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Abstract

By employing the Lindblad equation, we derive the evolution of the two-point correla-
tor for a free-fermion chain of length L subject to bulk dephasing and boundary losses.
We use the Bethe Ansatz to diagonalize the Liouvillian L(2) governing the dynamics of
the correlator. The majority of its eigenvalues are complex. Precisely, L(L − 1)/2 com-
plex eigenvalues do not depend on dephasing, apart from a trivial shift. The remaining
complex levels are perturbatively related to the dephasing-independent ones for large
L. The long-time dynamics is governed by a band of real eigenvalues, which contains
an extensive number of levels. They give rise to diffusive scaling at intermediate times,
when boundaries can be neglected. Moreover, they encode the breaking of diffusion at
asymptotically long times. Interestingly, for large loss rate two boundary modes appear
in the spectrum. The real eigenvalues correspond to string solutions of the Bethe equa-
tions, and can be treated effectively for large chains. This allows us to derive compact
formulas for the dynamics of the fermionic density. We check our results against exact
diagonalization, finding perfect agreement.
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1 Introduction

Markovian master equations [1], such as the Lindblad equation, provide a versatile tool to
understand the interplay between coherent and dissipative dynamics in open quantum many-
body systems [2]. Although the interaction with an environment typically is a strong adversary
for quantum coherence, it can also be exploited to imprint nontrivial quantum correlations [3],
to aid quantum computation [4], or to stabilize topological order [5].

Exact solvable models could potentially help to build a general understanding of open
quantum systems, similar to what happened in out-of-equilibrium closed systems [6]. Unfor-
tunately, despite intense effort there are comparatively few examples of exact solvable Lindblad
equations. Free-fermion and free-boson models subject to arbitrary linear jump operators lead
to quadratic Liouvillians, and stand out as prominent examples [7]. Still, non quadratic Liou-
villians that are solvable, for instance by the Bethe Ansatz, exist [8–24]. Remarkably, it has
been shown in Ref. [11] that the Liouvillian describing the out-of-equilibrium dynamics of the
fermionic tight-binding chain with global dephasing can be mapped to the Hubbard chain with
imaginary interaction strength, which can be solved by Bethe Ansatz [25]. Interestingly, it is
well-established that the dynamics of simple observables, such as few-point correlation func-
tions can be obtained analytically [26–28], without explicitly relying on the exact solvability
of the full Liouvillian. Furthermore, integrability is crucial to devise effective descriptions for
out-of-equilibrium open systems. For instance, it has been shown recently that, by exploiting
integrability, the Lindblad dynamics of paradigmatic observables can be captured within the
hydrodynamic framework [29–34]. For quadratic Liouvillians one can employ the quasipar-
ticle picture [35–37] to describe the dynamics of entanglement-related quantities [38–41].
Similar results were derived for free fermions in the presence of localized dissipation [42–44].
In conclusion, widening the set of integrable Lindblad equations is of paramount importance
to make progress in out-of-equilibrium open quantum systems.

Here we provide new results in this direction considering the setup depicted in Fig. 1. We
focus on a fermionic tight-binding chain of length L with open boundary conditions. Global
dephasing is present on each site of the chain. We denote by γ the dephasing rate. Be-
sides, the chain is subject to incoherent fermion losses with the same rate γ− at the edges.
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Figure 1: Setup considered in this paper. A tight-binding fermionic chain with L sites
is subject to global dephasing, with dephasing rate γ. We employ open boundary
conditions. At the edges of the chain fermions are incoherently removed at rate γ−.

This prototypical setup was investigated in Ref. [8], and more recently in Ref. [45, 46] (see
also Ref. [47,48]) and [49,50]. The focus was on the interplay between the diffusive transport
induced by the global dephasing and the ballistic one due to the boundary driving. The same
setup was employed to study the interplay between dissipation and criticality [2, 51]. Here
we focus on the two-point fermionic correlation function Gx1,x2

:= Tr(ρ(t)c†
x1

cx2
), with cx1

, cx2

standard fermion operators, and ρ(t) the full-system density matrix. The out-of-equilibrium
dynamics of Gx1,x2

is governed by a Liouvillian super operator L(2) (see section 2).
We show that the spectrum, i.e., eigenvalues and eigenvectors, of L(2) can be constructed

explicitly using the Bethe Ansatz. This happens despite the fact that the full Liouvillian, to the
best of our knowledge, is not integrable. Indeed, as we show, the full Liouvillian is mapped
to the one-dimensional Hubbard model with imaginary density-density interaction, imaginary
boundary magnetic fields, and imaginary boundary pair production. The last term creates
a pair of fermions with opposite spins at the boundaries, making the model non integrable.
Since L(2) is not hermitian, its eigenvalues (energies) are in general complex. The spectrum
of L(2), at least for moderate dephasing rate, splits into three different components. We show
that there are L(L−1)/2 complex eigenvalues that are trivially related by a shift by −γ to the
eigenvalues obtained in the absence of dephasing. These correspond to eigenstates that are
free-fermionic in nature. For γ− = 0 these eigenvalues form a vertical band in the complex
plane, their real part being −γ. For nonzero γ− the band is deformed. Nearby in energy, there
are ∼ L(L−1)/2 complex eigenvalues, which become the same as the dephasing-independent
ones in the large L limit.

Finally, a band containing ∼ L real eigenvalues is present. A similar band is present for
periodic boundary conditions (see Ref. [26] and Ref. [28]), where it is responsible for diffusive
dynamics at long times. For this reason we dub it diffusive band. The eigenvalues with the
largest real parts, and the gap of L(2), are in the diffusive band. The diffusive band correspond
to so-called string solutions of the Bethe equations, which in the large L limit can be treated
within the framework of the string hypothesis [25]. For instance, this allows us to derive the
Liouvillian gap analytically as ∆L(2) = −2π2/(γL2) + β/L3 +O(L−4), where the constant β ,
which we determine, depends both on γ and γ−. The number of eigenvalues in the diffusive
band depends on γ,γ−. We show that in the large L limit, i.e., in the regime of validity of
the string hypothesis, there is a “critical” γc = 4 above which the band contains the largest
number of eigenvalues. Upon lowering γ the band gets progressively depleted. In the limit
L →∞ the energy ϵ in the diffusive band are such that ϵ >

p

γ2 − 16 − γ for γ > γc . The
number of levels depends on γ− as well. Precisely, for γ > γc the band contains L levels
for γ− < γ−c = exp(−arccosh(γ/4)). At larger γ−, two of the eigenvalues detach from the
diffusive band, and are pushed to lower Re(ϵ) upon increasing γ−. The splitting between
them is exponentially suppressed with L. These eigenvalues correspond to edge modes of L(2),
and are reminiscent of the boundary-related eigenstates of the Hubbard chain with boundary
magnetic fields [25].

The Bethe Ansatz diagonalization of L(2) allows, in principle, to obtain the full-time dynam-
ics of Gx1,x2

(t). This is not straightforward because it requires to extract all the L2 solutions of
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the Bethe equations. Still, in the long-time limit the dynamics of the correlator is determined
by the diffusive band, which can be treated by using the string hypothesis. Here we provide
compact expressions for the dynamics of the density profile starting from a fermion localized
at an arbitrary site of the chain. This is the main ingredient to obtain the dynamics from
an arbitrary initial density profile. At long times, but short enough that the boundaries can
be neglected, the density profile exhibits the same diffusive scaling as for periodic boundary
conditions. At long time the diffusive regime breaks down due to the boundary losses.

The manuscript is organized as follows. In section 2 we introduce the tight-binding chain
with dephasing and boundary losses, and the Lindblad equation. In section 3 we present
the Bethe Ansatz treatment of the Liouvillian L(2). Specifically, in section 3.1 we introduce
the Ansatz for the eigenstates of L(2). In section 3.2 we derive the Bethe equations. In sec-
tion 3.3 we discuss the eigenvalues that correspond to dephasing-independent solutions of the
Bethe equations. In section 3.4 we investigate the eigenvalues of L(2) that are perturbatively
connected to the dephasing-independent ones in the large L limit. Finally in section 3.5 we
discuss the diffusive band. In section 4 we focus on the dynamics of the two-point fermionic
correlation function. In particular, in section 4.1 we discuss how to expand the initial correlator
in the basis of the Bethe states. In section 4.2 we derive the normalization of the Bethe states.
In section 4.3, by using the string hypothesis, we derive the long-time limit of the fermion
density profile. We discuss numerical results in section 5. Precisely, in section 5.1 we focus on
the solution of the Bethe equations. We provide the full set of solutions for chains with L = 2
and L = 3. In section 5.2 we discuss the solution of the Bethe-Gaudin-Takahashi equation for
the diffusive band. In section 5.3 we overview the general structure of the eigenvalues of L(2)
presenting exact diagonalization (ED) data. In section 5.4 we compare the ED data against
Bethe Ansatz results. In section 5.5 we focus on the finite-size scaling of the Liouvillian gap.
In section 5.6 we benchmark the Bethe Ansatz results for Gx1,x2

with exact diagonalization.
Section 5.7 provides numerical results for the dynamics of the density profile. In section 5.8
we focus on the diffusive scaling of the fermion density and its violation due to the bound-
ary losses. We conclude in section 6. In Appendix A we show that the full Liouvillian of the
system is mapped to a one-dimensional Hubbard model with imaginary interaction, imagi-
nary boundary fields and imaginary pair-production term at the boundary. In Appendix A.1
we compare the Bethe equations for the Hubbard chain with boundary fields and the Bethe
equations derived in section 3.2, showing that they are equivalent.

2 Free fermions with dephasing and boundary losses

Here we consider the fermionic tight-binding chain described by the Hamiltonian

H =
L−1
∑

x=1

(c†
x cx+1 + c†

x+1cx) , (1)

where c†
x , cx are standard fermionic creation and annihilation operators. The system lives on a

chain with L sites. We employ open boundary conditions. Our setup is depicted in Fig. 1. The
chain undergoes a nonunitary dynamics described by the Lindblad master equation [1]. The
state of the system is described by a density matrix ρ(t). Within the framework of Markovian
master equations [1], the dynamics of ρ is obtained by solving the Lindblad equation as

dρ(t)
d t

:= L(ρ) = −i[H,ρ(t)] +
L
∑

x=1

∑

α

�

Lx ,αρ(t)L
†
x ,α −

1
2

�

L†
x ,αLx ,α,ρ(t)
	

�

, (2)

where {, } denotes the anticommutator, and Lx ,α is the so-called Lindblad operator acting at
site x . In (2), L is the Liouvillian. The label α encodes the different types of dissipation.
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Specifically, we chooseα= 1 for global dephasing andα= 2 for boundary losses. The Lindblad
operator for global dephasing reads as

Lx ,1 =
p
γc†

x cx , x ∈ [1, L] . (3)

Localized losses at the edges of the chain are described by

Lx ,2 =
p

γ−cx , x = 1, L , (4)

In (3) and (4), γ and γ− are the dephasing and loss rates, respectively. By using (2), it
is straightforward to obtain the evolution of the fermionic two-point correlation function
Gx1,x2

(t) defined as [52]
Gx1,x2

(t) := Tr(ρ(t)c†
x1

cx2
) . (5)

The dynamics of Gx1,x2
from a generic initial condition Gx1,x2

(0) is obtained by solving the
system of equations as [38]

dGx1,x2

d t
:= L(2)(Gx1,x2

) = i(Gx1−1,x2
+ Gx1+1,x2

− Gx1,x2−1 − Gx1,x2+1)

− γGx1,x2
(1−δx1,x2

)− γ−Gx1,x2
(δx1,1 +δx2,1 +δx1,L +δx2,L) , (6)

where we define the L2 × L2 linear super operator L(2). The superscript in L(2) is to stress
that L(2) is not the same Liouvillian appearing in (2), which is a 2L × 2L matrix and governs
the dynamics of the full-system density matrix. In the following we will refer to L(2) as the
Liouvillian, and to L (cf. (2)) as the full Liouvillian. In (6) we consider the symmetric situation
in which the fermions are removed at the edges of the chain at the same rate γ−. However,
the case with different rates γ−

L(R)
at the left and right edges of the chain can be considered as

well. The first term in (6) describes the unitary dynamics governed by the Hamiltonian (1).
The second term is the dephasing, which suppresses the off-diagonal elements of Gx1,x2

. The
last term describes incoherent absorption of fermions at the edges of the chain.

Importantly, the solution of (6) allows one to obtain the dynamics of Gx1,x2
in several

physical situations. For instance, let us consider the setup investigated in Ref. [45], in which a
free-fermion chain is subject to global dephasing and fermion pumping at the left edge of the
chain and fermion losses at the right one. Let us focus on the case with dephasing rate γ, and
equal pump/loss rate γ′. The evolution of Gx1,x2

is obtained by solving [46]

dGx1,x2

d t
:= L(2)(Gx1,x2

) = i(Gx1−1,x2
+ Gx1+1,x2

− Gx1,x2−1 − Gx1,x2+1)

− γGx1,x2
(1−δx1,x2

)−
γ′

2
Gx1,x2

(δx1,1 +δx2,1 +δx1,L +δx2,L) + γ
′δx1,1δx2,1 . (7)

Eq. (7) is the same as (6) apart for the boundary terms. The boundary dissipation is modeled
by the Lindblad operators Lx ,2 =

p

γ′c†
1 and Lx ,2 =
p

γ′cL . Importantly, Eq. (7) becomes the
same as (6) after the redefinition γ− = γ′/2, apart for the “driving” term γ′δx1,1δx2,1. However,
since Eq. (6) and (7) are linear in Gx1,x2

, given the general solution of (6), it is possible to
construct the solution of (7) with generic initial condition G(in)x1,x2

. Indeed, let us consider G(I)x1,x2

solution of (7) without the last term, and with initial condition Gx1,x2
(0) = G(in)x1,x2

. Let us also
consider the solution G(II)x1,x2

of (7) without the driving term and with delta initial condition
G(II)x1,x2

(0) = δx1,1δx2,1. Now, one can verify that the solution of (7) is

Gx1,x2
(t) = G(I)x1,x2

+ γ′
∫ t

0

dτG(II)x1,x2
(t −τ) . (8)
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In the following sections we will determine the full spectrum, i.e., the eigenvalues and the
eigenvectors of L(2) (cf. (6)), for arbitrary γ,γ− by using the Bethe Ansatz. This allows us to
derive compact formulas for the fermionic correlator Gx1,x2

at arbitrary long times and chain
sizes. In principle, by using (8) this also allows to obtain the dynamics of Gx1,x2

for the setup
of Ref. [45].

3 Bethe Ansatz treatment of the Liouvillian L(2)

Here we discuss the Bethe Ansatz framework that allows to solve (6). We first introduce the
Ansatz à la Bethe for the right eigenvectors of L(2) in section 3.1. In section 3.2 we discuss
the solutions of the Bethe equations and the general structure of the eigenvalues (energies) of
the Liouvillian L(2). In section 3.3 we focus on a special class of states, which do not depend
on dephasing, i.e., they are the same as in the tight-binding chain with boundary losses. In
section 3.4 we discuss eigenvalues of L(2) that are perturbatively related to the ones of sec-
tion 3.3 in the large L limit. Finally, in section 3.5 we discuss solutions of the Bethe equations
that form perfect strings in the complex plane (see Fig. 2). These states correspond to real
eigenvalues and govern the long-time dynamics of the fermion correlator.

3.1 Bethe Ansatz for the eigenstates of L(2)

Inspired by the coordinate Bethe Ansatz solution of the X X Z chain with open boundary con-
ditions [53] and by the Bethe Ansatz treatment of dephasing [11,26,27] and incoherent hop-
ping [28] in free-fermion systems, we employ the following Ansatz for Gx1,x2

as

Gx1,x2
=
∑

r1,r2=±
r1r2eϵ(k1,k2)t
¦�

A12(r1, r2)e
ir1k1 x1+ir2k2 x2

+ (−1)x1+x2A21(r1, r2)e
ir2k1 x2+ir1k2 x1
�

Θ(x2 − x1)

+σ(−1)x1+x2
�

A12(r1, r2)e
ir1k1 x2+ir2k2 x1

+ (−1)x1+x2A21(r1, r2)e
ir2k1 x1+ir1k2 x2
�

Θ(x1 − x2)
©

. (9)

Here k1, k2 are complex quasimomenta, which have to be determined by solving the so-called
Bethe equations. Gx1,x2

(after vectorization) are the right eigenvectors of L(2) with eigenvalues
ϵ(k1, k2). The evolution of (9) is “simple” because L(2)(Gx1,x2

) = ϵGx1,x2
, although it is not

trivial, due to the eigenvalues ϵ being complex. The sum over r1, r2 in (9) is over the reflections
of k1, k2, similar to the Bethe Ansatz solution of the Heisenberg chain [53] with boundary
fields. The functions Θ(x) are Heaviside step functions. To recover the result for x1 = x2,
one has to take the limit x2 = x1 + ε, sending ε > 0 to zero. This means that Gx1,x1

is
given by the prefactor of the first Heaviside function in (9). The coefficients A12 and A21
are scattering amplitudes, which depend on k1, k2. Crucially, the Liouvillian L(2) is invariant
under the transformation R that transforms Gx1,x2

→ (−1)x1+x2 Gx2,x1
as it can be verified

by substitution in (6). Since R2 is the identity, one has for the eigenfunctions of R that
(−1)x1+x2 Gx2,x1

= σGx1,x2
, where σ = ±1. The second term in (9) takes into account this

symmetry.
To proceed, let us observe that in the bulk of the chain, i.e., for 1 < x1, x2 < L, after

substituting (9) in (6), we obtain the condition

i(Gx1−1,x2
+ Gx1+1,x2

− Gx1,x2−1 − Gx1,x2+1)− γ(1−δx1,x2
)Gx1,x2

− ϵGx1,x2
= 0 . (10)
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Figure 2: Free-fermion chain with global dephasing and boundary losses. (a) Al-
lowed values for the solutions k1 and k2 of the Bethe equations (cf. (18) and (19)).
Only the region 0 < Re(k) < π is allowed. Some of the solutions form complex con-
jugate pairs as k1 = k∗2, corresponding to real eigenvalues ϵ. The remaining solutions
are all complex but do not form perfect strings. (b) Typical structure of the Liouvillian
spectrum: Im(ϵ) versus Re(ϵ). We only consider the situation with γ > 4. The red cir-
cles are purely real eigenvalues. They form an isolated diffusive band of eigenvalues.
The diffusive band extends up to ϵ =

p

γ2 − 16−γ, and it contains L eigenvalues for
generic γ > 4 and γ−. Upon lowering γ the diffusive band is depleted. The cluster
around ϵ = −γ contains ∼ L(L−1) eigenvalues. L(L−1)/2 of the levels are trivially
obtained from the spectrum of the model at γ = 0. The diamond denotes a pair of
almost degenerate eigenvalues, which correspond to boundary-localized modes of
the Liouvillian.

Let us consider the situation with x1 ̸= x2. One can verify that the Ansatz (9) satisfies (10) if
we fix

ϵ(k1, k2) = 2i cos(k1)− 2i cos(k2)− γ . (11)

Importantly, the minus sign in the second term in (11) depends on the choice of the Ansatz (9).
By redefining k2 → k2 + π in the terms that contain the sign factor (−1)x1+x2 in (9), one
obtains that ϵ = 2i cos(k1) + 2i cos(k2) − γ, which is symmetric under exchange k1 ↔ k2
(see, for instance, Ref. [11]). Notice that one has to change k2 → k2 + π also in the Bethe
equations (see section 3.2). After these redefinitions, the new Bethe equations become the
same as the Bethe equations for the Hubbard chain with imaginary boundary magnetic fields
(see Appendix A.1). This happens despite the fact that the full Liouvillian contains a boundary
pair production term (see Appendix A).

Let us now determine the coefficients A12 and A21 in (9). It is convenient to to treat the
cases σ = 1 and σ = −1 separately. Let us start with the case with σ = 1 in (9). As it will
be clear in section 3.3, for σ = −1 the Ansatz (9) does not depend on γ, and the eigenstates
of L(2) are the same as those of the chain with boundary losses and no bulk dephasing. Let
us now impose the “contact” condition obtained by fixing x1 = x2 in (9) and requiring that
Eq. (10) holds with ϵ as in (11). A long calculation gives

A21(r1, r2) = −A12(r2, r1)
γ/2+ r2 sin(k1) + r1 sin(k2)
γ/2− r2 sin(k1)− r1 sin(k2)

. (12)

Finally, we impose the boundary conditions. For Eq. (10) to be compatible with the Lindblad
equation (6) at the boundaries, we require that

iG0,x2
+ γ−G1,x2

= 0 , (13)

iGx1,L+1 − γ−Gx1,L = 0 . (14)
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The conditions (13) and (14) give eight equations. They allow us to fix

A12(−1,1) =
1− ieik1γ−

1− ie−ik1γ−
A12(1,1) , (15)

A12(1,−1) = e2ik2(1+L)1+ ie−ik2γ−

1+ ieik2γ−
A12(1,1) , (16)

A12(−1,−1) = e2ik2(1+L) 1− ieik1γ−

1− ie−ik1γ−
1+ ie−ik2γ−

1+ ieik2γ−
A12(1,1) . (17)

Moreover, one obtains two more equations (Bethe equations) that provide the quantization
conditions for k1 and k2. Before discussing the Bethe equations, let us stress that it is natural
to expect that Eq. (13) and (14) can be modified to account for different loss rates γ−L and γ−R
at the two edges of the chain.

3.2 Bethe equations and general structure of the Liouvillian spectrum

The two extra conditions obtained from (13) and (14) provide two coupled nonlinear equa-
tions for k1, k2 as

e2ik1(L−1)
� eik1 − iγ−

e−ik1 − iγ−

�2
=
∏

r2=±1

γ/2− sin(k1) + r2 sin(k2)
γ/2+ sin(k1)− r2 sin(k2)

, (18)

e2ik2(L−1)
� eik2 + iγ−

e−ik2 + iγ−

�2
=
∏

r1=±1

γ/2− r1 sin(k1) + sin(k2)
γ/2+ r1 sin(k1)− sin(k2)

. (19)

Eq. (18) and (19) differ from the Bethe equations for the periodic tight-binding chain with
dephasing. For periodic boundary conditions one has that γ− = 0 and one has to replace
e2ik j L → eik j L . Moreover, only one of the two terms in the right-hand side survives, because
there is no product over the reflections of the quasimomenta.

Let us now discuss some properties of the Bethe equations (18) and (19). The total num-
ber of solutions is L2 because the Liouvillian L(2) is a L2 × L2 matrix. The momenta k1, k2 are
all complex. The allowed domain of k j is reported in Fig. 2 (a), plotting Im(k j) versus Re(k j).
The Bethe equations possess several symmetries that we now discuss. Given a generic pair
of quasimomenta (k1, k2) solving (18) and (19), the pairs obtained by arbitrary reflections
±k1 and ±k2 are also solutions of (18) and (19). This can be used to fix Re(k j) > 0. Notice
that k j = 0 and k j = π are solutions of the Bethe equations, although they have to be dis-
carded because they give vanishing eigenvectors (9). The invariance of (18) and (19) under
k1 → ±k2 ±π can be exploited to fix Re(k j) < π. Since the imaginary part of k j can be arbi-
trary, the solutions of the Bethe equations live in the strip (0,π)×(−i∞, i∞) (see Fig. 2 (a)).
Another important property of (18) and (19) is that given a pair (k1, k2) solving (18) (19),
then (k∗2, k∗1), with the star denoting complex conjugation, is also a solution. This means that
(cf. (11)) the eigenvalues ϵ appear in complex conjugated pairs.

Crucially, some of the solutions (k1, k2) form complex conjugate pairs (see Fig. 2 (a)), i.e.,
k1 = k∗2. These solutions form “strings” patterns in the complex plane (see Fig. 2). The corre-
sponding eigenvalues are real. We anticipate that these solutions will determine the behavior
of the fermionic correlator at long times, because the solutions giving the eigenvalues with the
larger real parts will be of this type. String solutions of the Bethe equations can be effectively
described in the limit L→∞ by using the framework of the string hypothesis [54]. As we will
discuss in section 3.5, in the large L limit the imaginary part of k1, k2 can be derived by solv-
ing a nonlinear equation, similar to the so-called Bethe-Gaudin-Takahashi (BGT) equation that
appears within the framework of the string hypothesis for integrable models [54]. Corrections
to the string hypothesis are exponentially suppressed in the limit L→∞.
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Let us now discuss the general structure of the spectrum of L(2). This is illustrated in Fig. 2
(b). First, for γ− = 0, there is a zero-energy state ϵ = 0, which corresponds to the steady-state
of the system at t →∞. Within the Bethe Ansatz treatment, the steady state corresponds to
diverging momenta k1, k2. At nonzero γ−, the eigenvalue ϵ = 0 disappears. We can generically
distinguish two different regions in the energy spectrum. The eigenvalues ϵ with the larger
real parts form a band of real energy near ϵ = 0. As these solutions are responsible for diffusive
behavior [26, 28], we dub them diffusive band [26]. These are reminiscent of the diffusive
band appearing for the periodic chain with dephasing [26], or incoherent hopping [28]. The
number of eigenvalues in the band depends on γ. As it will be clear in the following, for γ > 4,
the diffusive band contains L eigenvalues at small γ−, which is the largest possible number of
states. Interestingly, for γ− > γ−c = exp(−arccosh(γ/4)) (see section 3.5) two of the solutions
move outside of the diffusive band towards lower Re(ϵ) (see the diamond symbol in Fig. 2).
Concomitantly, the two eigenvalues become almost degenerate. Precisely, their splitting in
energy decays exponentially with L. These states are boundary-related, and are present also
in the one-dimensional Hubbard model with boundary fields [25]. Boundary-related states
have been investigated in the two-particle sector for the open X X Z spin chain in Ref. [55].

Furthermore, a cluster of eigenvalues is present around ϵ = −γ. As it will be clear in
section 3.3, there are L(L − 1)/2 eigenvalues that are related by a γ shift to the eigenvalues
of L(2) with γ = 0, i.e., with only losses. Specifically, they are given by (9) with σ = −1. The
associated Bethe equations are decoupled and are given by (24) and (25). The remaining
complex eigenvalues correspond states with σ = 1 in (9). Still, in the large L limit they differ
from the states with σ = −1 by O(1/L) terms, i.e., they are “perturbatively” related to the
states with σ = −1.

3.3 Dephasing-independent solutions

Let us now characterize the states (9) with σ = −1. Now, the main difference with the case
σ = 1 is that the contact condition (12) has to be modified as

A21(r1, r2) = −A12(r2, r1) . (20)

The boundary conditions to be imposed are the same as (13) and (14). They give

A12(−1,1) =
1− ieik1γ−

1− ie−ik1γ−
A12(1, 1) , (21)

A12(1,−1) =
1+ ieik2γ−

1+ ie−ik2γ−
A12(1, 1) , (22)

A12(−1,−1) =
1− ieik1γ−

1− ie−ik1γ−
1+ ieik2γ−

1+ ie−ik2γ−
A12(1, 1) . (23)

Notice that there is no dependence on L in (21)-(23), in contrast with the case with σ = 1.
The Bethe equations now read as

(γ−)2 sin(k2(1− L)) + 2iγ− sin(k2 L) + sin(k2(L + 1)) = 0 , (24)

(γ−)2 sin(k1(1− L))− 2iγ− sin(k1 L) + sin(k1(L + 1)) = 0 . (25)

The Bethe equations for k1 and k2 are decoupled, reflecting that the system is noninteracting.
Also, k1, k2 do not depend on the dephasing rate γ. The eigenvalues ϵ are the same as in (11),
implying that the dependence on γ is only a shift. As it is clear from (25), given a solution k1,
then −k1 and k1±π is also a solution. The same holds for k2. This means that one can restrict
to 0 < Re(k j) < π. Moreover, the solutions of Eq. (24) and Eq. (25) are related by complex
conjugation.
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Eq. (24) and (25) are the same equations describing the tight-binding chain with boundary
losses and no bulk dephasing [56]. Since Eq. (24) has L solutions k(p)1 with p = 1, . . . , L, the
pairs (k(p)1 , (k(q)1 )

∗) give all the L2 eigenvalues of the Liouvillian. Upon switching on γ, only
L(L − 1)/2 survive. These correspond to the pairs (k1, k2) such that k j ̸= 0,π. Moreover, one
has to exclude all the pairs k1, k2 such that k1 + k2 = 0 mod π, and the pairs (k′1, k′2) that are
obtained as (k′1, k′2) = (π− k2,π− k1) from a set of solutions (k1, k2). Indeed, one can check
that the total number of pairs satisfying these constraints is L(L − 1)/2. The conditions on
k1, k2 discussed above are the same as in the beginning of Section 3.2. Let us also observe that
in the limit L→∞ the solutions of (24) and (25) are given as

k1,2 =
π

L + 1
j1,2 +O(1/L) , j1,2 = 1, 2, . . . L . (26)

Specifically, the imaginary part of k1,2 is O(1/L), although it is nonzero. Clearly, Eq. (26) is
exact without the O(1/L) correction for γ− = 0. In the last case the eigenvalues ϵ form a
straight line parallel to the imaginary axis (see Fig. 2), with real part −γ.

3.4 Solutions with vanishing imaginary parts of k1 and k2

Near the eigenvalues that correspond to dephasing-independent solutions of the Bethe equa-
tions, there are∼ L(L−1)/2 eigenvalues that correspond to σ = 1 in (9), and that in the large
L limit differ by terms O(1/L) from the dephasing-independent eigenvalues. The number of
eigenvalues depends on γ. In particular, for γ > 4 their number is exactly L(L − 1)/2.

We now discuss them restricting to the case with γ− = 0. A similar analysis can be per-
formed for nonzero γ−. The large L behavior of the Bethe equations (18) (19) suggests the
expansion

k1 = k(r,0)1 + k(r,2)1 L−2 + ik(i,1)1 L−1 , (27)

k2 = k(r,0)2 + k(r,2)2 L−2 + ik(i,1)2 L−1 . (28)

Here k(r,0)j , k(r,2)j and k(i,1)j ( j = 1, 2) are real parameters that have to be determined. After
substituting the Ansatz (27) and (28) in the Bethe equations (18) and (19), Taylor expanding
in the large L limit, and equating the coefficients of the terms with the same powers of L, we
obtain

2k(r,0)1 (L + 1) = j1π , 2k(r,0)2 (L + 1) = j2π , with j1, j2 = 1, 2, . . . 2(L + 1) . (29)

We now provide the expression for k(i,1)j . A similar expression can be obtained for k(r,2)j , although
since it is cumbersome we do not report it. We obtain

k(i,1)1 = −
1
2

L
L + 1

ln

�

(−1) j1
γ2 − 2 cos(2k(r,0)1 ) + 2 cos(2k(r,0)2 )− 4γ sin(k(r,0)1 )

γ2 − 2 cos(2k(r,0)1 ) + 2 cos(2k(r,0)2 ) + 4γ sin(k(r,0)1 )

�

, (30)

k(i,1)2 = −
1
2

L
L + 1

ln

�

(−1) j2
γ2 + 2 cos(2k(r,0)1 )− 2 cos(2k(r,0)2 ) + 4γ sin(k(r,0)2 )

γ2 + 2 cos(2k(r,0)1 )− 2 cos(2k(r,0)2 )− 4γ sin(k(r,0)2 )

�

. (31)

Consistency with (27) and (28) requires that k(i,1)j is real. One can readily check that for γ > 4
the term inside the square brackets in (30) and (31) is positive provided that j1 and j2 are
both even. For γ < 4, Eq. (30) and (31) are correct only for the eigenvalues near ϵ = −γ.
Oppositely, away from ϵ = −γ the eigenvalues are affected by the presence of the diffusive
band, and are not accurately described by (30) and (31). Notice that k(i,1)1,2 vanish in the large
L limit, even at j1,2/L fixed. The eigenvalues ϵ that correspond to solutions of the Bethe
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Figure 3: Spectrum of L(2) for L = 20, γ= 5 and γ− = 0. We plot Im(ϵ) versus Re(ϵ).
We only show the eigenvalues near ϵ = −γ. The circles correspond to the complex
solutions (k1, k2) of the Bethe equations with vanishing imaginary parts Im(k j)→ 0
in the limit L →∞ (see section 3.4). The diamonds are the solutions that do not
depend on the dephasing rate γ (see section 3.3).

equations with vanishing imaginary parts are discussed in Fig. 3. We consider only the case
with γ = 5 because for γ > 4 the diffusive band at smaller Re(ϵ) is well separated from bulk
of the spectrum and (27) and (28) are accurate. The diamonds in the Figure correspond to
the eigenstates with σ = −1 in (9) discussed in section 3.3. The circles are the eigenvalues
obtained from to momenta of the type (27) and (28). It is interesting to focus on the inner and
outer “envelope” of the eigenvalues. They are obtained from (29) (30) and (31) as follows.
We checked that the levels ϵin of the inner envelope correspond to the choice j1 = 2 and
j2 ∈ [2, 2(L+1)] and j1 ∈ [2,2(L+1)] in (29). The levels ϵout forming the outer envelope are
obtained by choosing j1 ∈ [2,2(L + 1)] and j2 = 2(L + 1)− j1.

3.5 Diffusive band & boundary states

As we anticipated, the eigenvalues of L(2) having the largest real part form a diffusive band,
and are real. These states correspond to string solutions of the Bethe equations (see Fig. 2 (a))
with nonvanishing imaginary parts in the limit L →∞. They form complex conjugate pairs
(k1, k∗1). It is convenient to define k1 = kr + iki and k2 = kr − iki . We start discussing the case
with γ− = 0. In terms of kr , ki , the Bethe equations (18) and (19) become

e2(L+1)(ikr−ki) =
(γ− 4cosh(ki) sin(kr))(γ− 4i cos(kr) sinh(ki))
(γ+ 4cosh(ki) sin(kr))(γ+ 4i cos(kr) sinh(ki))

, (32)

e2(L+1)(ikr+ki) =
(γ+ 4cosh(ki) sin(kr))(γ− 4i cos(kr) sinh(ki))
(γ− 4cosh(ki) sin(kr))(γ+ 4i cos(kr) sinh(ki))

. (33)

To proceed, we can assume without loss of generality that ki > 0. In the limit L→∞ the left-
hand side of (33) diverges exponentially. This suggests that the denominator in the right-hand
side of (32) vanishes. For consistency we can impose that

γ− 4cosh(ki) sin(kr) = 0 . (34)
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Similar observations are at the heart of the string hypothesis in Bethe Ansatz solvable mod-
els [54]. Solving (34) for kr , we obtain

kr = π− arcsin
�

γ

4cosh(ki)

�

. (35)

To remove the singular denominator in (32) we take the product of (32) and (33), and after
using (35), we obtain that ki satisfies the equation

�

4

γsech(ki)− i
Æ

16− γ2sech2(ki)

�4(L+1)

=

�

γcosech(ki) + i
Æ

16− γ2sech2(ki)

γcosech(ki)− i
Æ

16− γ2sech2(ki)

�2

. (36)

The derivation of (36) is similar to that of the Bethe-Gaudin-Takahashi (BGT) equations for the
Hubbard chain [25,54]. For this reason, we refer to (36) as the BGT equation. The derivation
can be extended to the case with nonzero γ−. The BGT equation becomes

(4eki + γγ−sech(ki) + iγ−B(ki))2(4e−ki − γγ−sech(ki)− iγ−B(ki))2

(4ekiγ− − γsech(ki)− iB(ki))2(4e−kiγ− + γsech(ki) + iB(ki))2

×
(γcosech(ki) + iB(ki))2

(γcosech(ki)− iB(ki))2
−
�

4
γsech(ki)− iB(ki)

�4L

= 0 , (37)

where we defined
B(x) :=
q

16− γ2sech2(x) . (38)

After solving (37) for ki , we obtain kr by using (35). It is convenient to take the logarithm of
both terms in (37) to obtain the BGT equations in logarithmic form. Let us first define

z :=
γ

4cosh(ki)
, ki = arccosh

� γ

4z

�

. (39)

After taking the logarithm of both members in (37) and using (39), we obtain

2i L arcsin(z j) + ln





z jγ+ i
Ç

1− z2
j

Ç

γ2 − 16z2
j

zγ− i
Ç

1− z2
j

Ç

γ2 − 16z2
j





+ ln





γ−(−iz j +
Ç

1− z2
j )(γ+
Ç

γ2 − 16z2
j ) + 4iz j

(iz j −
Ç

1− z2
j )(γ+
Ç

γ2 − 16z2
j ) + 4iz jγ−





+ ln





γ+
Ç

γ2 − 16z2
j + 4z j(z j + i
Ç

1− z2
j )γ
−

4z j(z j + i
Ç

1− z2
j )− (γ+
Ç

γ2 − 16z2
j )γ
−



= −πi I j . (40)

Here I j ∈ [0, L−2) are integers, forming the so-called BGT quantum numbers, which identify
the different solutions z j . They originate from the branch cut of the logarithm. The energy
with the largest real part corresponds to I j = 0. Notice that here we assume γ− > 0. For γ− = 0
I j = 0 has to be excluded, because it would correspond to ϵ = 0. The number of solutions
in the diffusive band depends on γ and γ−. Specifically, for γ > 4 there are at least L − 2
solutions of (40). Two extra solutions appear provided that γ− is small enough. Precisely, for
γ− > γ−c two of the eigenvalues detach from the diffusive band, moving towards lower Re(ϵ).
They correspond to boundary-related modes of the Liouvillian L(2) (see diamond symbol in
Fig. 2). Similar boundary states appear in the open Hubbard chain with boundary magnetic
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fields [25]. Precisely, from (37) we obtain that the boundary-related states are present for
γ− > γ−c given as

γ−c = exp (−arccosh(γ/4)) . (41)

The condition (41) is obtained by noticing that at the left edge of the diffusive band (see Fig. 2)
one has that ki = arccosh(γ/4), and by solving Eq. (37) for γ−. Eq. (41) holds true for γ > 4,
and, since we are employing the framework of the string hypothesis, in the thermodynamic
limit L →∞. Finally, we should stress that to extract the quasimomenta that correspond to
the boundary-related eigenvalues it is convenient to use Eq. (37) rather than the logarithmic
BGT equation (40), as it will be clear in section 5.2 (see Fig. 6).

Let us now discuss the gap of the Liouvillian L(2). This is obtained by considering the energy
ϵ with the largest nonzero real part. Precisely, the gap ∆L(2) is defined as

∆L(2) := −max
j

Re(ϵ j) , with Re(ϵ j) ̸= 0 . (42)

We numerically verified that for nonzero γ−, ∆L(2) corresponds to I j = 0 in (40). For γ− = 0
one has to choose I j = 1. Focusing on γ− ̸= 0, a straightforward expansion of (40) for I j = 0
in the large L limit gives

z ≃
π

2
1
L
+

�

π

2
−
π(1− (γ−)2)

γγ−

�

1
L2

, (43)

where we neglected higher order terms in 1/L. After substituting in the expression for the
energy (11) we obtain the gap of the Liouvillian as

∆L(2) ≃ −2π2

γL2
+

4π2(2− γγ− + 2(γ−)2)
γ2γ−

1
L3

. (44)

At the leading order in 1/L, the gap depends only on the bulk dephasing. At higher orders
a dependence on γ− appears. This reflects that the effect of the boundaries appears at later
times.

4 Asymptotic dynamics of the fermionic two-point function

Here we derive a formula for the time-dependent correlation function Gx1,x2
(t) starting from

an arbitrary initial condition Gx1,x2
(0). The strategy is to build a complete basis of operators

by using the Bethe states (9). This basis is then used to expand the initial condition for the
correlator. In section 4.1 we construct the complete basis for the generic two-point correlation
function, using the left and right eigenvectors of L(2). In section 4.2 we compute the leading
contribution of the norm of the Bethe states (9) in the large L limit. We only consider the
states forming the diffusive band, because they are dominant in the long-time limit. Finally,
in section 4.3 we derive the long-time limit of the density profile, i.e., the diagonal correlator
Gx ,x(t).

4.1 Left and right eigenvectors of L(2)

One can decompose the initial correlator Gx1,x2
(0) in the basis of eigenvectors of L(2). Let

us denote with G(k1,k2)
x1,x2

the eigenvector of L(2) identified by the solutions k1, k2 of the Bethe
equations (18) (19). The dynamics of G(k1,k2)

x1,x2
is given as

dG(k1,k2)
x1,x2

d t
= L(2)(G(k1,k2)

x1,x2
) = ϵ(k1, k2)G

(k1,k2)
x1,x2

. (45)
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The generic correlator Gx1,x2
can be decomposed as

Gx1,x2
(t) =
∑

{k1,k2}

|k1, k2〉〈k1, k2|0〉eϵ(k1,k2)t , |k1, k2〉 := N−1
k1,k2

G(k1,k2)
x1,x2

. (46)

where the sum is over the solutions of the Bethe equations {k1, k2} (cf. (18) and (19)). In (46)
we redefined |0〉 := Gx1,x2

(0), and we defined 〈k1, k2| := Ḡ(k1,k2)
x1,x2

as the left eigenvector of the
Liouvillian. Since the Liouvillian is not hermitian we have that 〈k1, k2| ≠ (|k1, k2〉)†. In (46)
we used the “scalar product”

〈k1, k2|k3, k4〉 :=
L
∑

z1,z2=1

Ḡ(k1,k2)
z1,z2

G(k3,k4)
z1,z2

. (47)

Similar definition holds for the scalar product with the initial correlator |0〉, i.e., 〈k1, k2|0〉.
In (46) Nk1,k2

:= 〈k1, k2|k1, k2〉 is the normalization of the eigenvectors. Following Ref. [28],
it is possible to determine 〈k1, k2| by observing that the energy (11) is invariant under the
redefinition

k1 = π− k2 , k2 = π− k1 . (48)

This leads to the definition
〈k1, k2| := |π− k2,π− k1〉 . (49)

The Ansatz (9) gets modified. Apart from the redefinition (48), one obtains new scattering
amplitudes Ā12 and Ā21. For σ = 1 they read as

Ā21(r1, r2) = −Ā12(r2, r1)
γ/2+ r1 sin(k1) + r2 sin(k2)
γ/2− r1 sin(k1)− r2 sin(k2)

. (50)

Notice that (50) differs from (12) by the exchange r1↔ r2 in the ratio on the right-hand side.
Moreover, we have that

Ā12(−1,1) =
1+ ie−ik2γ−

1+ ieik2γ−
Ā12(1,1) , (51)

Ā12(1,−1) = e−2ik1(L+1) 1− ieik1γ−

1− ie−ik1γ−
A12(1,1) , (52)

Ā12(−1,−1) = e−2ik1(L+1) 1− ieik1γ−

1− ie−ik1γ−
,
1+ ie−ik2γ−

1+ ieik2γ−
Ā12(1,1) . (53)

Importantly, the Bethe equations remain the same as in (18) and (19).
Let us now discuss the case of σ = −1. Repeating the steps as above we obtain that

Ā21(r1, r2) = −Ā12(r2, r1) . (54)

Moreover, we have

Ā12(−1, 1) =
1+ ie−ik2γ−

1+ ieik2γ−
Ā12(1,1) , (55)

Ā12(1,−1) =
1− ie−ik1γ−

1− ieik1γ−
Ā12(1,1) , (56)

Ā12(−1,−1) = Ā12(1,−1)Ā12(−1,1)/Ā12(1,1) . (57)

We anticipate, however, that since the states with σ = −1 have typically small Re(ϵ), they
do not contribute significantly at long times. Moreover, for delta initial conditions Gx1,x2

(0)
considered in section 4.3 their contribution is exactly zero.
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4.2 Norm of the eigenvectors

Here we derive the norm Nk1,k2
for a Bethe eigenstate (9) characterized by generic solutions of

the Bethe equations k1, k2. To proceed, let us focus on eigenstates with σ = 1 (cf. (9)) because
they dominate the dynamics at long times. By using (9) (47) and (49) we obtain that

Nk1,k2
= 〈k1, k2|k1, k2〉= N0 + N1 L + N2 L2 , (58)

where N0, N1, N2 are functions of k1, k2. A tedious calculation gives

N2 = −8
γ/2+ sin(k1) + sin(k2)
γ/2− sin(k1)− sin(k2)

. (59)

A similar calculation gives N1 as

N1 = 4iγ(cos(k1)− cos(k2))
�

1
(γ/2− sin(k1)− sin(k2))2

+
γ/2+ sin(k1) + sin(k2)

(γ/2− sin(k1)− sin(k2))(γ/2− sin(k1) + sin(k2))(γ/2+ sin(k1)− sin(k2))

�

−
γ/2+ sin(k1) + sin(k2)
γ/2− sin(k1)− sin(k2)

�

8(1+ (γ−)2)
(1− iγ−eik1)(1− iγ−e−ik1)

+
8(1+ (γ−)2)

(1+ iγ−eik2)(1+ iγ−e−ik2)

�

. (60)

Finally, we observe that N0 is in general nonzero. This is in contrast with the case of the tight-
binding chain with incoherent hopping and periodic boundary conditions [28]. Crucially, we
notice that for the string solutions of the Bethe equations forming the diffusive band (see
section 3.5) both N1 and N2 are singular in the limit L →∞ because γ/2− sin(k1)− sin(k2)
vanishes. Similar divergences will plague the overlaps 〈k1, k2|0〉 and |k1, k2〉. This means that
to extract the dynamics of Gx1,x2

one has to take carefully the limit L→∞, i.e., going beyond
the string hypothesis. In the following section we will show that to obtain the leading behavior
of the norm in the large L limit it is sufficient to consider the term in (60).

4.3 Evolution of the density profile

In this section we provide analytic results for the dynamics of Gx ,x(t) starting from the initial
condition

|0〉 := Gx1,x2
(0) = δx1,xδx2,x , (61)

which corresponds to a fermion initially localized at position x . Our results hold in the long-
time limit and for large L.

Crucially, since Eq. (6) is linear as a function of Gx1,x2
, its solution with the delta initial

condition (61) is sufficient to obtain the dynamics of Gx1,x2
starting from an arbitrary initial

density profile. Precisely, let us consider a generic diagonal initial condition as

|0〉= δx1,x2
f (x2) , (62)

where 0 ≤ f (x) ≤ 1. Given the solution G(x)x1,x2
(t) with initial condition (61) at fixed x , the

solution Gx1,x2
(t) with initial condition (62) is obtained as

Gx1,x2
(t) =

L
∑

x=1

G(x)x1,x2
(t) f (x) . (63)

15

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.011


SciPost Phys. Core 8, 011 (2025)

Let us now discuss the time-dependent correlator Gx1,x2
(t) starting from (61). To be

specfic, let us consider the situation with a fermion initially localized at x away from the bound-
aries, i.e., with x/L ̸= 0, 1 in (61). To obtain Gx1,x2

(t) we employ (46), restricting ourselves to
the eigenstates of the Liouvillian forming the diffusive band (see section 3.5). Moreover, we
exploit the string hypothesis, which holds in the limit L →∞. A straightforward calculation
gives the overlaps between (61) and the generic Bethe eigenstate (9) as

〈k1, k2|0〉=
∑

r1,r2=±
r1r2

�

e−i(r2k1+r1k2)x Ā12(r1, r2) + e−i(r1k1+r2k2)x Ā21(r1, r2)
�

, (64)

where we used (49) and (48). Eq. (64) is valid for all the Bethe eigenstates (9). However,
it is straightforward to check that the eigenstates with σ = −1 (see section (3.3)) have zero
overlap with (61).

Let us now restrict ourselves to the eigenstates forming the diffusive band (see Fig. 2 (b)).
As discussed in section 3.5, the corresponding solutions of the Bethe equations form complex
conjugated pairs, and can be treated by means of the string hypothesis. As anticipated in
section 4.2, an important issue is that upon substituting the solutions of the BGT equation (40)
in the expression for |k1, k2〉, 〈k1, k2|, spurious divergences appear. The divergences are due to
the presence of the term (γ/2−sin(k1)−sin(k2))−1. Moreover, both N1 and N2 in (59) and (60)
diverge as well. To solve this issue, one can first exploit the invariance under reflections of
k1, k2. Specifically, it is convenient to consider new quasimomenta

k1→ k1 , k2→−k2 . (65)

After using (65), one obtains that the term (γ/2 − sin(k1) + sin(k2))−1 is singular. This is
convenient because now only N1 is singular, whereas N2 (cf. (59)) is regular. To proceed, one
has to determine the singularities of |k1, k2〉, 〈k1, k2|. The singularity structure of the terms
entering in |k1, k2〉 (cf. (9)) is given as

e−ik1 x1−ik2 x2A12(−,−)≃ δ1−(x1+x2)/(2L) , (66)

e−ik1 x1+ik2 x2A12(−,+)≃ δ−(x1−x2)/(2L) , (67)

eik1 x1−ik2 x2A12(+,−)≃ δ1+(x1−x2)/(2L) , (68)

eik1 x1+ik2 x2A12(+,+)≃ δ(x1+x2)/(2L) , (69)

where we assume x1 ≤ x2, and we defined δ as

δ = γ/2− sin(k1) + sin(k2) . (70)

Notice that δ = O(e−aL), with a > 0. A similar result can be obtained for the terms with
scattering amplitudes A21 (cf. (9)). Importantly, to derive (66) (67) (68) (69), we employed
the Bethe equations (18) and (19) to write the diverging contributions eik j L in terms of δ. To
proceed, we observe that a similar calculation can be done for the contributions appearing in
〈k1, k2|. Now, upon taking the limit δ → 0 the singularities cancel out. Precisely, the term
N1 in the norm (59) diverges as δ−1, implying that (cf. (46)) |k1, k2〉〈k1, k2|0〉 = O(δ−1) for
any k1, k2 satisfying the BGT equation (40). A straightforward calculation shows that the
only possibility is that 〈k1, k2|0〉 = O(δ−1) and |k1, k2〉 = O(1). Precisely, only the term with
A12(−,+) (cf. (9)) survives in |k1, k2〉. Similarly, one has to keep only the terms with Ā12(+,−)
and Ā21(+,−) in the overlap 〈k1, k2|0〉. After removing the singularities, the fermionic density
Gx1,x1 is given as

Gx1,x1
=
∑

{k1,k2}

eN−1
1 ei(k2−k1)x1 B12(−,+) ḡx ,x . (71)

16

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.011


SciPost Phys. Core 8, 011 (2025)

The sum in (71) is over the eigenstates of L(2) forming the diffusive band (see section 3.5),
and which are treated within the framework of the string hypothesis. In (71) we defined

B12(−,+) =
eik1(1− ie−ik1γ−)

eik1 − iγ−
, (72)

and ḡx ,x is the finite part of the overlap with the initial condition, and it reads as

ḡx ,x = ei(k1−k2)x B̄12(+,−) + e−i(k1−k2)z B̄21(+,−) , (73)

where

B̄12(+,−) =
1− iγ−e−ik1

1− iγ−eik1

γ/2+ sin(k1)− sin(k2)
γ/2− sin(k1)− sin(k2)

(γ+ 2sin(k1) + 2sin(k2)) , (74)

B̄21(+,−) = −
1+ iγ−eik2

1+ iγ−e−ik2
(γ+ 2 sin(k1)− 2 sin(k2)) . (75)

Finally, the finite part of the normalization eN−1
1 in (71) is given as

eN−1
1 =

4iγ(cos(k1)− cos(k2))(γ+ sin(k1) + sin(k2))
(γ/2+ sin(k1)− sin(k2))(γ/2− sin(k1)− sin(k2))

L . (76)

Again, Eq. (71) should hold in the long-time limit, provided that L is large enough to ensure
the validity of the string hypothesis.

5 Numerical results

Here we provide numerical results supporting the Bethe Ansatz treatment of the previous
sections. First, in section 5.1 we discuss the numerical solution of the Bethe equations (18)
and (19). In section 5.2 we focus on the Bethe-Gaudin-Takahashi equation (37) and (40). In
section 5.3 we discuss exact diagonalization data for the eigenvalues of L(2). In section 5.4
we compare the spectrum of L(2) obtained from exact diagonalization with the Bethe Ansatz
results. In section 5.5 we investigate the finite-size scaling of the Liouvillian gap. In section 5.6
we address the dynamics of the full correlator Gx1,x2

(cf. (6)). In section 5.7 we focus on the
profile of the fermion density. Finally, in section 5.8 we discuss the diffusive scaling of the
fermion density and its violation due to the boundary losses.

5.1 Numerical solution of the Bethe equations

The numerical solution of the Bethe equations is in general a challenging task. Indeed, Eq. (18)
and (19) have L2 solutions in the complex plane. Moreover, k1 = 0 and k2 = 0, as well as
k1 = π and k2 = π are always solutions, although they have to be excluded because they cor-
respond to vanishing eigenvectors. Similarly, the solutions with k1 = k2 have to be excluded.
Pairs of solutions (k1, k2) that are related by a shift by ±π have to be counted only once. Cru-
cially, since all the solutions of (18) and (19) are complex, multiple-precision arithmetic is
necessary to evaluate the exponentials in the left-hand side of the equations.

To illustrate the structure of the solutions of the Bethe equations, it is useful to focus on
chains with small L. In Table 1 we show the full set of solutions of (18) and (19) for L = 2 and
L = 3. We only a consider fermionic chain with open boundary conditions and γ= γ− = 1/10.
The second column of the table shows the eigenvalues of σ (cf. (9)). The states with σ = −1
are not affected by dephasing, as discussed in section 3.3. The number of solutions with
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Table 1: Full set of solutions of the Bethe equations (cf. (18)(19)) for with L = 2
(first four rows) and L = 3 (last nine rows) sites, and with γ= γ− = 1/10. We show
the two quasimomenta k1, k2 and the associated energy ϵ. The last solution for L = 2
and the last three solutions for L = 3 correspond to σ = −1 in (9), i.e., they are the
same as for γ = 0. Notice that by using the symmetries of the Bethe equations, we
fix 0 < Re(k1) < π and 0 < Re(k2) < π. Given a set of solutions (k1, k2), one has
that (k∗2, k∗1) is also a solution. Notice that for σ = −1 only L(L − 1)/2 solutions are
allowed.

L σ k1 k2 ϵ

2 + 2.1919997294− 0.1312558459i 1.1457120114− 0.0351640458i −0.25− 1.9993749023i
2 + 1.1457120114+ 0.0351640458i 2.1919997294+ 0.1312558459i −0.25+ 1.9993749023i
2 + 0.7866450552− 0.0353040029i 0.7866450552+ 0.0353040029i −0.2
2 − 2.0934365739− 0.0576711461i 2.0934365739+ 0.0576711461i −0.3

3 + 1.28745845407− 0.04147721049i 1.28745845407+ 0.04147721049i −0.2593393435
3 + 2.67275603750+ 0.00860942154i 2.67275603750− 0.00860942154i −0.1155608174
3 + 2.28508055892+ 0.03633954446i 0.71654617450+ 0.08931362935i −0.162549919− 2.8251952277i
3 + 0.71654617450− 0.08931362935i 2.28508055892− 0.03633954446i −0.162549919+ 2.8251952277i
3 + 2.36338604213− 0.06913029032i 1.57756565342+ 0.0014316741i −0.2− 1.4142135623i
3 + 1.5775656534− 0.00143167416i 2.36338604213+ 0.0691302903i −0.2+ 1.4142135623i
3 − 0.7866450552− 0.0353040029i 0.78664505521+ 0.03530400298i −0.2
3 − 1.5707963267− 0.0499791900i 2.35494759837+ 0.03530400298i −0.25+ 1.4133294025i
3 − 2.3549475983− 0.0353040029i 1.57079632679+ 0.04997919006i −0.25− 1.4133294025i

σ = −1 is L(L − 1)/2. The third and fourth column show the solutions (k1, k2) of the Bethe
equations. Importantly, the invariance of (18) and (19) under the change of sign of k j and
under shifts by π can be used to fix 0 < Re(k j) < π. Notice also that the Bethe equations
are not invariant under exchange k1↔ k2. However, given a solution (k1, k2), then (k∗2, k∗1),
with the star denoting complex conjugation, is also a solution. As it is clear from (1), some of
the solutions are formed by pairs of complex conjugated momenta (k1, k∗1). These correspond
to the real eigenvalues ϵ of L(2). The last column in Table 1 is the energy ϵ as obtained by
using (11). We checked that the eigenvalues coincide with the exact diagonalization results
to machine precision.

It is interesting to investigate how the solutions of the Bethe equations change as a function
of dissipation. In Fig. 4 we show the solutions of the Bethe equations for L = 2 at fixed
γ− = 1/10 as a function of γ. We only consider the three solutions with σ = 1 (cf. (9) and
Table 1). Panel (a) and (b) show Re(k j) and Im(k j) as a function of γ. We consider the interval
γ ∈ [1/10, 6]. We denote the different solutions as (k(p)1 , k(p)2 ), with p ∈ [1,3]. Now, the solution
at the bottom in Fig. 4 (a), i.e., with p = 3, corresponds to k2 = k∗1, i.e., to real energy ϵ. The
remaining two solutions are such that k(1)1 = (k

(2)
2 )
∗ and k(2)1 = (k

(1)
2 )
∗. Interestingly, the behavior

of the solutions as a function of γ is not “smooth”. Precisely, at γ= 4 the solutions with p = 1
and p = 2 “collide”, whereas the one with p = 3 remains isolated. At γ > 4 the solutions
with p = 1, 2 get reorganized. Precisely, they emerge as new pairs of solutions (k̃(p)1 , k̃(p)2 ),
with p = 1,2 for γ > 4. Notice that for γ > 4 all the three solutions are formed by complex
conjugated momenta, i.e., k̃(p)1 = (k̃

(p)

2 )
∗ for any p.

5.2 Numerical solution of the Bethe-Gaudin-Takahashi (BGT) equation

The numerical results of the previous section showed that extracting the full set of solutions of
the Bethe equations can be a challenging task, as expected. Here we focus on the solutions of
the Bethe equations forming the diffusive band (see Fig. 2 and section 3.5). These solutions
dominate the long-time behavior of physical observables, such as the fermion correlator Gx1,x2

.
In the limit of large L, one can use the string hypothesis [54]. Thus, the solutions of the Bethe
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Figure 4: Solutions (k1, k2) of the Bethe equations (18) and (19) for L = 2 and
fixed γ− = 1/10. We only consider solutions with σ = 1 (cf. (9)). We plot (k1, k2)
as functions of the dephasing rate γ. Panel (a) shows the real parts of k1 and k2,
the imaginary parts being reported in panel (b). Starting from γ = 0 one has the
three pairs (k( j)1 , k( j)2 ) with j = 1,2, 3. The solutions with j = 1,2 are related by
(k(1)1 , k(1)2 ) = (k

(2)
2 , k(2)1 )

∗, with the star denoting complex conjugation. The solution
with j = 3 is such that k(3)1 = (k

(3)
2 )
∗. At γ = 4 the solutions with j = 1, 2 “collide”.

The solutions at γ > 4 are denoted with a tilde. At γ > 4 all the solutions are formed
by complex conjugate pairs, i.e., k̃( j)1 = (k̃

( j)

2 )
∗ for any j.

equations forming the diffusive band are well approximated by the solutions of the Bethe-
Gaudin-Takahashi equation (37). Solving (37) is a much simpler task because Eq. (37) is only
function of kim, which is real. Importantly, by using the BGT equation in logarithmic form (40)
and by varying the quantum numbers I j , one can target the different momentum pairs (k1, k2)
forming the diffusive band.

Here we focus on the numerical solution of the BGT equation (37). In Fig. 5 we plot the
real and imaginary parts (curves with different colors) of (37) for a chain with L = 10, γ = 5
and γ− = 0. On the x-axis kim is the imaginary part of k1 = k∗2. The real part is obtained
from (35). The simultaneous crossing (full circles) of the two curves with the horizontal axis
marks the solutions of the BGT equation. Notice that there are L − 1 solutions. The missing
solution is that with ϵ = 0. This is present only for γ− = 0 and it corresponds to diverging
k1, k2. Let us now investigate the effect of the losses. In Fig. 6 we show the numerical solutions
of (37) for L = 10, γ = 5 and γ− = 1. Now, there are L solutions. The solution with ϵ = 0 is
not present. Interestingly, the leftmost circle in Fig. 6 corresponds to two almost degenerate
solutions of (37). These are the boundary-related eigenvalues of L(2) discussed in section 3.5.
These boundary states are present only for γ− > exp(−arccosh(γ/4)). Upon lowering γ−

they merge with the diffusive band (cf. 2). The inset of Fig. 6 shows a zoom of the real and
imaginary parts of the BGT equation (37) around the two degenerate solutions (leftmost circle
in the main Figure). For L = 10 the difference between the two solutions is O(10−4).

5.3 Spectrum of the Liouvillian L(2): Overview

Here we illustrate the general structure of the spectrum of the Liouvillian L(2) for a fermionic
chain with open boundary conditions with γ− = 0 as a function of γ. In Fig. 7 we report exact
diagonalization results for a chain with L = 20 and no boundary losses, i.e., with γ− = 0. First,
for γ = γ− = 0 the L2 eigenvalues ϵ form a straight line parallel to the imaginary axis (not
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Figure 5: Numerical solution of the BGT equation (37) for a fermionic chain with
L = 10 and γ = 5 and γ− = 0. The two curves show the real and imaginary parts
of (37), plotted versus the imaginary part kim of the quasimomenta k1, k2. The circles
are the solutions of the BGT equations. Notice that there are L − 1 solutions. The
missing solution gives ϵ = 0, and it corresponds to kim→∞.

shown in the Figure). Indeed, for γ = 0, k1, k2 are solutions of (24) and (25) with γ− = 0,
and are real. As a consequence the eigenvalues ϵ (cf. (11)) have the same real part −γ. As
discussed in section 3.3, at finite γ there are L(L−1)/2 momentum pairs (k1, k2) that remain
the same as for γ = 0. This implies that the eigenvalues ϵ are the same as for γ = 0, apart
from a trivial shift by −γ (cf. (11)). These eigenvalues correspond to the vertical straight
lines with Re(ϵ) = −γ in the different panels. Near this vertical lines there are ∼ L(L − 1)/2
eigenvalues that depend in a nontrivial way on γ. These eigenvalues correspond to complex
solutions of the Bethe equations (18) and (19) with vanishing imaginary parts in the limit
L → ∞. For large L these eigenvalues can be understood perturbatively in 1/L, as it was
discussed in section 3.4, at least for large enough γ. Finally, upon increasing γ a band of
real eigenvalues appears. This band contains the eigenvalues that are responsible for the
diffusive spreading of particles at long times. A similar band appears in the tight-binding
chain with periodic boundary conditions [26], and in the periodic tight-binding chain subject to
incoherent hopping [28]. As γ increases, the separation in energy between the diffusive band
and the remaining part of the spectrum increases. Similar separation in different connected
components of the Liouvillian spectrum has been observed in random Liouvillians [57]. As
discussed in section 3.5, at γ > 4 the diffusive band contains at least L − 2 states, whereas
the number of states diminishes upon lowering γ. These eigenvalues in the diffusive band
correspond to string solutions of the Bethe equations (18) and (19), and can be effectively
treated within the framework of the string hypothesis (see section 3.5).

5.4 Spectrum of L(2): Exact diagonalization versus Bethe Ansatz

Let us now compare the Bethe Ansatz results for the eigenvalues ϵ of the Liouvillian L(2) and
exact diagonalization (ED) data. In Fig. 8 we show ED data for L = 20, γ− = 0 and γ= 3 and
γ = 5 (left and right panel, respectively). In both panels there is a vertical band containing
L(L − 1)/2 eigenvalues. These are the same, except for a trivial shift by −γ, as for the open
fermionic chain with γ = 0. At small Re(ϵ) the diffusive band of real eigenvalues is visible.
The complex eigenvalues ϵ between the diffusive band and the vertical band correspond to
complex solutions of the Bethe equations with vanishing imaginary parts in the limit L→∞.
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Figure 6: Same as in Fig. 5 for γ− = 1. Now there are L − 2 solutions within the
diffusive band. The solution with ϵ = 0 is not present for nonzero γ−. The two
almost degenerate solutions at kim ≈ 0.5 (see inset in the Figure) correspond to the
boundary-related eigenvalues of the Liouvillian (star symbol in Fig. 2 (b)).
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Figure 7: Spectrum of the Liouvillian L(2) for a fermionic chain with bulk dephasing
and no boundary losses, i.e., γ− = 0. The symbols are exact diagonalization results
for L = 20. We plot Im(ϵ) versus Re(ϵ). The different panels show different values
of γ. As one increases γ (from left to right in the Figure), the diffusive band with real
eigenvalues gets populated and well separated from the rest of the spectrum.

As discussed in section 3.4 these eigenvalues of L(2) can be understood perturbatively in 1/L.
The full circles in the Figure are obtained from the large L expansions (30) and (31). Fig. 8
shows that the large L expansion works well at γ = 5, i. e., when the diffusive band is well
separated from the rest of the spectrum. However, when the diffusive band overlaps with the
other regions of the spectrum, the agreement between the large L expansions and the ED data
is not perfect.

For γ= 5 in Fig. 8 we report with the crosses the Bethe Ansatz results for the eigenvalues
of the diffusive band. As it was stressed in section 5.1, extracting the full set of solutions of
the Bethe equations is a challenging task. A convenient strategy for the diffusive band is to
first solve the BGT equation (37), and then use the solutions as initial guess to solve (18)
and (19). The agreement between the Bethe Ansatz results and the ED data is perfect. A
similar agreement is found for γ = 3, although we do not report the results in the Figure.
Finally, let us discuss the effect of γ−. In Fig. 9 we show ED results for L = 20, γ = 5 and
γ− = 1. Now, the vertical band at small eigenvalues ϵ ≈ −γ is deformed. Still, there are
L(L−1)/2 eigenvalues that are the same as in the case with γ= 0, apart from the trivial shift
by −γ. Again, a diffusive band is present at large Re(ϵ) ≈ 0. The band contains L energies.
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Figure 8: Spectrum of the Liouvillian L(2) for the open fermionic chain with L = 20
and γ− = 0. The left (right) panel shows exact diagonalization results (circles) for
γ= 3 (γ= 5). In both panels a vertical band of L(L − 1)/2 eigenvalues is present at
ϵ = −γ. These eigenvalues are the same as for γ− = 0, apart from a trivial shift by−γ.
Near the vertical band a connected region with ∼ L2/2 eigenvalues is present. This
correspond to the complex solutions of the Bethe equations with vanishing imaginary
parts (see section 3.4). Finally, a diffusive band of real eigenvalues is also visible in
both panels. For γ = 5 (right panel) the diffusive band is well separated from the
rest of the spectrum, and it contains L states. The large L expansion (30) and (31)
is reported in both panels with the full circles. The expansion describes well the
eigenvalues near the vertical band. The crosses in the right panel are Bethe Ansatz
results obtained by solving numerically (32) and (33) using the solutions of the BGT
equation (40) as initial guess.

The full diamonds are the results obtained using the string hypothesis, i.e., by solving the BGT
equation (37). The agreement with the ED data is perfect, even at finite γ− and despite the
fact that the BGT equation (37) is valid only in the limit L →∞. Finally, the real energy at
ϵ ≈ −2.7 corresponds to the almost degenerate doublet of boundary-related eigenvalues of
the Liouvillian (see section 3.5), which appear for γ− > exp(−arccosh(γ/4)).

5.5 Finite-size scaling of the Liouvillian gap

Let us now discuss the finite-size scaling of the gap of the Liouvillian L(2). The Liouvillian gap
∆L(2) is the eigenvalue of L(2) with the largest nonzero real part, i.e.,

∆L(2) := −max
j

Re(ϵ j) , with Re(ϵ j) ̸= 0 . (77)

As it is clear from Fig. 8 and Fig. 9, the gap coincides with the largest nonzero energy in the
diffusive band. For γ− = 0 and in the large L limit the gap is obtained by solving the BGT
equation (40) with I j = 1. For γ− > 0 one has to fix I j = 0 in (40). In Fig. 10 we plot the
Liouvillian gap as a function of L. We show results for γ = 3,5 and γ− = 0, 1. The symbols
are the exact numerical data obtained from the BGT equation (40). The dashed-dotted lines
are the results (44) in the large L limit. The leading behavior as∝ 1/L2 is visible. Notice
that although Eq. (44) was derived for the case with nonzero γ− (see section 3.5), it works
also for γ− = 0. In the inset in Fig. 10 we focus on subleading terms, subtracting from ∆L(2)
the leading 1/L2 behavior (cf. (44)). Precisely, we plot ∆L(2) + 2π2/(γL2) versus L. We only
consider the case with γ = 5 and γ− = 1. The continuous line is the second term in (44),
which perfectly matches the data.
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Figure 9: Same as in Fig. 8 for L = 20, and γ = 5 and γ− = 1. The diffusive
band with ϵ >
p

γ2 − 16− γ contains L − 2 solutions. An isolated doublet of quasi-
degenerate eigenvalues is present at ϵ ≈ −2.7, and it corresponds to the boundary-
related eigenvalues in Fig. 2 (b) (see full diamond symbol in the Figure). The empty
circles in the Figure are exact diagonalization (ED) results. The diamonds are the
results obtained by solving the BGT equation (37) numerically.

5.6 Dynamics of the fermionic correlator: Bethe Ansatz versus exact diagonal-
ization

Having compared Bethe Ansatz versus exact diagonalization results for the spectrum of the
Liouvillian, we now focus on the time-dependent fermionic correlator Gx1,x2

(t). Here we com-
pare ED data versus Bethe Ansatz results for the full correlator Gx1,x2

. The circles in Fig. 11
are ED data for a chain with L = 10 sites, γ = 5, and γ− = 1. The results are at fixed time
t = 20. The left and right panels in the Figure show Re(Gx1,x2

) and Im(Gx1,x2
), respectively.

Notice that on the y-axis we employ a logarithmic scale. The numbers on the real axis label
the different matrix elements of Gx1,x2

. The full diamonds are Bethe Ansatz results. Precisely,
here we obtain the full-time dynamics of Gx1,x2

by using the expansion (46). However, since
finding all the solutions of the Bethe equations (18) and (19) is a daunting task, we trun-
cate (46) restricting the sum over the eigenvalues in the diffusive band, which are expected to
dominate the long-time behavior of the correlator. We first numerically solve the BGT equa-
tion (40), using the solutions as initial guess for the exact Bethe equations (18) and (19). As
it is clear from Fig. 11, the agreement between the Bethe Ansatz and the exact diagonalization
data is quite satisfactory. Deviations are present for the smaller matrix elements, and can be
attributed to the complex eigenvalues ϵ of the Liouvillian, which we are neglecting.

5.7 Dynamics of the density profile

Here we address the long-time limit of the fermionic density profile, i.e., the diagonal correla-
tors Gx ,x . This is investigated in Fig. 12. In the left and right panels we show the dynamics of
GL/2,L/2 and G1,1, respectively. We focus on a chain with L = 10 sites. The data are for γ = 5
and γ− = 1. The circles in the figures are exact diagonalization results. The dashed line is the
Bethe Ansatz result obtained by using (46), where we restrict the sum to the eigenvalues in
the diffusive band (see Fig. 9). Importantly, we use the solutions of the Bethe equations (18)
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Figure 10: Finite-size scaling of the Liouvillian gap defined in (77). We show results
for several values of the dephasing rate γ and boundary loss rate γ− (different sym-
bols in the Figure). We consider chains with L ≲ 500. The dashed-dotted line is
the Bethe Ansatz prediction (44) in the limit L →∞. In the inset we focus on the
subleading contributions to the gap for the case with γ= 5 and γ− = 1. The symbols
are∆L(2)+2π2/(γL2) plotted versus L. The continuous line is the analytic prediction
(cf. second term in (44)).

and (19). Let us first focus on GL/2,L/2. At t = 0 one has that GL/2,L2 = 1, while GL/2,L/2 van-
ishes for t →∞. The agreement between the ED data and the Bethe Ansatz is remarkable.
Deviations are visible at short times. This is expected because of the truncation in (46). At
short times the contribution of the complex eigenvalues of the Liouvillian cannot be neglected.
The continuous line in Fig. 12 is obtained by considering in (46) only the contribution of the
Liouvillian gap, i.e., the energy ϵ with the largest nonzero real part. The scenario is slightly
different for G1,1 (right panel in Fig. 12). Precisely, G1,1 is zero at t = 0, it increases at later
times as the particle initially at x = L/2 spreads towards the edges. At long times the dynamics
is dominated by the boundary loss, and G1,1 vanishes. As for GL/2,L/2 the agreement between
the ED data and the Bethe Ansatz obtained by using the diffusive band states (dashed line) is
quite satisfactory, although at intermediate times is only qualitatively accurate. On the other
hand, the approximation obtained by restricting the sum in (46) to the Liouvillian gap works
only at long times.

The profile of the fermionic density Gx ,x at fixed time and as a function of x is reported in
Fig. 13. We show results for a chain with L = 10 and time t = 20 (empty circles) and t = 40
(empty squares). The full diamonds are Bethe Ansatz results obtained from (46) restricting
the sum over the states in the diffusive band but using the exact solutions of the Bethe equa-
tions (18) and (19). The agreement between the Bethe Ansatz and the exact diagonalization
data is excellent for any x . The hexagons symbols show the Bethe Ansatz results obtained
employing the string hypothesis, i.e., by using the results of section 4.3. The agreement with
the ED data is satisfactory, although some deviations are visible.

5.8 Diffusive scaling

In the long-time limit the density profile Gx ,x should exhibit diffusive scaling, at least if time
is short enough that we can neglect the effect of the boundary losses. This diffusive behavior
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Figure 11: Fermionic correlator Gx1,x2
as a function of time t. The left and right

panels show the real and imaginary parts of the correlator, respectively. The initial
condition is Gx1,x2

= δx1,L/2δx2,L/2. The empty circles are exact diagonalization (ED)
results for the matrix elements of Gx1,x2

at t = 20. Results are for a chain with
L = 10, γ = 5 and γ− = 1. The full diamonds are the Bethe Ansatz results. These
are obtained by solving the Bethe equations (18) and (19) and using (46), where the
sum is restricted to the eigenvalues of the diffusive band.

is observed in the periodic chain [26]. This is investigated in Fig. 14 focusing on the late-time
dynamics of Gx ,x starting from the initial condition with a fermion localized at the center of
the chain. In Fig. 14 (a) we show Gx ,x as a function of x − L/2. The symbols are data at
different times, and are obtained by using the results of section 4.3. The data are for a system
with L = 100 sites. As it is clear from the Figure, the fermion density spreads diffusively as
time increases, reaching the boundary of the chain at late times. Precisely, in the diffusive
regime Gx ,x is given by

Gx ,x =
1

p
4πDt

exp

�

−
(x − L/2)2

4Dt

�

, D :=
2
γ

, (78)

with D the diffusion constant, which was derived in Ref. [26]. The diffusive scaling is investi-
gated in Fig. 14 (b), plotting t1/2Gx ,x versus (x− L/2)/t1/2. Up to t = 80 all the data collapse
on the same curve, which is in perfect agreement with (78). At longer times the effect of the
boundary loss is non negligible and the diffusive scaling breaks down. At times t ≫ L2 the
fermion density is vanishing at the edges of the chain, and the height of the fermionic lump
that is left around the center of the chain diminishes with time.

6 Conclusions

We derived the Bethe Ansatz for the spectrum of the Liouvillian L(2), which determines the
dynamics of the fermionic correlator Gx1,x2

in the fermionic tight-binding chain in the presence
of bulk dephasing and boundary losses. For large enough dephasing, the spectrum of the
Liouvillian comprises three different parts. Precisely, there are L(L−1)/2 complex eigenvalues
that are trivially related to those of the tight-binding chain with boundary losses and no bulk
dephasing. For this reason we dub them dephasing-indepedent eigenvalues. Furthermore,
there are ∼ L(L − 1)/2 complex eigenvalues that are perturbatively related to the dephasing-
independent ones in the large chain limit. Finally, there is band of ∼ L real eigenvalues.
Since the band contains the eigenvalues with the largest real parts, it dominates the long-
time behavior of the correlator, and determines the diffusive scaling at intermediate times.
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Figure 12: Evolution of the fermionic correlator Gx1,x2
as a function of time t. We

show results for a chain with L = 10 sites, γ = 5 and γ− = 1. The correlator at
t = 0 is Gx1,x2

= δx1,L/2δx2,L/2, i.e., a fermion localized at the center of the chain.
The left and right panels show GL/2,L/2 and G1,1, respectively. The circles are exact
diagonalization data. The dashed line is the Bethe Ansatz result obtained by solving
numerically the Bethe equations (18) and (19), and using (9). In evolving Gx1,x2

we
only considered the eigenvalues in the diffusive band (see Fig. 2), which explains the
deviations from the ED data. The continuous line is the result considering only the
energy with the largest nonzero real part.

For this reason we dub it diffusive band. Interestingly, for large enough loss rate boundary-
related modes of the Liouvillian appear. Both the diffusive band and the boundary modes can
be characterized by using the framework of the string hypothesis. Crucially, the Bethe Ansatz
allowed us to obtain the time-dependent fermionic correlator Gx1,x2

. In particular, we provided
analytic formulas for the long-time behavior of the fermionic density Gx ,x .

Let us now illustrate some possible directions for future work. First, we showed that de-
spite the Liouvillian L(2) being diagonalized by Bethe Ansatz, the full Liouvillian is mapped to
the Hamiltonian of the open Hubbard chain with boundary magnetic fields and boundary pair
production, which is not integrable. It would be interesting to investigate whether the Liouvil-
lian L(4) that describes the dynamics of the fermionic four point function can be diagonalized
by the Bethe Ansatz. Furthermore, we showed that at long times the diffusive scaling of the
fermionic density is broken, due to the boundary losses. It would be interesting to further in-
vestigate this regime to understand whether any universal scaling behavior can be extracted.
An interesting direction would be to employ the Bethe Ansatz framework to characterize the
interplay between dissipation and criticality [2]. This would require to extend the results of
section 4 to non-diagonal initial conditions. Recently, it has been shown that several one-
dimensional out-of-equilibrium systems exhibit the so-called quantum Mpemba effect [58]. It
would be interesting to investigate how the Mpemba effect is affected by dissipation. While
this issue has been addressed numerically (see for instance Ref. [59]), the Bethe Ansatz would
allow to clarify the scenario analytically.

The full Liouvillian describing dephasing dissipation is not quadratic in the fermion op-
erators. This implies that entanglement-related quantities are not fully determined by the
two-point fermionic correlation function, in contrast with quadratic models [60]. Still, it was
observed in Ref. [38] that the “entanglement entropies” defined from the fermionic correlator
exhibit scaling behavior in the weak-dissipation hydrodynamic limit. Our results could allow
to clarify the origin of this scaling. Finally, it would be important to understand whether the
tight-binding chain with localized dephasing can be solved by Bethe Ansatz, paving the way
to characterize analytically entanglement scaling [43,44,61,62].
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Figure 13: Density profile Gx ,x plotted as a function of the position x is the chain.
The results are for a chain with L = 10, dissipation rate γ= 5 and boundary loss rate
γ− = 1. The empty circles are exact diagonalization results for t = 20 and t = 40. At
t = 0 the correlator is Gx1,x2

= δx1,L/2δx2,L/2. The empty hexagons are Bethe Ansatz
results in the limit L →∞. These are obtained by solving the BGT equation (40)
and using (71). The full diamonds are the same Bethe Ansatz results as in Fig. 11.
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A Derivation of the full Liouvillian

Here we derive the full Liouvillian L governing the evolution of the density matrix ρ (cf. (2)).
We employ the formalism of the third quantization [7]. This will allow us to map the Liouvillian
to a one-dimensional system of spinful fermions described by a Hubbard-like Hamiltonian.
In section A.1 we compare the result with the Hamiltonian of the one-dimensional Hubbard
model with boundary magnetic fields.

The action of the Liouvillian on a generic density matrix can be understood by using the
formalism of Ref. [7]. A generic density matrix can be decomposed as a superposition of strings
of Majorana operators Γν defined as

Γν := aν1
1 aν2

2 · · · a
ν2L
2L , (A.1)

where a j are Majorana fermionic operators with standard anticommutation relations
{a j , ak} = 2δ jk, and ν j = 0, 1 occupation numbers. The string of operators in (A.1) is or-
dered. The relationship between Majorana fermions a j and Dirac fermions c j is given as

a2 j−1 = c j + c†
j , a2 j = i(c j − c†

j ) . (A.2)
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Figure 14: Dynamics of the density profile Gx ,x for a fermionic chain with L = 100,
dephasing rate γ = 5, and boundary loss rate γ− = 1. Panel (a) shows the time-
dependent correlator Gx ,x as a function of x − L/2. At t = 0, Gx1,x2

= δx1,L/2δx2,L/2.
Panel (b) shows the rescaled density t1/2Gx ,x as a function of (x − L/2)/t1/2. For
t < 600 the dynamics exhibits a clear diffusive scaling. At later times the boundary
losses affect the dynamics, and the diffusive scaling breaks down.

It is convenient to define the creation and annihilation super operators â†
j and â j (notice the

hat) acting on Γν as follows

â†
j Γν = δν j ,0π jΓν′ , (A.3)

â jΓν = δν j ,1π jΓν′ , (A.4)

where we defined the sign π j as

π j := (−1)
∑ j−1

r=1 ν j . (A.5)

In (A.3) and (A.4), we defined ν′r = νr for r ̸= j and ν′r = 1 − νr for r = j. The super
operators â j , â†

j satisfy the standard anticommutation relations of Dirac fermions. First, it is
straightforward to check that

a jΓν = (â
†
j + â j)Γν , (A.6)

Γνa j = (â
†
j − â j)Γν . (A.7)

In (A.7) we focus on fermionic states with even parity, i.e., for which
∑2L

r=1 νr is even. By
using (A.6) and (A.7), one can easily derive the commutation relations

[a j , Γν] = 2â jΓν , (A.8)

[a jak, Γν] = 2(â†
j âk − â†

ka j)Γν . (A.9)

For the following, it is convenient to define new fermionic super operators â±, j as

â±, j :=
1
p

2
(â2m−1 ± iâ2m) . (A.10)

Notice that â±, j and â+,k act as “creation” or “destruction” super operators. For instance, â−,k

and â+,k destroy the operator c†
k and ck, respectively. Similarly, â†

−,k and â†
+,k create c†

k and ck,
respectively.
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Let us decompose the Liouvillian in (2) in a bulk contribution and in a boundary one as

L(Γν) = Lbulk(Γν) +Lboundary(Γν) , (A.11)

where Lbulk contains the Hamiltonian part and the dephasing contribution, whereas Lboundary
takes into account the boundary losses. Specifically, the bulk Liouvillian is given as [11,38]

Lbulk = i
L−1
∑

j=1

∑

α=±
α(â†

α, j âα, j+1 + â†
α, j+1âα, j) +

γ

2
,

L
∑

j=1

(2â†
+, j â+, j â

†
−, j â−, j − â†

+, j â+, j − â†
−, j â−, j) ,

(A.12)
where â±, j are defined in (A.10). Let us discuss the boundary term Lboundary. Its action on a
generic string Γν reads as

Lboundary(Γν) = γ
−
�

c1Γνc
†
1 −

1
2
{c†

1c1, Γν}
�

+ c1→ cL , (A.13)

where c j are Dirac fermions. By using (A.6) and (A.7), Eq. (A.13) is rewritten as

Lboundary = −
γ−

2
â†

1â1 −
γ−

2
â†

2â2 + iγ−â†
1â†

2 + (â1, â2)→ (âL−1, âL) . (A.14)

Finally, by using the definition of â+, j and â−, j in (A.10), we can rewrite (A.14) as

Lboundary = −
γ−

2
â†
+,1â+,1 −

γ−

2
â†
−,1â−,1 − γ−â†

−,1â†
+,1 + â±,1→ â±,L . (A.15)

Now the first two terms in (A.15) are interpreted as boundary magnetic fields in the Hubbard
chain. The last term, however, corresponds to creation of a pair of fermions with opposite
spins at the boundary.

Before proceeding, we should observe that to map L to a Hubbard-like Hamiltonian H as
in Ref. [11] we have to perform a unitary transformation as

H = iU†LU , (A.16)

where the unitary transformation U is defined as [11]

U =
∏

odd j

(1− 2â†
−, j â−, j) . (A.17)

The effect of (A.17) is to change the sign of the term with α = −1 in (A.12). Finally, the
Liouvillian is mapped to the Hubbard-like Hamiltonian H as

H = −
L−1
∑

j=1

∑

σ=↑,↓

(c†
j,σc j+1,σ + h.c.) + iγ

∑

j

n j,↑n j,↓ − i
γ

2

∑

j

(n j,↑ + n j,↓)

− i
γ−

2
(n1,↑ + n1,↓ + nL,↑ + nL,↓) + iγ−(c†

1,↑c
†
1,↓ + (−1)L+1c†

L,↑c
†
L,↓) , (A.18)

where we redefined c j,↑ := â+, j and c j,↓ := â−, j . Now, the Hamiltonian (A.18) is similar to that
of the Hubbard chain with boundary magnetic fields. Precisely, Eq. (A.18) describes a chain
of spinful fermions with imaginary density-density interaction and imaginary boundary fields.
Crucially, the last term in (A.18) describes creation of pairs of fermions with opposite spins at
the boundary of the chain. To the best of our knowledge, the boundary pair-production term
renders the Hamiltonian (A.18) not integrable.

However, after including a boundary fermion pump term with pump rate γ+ = γ−, which
is described by the Lindblad operators Lx ,3 =

p

γ+c†
xδx ,1 and Lx ,4 =

p

γ+c†
xδx ,L , the last term

in (A.15) cancels out. As it was observed in Ref. [11], the resulting Hamiltonian is that of
the open Hubbard chain with imaginary interactions and imaginary boundary magnetic fields,
which is integrable [25].
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A.1 Comparison with the Hubbard model with boundary fields

Although Eq. (A.18) is not integrable in general, as we showed in section 3, the Liouvillian
L(2) can be diagonalized by the Bethe Ansatz. In this section we report the Bethe equations
for the open Hubbard chain with boundary magnetic fields. We show that in the two-fermion
sector the Bethe equations are the same as the ones derived in section 3 after some appropri-
ate transformations. The fact that the pair creation terms in (A.18) do not affect the Bethe
equations could suggest that the model is integrable by using the techniques of Ref. [13].

The Hamiltonian of the one-dimensional Hubbard chain with open boundary conditions
reads as [25]

H = −
L−1
∑

j=1

∑

σ=↑,↓

(c†
j,σc j+1,σ + h.c.) + 4u

∑

j

n j,↑n j,↓

− 2u
∑

j

(n j,↑ + n j,↓)− p(n1,↑ + n1,↓)− p′(nL,↑ + nL,↓) , (A.19)

where c j,σ are spinful fermionic operators, n j,σ := c†
j,σc j,σ is the local fermionic density, u is

the interaction strength, and p, p′ is the strength of the boundary fields. Eq. (A.19) is the same
as (A.18) after redefining u = iγ/4 and p = iγ−/2, except for the last term in (A.18). The
Bethe equations for the quasimomenta k j read as [25]

e2ik j L
eik j − p

1− peik j

eik j − p′

1− p′eik j
=

M
∏

ℓ=1

sin(k j)−λℓ + iu

sin(k j)−λℓ − iu

sin(k j) +λℓ + iu

sin(k j) +λℓ − iu
, (A.20)

where j = 1, . . . , N , together with

N
∏

j=1

λℓ − sin(k j) + iu

λℓ − sin(k j)− iu

λℓ + sin(k j) + iu

λℓ + sin(k j)− iu
=

M
∏

m=1,m ̸= j

λℓ −λm + 2iu
λℓ −λm − 2iu

λℓ +λm + 2iu
λℓ +λm − 2iu

, (A.21)

with ℓ= 1, . . . , M , and N , M integers. The eigenvalues ϵ of the eigenstates are given as

ϵ = −
N
∑

j=1

(2cos(k j) + 2u) . (A.22)

Now, we are interested in the case with N = 2 and M = 1. As it is clear from the case of the
tight-binding chain with periodic boundary conditions and bulk dephasing, the spectrum of
the Hubbard chain with N = 2 and M = 1 is mapped to the spectrum of L(2). To proceed, we
can solve (A.22) for λ1 to obtain

λ1 = ±
1
p

2
(sin2(k1) + sin2(k2) + 2u2)

1
2 . (A.23)

After substituting (A.23) in (A.20), we obtain

e2ik1 L eik1 − p
1− peik1

eik1 − p′

1− p′eik1
=

sin(k1)− sin(k2) + 2iu
sin(k1)− sin(k2)− 2iu

sin(k1) + sin(k2) + 2iu
sin(k1) + sin(k2)− 2iu

, (A.24)

e2ik2 L eik2 − p
1− peik2

eik2 − p′

1− p′eik2
=

sin(k2)− sin(k1) + 2iu
sin(k2)− sin(k1)− 2iu

sin(k2) + sin(k1) + 2iu
sin(k2) + sin(k1)− 2iu

. (A.25)

After choosing p = p′ = iγ−/2 and u = iγ/4, Eq. (A.24) and Eq. (A.25) become the same
as (18) (19) if one redefines k2→ k2 +π.
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[8] M. Žnidarič, Exact solution for a diffusive nonequilibrium steady state of an open
quantumchain, J. Stat. Mech.: Theory Exp. L05002 (2010), doi:10.1088/1742-
5468/2010/05/l05002.
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