along
intracellular filaments or DNA/mRNA strands, or ions migrating through ion channels [6–8].
One of the characteristics of all such non-equilibrium systems is a non-zero current in a steady
state. In contrast to the thermodynamically balanced systems, there is no overarching theoret-
ical framework to figure out the characteristics of the aforementioned systems. The stochastic
transport in such situations is captured by the paradigmatic model totally asymmetric simple
exclusion process (TASEP) [9, 10]. In its simplest incarnation, TASEP was proposed to model
biopolymerization, such as the synthesis of RNA on DNA templates [11, 12]. It captures the
collective non-equilibrium dynamics of active species represented by particles traveling across
a one-dimensional lattice. In an open TASEP, the particles are allowed to enter and depart at
the extreme ends of a lattice and hop along a preferred direction within the bulk while taking
the hard-core exclusion principle into account. From a theoretical standpoint, TASEP has been
extensively studied as an archetype model of jamming, helped by the property that it is exactly
solvable and that a mean-field approach gives the same result as the exact solution [2,13–20].

TASEP has undergone several generalizations that imitate different facets of transportation
ranging from micro to macro. One such non-conserving model that integrates an equilibrium
process, i.e., Langmuir Kinetics (LK), with the non-equilibrium process TASEP is known as
TASEP-LK. The LK dynamics represent the adsorption/desorption of particles on a lattice and
their rates are re-scaled while preserving the inverse proportionality to the system size in order
to study the conflict between the TASEP and the LK dynamics. This model is inspired by
the diffusive and directed motion along the microtubule that is alternated by the processive
molecular motors [21] and encompasses several intricate aspects, including the presence of a
delocalized domain wall resulting in a phase of coexistence between low and high densities
[22–24].
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The existence of a disorder that slows or momentarily obstructs particle movement is one
of the important aspects that are visible in almost all transport systems. For instance, a vehicle
on the road may be stopped or slowed down by other vehicles or periodically switching traffic
lights or during gene transcription; the molecular traffic is often ”roadblocked” by histones that
form the core of nucleosomes or by microtubule-binding proteins, etc. [25, 26]. These obsta-
cles (or defects) can either be static or dynamic, leading to position-dependent hopping rates
(site-wise disorder) and, thus, have a significant influence on the system dynamics. The de-
fects have been extensively studied in the context of TASEP. Earlier, TASEP with static obstacles
has been studied extensively. These defects permanently reside at a location called a specific
site, and these sites were assigned hopping rates that were distinct from the others. Examples
include the investigation of the role of single local inhomogeneity or quenched site-wise inho-
mogeneity, a random distribution of spatially varying hopping rates [27–31]. Dynamic defects,
on the other hand, are more pertinent to research due to their ability to replicate the dynamics
of several natural and realistic transport systems. Stochastic dynamic defects, alternatively
known as dynamic defects, can emerge or disappear randomly at specific sites, altering the
hopping rate compared to unaffected sites. This variation may impede particle movement,
but particles move at their regular hopping rate in unobstructed regions. Previously, studies
have explored uncontrolled disordered systems involving a single dynamic defect that binds or
unbinds at a fixed location within a TASEP model with periodic boundary conditions [32] and
has also been studied for open boundary conditions [33]. Several other modifications, such
as interaction dynamics [34], non-conserving dynamics [35], reservoir crowding [36], etc.,
were incorporated into an open TASEP model where a single dynamic defect binds/unbinds at
a fixed site. Another generalization of a single dynamic defect has been proposed in a closed
lattice [37] where the defect diffuses as well as binds/unbinds throughout the lattice (no fixed
site).

The scenario where multiple dynamic defects appear/disappear on the lattice, also termed
a site-wise disorder, has been explored less. Although it seems more realistic and is capa-
ble of mimicking natural phenomena such as the traffic jams due to the binding/unbinding
of microtubule-associated proteins [38] from microtubules which are observed in several in
vivo [39] and in vitro, [40] experiments. In literature, the study of site-wise disorder has
been investigated under the framework of exclusion process [41,42]. Some versions of TASEP
incorporating dynamic disorder (ddTASEP) have been investigated in a resource-constrained
environment [43] whereas in [44], the model has additional feedback (the particle-defect in-
teraction) where defects are removed by particles. Further, recently an effort has been made
to numerically study a generalization of an open ddTASEP model that incorporates the Lang-
muir kinetics for particles [45]. However, it lacks three crucial aspects: (i) the role of defects
in the particle dynamics is not incorporated at the boundary sites which ultimately govern
the stationary properties of the system such as boundary-induced phase transitions; (ii) lack
of uniform proportionality in the affected attachment rate and affected hopping rate of par-
ticles due to defects and (iii) the steady-state numerical solution for density is insufficient to
characterize the influence of all the parameters. Therefore, in light of the above-mentioned
shortcomings, we propose to analyze the role of the non-conserving dynamics of the totally
asymmetric simple exclusion process with the dynamic disorder. In contrast to the previously
studied model [42, 45], we have inculcated the concept of an affected hopping rate at the
entry site also, which significantly impacts the system’s stationary state properties, particu-
larly when compared to the reference [45], the obstruction due to the defects in the proposed
model affects the particle hopping and attachment rates in uniform proportion. To explore the
dynamics of the model, we approach the system theoretically via mean-field approximation,
and we mainly intend to address the following points: (i) What impact do site-wise dynamic
defects have on the stationary properties of the standard TASEP-LK system, including particle
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Figure 1: A diagrammatic representation of a non-conserving TASEP model depicting
the dynamics of particles (highlighted in pink) and defects or obstacles (illustrated
in a blue mesh). (a) Depicts different particle dynamics, including entry, exit, hop-
ping, and attachment/detachment, along with the corresponding rates at which these
events occur in the presence and absence of defects. (b) Illustrates the dynamics of
defects on the lattice, including defect binding/unbinding and their corresponding
rates.

flux, density profiles, and stationary phases? (ii) What factors affect the system’s station-
ary properties? (iii) Does the system remain symmetric with respect to particle-hole in the
presence of dynamic defects? (iv) Does the domain wall remain localized in the presence of
defects? If yes, what is the impact of defects on the domain wall?

2 Model overview

In actual transportation scenarios, obstacles frequently impede movement. On highways, these
obstacles might be intersections or traffic signals, while in the microscopic domain, molecular
traffic is often obstructed by proteins that are bound or temporary alterations to the ’lanes’
through which traffic flows. Motivated by these stochastic disorders, we propose a model rep-
resenting an open, dynamically disordered TASEP with LK dynamics. It is represented through
a one-dimensional discrete lattice comprising L sites, each labeled from j = 1 to L. Here, par-
ticles enter through the initial site ( j = 1), traverse both horizontally and vertically within the
bulk (2 ≤ j ≤ L − 1), and exit via the final site ( j = L). Particles moving horizontally only
exhibit a unidirectional horizontal movement (left to right). Moreover, the adsorption/ des-
orption of particles also pertains to the lattice, where particles can also join or leave the lattice
by a vertical movement from all sites other than the first and last sites. The lattice also includes
a different type of entity known as defects (or obstacles), which introduce dynamic disorder
and impede the movement of particles throughout the lattice. In contrast to particle move-
ment, the defects only exhibit vertical movement and can randomly bind/unbind on every
lattice site. Individually, both particles and defects adhere to the hard-core exclusion princi-
ple. Therefore, each site can only accommodate a single particle, defect, or a combination of
the two. As depicted in FIG. 1, the events showcasing possible particles and defects dynam-
ics on the lattice, along with their corresponding occurrence probabilities, are illustrated as
follows:
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1. Particle dynamics: The dynamics of particles are significantly influenced by defect oc-
cupancy; hence, these dynamics at various lattice locations are characterized as follows:

(a) At entry: If the first site has no particle, a particle can enter the lattice through this
site with a rate α if it has no defect or with a rate αpd (pd < 1) otherwise. In case
the first site is particle-occupied and its immediate right neighbor is particle-vacant,
the particle can move to this neighboring site at a unit rate if the arrival site has no
defect or with a rate of pd otherwise.

(b) At bulk: If a particle occupies a bulk site, it first attempts detachment at a rate
of wd . If detachment fails and its immediate right neighbor is particle-vacant, the
particle moves to the neighboring site with a unit rate if no defect is present at
the arrival site or with a rate of pd otherwise. At a bulk site without a particle, a
particle can attach at a rate of wa if no defect is present at the arrival site or at a
rate of wapd otherwise.

(c) At exit: A particle present at the last lattice site can leave the lattice with a rate β .

2. Defect dynamics: A defect can randomly bind (unbind) at a site without (with) a defect
with a rate k+ (k−). Note that the particle’s presence on the arrival site has no effect on
the dynamics of defects, but the converse is not true.

An event such as hopping of the particle, attachment/detachment of the particle, or bind-
ing/unbinding of the defect is selected depending on the probability proportional to their
corresponding rates.

Notably, the proposed model is distinctive from the ref. [42] in the sense that the attach-
ment and detachment of particles are considered to make it more realistic. Moreover, this
study not only addresses the dynamics of defects (binding/unbinding) at the boundary sites
but also examines its impact on particle dynamics through modified rates at the boundaries, a
consideration which was absent in the references [42,45]. In the later part, we will explicitly
discuss that these considerations will produce a non-trivial effect on the stationary-state char-
acteristics of the model. In the subsequent section, we will offer mathematical underpinning
by formulating master equations that depict the temporal evolution of the average particle and
defect density, elucidating the process involved, and obtaining the stationary-state solution by
solving them in the thermodynamic limit.

3 Master equations

Individually, both particles and defects obey the hard-core exclusion principle; therefore, we
introduce two binary random variables σ j and ν j each denoting the occupancy of the particle
and defect on the lattice, respectively. The random variable σ j(or ν j) = 0/1 signifies the
absence/presence of particle (or defect) at jth lattice site. Now, these variables are employed
to formulate the master equation showcasing the evolution of the average occupation number
for each entity, starting with the particles. The particle density in the bulk of the lattice evolves
as follows:

d〈σ j〉
d t

= J j−1, j +wa〈(1− ν j)(1−σ j)〉+wapd〈ν j(1−σ j)〉 − J j, j+1 −wd〈σ j〉 , (1)

where
J j−1, j = 〈σ j−1(1− ν j)(1−σ j)〉+ pd〈σ j−1ν j(1−σ j)〉 , (2)
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〈· · · 〉 denotes the statistical average and J j−1, j is the particle-flux from j − 1th site to jth site.
The equation governing the evolution of particle density at both the left-lattice and right-lattice
boundaries is formulated as:

d〈σ1〉
d t

= α〈(1−σ1)(1− ν1)〉+αpd〈(1−σ1)ν1〉 − J1,2 , and (3)

d〈σL〉
d t

= JL−1,L − β〈σL〉 , (4)

respectively. Lastly, the master equation dictating the evolution of the average defect density
within the lattice is provided as follows:

d〈ν j〉
d t

= k+〈1− ν j〉 − k−〈ν j〉 , 1≤ j ≤ L . (5)

In order to comprehend the stationary-state dynamics of the system, the aforementioned equa-
tions require a solution. However, solving them in their current state poses a challenge due
to the presence of one-, two-, and three-point correlators. Therefore, in the subsequent sec-
tion, mean-field approximations are applied to these equations in an attempt to elucidate
stationary-state attributes such as density profile, potential stationary phases, phase transi-
tions, and current.

4 Continuum mean-field approximations

By employing mean-field approximations, all potential particle-particle and particle-defect
correlations are disregarded within the aforementioned system of master equations, namely
〈σ jσ j+1〉 = 〈σ j〉〈σ j+1〉 and 〈σ jν j+1〉 = 〈σ j〉〈ν j+1〉. Additionally, we introduce the notations
ρ j = 〈σ j〉 and ρd, j = 〈ν j〉 to represent the average particle density and defect density, respec-
tively, at site j. This simplification results in reducing Eq. (1) to:

dρ j

d t
= J j−1, j +wa

�

(1−ρd, j)(1−ρ j) + pdρd, j(1−ρ j)
�

− J j, j+1 −wdρ j , (6)

where
J j−1, j = ρ j−1(1−ρ j)(1−ρd, j + pdρd, j) . (7)

The evolution equations for average particle density at the left and right boundaries are refor-
mulated as:

dρ1

d t
= α(1−ρ1)(1−ρd,1 + pdρd,1)− J1,2 , and (8)

dρL

d t
= JL−1,L − βρL , (9)

respectively. Furthermore, the evolution of average defect density within the lattice follows
the subsequent equation:

dρd, j

d t
= k+(1−ρd, j)− k−ρd, j , 1≤ j ≤ L . (10)
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To obtain the continuum version of the model, we coarse-grain the lattice by introducing
x = ε j ∈ [0,1] as the quasi-continuous space variable and ε= 1

L as the lattice constant. Then,
the terms up to the first order of ε are retained in the Taylor series expansion of ρ j±1 ≈ ρ(x±ε)
in Eq. (6) to get the reformulation of Eq. (6) and Eq. (10) as:

∂ ρ

∂ t ′
+
∂ J
∂ x
= Ωa(1−ρd + pdρd)(1−ρ)−Ωdρ , (11a)

∂ ρd

∂ t
= k+(1−ρd)− k−ρd , (11b)

respectively. Here, t ′ = t
L is the re-scaled time variable, and Ωa = wa L,Ωd = wd L are the

modified Langmuir kinetic rates. Furthermore, the subscript j is also omitted, considering the
spatial homogeneity of the lattice.

It is essential to utilize a modified detachment rate that is constant for L →∞ (in large
systems) because the discrepancy between bulk and boundary dynamics becomes apparent
only if particles remain on the lattice for a sufficient duration before detachment. A similar
rationale justifies the adjusted attachment rate. The average particle current within the lattice
bulk, considering a finite ε, is expressed as J = (1−ρd+pdρd)

�

− ε2
∂ ρ
∂ x +ρ(1−ρ)
�

whereas in the
thermodynamic limit (ε→ 0+), it becomes J = (1−ρd + pdρd)ρ(1−ρ). The right-hand side
of the Eq. (11a) can also be expressed as Ωd(K∗+1)

� K∗
K∗+1 −ρ
�

. This suggests that the density
governed by the Langmuir isotherm (ρl) defined as K∗

K∗+1 will exhibit either an attracting or
a repelling behavior with respect to the nonlinear relationship between current and density
because this net source term is positive or negative, depending on whether the density ρ is
below or above ρl where K∗ = K(1 − ρd + pdρd) and K = Ωa

Ωd
is the binding constant. This

will prove to be a crucial concept while discussing density profiles in subsequent sections. If
the density at the left end dips below the Langmuir isotherm and the current-density relation’s
slope is positive, ∂ J

∂ ρ > 0, then the particles will accumulate into the bulk of the lattice through
Langmuir kinetics. Consequently, the density increases towards ρl as one progresses away
from the left boundary. Conversely, with a negative slope ( ∂ J

∂ ρ < 0), indicating densities greater
than 1/2, the density profiles diverge from the Langmuir isotherm as one moves away from
the left boundary [24].

The hindrance to particle movement within the lattice is directly proportional to the num-
ber of defects present on the lattice, or equivalently ρd , and inversely proportional to the
affected hopping rate pd . Consequently, we have introduced an obstruction factor that ratio-
nalizes the role of defects in impeding particle movement and reduces the model’s parameter
space. This simplification will facilitate the focused study of defects on the stationary-state
characteristics of the system in subsequent sections. It is defined as:

z = ρd(1− pd) . (12)

Utilizing the Eq. (12), the expression for the stationary-state current in the bulk of the lattice
reduces to:

J = (1− z)ρ(1−ρ) . (13)

The above-obtained expression for the particle current indicates that the proposed model can
be perceived as a generalization of the standard TASEP model or a model with static localized
defects, where the effective hopping rate of particles is 1− z [32]. Note that the obstruction
factor, being a function of ρd and pd , remains confined within the range of 0 and 1, as both
parameters are bounded in the same range. The obstruction on the lattice diminishes to zero
either when there are no defects on the lattice (ρd = 0) or when the affected hopping rate due
to defects attains the standard unit hopping rate (pd = 1). For this case, the expression for
the current in Eq. (13) shows that the model reduces to that of a standard open TASEP with
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LK dynamics [24]. Conversely, the particle faces maximum hindrance when all lattice sites
are entirely occupied by defects, i.e., ρd = 1, and simultaneously, the defects prevent particle
hopping in their presence, indicated by pd = 0. For this case, the particle current vanishes
from the lattice and can be easily validated from Eq. (13).

In the next section, we will obtain a stationary state analytical solution to the derived
continuum equations for the particle as well as defect density and compare it to simulation
results.

5 Analytical solution at stationary state

Theoretical defect density at the stationary state can be readily computed from Eq. (11b) as:

ρd =
k+

k+ + k−
. (14)

At stationary state, the nonlinear differential Eq. (11a) in the limit ε → 0, reduces to a first
order differential equation,

∂ J
∂ x
= Ωd(K

∗ + 1)
�

K∗

K∗ + 1
−ρ
�

. (15)

Next, we will elucidate in detail how one can analytically solve the continuum equation, Eq.
(11a), in the steady state. This discussion will lead to a categorization of the potential solutions
based on the entry rate (α), exit rate (β), the effective binding constant (K∗ = K(1− z)), and
the detachment rate (Ωd).

One can easily verify that the Eq. (11a) of the system remains invariant under the following
transformations: ρ(x) ↔ 1 − ρ(1 − x), wa(1 − z) ↔ wd . This implies that K∗ ↔ 1/K∗

and hence this symmetry with respect to K∗ allows us to restrict our choices to values with
K∗ ≥ 1. Then, the two scenarios that need to be distinguished are K∗ = 1 and K∗ > 1. The
scenario where K∗ = 1 is somewhat hypothetical and requires careful manipulation of the
binding constant and obstruction factor, but it is technically more straightforward to analyze.
Therefore, we will address this case first. Additionally, we will compare these results with the
outcomes obtained from Monte Carlo simulations.

5.1 Analysis for K ∗ = 1

Theoretical computation of the average particle density becomes mathematically simplified
when K∗ = 1, as Eq. (15) factorizes to:

(2ρ − 1)
�

(1− z)
∂ ρ

∂ x
−Ωd

�

= 0 . (16)

Upon solving Eq. (16), we retrieve two different solutions: a constant density ρMC(x) =
1
2

associated with a maximal-current (MC) phase, and a linear profile ρ(x) = Ωd
1−z x + C . These

solutions are similar to the case of TASEP-LK without dynamic defects [24] except for the nor-
malization of the coefficient of x in the linear solution. To ascertain the value of the integration
constant C in the linear density profile, we first determine the estimate to boundary densities
ρ1 and ρL utilizing Eqs. (8) and (9) as:

ρ1 = α , and ρL = 1− β∗ , (17)

where β∗ = β
1−z . Now, the linear density profile yields two solutions: an entry-dominated

one, corresponding to the low-density (LD) phase, achieved by matching the linear solution
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with the left boundary; and another exit-dominated, corresponding to the high-density (HD)
phase, obtained by matching the linear solution with the right boundary. These solutions are
as follows:

ρα(x) =
Ωd

1− z
x +α ,

ρβ(x) =
Ωd

1− z
(x − 1) + 1− β∗ .

(18)

Since we have the density solution for the standard stationary phases, we can derive a general
density profile ρ(x) by combining three possible solutions: ρα, ρβ , and ρMC . Firstly, the
position separating the low-density profile ρα(x) from the density profile ρMC(x) is computed
as xα =

(1−2α)(1−z)
2Ωd

. Additionally, we compute the position xβ =
2β+2Ωd+z−1

2Ωd
that separates

the high-density profile ρβ(x) from the density profile ρMC(x). Depending on the relative
ordering of the xα and xβ , the density profiles are obtained as follows: Various scenarios arise
depending on the relative ordering of xα and xβ , and the corresponding density profiles for
these situations are provided as follows:

1. If xα ≤ xβ , the continuous and piecewise linear density profile exhibiting the co-
existence of three phases is given by:

ρ(x) =











Ωd
1−z x +α , 0≤ x ≤ xα ,
1
2 , xα ≤ x ≤ xβ ,
Ωd
1−z (x − 1) + 1− β∗ , xβ ≤ x ≤ 1 .

(19)

2. If xα > xβ , a jump discontinuity between the densities ρα(x) and ρβ(x), arises at a
point xw in the form of a shock. The density profile exhibiting the co-existence of two
phases is given by:

ρ(x) =

¨

Ωd
1−z x +α , 0≤ x ≤ xw ,
Ωd
1−z (x − 1) + 1− β∗ , xw ≤ x ≤ 1 ,

(20)

where the position of the shock xw =
β−α(1−z)+Ωd

2Ωd
is obtained by utilizing the current-

continuity principle at the discontinuity xw. For xw ∈ (0,1), the shock is to be visible
in the bulk of the lattice. Moreover, for xw ≤ 0 (xw ≥ 1), the shock or the LD-HD co-
existence phase exits from the left (right) end of the lattice leading to the LD (HD) phase
whose density profile is given by ρβ(x) (ρα(x)). The height of the shock ∆ is given by,

∆= ρβ(xw)−ρα(xw) = 1− (α+ β)−
Ωd

1− z
. (21)

In the limit z→ 0, all the above-obtained results match that of an open TASEP with LK [24]
whereas in the limit Ωd → 0+, the LK dynamics begin to vanish from the lattice and the
stationary state density profiles converge to that of an open TASEP with site-wise dynamic
defects [43].

5.1.1 Existence of stationary phases

We briefly review the stationary properties of the homogeneous open TASEP, extensively
studied through mean-field analysis. It was observed that the system could exist in one of
three phases depending on the entry and exit rates: entry-dominated low density (LD), exit-
dominated high density (HD), and bulk-dominated maximal current (MC). The transition from
both LD and HD phases to the MC phase occurs as a second-order transition concerning density.
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However, the phase transition from LD to HD is first-order. In this regard, when the entry rate
equals the exit rate, an LD-HD coexistence phase (Shock (S) phase) emerges, characterized
by a delocalized shock traversing the lattice. Upon the incorporation of Langmuir Kinetics,
the shock becomes anchored (localized shock) and extends beyond a line, encompassing a
region. Furthermore, we observe various combinations of the primary phases LD, MC, and
HD [23,24].

In our proposed model, the lattice can possess a maximum of 21 different combinations of
key phases LD, HD, and MC. However, not all of them may exist for any parameter value. Now
we discuss in detail the existence of the probable stationary phases and theoretically derive
their existential conditions.

(a) LD phase: In a lattice within an entry-dominated phase, the density profile is delineated
by ρα(x) with a boundary layer on the right end. The phase boundaries containing the
LD phase in the α− β parameter space are specified as:

α <min
�

β −Ωd ,
1− z

2
−Ωd

�

. (22)

(b) HD phase: In a lattice characterized by an exit-dominated phase, the density profile is
given by ρβ(x), with a boundary layer present at the left end. The phase boundaries
encompassing the HD phase within the α− β parameter space are outlined as follows:

β <min
�

α(1− z)−Ωd ,
1− z

2
−Ωd

�

. (23)

(c) MC phase: Following the expression of the current, the gradient of the current vanishes,
and the maximal current is attained for ρ = 1/2. Hence, in this phase, the density profile
in the bulk of the lattice is given by ρMC(x) = 1/2, along with the presence of boundary
layers at both ends. This phase exists when α and β∗ satisfies:

α >
1
2

, and β∗ >
1
2

. (24)

(d) S phase: In the shock phase, the density profile consists of a curve that is discontinuous
at a point xw, combining low and high-density profiles. The density to the left of xw is
represented by ρα(x), and to the right of xw, it is denoted by ρβ(x). The conditions for
the presence of this phase in the lattice are as follows:

β +α(1− z)< 1− z −Ωd , and |β −α(1− z)|< Ωd . (25)

(e) LD-MC phase: There exists a two-phase co-existence region (or LD-MC phase) wherein
the density at the left of xα is expressed by ρα(x) and at the right of xα is given by 1/2
with a boundary layer on the right end. The conditions for the existence of this phase in
the lattice are given as:

1
2
−
Ωd

1− z
< α <

1
2

, and β∗ > 1/2 . (26)

(f) MC-HD phase: The density profile for the two-phase coexisting region (or MC-HD
phase) is given by a continuous combination of two curves. To the left of xβ , the density
is 1/2, while to the right of xβ , it is represented by ρβ(x) with a boundary layer on
the left end. The conditions for the presence of this phase in the lattice are outlined as
follows:

α >
1
2

, and
1− z

2
−Ωd < β <

1− z
2

. (27)
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(g) LD-MC-HD phase: Similarly, a three-phase coexistence region (or LD-MC-HD phase)
may occur. As mentioned earlier, it exists when xα ≤ xβ , and the condition for its
presence in the lattice is given by:

β +α(1− z)> 1− z −Ωd , α <
1
2

, and β∗ <
1
2

. (28)

Now, we provide the argument to discard the prospect of the existence of the remain-
ing fourteen phases. The existence of the three phases MC-LD, HD-LD, HD-MC can be dis-
carded based on the argument that it is impossible to concatenate the density profiles for
the above-discussed phases either continuously or discontinuously for Ωd > 0 while keeping
ρα(x) < 1/2,ρβ(x) > 1/2. The rest eleven co-existing three phases involve the combination
with any of the above three discarded phases and hence can be discarded following a similar
argument. For example, the LD-MC-LD ceases to exist because it is a combination of the LD
phase with the MC-LD phase, and the latter has already ceased to exist. Therefore, up to seven
distinct stationary phases may be observed in the phase diagram when K∗ = 1.

5.2 K ∗ ̸= 1

Considering the particle-hole symmetry, we restrict our focus to the case K∗ > 1. In contrast
to the previous case i.e., K∗ = 1, the continuum equation governing the particle density in Eq.
(15) cannot be simplified, rendering the analysis considerably more intricate. For additional
analysis, we transform Eq. (15) into the format of a re-scaled density σ, for which the solution
is already established [24]:

σ(x) =
K∗ + 1
K∗ − 1

(2ρ − 1)− 1 . (29)

Clearly, the density ρ(x) ∈ [0, 1] implies that the re-scaled density σ(x) ∈
�

−2K∗
K∗−1 , 2

K∗−1

�

and

here the condition σ(x) = 0 represents the Langmuir isotherm ρl =
K∗

K∗+1 which is similar to
that in [24]. The continuum equation (15) simplifies to:

�

σ+ 1
σ

�

∂ σ

∂ x
=
(K∗ + 1)2Ωd

(K∗ − 1)(1− z)
. (30)

Integrating the aforementioned equation results in:

|σ(x)|exp(σ(x)) = Y (x) , (31)

where Y (x) is given by:

Y (x) = |σ(x0)|exp
�

(K∗ + 1)2Ωd

(K∗ − 1)(1− z)
(x − x0) +σ(x0)

�

, (32)

and x0 is a reference point that takes on the value of 0 or 1, as the values of σ(x0) are known
at the boundaries, thus providing:

Yα(x) = |σ(0)|exp
�

(K∗ + 1)2Ωd

(K∗ − 1)(1− z)
x +σ(0)
�

,

Yβ(x) = |σ(1)|exp
�

(K∗ + 1)2Ωd

(K∗ − 1)(1− z)
(x − 1) +σ(1)
�

.

(33)

Equation (31) possesses an explicit solution expressed in terms of the Lambert-W function,
and can be formulated as:

σ(x) =W (Y (x)) , σ(x)≥ 0 ,

σ(x) =W (−Y (x)) , σ(x)< 0 .
(34)
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The Lambert-W function encompasses two real-valued branches: W0(x) and W−1(x). Depend-
ing on the domain and range of these branches, the solution to Eq. (34) is derived as:

σ(x) =











W−1(−Y (x)) , σ < −1 ,

W0(−Y (x)) , −1≤ σ < 0 ,

W0(Y (x)) , σ ≥ 0 .

(35)

The entry-dominated solution (σα) and exit-dominated solution (σβ) can be obtained to align
with the left and right boundary densities, respectively. These solutions can then be converted
back to yield the solutions ρα and ρβ in terms of the Lambert-W function, as follows:

ρα(x) =
1
2

�

K∗ + 1
K∗ − 1

�

W−1(−Yα(x)) + 1
�

+ 1
�

,

ρβ(x) =
1
2

�

K∗ + 1
K∗ − 1

�

σβ(x) + 1
�

+ 1
�

,
(36)

where σβ(x) is given as:

σβ(x) =











W0(Yβ(x)) , 0≤ β∗ ≤ 1−ρl ,

0 , β∗ = 1−ρl ,

W0(−Yβ(x)) , 1−ρl ≤ β∗ ≤
1
2 .

(37)

Note that similar to the TASEP, the density solution ρα, associated with the low-density regime,
remains stable for α < 1/2, while the solution corresponding to the high-density regime, ρβ ,
is stable for β∗ ≤ 1/2.

Similar to the scenario with K=1, we now derive a comprehensive solution for the density
profile by considering various feasible combinations of the solutions ρα and ρβ . In the param-
eter range where α,β∗ ≤ 1

2 , different solutions emerge depending on whether 1−β∗ surpasses,
falls short of, or equals ρl . These solutions converge towards the Langmuir isotherm within
the bulk while satisfying both boundary conditions [24]. When β∗ = 1−ρl , a flat profile of ρβ
is obtained, aligning with the Langmuir isotherm value ρl . Within this range, a domain wall
emerges, characterized by a density expressed through a combination of ρα(x) and ρβ(x),
given by:

ρ(x) =

¨

ρα(x) , x ≤ xw ,

ρβ(x) , x > xw ,
(38)

where xw is the position of the domain wall that can be determined utilizing the condition
ρα(xw) = 1 − ρβ(xw). The height of the domain wall ∆ is given by ρβ(xw) − ρα(xw). If
0 < xw < 1, a region consisting of a shock (S) phase is formed. If xw > 1 then the lattice
is in the low-density regime whose bulk is characterized by the density profile ρα(x) with a
boundary layer on the right end. If xw < 0 then the lattice in a high-density regime whose
density profile is characterized by ρβ(x) with a boundary layer on the left end. In the left-
region phases (α < 1/2,β∗ < 1/2), the phase boundaries extend for β∗ > 1/2, remaining
independent of the exit rate β and aligned parallel to the β−axis. When α = 1/2, the system
transitions into the High-Density (HD) phase, where the bulk profile fails to match the entry
rate, resulting in a boundary layer at the left end. Further increases in α primarily affect this
boundary layer at the left end. However, an increase in β∗ beyond 1/2 introduces a boundary
layer at the right end. Consequently, the HD phase for β∗ ≥ 1/2 stands distinct from the HD
phase for β∗ < 1/2. In the bulk, the density profile remains unaffected by the entrance and
exit rates, α and β , at the left and right boundaries. It is characterized by the extremal solution
W0(−Yβ=1/2) and is termed the “High-Density Meissner (HDM)” phase. Hence, we deduce that
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a maximum of four possible stationary phases can occur in the phase diagram for K∗ > 1 that
are LD, HD, S, and HDM phase.

Obtaining a generalized analytical stationary-state solution for Eq. (11a) poses a signifi-
cant challenge due to the presence of complex features, including dynamic disorder and non-
conserving particle dynamics within our system. Therefore, numerical techniques serve as
a viable alternative for solving it, and this approach has been widely adopted in the litera-
ture to approximate solutions for such intricate systems. The time derivative term is retained
in the system, and the steady-state solution is captured using significantly large time steps.
The model equation is discretized using a finite difference scheme, employing the first-order
forward difference formula for the time derivative and the second-order central difference
formula for space derivatives; refer to B for further details.

6 Results & discussion

In previous sections, the analysis has been conducted with respect to the parameter K∗, which
was introduced to simplify and solve Eq. (11a), which involves two parameters that are ob-
struction factor z and the binding constant K . Both z and K are of great relevance as defect
dynamics are controlled by z, and it quantify the hindrance caused by the defects to the parti-
cle movement, whereas K is responsible for particle dynamics and signifies the ratio of particle
attachment with respect to particle detachment. Therefore, we now again introduce them to
investigate the effect of each of these parameters individually and compare the results with the
existing literature. We begin with the analytical construction of the phase diagrams within the
α−β plane utilizing the theoretical results obtained in the last two sections in order to study
the effect of z, K , and Ωd on the system’s stationary characteristics. We conduct numerical
Monte Carlo simulations employing the Gillespie algorithm with a random sequential update
rule to verify our theoretical conclusions; please refer to Sec. A in the appendix for further
details. Note that if the Markovian dynamics of the Langmuir Kinetics model (adsorption or
desorption processes) is visualized as a graph where different configurations of the process
represent nodes, and each allowed transition is a directed edge with a rate based on the pro-
cess rules, then if we describe the equilibrium distribution of LK using Boltzmann weight, then
the effective Hamiltonian is evaluated as H = −kB T

∑L−1
2 σi ln K , where the “energy” term is

expressed as the sum over the product of the logarithm of the binding constant K with the
occupancy number of i th site (where kB is the Boltzmann weight, and T is the temperature
of the system). In this distribution, the scenario where K = 1 presents intriguing topological
consequences, where the edges in the graph structure for Langmuir Kinetics (LK) lose their di-
rectionality [24]. Hence, it is expected that K will significantly affect the topology of the phase
diagram in the α− β plane. To investigate the individual impact of each of these parameters
on the system’s stationary properties, we initially fix the parameter K and vary the rest. It must
be noted that as we discuss the role of K and z individually, unlike the ref. [24], the transfor-
mations: ρ(x)↔ 1−ρ(1− x), wa↔ wd no longer implies K↔ 1/K . Therefore, the analysis
is done for every choice of K , namely, K = 1, K > 1, and K < 1, where we further study the
impact of z and Ωd on the steady-state features in each of these cases. Furthermore, the phase
diagrams are developed in each scenario specifically for faster defect dynamics (k+, k− ≳ 1),
as the naive mean-field approximation aligns closely with the Monte Carlo results within this
parameter range [42]. We initially constructed the phase diagrams using the analytical ex-
pressions of the phase separation lines. Subsequently, to verify the proximity of these lines,
we conduct Monte Carlo simulations at points near these lines, with detailed information pro-
vided in A. Note that the phase boundaries determined through simulation depend on the
magnitude of the defect binding/unbinding rates. The lower rates result in deviations from
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Figure 2: (a)-(e) demonstrates how the phase diagram is influenced by z and Ω
when K = 1. Solid and dashed lines represent theoretical predictions derived from
mean-field theory, while Monte Carlo simulation results are depicted with diamonds.
The presence of boundary layers at the left or right end of the system is highlighted
by “(l)” and “(r)” respectively. In (f), the plot illustrates Ωc as a function of z, with
different symbols (stars, circles, and squares) distinguishing the two critical values
Ωc1 and Ωc2 obtained for z = 0.

mean-field predictions due to system correlations, while faster defect dynamics align more
closely with theoretically obtained results. In our model, we have considered these rates to be
equal to or strictly greater than 1. Moreover, the phase boundaries determined through sim-
ulations are calculated with an estimated error of less than 2%, and the same is being taken
care of by the size of the markers representing the Monte Carlo simulations.

6.1 System behavior for K = 1

In this context, the mathematical analysis is streamlined due to the equivalence of the at-
tachment and detachment rates, denoted by Ωa = Ωd ≡ Ω. Subsequently, we delve into an
examination of the phase diagram’s structure within the α− β parameter space, exploring its
variations across different values of z and Ω. For K = 1, K∗ is a monotonically decreasing func-
tion of z and it assumes values K∗ ≤ 1 for z ∈ [0,1). To assess the influence of the obstruction
factor, we generate the phase diagrams for various choices of Ω. Additionally, the effect of z
is examined for a fixed Ω by varying z. The upper and lower panels of FIG. 2 depict the phase
diagrams corresponding to z = 0 and z ̸= 0, respectively.

For different values of Ω, we retrieve exactly the same phase diagrams obtained in ref.
[24] in the limit z → 0. We reproduce them here for the sake of comparison and analyzing
the effect of z. For Ω < Ωc1 = 0.5, a comparatively richer phase diagram exhibiting seven
stationary phases is observed, as shown in FIG. 2 (a). An increase in Ω till the critical value
Ωc1 doesn’t produce any topological changes in the phase diagram except the shifting of the
phase boundaries. The boundary between the LD and LD-MC phases shifts leftward, while the
boundary between the HD and MC-HD phases shifts downward. This leads to an enlargement
of the LD-MC, HD-MC, and LD-MC-HD phases and a reduction of the LD, HD, and S phases,
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while the MC phase remains unaffected. Once Ω reaches the critical value Ωc1 , the LD and HD
phases completely disappear from the phase diagram, and it now consists of five stationary
phases only, see FIG. 2 (b). Further increasing Ω > Ωc1 only affects the region α,β < 0.5,
where the S phase shrinks and the LD-MC-HD expands whereas the LD-MC and MC-HD phases
remain intact. Ultimately, at Ω = Ωc2 = 1, the S phase vanishes entirely, rendering the phase
diagram greatly simplified, with only four phases remaining, as depicted in FIG. 2 (c).

Now, we investigate the effect of the obstruction factor on the phase diagram for differ-
ent choices of attachment-detachment rates. As soon as some obstruction is introduced in
the lattice, the topology of the phase diagram changes drastically and becomes much simpler,
consisting of four phases, see FIG. 2 (d) in comparison to the phase diagram obtained for
zero obstruction factor, see FIG. 2 (a). For Ω < Ωc(z), the phase diagram consists of LD, S
and HD phases along with the emergence of a LDM phase; see FIG. 2 (d) corresponding to
Ω = 0.1. Further, increasing the obstruction factor on the lattice while fixing Ω results in an
expansion of the LD and LDM phases, whereas the region consisting of the S and HD phases
shrinks. This can be explained as follows: an escalation in the obstruction factor intensifies the
impedance to particle movement throughout the lattice, consequently enlarging the domain
encompassing both the LD phase and the LDM phases. Likewise, augmenting Ω enlarges the
area encompassing the LD and S phases while the HD phase diminishes. In instances where
Ω≥ Ωc(z), we note the total absence of the HD phase, resulting in a phase diagram comprising
only three phases: LD, LDM, and S phases, as depicted in FIG. 2 (e). In this case, the effect of
increasing z remains the same. The FIG. 2 (f) shows the graph of the Ωc , which is a monotoni-
cally decreasing function of z. The graph demonstrates that for z > 0, there is only one critical
value of Ω, beyond which the number of stationary phases appearing in the phase diagram
decreases from four to three. Nevertheless, when z = 0, two critical values exist: Ωc1 = 0.5
and Ωc2 = 1. For Ω≥ Ωc1 , the number of stationary phases decreases from seven to five, while
for Ω≥ Ωc2 , it decreases from five to four.

The phase diagram’s structure differs significantly when considering equal attachment-
detachment rates and a non-zero obstruction factor compared to the results obtained in ref.
[24] (refer to the top and bottom panels of FIG. 2). Clearly, the presence of defects in the
proposed model for the equal attachment-detachment rate of particles has made the phase
diagram much simpler, which can possess at most four stationary phases depending upon the
choice of Ω and z.

6.2 System behavior for K > 1

In general, one would anticipate K ̸= 1 because the case K = 1 requires a specific adjustment
between the attachment and detachment rates. Therefore, without loss of generality, we first
discuss the case K > 1 and try to understand the effect of z and Ωd on the stationary state
features of the system. Analogous to the previous case, we first examine the influence of the
obstruction factor by delineating the phase diagram for various selections of Ωd . In contrast
to the prior scenario, in this case, the parameter K∗ varies depending on both K and z. We
have three different cases corresponding to the range of z according to which K∗ is either > 1
or = 1 or < 1. The panels at the top, middle, and bottom of FIG. 3 depict the phase diagrams
corresponding to z values within the ranges

�

0, K−1
K

�

, z = K−1
K , and
�K−1

K , 1
�

, respectively.
In the limit z→ 0, the phase diagram for Ωd < Ω

c
d(z, K) consists of four stationary phases:

LD, S, HD, and HDM, see FIG. 3 (a). It validates the findings of the ref. [24] corresponding
to K = 3 and Ωd = 0.1. As soon as some obstruction is introduced in the lattice, i.e., for
z ∈
�

0, K−1
K

�

, the phase boundary between the LD and the S phase as well as the one between
the HDM and the S phase shifts towards the right resulting in shrinkage in the region consisting
of HDM and HD phase whereas an expansion of the region consisting of LD and the S phase.
Unlike the scenario with K = 1, the inclusion of the obstruction doesn’t induce significant
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Figure 3: (a)-(g) shows the effect of z and Ωd on the phase diagram for K = 3.
Solid and dashed lines denote the theoretical outcomes through mean-field theory,
whereas diamonds denote the Monte Carlo simulation results. In (h), the plot shows
Ωc

d as a function of z and K . Here, the symbol star, circle, and square distinguish the
two critical values Ωc1 and Ωc2 obtained corresponding to z = K−1

K .

topological alterations in the phase diagram, except for expansions and contractions in the
regions encompassing stationary phases. When Ωd ≥ Ωc

d(z, K), the boundary separating the
LD and S phases shifts leftward, leading to the total absence of the LD phase. Consequently, the
phase diagram comprises only three stationary phases, as depicted in FIG. 3 (b). The impact
of varying z in (0, K−1

K ) remains the same for this choice of Ωd .
Once the obstruction factor reaches K−1

K , as illustrated in FIG. 3 (c), FIG. 3 (d), and FIG. 3
(e), the phase diagram undergoes notable topological changes. The phase diagram becomes
more intricate and diverse for values of z smaller than K−1

K . It showcases seven stationary
phases when Ωd < Ω

c1
d (K) =

1
2K , as depicted in FIG. 3 (c). The average density profiles for

these seven stationary phases have been obtained in FIG. 4. As Ωd increases till the critical
value Ωc1

d (K), the phase boundary separating LD and LD-MC phases shifts to the left, whereas
the phase boundary between the HD and MC-HD phases shifts downward, leading to an en-
largement of LD-MC, HD-MC, and LD-MC-HD phases, and a contraction of LD, HD, and S
phases, while the MC phase remains unaffected. For Ωd = Ω

c1
d (K), the LD and HD phases com-

pletely disappear from the phase diagram, and now it consists of only five stationary phases;
see FIG. 3 (d). As Ωd increases in the range (Ωc1

d (K),Ω
c2
d (K) =

1
K ), the phase diagram is only
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Figure 4: Average density profiles: (a) LD, (b) MC, (c) HD, (d) LD-MC, (e) LD-HD, (f)
MC-HD, and (g) LD-MC-HD phases. Mean-field solutions (solid curves) contrasted
with Monte Carlo simulations (markers). Parameters: K = 3, Ωd = 0.1, z = K−1

K .
Sub-captions detail (α,β) configurations.

affected in the region α, β1−z < 0.5, where the S phase shrinks and the LD-MC-HD expands,
whereas the phases LD-MC, MC-HD, and MC remain intact. Finally, when Ω equals Ωc2

d (K),
the S phase vanishes entirely, rendering a simpler phase diagram exhibiting just four phases;
refer to FIG. 3 (e).

Now, we discuss the case z > K−1
K . The phase diagram again becomes topologically simpler,

as shown in FIG. 3 (f) and FIG. 3 (g). For Ωd < Ω
c
d(z, K), the phase diagram showcases four

stationary phases: HD, S, LD, and LDM, as shown in FIG 3 (f) corresponding to Ω= 0.1. For a
further increase in z in the range

�K−1
K , 1
�

, the phase boundary separating the S phase from LD
as well as the LDM phase shifts downwards, this leads to an enlargement of the LD and LDM
phases, while the S and HD phases diminish. For Ωd ≥ Ωc

d(z, K), the phase boundary between
the HD and S phase shifts downwards, causing the complete disappearance of the HD phase,
and the phase diagram exhibits only three stationary phases; see FIG. 3 (g). The influence of
varying z in
�K−1

K , 1
�

remains the same for this choice of Ωd .
In comparison to the case K = 1, FIG. 3 (h) shows the critical values of Ωc

d which is a
function of z as well as K . For a fixed K , Ωc

d(z, k) is a non-monotonic function that monoton-
ically increases for z < K−1

K , whereas it monotonically decreases for z > K−1
K and attains its

maximum value at z = K−1
K . Meanwhile, for a fixed value of z, it is a monotonically decreasing

function of K . Clearly, for z ̸= K−1
K , there exists only one critical value of Ωd , beyond which
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Figure 5: (a)-(b) shows the effect of z andΩd on the phase diagram for K = 0.3. Solid
and dashed lines denote the theoretical outcomes through mean-field theory, whereas
diamonds denote the Monte Carlo simulation results. In (c), the graph depicts Ωc

d
varying with z and K .

the number of stationary phases changes from four to three. However, when z = K−1
K , two

critical values emerge: Ωc1
d =

1
2K and Ωc2

d =
1
K . In this scenario, if Ω exceeds Ωc1

d , the count of
stationary phases decreases from seven to five. Likewise, when Ω surpasses Ωc2

d , the number
of stationary phases decreases from five to four. It must be noted that zc = K−1

K is the gen-
eral critical value of the obstruction factor for which the phase diagram’s structure becomes
intricate, featuring a maximum of seven stationary phases.

For an attachment rate larger than the detachment rate, the topology of the proposed
model’s phase diagrams remains the same compared to the ref. [24] for z < zc except for
expansion or shrinkage of some phase regions (see top panel of FIG.3). But for z ≥ zc , the
topology changes significantly in comparison to the ref. [24] (see middle and bottom panels
of FIG.3). Depending on the effective binding constant K∗, the phase diagram of the proposed
model can exhibit several stationary phases, including LD-MC-HD, LD-MC, MC-HD, MC, and
LDM.

6.3 System behavior for K < 1

Due to the defects considered in the proposed model, the particle-hole symmetry is violated
with respect to K , as discussed at the beginning of this section. Therefore, the case K < 1 needs
to be discussed separately. Similar to the previous case, we first establish the phase diagram
for various Ωd choices and analyze the influence of the obstruction factor. The parameter K∗

is a function of both K and z in this case as well, and K∗ < 1 for any possible combination of
z and K < 1.

As z approaches zero, the phase diagram exhibits four stationary phases: high density
(HD), shock (S), low density (LD), and LDM, for Ωd = 0.1 < Ωc

d(z), as depicted in FIG 5
(a). It validates the findings of the ref. [24] corresponding to K = 0.3 and Ωd = 0.1. When
some obstruction is introduced to the lattice, the phase boundary that separates the S phase
from the LD as well as LDM phases shifts downward, expanding the LD and LDM phases while
contracting the S and HD phases, as shown in FIG. 5 (a). However, when Ωd = 0.335≥ Ωc

d(z),
the high-density (HD) phase is entirely absent, resulting in a phase diagram with only three
stationary phases, as illustrated in FIG. 5(b). The influence of z within the (0, 1) range remains
consistent for this particular value of Ωd .

The FIG. 5 (c) shows the graph of the Ωc
d which is a linear as well as monotonically de-

creasing function of z and K . The graph demonstrates that for z ∈ [0, 1) there exists only one
critical value of Ωd , beyond which the number of stationary phases appearing in the phase
diagram reduces from four to three.
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For an attachment rate smaller than the detachment rate, the obstruction factor does not
change much topology of the phase diagram in comparison to the ref. [24] except for the
shrinkage and expansion of the phase region. Now, we briefly revisit the link mentioned in
Section 2 between the proposed model and the investigation presented in Ref. [45] to show-
case several distinctions in their stationary state results. Firstly, the impact of parameters ρd
and pd , responsible for obstructions caused by defects, on the stationary state characteris-
tics of the system, encapsulated through a single parameter z. Secondly, in the scenario of
equal attachment-detachment rates and non-zero obstruction, the proposed model exhibits a
maximum of four stationary phases in its phase diagrams, while in [45] the phase diagram con-
sists of seven stationary phases. For this case, the phase diagram also includes a low-density
Meissner (HDM) phase, which was not observed in the [45]. Moreover, the topology of these
phase diagrams differs significantly from our observations in [45]. In the case of disparate
attachment-detachment rates and non-zero obstruction, the phase diagram within our pro-
posed study can feature up to seven stationary phases in the phase diagram, while in [45], the
system can exhibit a maximum of four stationary phases. The configurations of these phase
diagrams exhibit variations compared to the findings in [45], contingent upon the selection of
attachment-detachment rates and the obstruction factor. This discrepancy can be elucidated
by considering the significance of boundary densities in an open system, as they strongly in-
fluence the stationary properties and phase diagrams. The inclusion of the effects of defects
binding/unbinding at the boundaries, which is absent in ref. [45], is a probable reason for
this distinction. Lastly, unlike the model proposed in [45], our system’s stationary-state results
are obtained analytically, providing a comprehensive characterization of the influence of all
parameters.

7 Shock analysis & finite-size effect

One distinctive aspect of the proposed model is the emergence of the localized shock (S) phase,
where the shock position remains constant over time. Typically, a qualitative examination of
shock dynamics can be straightforwardly conducted using the continuity (or hydrodynamic)
equation, which is expressed as:

∂ ρ

∂ t ′
+
∂ J
∂ x
=ωd L(K∗ − (1+ K∗)ρ) . (39)

In this context, the flow-density relation, denoted by J = (1− z)ρ(1−ρ), is well-established,
allowing for the analysis of the equation above. However, the description provided by the first-
order differential equation (39) becomes invalid as soon as a discontinuity arises between the
densities ρα and ρβ and at the intersection points of the characteristic lines corresponding to
(39). This discontinuity propagates at a speed v = β∗−α, determined by the balance of mass
current. To establish the formation of a shock, the discontinuity must reach a position where
the mass current through it is zero, thus ensuring the shock remains stationary, indicating that
v must be zero.

Progressing further involves analyzing how the obstruction factor influences the shock
profiles. A comprehensive shock profile spanning the entire system can be derived by aligning
the boundary densities ρα and ρβ at the location of the shock, which needs to be identified.
For K = 1, the precise formulae for the shock position (xw) and its height (∆) are provided as
follows:

xw =
β −α(1− z) +Ωd

2Ωd
, and ∆= 1− (α+ β)−

Ωd

1− z
. (40)

Evidently, the shock’s position is consistently influenced by z, increasing as z increases, while
its height shows the opposite trend, decreasing as z increases. Although obtaining explicit
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Figure 6: (a) Examining shock profiles under varying z for α = 0.1, β = 0.05,
Ωd = 0.1, and K = 1. (b) Finite-size effects on shock profiles at z = 0. Investi-
gating (c) shock displacement and (d) shock amplitude across z.

expressions for xw and ∆ for K∗ ̸= 1 remains challenging, their corresponding Monte Carlo
results are depicted in FIG. 6 (c) and 6 (d), with fitted curves confirming their dependency on
z. In FIG. 6 (a), for fixed values of α, β , and K , it’s evident that the shock profile shifts from the
left to the right boundaries with increasing obstruction on the lattice. This shift occurs because
as z increases, particles encounter more obstructions from defects, decreasing particle density.
Consequently, the HD phase’s elimination and the LD phase’s expansion are observed. These
findings are consistent with the phase diagrams discussed in the preceding section.

Finite-size effects for finite L have been accounted for by incorporating second-order terms
in the mean-field description. Discrepancies between the second-order mean field and the
Monte Carlo results arise from shock fluctuations, which are inaccurately captured by mean-
field theory and require separate treatment. Nonetheless, it’s noteworthy that the shock is
indeed localized, and its width grows sub-extensively, indicating sharpness as L → ∞, as
shown in FIG 6 (b).

8 Conclusion

We’ve extensively examined stochastic transportation within a one-dimensional system, in-
corporating dynamic disorder in a totally asymmetric simple exclusion process alongside
Langmuir kinetics dynamics. The dynamic defects represent disorder that stochastically
binds/unbinds throughout the lattice and hinders particle movement. The particle movement
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has been subject to these dynamic defects and hops with an affected hopping rate pd . The
model is inspired by the imbalance in the transcription of genes due to obstruction, but the
model is generic and can be utilized to imitate any other non-equilibrium stochastic transport
phenomena where dynamic defects are present.

To explore how dynamic defects influence the stationary-state characteristics of the system,
we derive master equations in the thermodynamic limit under the framework of the continuum
mean-field approximation. Moreover, we introduce a parameter termed the obstruction factor
(z), which amalgamates the impact of defect density on the lattice (ρd) and the affected hop-
ping rate (pd) on the system’s stationary properties. In addition, we define an effective binding
constant that incorporates the effect of obstruction on the binding constant. The system dy-
namics are controlled by the entry rate (α) and exit rate (β), and the other three important
controlling parameters are z, binding constant (K), and total detachment rate Ωd . The explicit
expression of analytical solutions for the density profile and phase boundaries are obtained for
K = 1/(1− z) whereas, for the rest of the values of K , the stationary state solution has been
implicitly expressed in the form of Lambert W function.

The theoretical solution has enabled us to delineate and extensively analyze the topology
of the phase diagram. Since the proposed model doesn’t obey the particle-hole symmetry,
the analysis is performed for three distinct choices of binding constant, K = 1,> 1 and < 1.
In each case, the z and Ωd effects have been studied on the phase diagram. At the critical
value of the obstruction factor (zc), the topology of the phase diagram changes significantly.
At z = zc , the phase diagram displays a richer structure consisting of either seven or five,
or four stationary phases depending upon the value of Ωd . Whereas for z ̸= zc , the phase
diagram consists of either four or three stationary phases depending on Ωd . In this case,
with an increase in the magnitude of the obstruction factor, the LD or LDM phases expand,
whereas the S phase and the HD phase shrink. Furthermore, the impact of Ωd on the phase
diagrams is explored, revealing that an escalation in Ωd diminishes the number of phases
within the system. For z ̸= zc , there exists a unique critical value Ωc

d about which the number
of stationary phases changes from three to four. While for z = zc , there exist two critical
values of Ωc1

d and Ωc2
d such that about Ωc1

d , the number of phases changes from seven to five
whereas about Ωc2

d , the number of phases changes from five to four. The variation in the
number of stationary phases with respect to the obstruction parameter z can be understood as
follows: with the increase in the obstruction factor, the dynamic defects increasingly hinder
the particle flux in the bulk, effectively making the bulk dynamics more rate-limiting. Despite
the bulk becoming rate-limiting, the boundary dynamics (α and β) still play a significant role
in determining stationary phases. Consequently, the interplay between bulk obstructions and
boundary conditions influences the number of distinct stationary phases that the system can
possess. This behavior highlights the critical role of the obstruction parameter in dictating
the system’s overall phase structure. Further, we examine the impact of the obstruction factor
on the height (and position) of the de-localized shock, which is a monotonically decreasing
(increasing) function of z. Finally, we conclude that the proposed theoretical work aimed to
simulate dynamic aspects of potential defective cellular and vehicular transport processes and
to provide light on stationary qualities. The proposed study can be utilized to understand the
role of the disorder in the form of defects on the stationary properties of the stochastic transport
systems. Examples of such systems include the biological process of gene transcription, where
DNA binding proteins and the low concentration of tRNA act as a disorder [25], transport
processes along the microtubule where processive molecular motors switch between directed
and diffusive motion [21] etc. The study can be expanded to include additional realistic aspects
relevant to various physical and biological systems.
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A Monte Carlo simulations

For simulations, we utilize a Monte Carlo algorithm (Gillespie Algorithm) with a random se-
quential update rule [46]. A random site is selected and updated at each step according to
events like particle hopping attempts, attachment or detachment, and defect binding or un-
binding, chosen with rates outlined in Sec. 2. Time increments follow an exponentially dis-
tributed random pattern. The simulations are conducted for 108 time steps considering the
lattice size L = 500. The initial 5% of time steps are discarded to establish a steady state, and
the average particle density is calculated over an interval of 10L. Phase boundaries are de-
termined with an estimated error of less than 2%, indicated by the marker sizes in the Monte
Carlo simulations.

B Numerical scheme

To derive analytical solutions for the second-order partial differential equation given by Eq.
(11a) can be challenging; hence, we present an alternative approach within the mean-field
theory. Retaining the time derivative within the system, we obtain density solutions at a steady
state in the limit as t tends to∞, where t denotes the number of time steps. Employing the
forward-in-time and central-in-space (FTCS) scheme, we derive the finite-difference equation
as:

ρi+1
j = ρi

j +△t
′

�

�

1−ρi
d, j(1− pd)
�

�

ε

2

�

ρi
j+1 − 2ρi

j +ρ
i
j−1

△x2

�

+

�

ρi
j+1 −ρ

i
j−1

2△x

�

(2ρi
j − 1) +Ωa(1−ρ j)

�

−Ωdρ j

�

, (B.1)

ρi+1
d, j = ρ

i
d, j +△t

′�
k+(1−ρi

d, j)− k−ρi
d, j

�

. (B.2)

The symbols ρi
j and ρi

d, j represent the numerical approximation of particle density and defect
density at the point (x j , t i). Here, the spatial variable∆x = 1/L and the temporal variable∆t ′

adhere to the stability criterion of the finite-difference scheme mentioned above,∆t ′/∆x2 ≤ 1.
Similarly, Eq. (3) and Eq. (4) are employed to derive the finite-difference equations at the left
and right boundaries as:

ρi+1
1 = ρi

1 +△t
′
�

�

1−ρi
d,1(1− pd)
��

α(1−ρi
1)−ρ

i
1(1−ρ

i
2)
�

�

, (B.3)

and

ρi+1
L = ρi

L +△t
′
�

�

1−ρi
d,L(1− pd)
��

ρi
L−1(1−ρ

i
L)− βρ

i
L

�

�

, (B.4)

respectively.
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