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Abstract

Reentrant localization (RL), a recently prominent phenomenon, traditionally links to
the interplay of staggered correlated disorder and hopping dimerization, as indicated by
prior research. Contrary to this paradigm, our present study demonstrates that hopping
dimerization is not a pivotal factor in realizing RL. Considering a helical magnetic sys-
tem with antiferromagnetic ordering, we uncover spin-dependent RL at multiple energy
regions, in the absence of hopping dimerization. This phenomenon persists even in the
thermodynamic limit. The correlated disorder in the form of Aubry-André-Harper model
is introduced by applying a transverse electric field to the helical system, circumventing
the use of traditional substitutional disorder. We conduct a finite-size scaling analysis
on the observed reentrant phases to identify critical points, determine associated critical
exponents, and examine the scaling behavior linked to localization transitions. Addition-
ally, we explore the parameter space to identify the conditions under which the reentrant
phases occur. Described within a tight-binding framework, present work provides a novel
outlook on RL, highlighting the crucial role of electric field, antiferromagnetic ordering,
and the helicity of the geometry. Potential applications and experimental realizations of
RL phenomena are also explored.

Copyright S. Ganguly et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2024-08-29
2024-12-18
2025-01-30

Check for
updates

doi:10.21468/SciPostPhysCore.8.1.012

Contents

1 Introduction 2

1

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.012
mailto:sudinganguly@gmail.com
mailto:sourav.nbp@gmail.com
mailto:kallolsankarmondal@gmail.com
mailto:santanu.maiti@isical.ac.in
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCore.8.1.012&amp;domain=pdf&amp;date_stamp=2025-01-30
https://doi.org/10.21468/SciPostPhysCore.8.1.012


SciPost Phys. Core 8, 012 (2025)

2 System and theoretical framework 3

3 Results and discussion 5

4 Summary 14

References 15

1 Introduction

Disorder tends to drive systems toward localization of electronic states. Despite this, the single-
particle wave function displays significant distinctions in behavior when exposed to uncor-
related (random) disorder compared to correlated (quasiperiodic) one. In the presence of
random disorder, Anderson localization [1, 2] takes place. The scaling theory [3] of Ander-
son localization predicts that single-particle states in one- and two-dimensional systems will
exhibit exponential spatial localization, even when subjected to extremely weak disorder. Con-
sequently, this leads to the absence of a single-particle mobility edge [4] (SPME). However,
an energy-dependent mobility edge can exist in three-dimensional systems. In the context of
Anderson localization, extensive investigations have been conducted on numerous fascinating
systems across various branches of physics [2,5–10].

In contrast to the uncorrelated disorder, correlated disorder provides the advantage of a
sharply-defined critical point for the extended-localized phase transition [11–13] in Aubry-
André-Harper (AAH) model [11, 14], as well as exhibiting fractal eigenmodes [15, 16] in Fi-
bonacci model, and critical behavior [12, 17] in low-dimensional cases. Among the variety
of quasiperiodic models [11–13, 15–22], the AAH model stands out as the most widely rec-
ognized and versatile example. The AAH model, akin to Anderson localization, lacks SPME
due to the presence of a distinctly defined critical point characterizing the extended-localized
phase transition [11–13]. Nonetheless, researchers have explored various generalizations of
the standard AAH model to overcome this limitation. These extensions encompass diverse
features, such as exponential short-range hopping [23], flatband networks [24], higher di-
mensions [25], power-law hopping [26], flux-dependent hopping [27], and nonequilibrium
generalized AAH models [28], among others. Furthermore, the feasibility of AAH systems has
been demonstrated through experimental realizations utilizing cold atoms and optical waveg-
uides [29, 30]. These experimental implementations provide crucial platforms for studying
the behavior of AAH models in controlled settings, offering valuable opportunities to explore
and validate theoretical predictions in the realm of quantum simulation and condensed matter
physics.

Conventionally, it is known that once a state is localized, it continues to remain localized
even when the disorder strength is increased. However, Hiramoto and Kohmoto [31] demon-
strated that under specific conditions, this behavior can deviate from the traditional under-
standing. Recent studies have further expanded on this phenomenon, revealing the possibility
of a ‘band-selective’ localization-delocalization transition in various systems. Notably, such
transitions have been observed in a one-dimensional tight-binding chain [32], validated us-
ing cavity-polariton devices [32], and in a spin chain with antiferromagnetic nearest-neighbor
(NN) coupling subjected to an interpolating Aubry-André-Fibonacci on-site potential modu-
lation [33]. Additionally, a similar transition has been demonstrated in a 1D chain under
the influence of the off-diagonal interpolating Aubry-André-Fibonacci model [34]. Another
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interesting work has been done by Roy and co-workers, where they have shown localization-
to-delocalization transition, considering the interplay among the hopping dimerization and
staggered on-site energies [35] implemented by AAH model. The reappearance of delocal-
ized states (all and/or a certain number of all states) from the localized ones is referred to as
‘reentrant localization’ phenomenon, a term first introduced by Hiramoto and Kohmoto [31].
Although research on staggered AAH systems is relatively limited [36–42], these investiga-
tions highlight a notable distinction. Studies such as Refs. [31–34] achieve RL behavior by
varying the interpolating parameter, which essentially changes the type of uncorrelated dis-
order, whereas others, including Refs. [35–42], focus on fixed types of uncorrelated disorder
within the AAH model framework. A key observation from the latter group of studies is the
suggestion that hopping dimerization is a primary requirement for RL. It essentially triggers
us a fundamental question that is it possible to realize RL behavior within a system governed by
a specific type of uncorrelated disorder, but in the ‘absence’ of hopping dimerization? This is the
central question guiding our current investigation.

Here we propose a single-stranded antiferromagnetic helical system (see Fig. 1) in which
neighboring magnetic moments are aligned along ±z directions (our chosen spin quantization
axes). The helix is subjected to an external electric field, perpendicular to the helix axis. The
motivations behind the consideration of such a system are many-fold. First, due to the helical
geometry, site energies are modulated in the well-known AAH form in presence of transverse
electric field [43–49]. Thus, the helix maps to an AAH system without imposing any substitu-
tional disorder. In the absence of helicity or electric field, site energy modulation is no longer
obtained. Second, due to such an arrangement of magnetic moments, the staggered condi-
tion in site energies is easily satisfied. Third, the observation of spin-specific phenomenon in
a magnetic system with zero net magnetization is another challenge, and in our case we can
successfully avail it imposing the interplay between the helicity and electric field. The localiza-
tion phenomena are examined by inspecting various aspects, such as the single-particle energy
spectrum, inverse participation ratio (IPR), participation ratio (PR), and other relevant mea-
sures. We determine the critical points and corresponding critical exponents for the different
reentrant phases by defining an appropriate order parameter, following a theory analogous to
thermal phase transition [51,52]. We then verify these results using finite-size scaling theory.

The new and essential findings of our work are: (i) occurrence of spin-dependent RL in
the absence of any hopping dimerization, (ii) observation of RL at multiple energies, and (iii)
persistence of RL phenomena even in the thermodynamic limit.

2 System and theoretical framework

The schematic diagram of the proposed setup is illustrated in Fig. 1. It depicts a right-handed
antiferromagnetic helix (AFH) comprising N magnetic sites, where the magnetic moments of
successive sites are aligned in opposite directions (±z). An external electric field of magnitude
Eg is applied perpendicular to the helix axis.

The AFH system in the presence of an electric field is described within the tight-binding
framework and the corresponding Hamiltonian is

H =
N
∑

n=1

c†
n (εn − hhn ·σ) cn +

N
∑

n=1

N−n
∑

m=1

�

c†
ntmcn+m + h.c.
�

, (1)

where, c†
n, cn, εn, tm read as

c†
n =
�

c†
n↑ c†

n↓

�

, cn =

�

cn↑
cn↓

�

, εn = diag (εn,εn) , tm = diag (tm, tm) . (2)
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Figure 1: (Color online). Schematic diagram of an antiferromagnetic right-handed
helix. Cyan balls denote the magnetic sites, where each ball represents a magnetic
moment with an arrow indicating its direction. Eg is the electric field, applied per-
pendicular to the helix axis. l1, l2, and l3 are the first, second, and third neighbor
distances, respectively. ∆z is the stacking distance, the distance along z-axis between
two neighboring sites. φ = n∆φ, where∆φ is the twisting angle between the neigh-
boring sites and n is the site index [56].

Here c†
nα (cnα) is the creation (annihilation) operator at the nth site with spin α(=↑,↓). εn is

the on-site potential at site n and tm is the hopping integral between the sites n and n+m.
The term hhn ·σ denotes the interaction between the itenerant electron and the local mo-

ment, whereσ is the Pauli spin vector and hhn is the spin-dependent scattering (SDS) parameter
at site n. hhn = J〈Sn〉 [53], where J is the spin-moment exchange interaction strength and 〈Sn〉
is the average spin at the nth site. The magnitude of the SDS parameter |hh | is assumed to be
isotropic, that is the strength is identical at each magnetic site.

In the presence of an external electric field, the site energy modifies as [44]

εn = eVg cos (n∆φ − β) , (3)

where e is the electronic charge and ∆φ is the twisting angle between the neighboring sites
(see Fig. 1) and Vg corresponds to the gate voltage associated to the applied electric field Eg
with Vg = EgR (R being the radius of the helix). β is the angle between the positive x-axis
and the applied electric field. Such a modulation of the on-site potential (Eq. 3) can be mapped
to the AAH model [11, 14] with a suitable choice of ∆φ [46] and thus a correlated disorder
can be introduced into the helical system with a disorder strength Vg .

The second term of Eq. 1 is associated with electron hopping in different magnetic sites,
where tm reads as [44,48]

tm = t e−(lm−l1)/lc . (4)
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Here lm is the Euclidean distance between sites n and n+m, l1 and lc are the nearest-neighbor
distance and decay constant, respectively. In terms of radius R (Fig. 1) of the helix, twisting
angle ∆φ, and stacking distance ∆z, lm takes the form

lm =

√

√

√

4R2

�

sin
�

m∆φ
2

��2

+ [m∆z]2 . (5)

We analyze the localization behavior of the considered system using two common quan-
tities, namely, the inverse participation ratio (IPR) and its complementary counterpart, the
normalized participation ratio (NPR). For the nth normalized eigenstate, they are defined
as [54,55]

IPRn =
∑

i

|ψi
n|

4 , NPRn =

�

N
∑

i

|ψi
n|

4

�−1

. (6)

In the case of a highly extended state, the IPR approaches to zero, while NPR tends to unity.
Conversely, for a strongly localized state, the IPR approximately approaches to unity, and NPR
goes to zero [54,55].

To study the parameter space where localized and delocalized states coexist, IPRn and
NPRn can be redefined by calculating their averages over a specified subset of states NL as [55]

〈IPR〉=
NL
∑

n

IPRn

NL
, 〈NPR〉=

NL
∑

n

NPRn

NL
. (7)

〈IPR〉 and 〈NPR〉 have the same characteristic features as that of IPR and NPR, respectively.
When both 〈IPR〉 and 〈NPR〉 are finite, the spatially extended and localized energy eigenstates
coexist and in the corresponding parameter space one gets an SPME.

3 Results and discussion

For the helical system, the modified on-site energies due to the electric field can be mapped
into a correlated disordered system [44–48,56]. The effective site energy expression maps to
the diagonal AAH model, where Vg plays the role of AAH disorder strength. The considered
orientation of magnetic moments along the ±z directions allows for the decoupling of the
Hamiltonian H of the helix into up and down spin sub-Hamiltonians, denoted as H↑ and H↓,
respectively, that is H = H↑+H↓. In the absence of an electric field, H↑ and H↓ exhibit identical
characteristics, leading to the absence of any spin-splitting effect. However, with the introduc-
tion of an electric field, this symmetry between the up and down spin sub-Hamiltonians is
disrupted. This asymmetry arises from the distinct modification of the on-site energies expe-
rienced by up and down spin electrons under the influence of the electric field. Consequently,
the previously indistinguishable behaviors of the two spin components diverge, resulting in
observable spin-splitting effects within the system.

We consider a right-handed helix, characterized by specific structural parameters that ren-
der the system a short-range hopping helix analogous to a single-stranded DNA [46, 50].
The chosen parameters are radius R = 8Å, stacking distance ∆z = 4.3Å, twisting angle
∆φ = π
�p

5− 1
�

/4, and decay constant lc = 0.8Å. The selection of ∆φ results in on-site
energies resembling an incommensurate potential, akin to the AAH disorder.
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0 0.2 0.4 0.6 0.8 1

Figure 2: (Color online). Density plot. Spin-resolved IPR along with energy eigen-
values as a function of gate voltage Vg , where (a) and (b) are associated with up
and down spin electrons, respectively. Here we choose t = 1, h = 0.9, β = 0, and
N = 1598. The three instances of RL in each sub-figure are denoted with RL1, RL2,
and RL3. Their corresponding regions are marked with green ellipses.

We choose the NNH strength t = 1 eV and h = 0.9. The direction of the electric field
is assumed to be parallel to the positive x-axis, that is β = 0. It should be noted that the
parameter β does not have an impact on the localization properties [32].

Now, we analyze our results one by one. Let us start with the IPR characteristics of indi-
vidual states (defined in Eq. 6) of the AFH in presence of transverse electric field. In Figs. 2(a)
and (b), we depict the energy spectra for the up and down spin channels, respectively, show-
casing the variation with the gate voltage Vg (measured in units of Volts). The number of sites
is taken as N = 1598 to make the net magnetization zero (N is close to a Fibonacci number
1597). Each energy point on the plot is assigned a specific color based on its corresponding
IPR value. To highlight the localization transition, the colorbar employs dark gray to represent
the lowest 10% of the maximum IPR values, emphasizing extended states. The remaining
portion of the color spectrum ranges from white to dark red, visually representing the increas-
ing degree of localization. Below the threshold of approximately Vg = 0.5, nearly all states
exhibit an extended nature, as noticed by the dark gray coloration. However, beyond Vg ∼ 1,
all states undergo a complete localization. The localization persists until around Vg ∼ 1.5,
and subsequently, we identify three occurrences of RL from the color-coded IPR values. The
three instances of RL are highlighted by green ellipses within the approximate VG-window:
RL1 from 1.5 to 1.6, RL2 from 1.78 to 1.8, and RL3 from 1.9 to 2. In the case of down spin,
the energy spectrum exhibits notable differences compared to the up spin scenario, as evident
in Fig. 2(b). Like the up spin case, here also we observe RL phenomenon in three different
energy regions. Comparing the spectra given in Figs. 2(a) and (b), it is clearly seen that the RL
regions in one spin case are shifted compared to the other. This is solely due to the breaking
of symmetry between the up and down spin sub-Hamiltonians in presence of the transverse
electric field. Such a spin-specific RL phenomenon has not been addressed so far to the best of our
concern.

In the rest of our analysis, we concentrate only on the up spin case, as similar kind of
behavior is expected for the down spin one.

6

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.012


SciPost Phys. Core 8, 012 (2025)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3
Vg

〈IPR〉
〈NPR〉

 0

 0.01

 0.02

 0.03

 1.2  1.6  2  2.4

Figure 3: (Color online). 〈IPR〉 and 〈NPR〉 for the up spin electrons as a function
of Vg for a subset of states ranging from 30 to 70% of the eigenstates of Fig. 2. All
the system parameters remain the same as described in Fig. 2. (Inset) 〈NPR〉 versus
Vg plot for system sizes N = 1598, 2584, 4182, 6766, 10946, 17712 and N →∞,
represented by light to dark green color.

To observe the mixed-phase zone, we plot the behavior of 〈IPR〉 and 〈NPR〉 as a function
of Vg as shown in Fig. 3, represented by the the red and green colors, respectively. The aver-
aging for 〈IPR〉 and 〈NPR〉 is performed over a subset of eigenstates, NL of Fig. 2. Specifically,
the lowest 30% of the eigenstates (starting from the bottom of the spectrum) and the highest
30% are excluded in Fig. 2, focusing only on the central 40% of the spectrum. This approach
ensures a more accurate and representative characterization of the localization properties in
the system. The system and other parameter values remain unchanged with those in Fig. 2.
In Fig. 3, both 〈IPR〉 and 〈NPR〉 become finite for 0.7 > Vg > 1.2, indicating a critical region
with a coexistence of extended and localized states. Beyond Vg ∼ 1.2, all states become fully
localized. Subsequently, both 〈IPR〉 and 〈NPR〉 attain finite values in the previously mentioned
three RL regions, namely, for 1.5 > Vg > 1.6, 1.78 > Vg > 1.8, and 1.9 > Vg > 2. Therefore,
the system hosts as a total of four SPMEs. To mitigate potential finite-size effects, we examine
the behavior of 〈NPR〉 across various system sizes, specifically, N = 1598, 2584, 4182, 6766,
10946, and 17712. Using the evaluated data, we extrapolate 〈NPR〉 as N →∞. The corre-
sponding result is presented in the inset of Fig. 3. The same subset of eigenstates as that of the
main plot of Fig. 3 is used for the evaluation of 〈NPR〉. A gradient of green color, transitioning
from light to dark, is employed to represent the behavior of 〈NPR〉 as a function of Vg for the
system sizes in ascending order. For N → ∞, 〈NPR〉 attains a finite value in all the three
reentrant localized regions, whereas, it converges to zero outside the RL regions. This clearly
demonstrates the robustness of the occurrence of the three RLs with respect to system size and
rules out any finite-size effects.

Detail analysis of the reentrant regions: To get a better insight about this, we characterize
the localization transitions with a proper theory of phase transition following the theory of
thermal phase transition. Hence, we determine the critical exponents and perform finite-size
scaling analysis for the observed three regions of reentrant phases to point out the critical
points and scaling behavior associated with the localization transitions.

We define an order parameter σ to characterize the localization transition as [51,52]

σ =
Æ

〈NPR〉 . (8)

With the common notion of 〈NPR〉, σ is also finite in extended phase and becomes zero in
localized phase, which makes it suitable candidate for the order parameter for the localiza-
tion phase transitions which has one-to-one correspondence with the thermal phase transi-
tion [51,52]. There are a total of six transitions, three localized to extended phase and three
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Figure 4: Plot of σ with Vg for three different transitions for system sizes
N = 1598,2584, 4182,6766, and 10946. (a) extended to localized transition in RL1,
(b) extended to localized transition in RL2, and (c) localized to extended transition
in RL3.
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Figure 5: Variation of σ2N with Vg for three different transitions for system sizes
N = 1598,2584, 4182,6766, and 10946. (a) extended to localized transition in RL1,
(b) extended to localized transition in RL2, and (c) localized to extended transition
in RL3.

extended to localized phase, shown in Fig. 3. Here, we choose one transition from each re-
gion for detail analysis. The variation of σ with gate voltage Vg is shown in Fig. 4(a) and
Fig. 4(b), when the system moves from extended to localized phase in region RL1 and RL2
respectively. Whereas, the localized to extended phase variation of σ is shown in Fig. 4(c) in
the region RL3. The variation of σ with Vg for all the three transitions is done for system sizes
N = 1598, 2584,4182, 6766, and 10496. We find that σ has strong finite size dependence in
all three regions. With increasing the system size, σ falls off monotonically and is almost zero
for the highest system size N = 10496 as it should be.

Around the transition zone, the order parameter σ varies with scaled gate voltage
ε= (Vg − Vgc)/Vgc as

σ ∼ (−ε)β , (9)

where Vgc is the critical gate voltage for the transition. The participation ratio σ2N [57]
(fluctuation of σ) varies with scaled gate voltage ε, across the transition zone, as

σ2N ∼ ε−γ . (10)

The correlation (or localization) length ξ varies with scaled gate voltage ε in the vicinity of
critical point as

ξ∼ |ε|−ν . (11)

Here β ,γ, and ν are the order parameter exponent, the participation ratio exponent, and
the correlation length exponent, respectively. The variation of σ2N with Vg for the three
transitions with different system sizes are shown in Fig. 5.
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Figure 6: Plot of two system size function R(N , N ′) with Vg for three different tran-
sitions for system sizes N = 1598,2584, 4182,6766, and 10946 in (a) extended to
localized transition in RL1, (b) extended to localized transition in RL2, and (c) local-
ized to extended transition in RL3.

Table 1: The critical gate voltages Vgc and the ratios of different critical exponents
γ/ν and β/ν for the three transitions.

Transition Vgc γ/ν β/ν

RL1 1.593 0.578 0.211

RL2 1.814 0.250 0.375

RL3 1.922 0.150 0.425

The critical point Vgc and critical exponent ratio γ/ν for a transition can be determined
using a two system size function R(N , N ′) involving two system sizes following the prescription
of Hashimoto [57].

R(N , N ′) =
ln(σ2

N/σ
2
N ′)

ln(N/N ′)
+ 1 , (12)

where, the order parameter for system sizes N , and N ′ are σN , and σN ′ , respectively. The
plots of R versus Vg for different pairs of available N , N ′ around the critical region intersect
at a common fixed point. The abscissa of the fixed point of intersection gives the value of Vg ,
and the ordinate gives the critical exponent ratio γ/ν for the transition. The behavior of R for
the three transition regions is shown in Fig. 6. The different R− Vg curves cross at the points
Vg = 1.593,1.814, and 1.922 corresponding to transitions in the regions RL1, RL2, and RL3 as
noted from Figs. 6(a), (b), and (c), respectively. The values of ordinates are R = 0.578,0.25,
and 0.15, respectively for the three transitions. Hence, we have the critical gate voltages Vgc
and the critical exponent ratios γ/ν for the three transitions, as shown in the following Table 1.
The critical exponents ratios β/ν can be obtained using the hyperscaling relationship [58]

2β
ν
+
γ

ν
= d , (13)

where d = 1 is the number of components of order parameter or the dimension of order
parameter. The ratio between the critical exponents γ/ν must obey the above relationship.
With d = 1, Eq. 13 becomes

β

ν
=

1
2

�

1−
γ

ν

�

. (14)

With the previously computed values of γ/ν, we determine the values of critical exponents
ratio β/ν = 0.211, 0.375, and 0.425 for the three transitions in regions RL1, RL2, and RL3,
respectively.
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Figure 7: Plot of FSS order parameter σNβ/ν with FSS gate voltage εN1/ν for three
different transitions for system sizes N = 1598,2584, 4182,6766, and 10946 for (a)
extended to localized transition in RL1, (b) extended to localized transition in RL2,
and (c) localized to extended transition in RL3. The FSS order parameter data for
different system sizes collapses onto a single curve around the critical region for all
three transitions.

Finite size scaling: To verify the accuracy of the computed critical exponents, we employ
finite size scaling analysis. Following the theory of thermal critical phenomena [58, 59], the
finite size scaling (FSS) form of σ is assumed to have the expression

σ = N−β/νeσ(εN1/ν) , (15)

where eσ is a scaling functions. If the different computed critical exponents are correct, the
order parameter data must collapse onto a single curve for different system sizes N when the
FSS order parameter σNβ/ν is plotted with FSS gate voltage εN1/ν. In the present case, all
different curves shown in Fig. 4 should fall on the same curve given by the function eσ in
the vicinity of critical point. The data collapse, in other words, is the verification of critical
point and critical exponents. The data collapse depicted in Fig. 7(a) for extended to localized
transition in RL1 is obtained using β/ν = 0.211, and Vg = 1.593 as obtained in Table 1. The
value of ν is obtained by trial and error method. We get the best data collapse for ν = 1.
Similarly, we have good data collapse using the critical exponents from Table 1 for extended
to localized transition in RL2, and localized to extended transition in RL3 shown in Figs. 7(b)
and (c), respectively. The exponent ν is realized from the best data collapse for both the cases,
and we get ν = 1.2, and ν = 1, respectively for RL2, and RL3. The correlation length follows
the power law behavior ξ ∼ |Vg − Vgc|−ν around the critical point. Here, we see that ξ varies
as |Vg − Vgc|−1 for RL1, and RL3 but ξ ∼ |Vg − Vgc|−1.2 for RL2. It implies that the extended
phase decays much faster in the case of RL2 as the system deviates from Vgc , when compared
to that of the other two transitions under consideration.

Similarly, the FSS form of σ2N is defined as

σ2N = Nγ/ν eχ(εN1/ν) , (16)

where, eχ is another scaling function. We will get the σ2N data collapse onto a single curve for
different system sizes N when the FSS fluctuation σ2/Nγ/ν−1 is plotted with FSS gate voltage
εN1/ν. All different curves shown in Fig.(5) should fall on the same curve given by the function
eχ in the vicinity of critical point if we use the correct critical exponents. A set of good data
collapses for FSS fluctuations for all three transitions is achieved using the same set of critical
exponents used in case of the data collapse of FSS order parameter given in Table 1. The data
collapses validate the critical exponents tabulated in Table 1. Figure 8 depicts the data collapse
of FSS fluctuation for all three different transitions. The ν exponents are also identical with
the previous cases, that is, ν= 1.0, 1.2, and 1.0 for RL1, RL2, and RL3, respectively.
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Figure 8: Plot of FSS fluctuation σ2/Nγ/ν−1 with FSS gate voltage εN1/ν for three
different transitions for system sizes N = 1598,2584, 4182,6766, and 10946 for (a)
extended to localized transition in RL1, (b) extended to localized transition in RL2,
and (c) localized to extended transition in RL3. The FSS σ2/N data for different
system sizes collapses onto a single curve around the critical region for all three
transitions.

The critical exponents β/ν and γ/ν can be directly extracted from the finite-size dependent
quantities σ and σ2N at the critical gate voltage Vgc , or equivalently, at ε= 0. Equation 15 at
the critical gate voltage ε= 0 becomes

σN = σ(ε= 0) = N−β/νeσ(0) , (17)

where eσ(0) is a constant. Thus, system size dependent order parameterσN becomes a function
of N . Taking logarithm,

ln(σN ) = −
β

ν
ln(N) + ln(eσ(0)) . (18)

Hence, a plot of critical ln(σN ) versus ln(N) should give a straight line with a slope −βν . The
critical values of ln(σN ) is plotted with ln(N) for system sizes N = 1598,2584, 4182,6766,
and 10946 for the extended to localized transition in RL1, extended to localized transition in
RL2, and localized to extended transition in RL3 in Fig. 9(a). The slopes or the exponent ratios
β
ν are found to be 0.1892± 0.134, 0.3509± 0.11, and 0.4247± 0.0063, which are very close
to the critical exponents tabulated in the Table 1.

Equation 16 at the critical gate voltage ε= 0 becomes

σ2N = σ2
N N(ε= 0) = Nγ/ν eχ(0) , (19)

where eχ(0) is a constant. Thus, system size dependent order parameter fluctuation Nσ2
N

becomes a function of N . Taking logarithm,

ln(Nσ2
N ) = −

γ

ν
ln(N) + ln(eχ(0)) . (20)

Hence, a plot of critical ln(Nσ2
N ) versus ln(N) should give a straight line with a slope γ

ν . The
critical values of ln(Nσ2

N ) is plotted with ln(N) for system sizes N = 1598,2584, 4182,6766,
and 10946 for the three different transitions in RL1, RL2, and RL3 in Fig.(9b). The slope γ

ν

is found to be 0.6217± 0.0268, 0.2982± 0.022, and 0.1505± 0.0126 for RL1, RL2, and RL3,
respectively, which are again very close to the critical exponents tabulated in the Table 1.

Parameter space: With the confidence that the three RLs are not due to any finite-size effect,
we explore the parameter space to identify the conditions under which these three RLs exist.
To do so, we compute η, defined as [60]

η= log10 [〈IPR〉 × 〈NPR〉] . (21)
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Figure 9: Direct determination of critical exponent ratio. (a) The critical values of
ln(σN ) is plotted with ln(N) for system sizes N = 1598, 2584,4182, 6766, and 10946
for the extended to localized transition in RL1, extended to localized transition in
RL2, and localized to extended transition in RL3. The critical exponent ratio β/ν
is determined from the slopes. (b) The critical values of ln(Nσ2

N ) is plotted with
ln(N) for system sizes N = 1598, 2584,4182, 6766, and 10946 for the three different
transitions in RL1, RL2, and RL3. The critical exponent ratio γ/ν is obtained from the
slopes.

Figure 10: (Color online). Density plot of η for the up spin case in the (a) Vg -h , (b)
Vg -t, and (c) Vg -lc planes. The system size and all the other parameters remain the
same as described in Fig. 2.

In the mixed phase zone, both 〈IPR〉 and 〈NPR〉 are finite and O(1), yielding η within
−2≤ η≤ −1. Conversely, in localized (extended) regime, 〈NPR〉 (〈IPR〉) tends toward∼ N−1,
and η < −log10N . For instance, at N ∼ 103, η < −3. Hence, the quantity η serves as a clear
discriminator between fully extended or localized phase and a mixed phase.

First, we explore the behavior of η in the phase space of Vg and h for the up spin chan-
nel as shown in Fig. 10(a). All other parameters remain constant as indicated in Fig. 2. In
the colorbar of η, steel blue color corresponds to the extended or localized phase, while the
brown color represents the mixed phase. In Fig. 10(a), the localized or extended phases are
determined by analyzing the 〈IPR〉 and 〈NPR〉 values. All three RLs emerge within the h-range
of approximately 0.75 to 0.96. The third RL ceases to exist beyond h ∼ 0.96. Additionally,
no instances of RL are present beyond h ∼ 1.2. This observation strongly suggests that RL
occurrence is possible when h is comparable to the numerical value of Vg .
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Second, we study the η-behavior in the phase space of Vg and t for the up spin channel
as shown in Fig. 10(b). All other parameters kept unchanged as indicated in Fig. 2. As both
Vg and t increase from zero to a finite value, the width of the first critical region expands.
The first RL emerges around t ∼ 0.8. The second RL becomes noticeable around t ∼ 0.9, and
the third one around t ∼ 1. The first RL diminishes beyond t ∼ 1.1, the second one around
t ∼ 1.15, and the third one for t ∼ 1.25. All three RLs are pronounced within the range of
approximately 1 < t < 1.1. This range is comparable to the numerical value of h , which is
fixed at h = 0.9, consistent with the previous analysis. After t ∼ 1.25, all RLs vanish and
merge into the first critical region.

So far, all the results were discussed for the scenario of short-range hopping. To investigate
the transition from short-range hopping to long-range hopping and understand the localiza-
tion behavior, we examine the η-behavior within the Vg and lc phase space, as illustrated in
Fig 10(c). The variation of the decay constant spans from 0.1 Å to 8.5Å, thereby inducing
a shift from a short-range hopping regime to a long-range hopping scenario. In accordance
with Fig. 2, the remaining parameters are maintained at their specified values without any
alterations. For low values of lc (primarily SRH) within the range of 0.1 to 2 Å, the Vg -window
associated with the first critical region remains nearly constant and it expands as lc increases.
The three RLs are present right from lc = 0.1Å. The first RL converges with the first critical
region at approximately lc ∼ 0.75Å, but the second and third RLs persist with increasing lc .
The second RL unites with the first critical region while the third one survives till lc ∼ 4Å.
Ultimately, the third RL disappears at approximately lc ∼ 5 Å, leaving only one critical re-
gion beyond that point. Another notable observation is that from the first RL, a secondary RL
emerges within a short Vg -window with lc between 3 to 4 Å, and subsequently integrates with
the second RL. A similar scenario is observed for the second RL, wherein another secondary
RL originates from lc ∼ 2Å and then dissipates into the localized region beyond lc ∼ 3 Å.

Experimental possibilities of antiferromagnetic helix: AFH structures have been successfully
fabricated by several research groups [61–67]. For instance, a metallic spiral antiferromagnetic
system [61] has been realized in SrFeO2.95, long-range helical antiferromagnetic ordering [62]
has been observed in polycrystalline samples of Lu1−xScxMnSi, and incommensurate antifer-
romagnetic spiral-like structures [63,64] have been reported in EuNi2As2 and EuCo2As2. Ad-
ditional examples include spin-canted antiferromagnetism with helical topology [65], canted
antiferromagnetic ordering [66], and the potential realization of curvilinear one-dimensional
antiferromagnets [67].

It is important to highlight that these studies predominantly utilize heavy magnetic ele-
ments, which can also be theoretically described by the Hamiltonian used in the present work.
Similar Hamiltonians have been employed successfully in previous studies, such as those by
Takahashi and Igarashi [68] for La2CuO4 and Sr2CuO2Cl2, as well as by others [69,70]. More-
over, in the Hamiltonian of our present work, the itinerant electrons interact with localized
magnetic moments at different lattice sites resulting in a spin-dependent phenomena and the
interactions between the neighboring magnetic moments have been ignored. The moment-
moment interaction does not essentially yield any such new localization behavior as this inter-
action term can be written as a sum of two terms, under mean-field approximation, where one
term is associated with Zeeman like interaction and the other term is a constant one. Though
the Zeeman interaction provides a spin-dependent scattering, it is extremely weak compared
to the spin-moment scattering what we have considered in our Hamiltonian. Thus, in light of
the aforementioned studies, the use of the Hamiltonian in describing antiferromagnetic helices
is well justified, suggesting that the RL behavior may consequently be observed.

Furthermore, the entire analysis was conducted at zero temperature. While non-zero tem-
peratures could also have been considered, at low temperatures, quantum fluctuations would
arise, potentially altering the orientation of magnetic moments. However, these fluctuations
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are unlikely to significantly impact the localization phenomena studied here, as the strong
spin-moment scattering induces a substantial mismatch between the up- and down-spin en-
ergy channels. A detailed investigation of finite-temperature effects, including quantum fluc-
tuations, could be pursued in future work to provide deeper insights into the system.

Finally, the question remains whether such RL phenomena can be observed experimen-
tally and whether the necessary facilities exist to explore them. To the best of our knowledge,
probably no experimental references are currently available regarding RL phenomena in an
antiferromagnetic helix under a transverse electric field. However, as noted earlier, similar
systems have already been established in the literature, suggesting that our results are experi-
mentally verifiable. We hope that experimental studies addressing RL phenomena will emerge
soon.

While our work is theoretical, we propose a potential and relatively straightforward ex-
periment to observe RL behavior by measuring the junction current as a function of applied
bias voltage at varying disorder strengths, where, the disorder strength can be varied by the
applied transverse electric field. In the weak disorder regime, where states are predominantly
extended, the current is expected to increase with bias. Conversely, in the localized regime
with higher disorder, the current should decrease. In the reentrant regimes, when some states
become delocalized, an increase in current may be observed. Thus, RL behavior can be effec-
tively studied through current measurements. Nevertheless, experimental experts may devise
more refined approaches for this purpose.

4 Summary

The present investigation has revealed the occurrence of multiple spin-dependent reentrant
localization in a helical system when subjected to an electric field with net zero magnetization,
characterized by antiferromagnetic ordering of the moments. Crucially, this accomplishment
has been realized without incorporating any hopping dimerization scenario, a factor upon
which previous studies attributing the occurrence of RL had relied. Our study of spin-resolved
IPR values across various energy states has revealed the presence of three distinct RLs. The
robustness of these three RLs has been affirmed through a comprehensive analysis of averaged
IPR and NPR values in the limit as the system size approaches infinity (N →∞).

To validate the observed transitions, we have defined the order parameter and its fluctua-
tions for localization phase transitions in direct analogy to thermal phase transitions. The crit-
ical exponent ratios γ/ν and β/ν have determined from the two-system size function R(N , N ′)
and a hyperscaling relationship, respectively. The ν exponent has been obtained by trial and
error method, ensuring the best data collapse of the FSS variables. We have validated the
critical regions and the measured critical exponents through data collapse, with satisfactory
results obtained by plotting FSS variables and measured critical exponents across the three
critical regions. We have also extracted the critical exponents at the critical point directly from
the system size-dependent order parameters and order parameter fluctuations. The values of
the critical exponents obtained by both methods are in good agreement. The extended phases
decay much faster during the localization transition in region RL2 as the system deviates from
Vgc compared to the other two localization transitions.

The investigation of η-behavior unravels that RL phenomenon becomes apparent when
the electric field strength Vg is on a comparable scale to the value of h . Additionally, in the Vg -
lc plane, RLs vanish as the system undergoes from the short-range hopping to the long-range
hopping case. Furthermore, our investigation has identified two secondary RLs stemming from
the first and second RLs, which however warrants further in-depth exploration.
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Before we end, we would like to point out that the practical implications of spin-dependent
reentrant localization phenomenon in the absence of any hopping dimerization may provide
innovative applications in quantum technologies. By suitably defining the spin qubits, spin-
dependent RL phenomena may find applications in quantum computing, where stable qubits
are essential for reliable gate operations and entanglement. Additionally, these qubits could be
applied in spintronic devices for spin-based information storage and processing, exploiting the
tunability of the localization transitions. The ability to control spin-dependent behavior in sys-
tems exhibiting reentrant localization also opens avenues for quantum sensing and quantum
communication, where precise manipulation of quantum states is crucial for robust informa-
tion transfer and detection. The investigation of the RL behavior in the Vg -lc plane might
help to understand and to control localization phenomena in similar kind of other fascinat-
ing helical systems. With other types of antiferromagnetic ordering, such as non-colinear or
non-coplaner structures, different critical points may emerge for different spin species in these
systems.
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