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Abstract

We show that, in presence of isometries and non-trivial topology, the Einstein–Hilbert
action is invariant under certain transformations of the metric which are not diffeo-
morphisms. These transformations are similar to the higher-form symmetries of field
theories with p-form fields. In the context of toroidal Kaluza–Klein compactifications,
we show that these symmetries give rise to some of the “hidden symmetries” (dualities)
of the dimensionally-reduced theories.
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1 Introduction

The main theme of Kaluza–Klein (KK) theories1 is that the symmetries of the lower-
dimensional theory obtained by compactification have a higher-dimensional purely gravita-
tional (that is, geometric) origin. It is not difficult to see how families of diffeomorphisms of
the higher-dimensional spacetime that depend on a number of arbitrary functions give rise to
the Yang–Mills-type gauge symmetries of the lower-dimensional theory. Most of the lower-
dimensional theories obtained by KK compactification also have global symmetries which, in
the Einstein frame, only act on the matter fields. The origin of these global symmetries known
in the context of superstring/supergravity theories, as “dualities”, is more mysterious.2

There are two main kinds of global symmetries:

1. Those which involve electric-magnetic-type duality transformations, which, typically,
only leave invariant the equations of motion and can be considered non-perturbative.

2. The rest, which leave the action invariant.

The higher-dimensional origin of the former is unknown and our results do not seem to
provide new information about it. Thus, we are going to focus on the later, and, in particular,
on symmetries which do not mix fields originating in different higher-dimensional fields.3 For
the sake of clarity, in this paper we will just consider pure d̂-dimensional4 gravity, described
by the Einstein–Hilbert (EH) action, and its toroidal compactifications. As we are going to
explain, the standard explanation of the higher-dimensional origin of these symmetries is not
completely correct and, therefore, we can also call them “hidden”.

In most of the literature, the global symmetries of the theories obtained in these toroidal
compactifications are understood as simple translations, rotations and rescalings (diffeomor-
phisms) in the internal directions. Closer inspection, though, shows that many of these diffeo-
morphisms are incompatible with the boundary conditions in the internal directions. There-
fore, they are not diffeomorphisms of the toroidally compactified manifolds.

Let us start by considering the compactification on a circle, from d̂ to d = d̂−1 dimensions
of the EH action

SEH[ ĝ]∼
∫

d d̂ x̂
Æ

| ĝ| R̂( ĝ) . (1)

If we parametrize the compact direction with the periodic coordinate z ∼ z + 2πℓ adapted to
the isometry k = ∂z , the d̂-dimensional metric decomposes into a metric gµν, a gauge field
(the KK vector) A= Aµd xµ and a scalar (the KK scalar) k

dŝ2 = ĝµ̂ν̂d x̂ µ̂d x̂ ν̂ = ds2 − k2(dz + A)2 , (2)

where
ds2 = gµνd xµd xν . (3)

After integration over z, the d̂-dimensional EH action can be rewritten, up to total deriva-
tives, in the form

S[g, A, k]∼
∫

dd x
Æ

|g|
�

kR(g)− 1
4 k3F2
	

, (4)

1Many historical and more modern references on these theories can be found in Ref. [1].
2Explaining and making manifest all the global symmetries found in lower-dimensional string effective theories

(supergravities) from the 10- and 11-dimensional point of view is the goal of double and exceptional field theory.
For a recent review, see Ref. [2] and references therein.

3In particular, this excludes T duality [3–10].
4We indicate with hats all higher-dimensional objects, except for the Killing vector k and the vector

ε : { x̂ µ̂} = {xµ, z} etc. We use the notation and conventions of Ref. [11]. In particular the index z would be
a “flat” or “Lorentz” index in the compact direction while the index z is a “world” or “coordinate basis” index.
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where
F2 = FµνFµν , Fµν = 2∂[µAν] . (5)

The factor k in front of the Ricci scalar indicates that the metric gµν is not the Einstein-
frame metric gE µν. It is, however, related to it by

gµν = k−2/(d̂−3)gE µν = k−2/(d−2)gE µν , (6)

and, if we rewrite the metric in the Einstein-frame, it takes the form

S[gE , A, k]∼
∫

dd x
Æ

|gE |
§

R(gE) +
d − 1
d − 2

k−2(∂ k)2 − 1
4 k2 d−1

d−2 F2
ª

. (7)

This action is invariant under global rescalings of k and A

δαA= αA , δαk = −α
d − 2
d − 1

k , (8)

which do not act on the Einstein-frame metric.
As discussed, for instance, in Ref. [11], these transformations may be seen as the combi-

nation of a global rescaling of the coordinate z and a global rescaling of the d̂-dimensional
metric

δα ĝµ̂ν̂ = −2αδz
(µ̂ ĝν̂)z +

2α

d̂ − 2
ĝµ̂ν̂ , (9)

where α is some constant, infinitesimal, parameter.
The rescaling of the coordinate z is usually seen as a diffeomorphism generated by the

vector
η̂≡ z∂z , (10)

so the first term in the transformation Eq. (9) is just

−αLη̂ ĝµ̂ν̂ , (11)

where Lη̂ stands for the Lie derivative with respect to the vector field η̂.
Such a rescaling, however, changes the periodicity of z when it is periodic and cannot be

consistently used in this setting. Another way of seeing this problem is to observe that the vec-
tor field η̂ is not well defined when z is periodic: it is not single valued. Furthermore, observe
that, according to this interpretation, the complete transformation Eq. (9) would combine a
symmetry of the action up to total derivatives (a diffeomorphism) with a transformation which
is not a symmetry of the action (a global rescaling of the metric). Such a combination should
not be a symmetry of the d̂-dimensional theory!

As we are going to show, there is another, consistent, way of interpreting this transforma-
tion in which the first term in Eq. (9) corresponds to a transformation which is not a diffeomor-
phism nor a symmetry of the action, because it rescales it. This rescaling can be compensated
with a global rescaling of the metric, resulting in a global symmetry of the d̂-dimensional
action which is inherited by the d-dimensional one and which corresponds, precisely, to the
global symmetry in Eq. (8).

In toroidal compactifications, when there is more than one compact direction, the lower-
dimensional theory is usually invariant under rescalings and also under rotations of the fields.
They are usually understood as originating in rotations of the internal manifold. However, the
putative d̂-dimensional vector fields that would generated those rotations also have compo-
nents proportional to compact coordinates and they are not single valued. Again, the rotations
of the lower-dimensional fields are not diffeomorphisms in higher dimensions.
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As we are going to see, the transformations which is not diffeomorphisms and which are
associated to the rescalings and rotations of the compact coordinates are the analog of the
higher-form symmetries of theories of (p+ 1)-form fields [12].5 They are present in spaces of
non-trivial topology. The symmetries that we have found also require an isometry, but they
should be considered the simplest example of this kind of symmetries and an invitation to
explore other possibilities.

This paper is organized as follows: in Section 2 we review higher-form symmetries in
theories of (p + 1)-form fields from the purely classical point of view in order to clarify in
which sense the symmetries of the EH action that we are going to find in Section 3 are similar.
In Section 4 we show how some of these symmetries give rise to the hidden symmetries that
arise in toroidal KK compactifications. We discuss our results in Section 5 indicating possible
extensions and future lines of research.

2 Higher-form symmetries

In this section we are going to review the so-called higher-form symmetries of (p + 1)-form
fields A from a purely classical point of view. We will use a language close to the one we will
employ in the gravity case which is our main interest and we will consider the simplest setting
in which there is only one field of this kind in the theory and there are no Chern–Simons-like
terms neither in the action nor in the field strength, which is, just, the (p+2)-form F = dA. It
is convenient to use the language of differential forms in which the manifestly gauge-invariant
action in d dimensions takes the form

S[A] =

∫

M

(−1)(p+1)d

2
F ∧ ⋆F . (12)

Under an arbitrary variation of A

δS[A] =

∫

M
{EA∧δA+ dΘ(A,δA)} , (13)

where

EA = −d ⋆ F , (14a)

Θ(A,δA) = ⋆F ∧δA , (14b)

are, respectively, the equation of motion of A and the pre-symplectic potential.
The field strength F is invariant under the transformations δA which are closed

δF = dδA= 0 . (15)

In a generic manifold M, we can only count on the variations δ which are exact, i.e.

δχA= dχ , (16)

where χ is an arbitrary p-form field. These are the standard gauge transformations of a (p+1)-
form field. However, if M has some prescribed topology, there may be closed (p+1)-forms δA
which are not exact. In some cases (typically, in compact manifolds M) we can find a basis of
these forms {h(p+1)

i }, and, then, both F and the theory will be exactly invariant under linear
combinations of them with arbitrary, constant, coefficients ai:

δaA= aih(p+1)
i ≡ aiδiA . (17)

5For pedagogical reviews with many references, see, for instance Refs. [13,14].
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These are global symmetries of the action and we must study them separately from the
gauge ones.

Let us consider them first. The exact invariance of the action for any M in the same
topology class implies the relation

dΘ(A,δaA) = −EA∧δaA , (18)

and for each independent global parameters ai , we derive from it a relation of the form

dJi
.
= 0 , (19a)

Ji =Θ(A,δiA) = ⋆F ∧ h(p+1)
i . (19b)

Each (d−1)-form Ji is the Hodge dual of the standard Noether current 1-form associated to
the global invariance generated by the parameter ai . The charges associated to these currents
are computed by integrating over (d − 1)-dimensional “volumes”.

In the case of the gauge transformations Eq. (16), particularizing the generic variation
Eq. (13) δ→ δχ , integrating by parts and using the Noether identity dEA = 0, we find

δχS[A] =

∫

M
dJ[χ] , (20a)

J[χ]≡Θ(A,δχA) + (−1)d−p−1EA∧χ . (20b)

Since the action is exactly invariant under these transformations for any choice of M, we
conclude that

dJ[χ] = 0 , (21)

off-shell. This happens because

J[χ] = dQ[χ] , (22a)

Q[χ] = (−1)d−p ⋆ F ∧χ . (22b)

These results can be exploited to define charges that satisfy a Gauss law by integrating the
(d − 2)-form Q[χ] over compact (d − 2)-dimensional “surfaces” Σd−2

q[χ] =

∫

Σd−2

Q[χ] , (23)

as follows [15]: observe that, by construction

dQ[χ] = J[χ] =Θ(A,δχA) + (−1)d−p−1EA∧χ . (24)

The second term can be made to vanish by choosing a solution of the equations of motion
EA = 0. Then, since the pre-symplectic potential is linear in δA, the first term can be made to
vanish by choosing a Killing or reducibility parameter χ = κ such that

δκA= dκ= 0 . (25)

Then, the charge q[κ] satisfies a Gauss law because dQ[κ] = 0. Again, for manifolds M
with appropriate topology we can write the most general closed κ in the form

κ= bIh(p)I + de , (26)
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where the bi are constants and {h(p)I } is a basis of closed but not exact p-forms. We can define
an independent charge for each of them

qI ≡ q[h(p)I ] = (−1)d−p

∫

Σd−2

⋆F ∧ h(p)I , (27)

but not for the exact part:
∫

Σd−2

⋆F ∧ de ∼
∫

Σd−2

d (⋆F ∧ e) =

∫

∂Σd−2

⋆F ∧ e = 0 , (28)

where we have used the equations of motion and the compactness of the integration surface.
For this reason, the charges qI we have defined are insensitive to the ambiguity of the h(p)I ,
which are defined only up to the addition of a total derivative.

In the next section we are going to try to generalize this scheme in the context of gravity.

3 Higher-form symmetries in gravity

The EH action is invariant up to total derivatives under the following transformations of the
metric field

δξgµν = −Lξgµν = −2∇(µξν) , (29)

which are obviously associated to diffeomorphisms δξxµ = ξµ.
We would like to find more general transformations δgµν leaving the action invariant, at

least if certain geometrical or topological conditions are met. In order to get some inspiration,
let us consider the KK theory with one compact and isometric direction which we discussed in
the introduction. In that case, both the transformations that become the gauge transformations
of the KK vector in one dimension less and the transformations that rescale the KK vector and
scalar in one dimension less are associated to diffeomorphisms generated by vector fields of
the form

f ( x̂)k , k = ∂z . (30)

When the function f ( x̂) is an arbitrary function Λ(x) of the (d̂−1)-dimensional coordinates x ,
only, we get the gauge transformations of the KK vector field and when it is proportional to the
isomeric coordinate z, it generates rescalings of the z coordinate. We have argued that these
rescalings are incompatible with the periodic boundary conditions of z, but let us ignore this
fact for the moment and let us look at the transformations of the metric generated by vector
fields of the above form. They act on the metric as

δ f ĝµ̂ν̂ = −2∂(µ̂ f kν̂) , (31)

because k is a Killing vector that leaves invariant the metrics of the class considered in KK
theory.

When f = z, the above transformation is well defined, even though we derived it from a
vector field which is not. This fact suggests that we may try to search for transformations of
the metric gµν

6 of the form
δεgµν ≡ −2ε(µkν) , (32)

where ε= εµ∂µ is some vector field and k = kµ∂µ is a Killing vector field of the metric, so that

∇µkν =∇[µkν] . (33)

6Now we consider a general metric in a general dimension and, henceforth, suppress the hats.
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First of all, for the above transformation to be a symmetry in the class of metrics admitting
k as Killing vector, the following condition must be satisfied:

Lk

�

ε(µkν)
�

= 0 . (34)

This condition is equivalent to7

Lkε̂= ıkdε̂+ dıkε̂= 0 , (35)

which would be satisfied if (but not only if)

dε̂= 0 , (36a)

dıkε̂= 0 . (36b)

We now want to see under which conditions these transformations leave the EH action
invariant. We know that, when εµ = ∂µ f or ε̂ = d f for some well-defined f , the above
transformation is associated to a diffeomorphism, much in the same way as the transformation
δA of a (p + 1)-form field corresponds to a gauge transformation when it is exact. Thus, we
expect the transformation of EH action to be proportional to dε̂ and to vanish when ε̂ is closed.

A straightforward calculation gives for the Levi-Civita connection

δεΓµν
ρ = −gρσ
�

kσ∇(µεν) + kν∇[µεσ] + kµ∇[νεσ] + 2ε(µ∇ν)kσ
	

, (37)

where we have used the Killing vector equation (KVE) Eq. (33) in the last step.
The variation of the Riemann curvature tensor is given by the Palatini identity

δεRαµν
ρ = 2∇[α|δεΓ|µ]νρ

= −gρσ
�

∇[α|kσ∇|µ]εν +∇[α|kσ∇νε|µ] +∇[α|kν∇|µ]εσ −∇[α|kν∇σε|µ]
+2∇αkµ∇[νεσ] + 2∇[αεµ]∇νkσ + 2∇[α|εν∇|µ]kσ
+kσ∇[α∇µ]εν + kσ∇[α|∇νε|µ] + kν∇[α∇µ]εσ − kν∇[α|∇σε|µ]
+2k[µ∇α]∇[νεσ] + 2ε[µ∇α]∇νkσ + 2εν∇[α∇µ]kσ

	

.

(38)

In order to simplify the notation we define

Pεµν ≡∇[µεν] , Pkµν ≡∇µkν . (39)

Using the Ricci identity and the integrability condition of the Killing vector

[∇µ,∇ν]ξρ = −Rµνρ
σξσ , (40a)

∇µ∇νkρ = −kσRσµνρ , (40b)

we can remove all the second derivatives and the transformation of the Riemann curvature
tensor takes a much simpler form:

δεRαµν
ρ = −gρσ
�

−2Pk [α|σPε |µ]ν + 2Pk [α|νPε |µ]σ + 2PkαµPενσ + 2PkνσPεαµ
−kσRαµνλε

λ − 2kσ∇[α|Pε |µ]ν + 2kν∇[αPε |µ]σ
+2k[µ∇α]Pενσ − 2ε[µkλRλ|α]νσ − 2ενk

λRλ[αµ]σ
	

.

(41)

Replacing ρ by µ and using
∇[µ|Pε |νρ] = 0 , (42)

7In this context we denote with hats the 1-form ε̂= εµd xµ dual to the vector field ε= εµ∂µ.
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we get the transformation of the Ricci tensor

δεRαν = −6Pk (α|µPε |ν)
µ + 2k(α|∇µPε |ν)

µ − 2kµ∇(α|Pε |ν)µ − 2kλRλ(αεν) . (43)

Then
δε

�
Æ

|g|R
�

=
Æ

|g|
�

−δεgµνGµν + gµνδεRµν
�

= −εµkµ
Æ

|g|R+
Æ

|g|
�

−6 Pk
µνPεµν + 4kµ∇νPε

µν
�

.
(44)

We can eliminate the second term by demanding

Pεµν = 0 ⇒ dε̂= 0 , (45)

which is the first of Eqs. (36). The first term may be eliminated by demanding kµεµ = ıkε̂= 0,
which is a very strong condition. Instead, we observe that the result that we have obtained
after demanding the closedness of ε̂, Eq. (45), is

δε

�
Æ

|g|R
�

= −ıkε̂
�
Æ

|g|R
�

, (46)

which would be equivalent to a global rescaling of the action if

ıkε̂= constant ⇒ dıkε̂= 0 , (47)

which is the second of the consistency conditions Eqs. (36).
We can compensate this rescaling with another global rescaling

δαgµν = αgµν ⇒ δα

�
Æ

|g|R
�

=
(d − 2)

2
α
�
Æ

|g|R
�

, (48)

choosing the parameter α = 2ıkε̂/(d − 2). Thus, combining these two transformations, we
find that

δεgµν = −2ε(µkν) +
2

(d − 2)
ερkρ gµν , (49)

leaves the EH action exactly invariant if the consistency conditions Eqs. (36) are met.
In the next section we are going to see in the KK context that these transformations in-

clude and extend the diffeomorphism invariance of the EH action and that, when they are
not diffeomorphisms, they generate the constant rescalings of the KK vector and scalar that
leave invariant the d = (d̂ − 1)-dimensional action as well as the d̂-dimensional one, as we
have shown. Notice that, in the KK setting the dimensional parameter that occurs in the above
formulae has to be replaced by d̂.

3.1 Conserved charges

We have just shown that, under the conditions Eqs. (36), the transformations Eq. (49) leave
the EH action exactly invariant

δεSEH[g] = 0 . (50)

Associated to each of the closed, but not exact, 1-forms ε̂ satisfying also dıkε = 0, {εi}, there
must be a conserved Noether current.

Under a general variation of the metric,

δSEH[g]∼
∫

M
d4 x

�

δS
δgµν

δgµν + ∂µΘ
µ(g,δg)

�

, (51a)

δS
δgµν

= −
Æ

|g|Gµν , (51b)

Θµ(g,δg) =
Æ

|g|
�

gµνδΓρν
ρ − gρνδΓρν

µ
�

. (51c)
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Then, for each εi ,

∂µΘ
µ(g,δεi

g) = −
δS
δgµν

δεi
gµν

.
= 0 . (52)

Then, using Eq. (37) and the fact that global rescalings of the metric leave invariant the con-
nection, the current ji

µ is given by

ji
µ = Θµ(g,δεi

g)

=
Æ

|g|
�

kµ∇ρεi
ρ + 2εi

ρ∇ρkµ
	

,
(53)

where we have used the Killing equation satisfied by k and the consistency conditions
Eqs. (36).8

We can check that, indeed, the above currents are conserved on-shell:

∇µ
�

ji
µ/
Æ

|g|
�

= −2εi
ρkλRλρ

.
= 0 ,

(55)

where we have used
kµ∇µ∇ρεi

ρ = 0 . (56)

4 Higher-form symmetries in the Kaluza–Klein setting

Let us now consider the transformations that we have found in the preceding section in the KK
setting in which one of the dimensions is compactified in a circle, parametrized by z ∈ [0,2πℓ],
which is the coordinate adapted to an isometry, so there is always a Killing vector field k = ∂z .
In this setting, the solution to the first of the consistency conditions Eqs. (36) is of the form9

ε̂= βdz + dΛ , (57)

where β is some constant. Then, the second equation reads

β + ∂zΛ= α , α= ıkε̂ , (58)

where α is another constant, and is solved by

Λ= Λ(x) + (α− β)z , (59)

where ∂zΛ(x) = 0. The second term in Λ actually gives a term of the same kind as the first.
Furthermore, as we have discussed in the introduction, this second term is not single valued
around the circle and, therefore, we must remove it setting α= β . Thus,

ε̂= αdz + dΛ(x) . (60)

8For instance:

−kρ∇ρεi
µ = −kρ∇µεiρ = −∇µ

�

kρεiρ

�

+ εi
ρ∇µkρ = 0− εi

ρ∇ρkµ = −εi
ρ∇ρkµ . (54)

9Observe that despite its local form, dz is not an exact 1-form because z is not a single-valued function. Strictly
speaking, it is not a good coordinate, either: S1 needs to be covered by, at least, two coordinate patches with
coordinates z1 and z2 related by an additive constant in the overlap. In each patch, the 1-form we are denoting
by dz would be dz1 and dz2 and it would be closed, but there is not a single-valued function f such that it is d f
(exact). Most of the time it is simpler and sufficient to work with a single, periodically-identified, coordinate z if
one is careful.
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The exact part of ε̂ is associated to a well-defined vector field

λ≡ Λ(x)∂z , (61)

which generates the gauge transformations of the KK vector field:

δλgµν = δλ
�

ĝµν − ĝzµ ĝzν/ ĝzz

�

= 0 , (62a)

δλAµ = δλ
�

ĝµz/ ĝzz

�

= −∂µΛ , (62b)

δλk = δλ| ĝzz|1/2 = 0 . (62c)

The global part of ε̂ acts on the d̂-dimensional metric as

δα ĝµ̂ν̂ = −2αδz
(µ̂ ĝν̂)z +

2

(d̂ − 2)
α ĝµ̂ν̂ . (63)

These transformations act in a non-trivial way over all the fields in the d-dimensional KK
frame. In the Einstein frame, though, only the KK scalar and vector transform

δαgE µν = δα
�

k2/(d̂−3)gµν
�

= 0 ,

δαAµ = αAµ ,

δαk = −α
(d̂ − 3)

(d̂ − 2)
k ,

(64)

and these transformations coincide precisely with those in Eq. (8) that leave the Einstein-frame
action Eq. (7) invariant.

Thus, we have shown that this global symmetry of the compactified theory is related to a
symmetry of the higher-dimensional EH action which is not a diffeomorphism. This symmetry
has been constructed with the help of a global rescaling of the metric, but we are going to see
that in more general toroidal compactifications we do not need this global rescaling and we
have symmetries originating only in the global part of ε̂.

4.1 Toroidal compactifications

In toroidal compactifications there are n compact, mutually commuting isometries generated
by Killing vectors that can be expressed in adapted coordinates as

km = km
µ̂∂µ̂ = ∂zm ≡ ∂m . (65)

The isometric coordinates zm parametrize the n circles and, for simplicity, we assume
that all of them have the same period zm ∼ zm + 2πℓ. The dimensional reduction of the d̂-
dimensional EH action can be performed in two steps. First, we decompose the d̂-dimensional
metric ĝµ̂ν̂ into d = (d̂ − n)-dimensional fields: a KK-frame metric gµν, n gauge fields (KK vec-
tors) Am = Am

µd xµ and n(n+1)/2 KK scalar fields described by a symmetric, positive-definite
matrix Gmn

dŝ2 = ĝµ̂ν̂d x̂ µ̂d x̂ ν̂ = ds2 − Gmn(dzm + Am)(dzn + An) , (66)

where
ds2 = gµνd xµd xν . (67)

After integration over the n isometric directions, we obtain the d-dimensional KK-frame
action

S[g, Am, Gmn]∼
∫

dd x
Æ

|g|K
�

R(g)− (∂ ln K)2 − 1
4∂µGmn∂

µGmn − 1
4 F2
	

, (68)
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where
K2 ≡ |det(Gmn)| , F2 ≡ GmnF mµνF n

µν , F m
µν ≡ 2∂[µA

m
ν] . (69)

The second step consists in a rescaling of the KK-frame metric to the Einstein-frame metric.
It is also convenient to rescale the matrix of scalars to obtain a unimodular matrix M:

gµν = K−
2

d−2 gE µν ,

Gmn ≡ K
2
nMmn .

(70)

The result is the following d-dimensional Einstein-frame action

S[g, Am, K ,Mmn]∼
∫

dd x
Æ

|gE |
¦

RE +
1
2

�

∂ ln K−2a
�2 − 1

4∂µMmn∂
µMmn

−1
4 K(2a)2MmnF mµνF n

µν

©

, (71)

where we have defined the constant

a ≡ −

√

√(d − 2+ n)
2n(d − 2)

. (72)

This action is invariant under SL(n,R) transformations which only act on the KK vectors and
M

A′m = Sm
nAn , M′mn = S−1 p

mS−1 q
nMpq , (73)

and which are only non-trivial for n≥ 2 and under global rescalings which only act on the KK
scalar K and the KK vectors Am

K ′ = C−
1

2a2 K , A′m = CAm , (74)

where C is an arbitrary positive real constant. Together, they generate the GL(n,R) duality
group of this theory which, in the literature, is customarily associated to diffeomorphisms of
the internal space Tn. However, just as in the n = 1 case, most of those transformations do
not preserve the boundary conditions and are generated by vector fields which are not single
valued.

In this case, we can consider a linear combination of transformations of the form Eq. (49)
for each of the n Killing vectors. We have to introduce n closed 1-forms ε̂m in order to con-
struct transformations δεgµν ∼ ε(m)(µ|k(m) |ν), (no sum over m intended) but, once we have
introduced them, we can obviously consider other pairings εm

(µ|kn |ν), m ̸= n and, therefore,
we are led to consider the most general possibility

δε ĝµ̂ν̂ = −2T m
nε

n
(µ̂|km |ν̂) , (75)

where T m
n is a matrix of constant, infinitesimal, parameters. Each of the terms in the linear

combination of the right-hand side must satisfy the condition

εn ρ̂km ρ̂ = constant, (76)

and, furthermore, it needs to be compensated by a global rescaling in order to generate a sym-
metry of the EH action. Thus, we must consider the transformations Eq. (75) supplemented
by a global rescaling, if necessary.

In this setting, we can always choose the closed 1-forms εm so that

εn ρ̂km ρ̂ = δ
n

m ⇒ ε̂m = dzm + dΛm(x) . (77)
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The exact part does not need to be supplemented by global rescalings. It generates gauge
transformations of the KK vectors

δΛAm = dΛ′m , Λ′m = T m
nΛ

n . (78)

In what follows, we will only consider the non-exact part. Taking into account the neces-
sary global rescalings, the transformations take the form

δε ĝµ̂ν̂ = −2T p
qε

q
(µ̂|kp |ν̂) +

2

(d̂ − 2)
T p

p ĝµ̂ν̂ . (79)

Since only the trace of T m
n needs to be compensated by the global rescalings, we decom-

pose it into its traceless and trace parts:

T m
n = T m

n −
1
n
δm

nT p
p +

1
n
δm

nT p
p ≡ Rm

n + Tδm
n , (80)

and we end up with

δε ĝµ̂ν̂ = −2Rp
qε

q
(µ̂|kp |ν̂) − 2T

�

εp
(µ̂|kp |ν̂) −

n

(d̂ − 2)
ĝµ̂ν̂

�

. (81)

We can define two independent sets of transformations:

δR ĝµ̂ν̂ ≡ −2Rp
qε

q
(µ̂|kp |ν̂) , Rp

p = 0 , (82a)

δT ĝµ̂ν̂ ≡ −2T

�

εp
(µ̂|kp |ν̂) −

n

(d̂ − 2)
ĝµ̂ν̂

�

. (82b)

Taking into account that
εp
(µ̂|kq |ν̂) = δ

p
(µ̂| ĝq |ν̂) , (83)

the effect of the δT transformations on the d-dimensional Einstein-frame fields is

δT K = −
n(d̂ − 2− n)T

(d̂ − 2)
K = −

n(d − 2)T
(d − 2+ n)

K = −
T

2a2
K ,

δT Am
µ = TAm

µ ,

(84)

and the Einstein metric and Mmn are invariant. These transformations are the infinitesimal
version of those in Eq. (74), which leave the Einstein-frame action invariant.

The δR transformations act on the d-dimensional fields as

δRMmn = −2Rp
(m|Mp |n) ,

δRAm
µ = Rm

nAn
µ ,

(85)

leaving the rest invariant.

4.2 Conserved charges

Let us compute the d̂-dimensional Noether current of the T and R symmetries. Using the
general expression Eq. (53), we find

jm
n
µ̂/
Æ

| ĝ|= kn
µ̂∇̂ρ̂εm ρ̂ + 2εm ρ̂∇̂ρ̂kn

µ̂

= −δn
µ̂ 1
p

|g|K
∂ρ

�
Æ

|g|K Amρ
�

− 2Amρ Γ̂ρn
µ̂ − 2
�

Gmp − Am
ρApρ
�

Γ̂pn
µ̂ ,

(86)
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where we have decomposed the d̂-dimensional fields in terms of the d-dimensional ones. The
d-dimensional components are

jm
n
µ/
Æ

| ĝ|= K
2

d−2

�

K(2a)2MnpF p
ρ
µAmρ −Mmp∂ µMpn −

2
n

K−1∂ µKδm
n

�

. (87)

where we have expressed the current in the Einstein-frame metric.
The trace part is, (again in the Einstein frame)

jm
m
µ/
Æ

|g| ∼ 2K−1∂ µK + K(2a)2MmnF mµ
ρAnρ , (88)

and it is easy to check that its divergence is proportional a combination of the d-dimensional
equations of motion of K and Am and vanishes on-shell.

The traceless part is

Rn
m jm

n
µ/
Æ

|g| ∼ Rn
m

�

Mmp∂ µMpn + K(2a)2MnpF pµ
ρAmρ
�

, (89)

and its divergence is a combination of the equations of motion of Am and

Rp
mMnp

δS
δMmn

, (90)

which, therefore, also vanishes on-shell.
Both currents coincide with the Noether currents of the T and R symmetries of the d-

dimensional action, as expected.

5 Discussion

In this paper we have shown that the Einstein–Hilbert action is invariant under transformations
of the metric which are not diffeomorphisms. In the KK setting that we have chosen as an
example, these transformations are equivalent to diffeomorphisms which are not globally well
defined,10 and they give well-known symmetries of the compactified theory. Nevertheless,
these symmetries provide a higher-dimensional explanation for them which, strictly speaking,
was not available in the literature. On the other hand, we believe that the symmetries that we
have found are just the simplest in their class and that, in more general settings, the Einstein–
Hilbert action will certainly admit more general non-diffeomorphic symmetries.

There is another interesting aspect of the relation between global duality symmetries in
compactified theories and non-diffeomorphic symmetries in higher dimensions. It is believed
that Quantum Gravity theories should not have any global symmetries [16–19], but if these
symmetries were just a global subgroup of a gauge group, it would be very difficult to argue
that only that particular subset should be broken. Our results imply (at least in the simple
examples tat we have explored here) that those global duality symmetries are not a subgroup of
the group of diffeomorphisms and, therefore, they can be broken while preseving the integrity
of the group of diffeomorphisms.

It should also be clear that the coupling to matter may modify or enhance the set of non-
diffeomorphic symmetries, mixing now different higher-dimensional fields as it happens in
T duality.

Finally, we know that, when we compactify a theory, the existence of global symmetries in
a theory allows for generalized dimensional reduction ansatzs in which one performs a global
symmetry transformation of the matter fields with a parameter which is linear in one of the

10This is always going to be the case, since all closed 1-forms are locally exact.
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compact coordinates. These ansatzs lead to gauge/massive theories in lower dimensions. A
good example is provided by the generalized dimensional reduction of type IIB supergravity
from 10 to 9 dimensions exploting the full SL(2,R) global symmetry of the theory performed in
Ref. [9]. These generalized dimensional reductions can also be associated to the introduction
of non-dynamical branes in the background [9, 21]. There is another kind of generalized
(Scherk–Schwarz) dimensional reduction ansatz, proposed in Ref. [20], which may be related
to the kind of global symmetries acting on the metric that we have been discussing in this paper.
In future work we would like to explore the possible connection between the Scherk–Schwarz
ansatz and the global, non-diffeomorphic symmetries identified in this paper.
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