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Abstract

We discuss many-body fermionic and bosonic systems subject to dissipative particle
losses in arbitrary spatial dimensions d, within the Keldysh path-integral formulation
of the quantum master equation. This open quantum dynamics represents a generalisa-
tion of classical reaction-diffusion dynamics to the quantum realm. We first show how
initial conditions can be introduced in the Keldysh path integral via boundary terms. We
then study binary annihilation reactions A+A→ ;, for which we derive a Boltzmann-like
kinetic equation. The ensuing algebraic decay in time for the particle density depends
on the particle statistics. In order to model possible experimental implementations with
cold atoms, for fermions in d = 1 we further discuss inhomogeneous cases involving
the presence of a trapping potential. In this context, we quantify the irreversibility of
the dynamics studying the time evolution of the system entropy for different quenches
of the trapping potential. We find that the system entropy features algebraic decay for
confining quenches, while it saturates in deconfined scenarios.
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1 Introduction

The identification and classification of universal behaviour in critical equilibrium systems is one
of the greatest achievements of statistical mechanics [1–4]. Thermal equilibrium is nonetheless
a rather idealised situation in nature, since a huge variety of relevant processes take place far
from equilibrium in driven or relaxational conditions. In that scenario, understanding the
emergence of collective properties in many-body systems and, possibly, defining universality
classes is a demanding task.

Reaction-Diffusion (RD) models stand out as prototypical cases of genuinely far-from-
equilibrium systems where the calculation of critical exponents and the recognition of uni-
versal properties is made possible [5–10]. In classical discrete systems, diffusion is modelled
by nearest-neighbour stochastic hopping, while reactions take place when two or more parti-
cles are located on the same lattice site. The ensuing stochastic dynamics is ruled by a classical
master equation. Paradigmatic binary processes are, for instance, binary annihilation A+A→ ;
and coagulation A+ A→ A reactions. These reactions provide a plethora of relaxational non-
equilibrium dynamics. Therein reactions only deplete the system, and one has critical dynam-
ics in the way the stationary state, devoid of particles, is eventually approached in time. In
particular, one has that the particle density decays according to a power law with universal
amplitude and exponent.

Two typical regimes can be identified in RD systems. The so-called reaction-limited regime
of fast diffusive mixing and slow reactions [5,7,11–13], where the timescale of the dynamics
is dominated by the reaction rate Γ . In particular, mean-field calculations provide the correct
long-time asymptotics for the density n(t) as a function of time t. For A+A→ ; and A+A→ A,
this yields the decay law

n(t)∼ (Γ t)−1 . (1)
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In the opposite diffusion-limited regime [14–18], where diffusion and reactions compete at sim-
ilar timescales, mean-field does not provide an accurate prediction of the long-time behaviour.
Crucially, the development of Doi and Peliti’s statistical path-integral approach [19,20], made
it possible to thoroughly access the diffusion-limited regime of classical RD dynamics via renor-
malisation group methods [8–10,21–23]. Binary annihilation and coagulation are specifically
shown to belong to the same universality class and they show algebraic decay with different
exponent than mean field, Eq. (1), in one spatial dimension.

Determining the possible impact of quantum effects on emergent nonequilibrium be-
haviour is currently the aim of intense research. Deviations from classical predictions have
indeed been identified for various kinetically constrained models [24–31] described by the
Markovian quantum master equation in Lindblad form [32, 33]. Quantum RD dynamics is
also formulated in terms of the Lindblad equation. Therein, stochastic diffusion is replaced by
coherent hopping, while reactions are irreversible and modelled by dissipative quantum jump
operators. However, investigations of RD dynamics in the quantum realm have only recently
been conducted [34–48]. The ensuing many-body dynamics are indeed even harder to address
than their classical counterparts due to the exponential scaling of the many-body Hilbert space
with the system size. The assessment of large-scale RD non-equilibrium universal properties is
therefore extremely challenging for quantum systems as it entails the simultaneous simulation
of large sizes and long times. Recent numerical studies [49–53] therefore focused on one-
dimensional small systems. From the latter results, however, it is hard to make unambiguous
statements on the resulting behaviour in the thermodynamic limit.

Analytical results in the thermodynamic limit for one-dimensional quantum RD models
have been recently obtained in Refs. [36, 38, 40, 42–44, 47, 48, 54–57] in the reaction-limited
regime. For fermionic systems [38,40,42–44,47,54–56], it has been shown that the quantum
reaction-limited RD dynamics yields algebraic decay for the particle density with different
exponent than the mean-field one in Eq. (1). For noninteracting bosonic systems, instead, it has
been shown [36,57] that multi-body annihilation reactions kA→ ; (k ≥ 2) lead to mean field
decay for the particle density. In the case where the interacting Bose gas is considered [36],
the asymptotic decay of the particle density is, instead, not known.

A common aspect of the works [36,38,40,42–44,54–57], both for fermions and for bosons,
is that the underlying analysis is based on the the time-dependent Generalised Gibbs Ensemble
(TGGE) ansatz [58–61] for the reaction-limited regime. Within the TGGE method, for weak
reactions-dissipation, the state of the system in-between consecutive reactions is assumed to
be a maximal entropy state consistent with all the conservation laws of the Hamiltonian. This
state has the form of a GGE, see, e.g., the reviews [62,63], which allows to derive exact dynam-
ical equations for the occupation function in momentum space and hence the particle density.
In Refs. [55, 56], instead, a different approach has been pursued. In these references, the
Keldysh path integral representation, see, e.g., the reviews [64–67], of the quantum dynamics
is considered. In Ref. [55], the one-dimensional Bose-Hubbard chain under strong two-body
losses has been analysed via the Feynman-Vernon influence functional. The latter is obtained
by performing a second-order cumulant expansion of the system-bath Keldysh action and in-
tegrating out the bath degrees of freedom. In the regime of dominant losses, the system maps
to the reaction-limited dynamics of a Fermi gas, as in Refs. [34,68]. In Ref. [56], instead, the
Fermi gas in continuum space and in arbitrary spatial dimensions d in the reaction-limited
regime has been considered. Here, the dynamics for two-body losses is directly formulated
in terms of the Lindblad-Keldysh action. The TGGE dynamical equation is then recovered by
taking the Euler-hydrodynamic scaling limit [69, 70] of the diagrammatic expansion of the
dissipative interaction vertices.
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In this manuscript, we systematically present and further develop the results of Ref. [56].
Specifically, we detail the formulation of the quantum RD dynamics via Keldysh path inte-
grals. We also show how to implement initial conditions within the Keldysh action. Initial
conditions, namely, correspond to boundary terms where the fields are computed solely at the
initial time t = 0. These boundary conditions add to the bulk Keldysh action. We benchmark
the implementation of initial conditions against the exactly solvable case of a single-body de-
cay A→ ;. Therein, we show that the action composed of the bulk Keldysh action and the
boundary-initial term correctly predicts an exponential decay for the particle density. Moving
to more interesting, not exactly solvable, cases, we consider binary annihilation A+ A→ ;.
The Keldysh path integral allows us to naturally derive kinetic equations. We accomplish this
in generic spatial dimensions d for both bosons and fermions. In both cases, we perform a
diagrammatic expansion of the interaction vertices from the Keldysh partition function. In
the Euler-scaling limit, Γ → 0 with ¯⃗x = Γ x⃗ and t̄ = Γ t fixed, of slow space-time variation,
this expansion can be truncated at first order in space-time derivatives and it acquires the
universal form of a kinetic Boltzmann equation. In d = 1, this approach is equivalent to the
TGGE ansatz for the reaction-limited regime. For homogeneous bosonic systems, we obtain
mean field decay for the particle density in all dimensions d, cf. Eq. (1). For homogeneous
fermionic systems, instead, deviations in the decay exponent from mean field are observed in
all dimensions d, as previously derived in [56]. In order to more closely describe cold-atomic
experiments involving particle losses [71–76], where the quantum gas is inhomogeneous in
space due to the presence of a trapping potential, we also consider inhomogeneous fermionic
systems in one dimension with quenches of the trapping potential. For quenches from an
anharmonic potential to a harmonic one, we find that the anharmonicity in the initial poten-
tial causes for the density a faster algebraic decay compared to both the homogeneous decay
and the decay happening from an initial harmonic potential. Furthermore, we quantify the
irreversibility of the dynamics due to dissipation by computing the dynamics of the system en-
tropy. We observe that for quenches from an anharmonic to an harmonic potential the system
entropy decays to zero algebraically. This decay is caused by the continuous loss of particles
and the associated growth of the surrounding environment entropy. Interestingly, we find that
the decay exponent of the system entropy coincides with the decay exponent of the particle
density in homogeneous setups. This decay exponent is further observed not to depend on
the anharmonicity of the initial potential (differently from the aforementioned decay of the
density). We eventually consider trap-release quenches where the initial trapping potential is
switched off. In this case, the quantum gas freely expands in space. We find that after an initial
transient, reactions become scarcer and scarcer and the gas just expands in space according
to the Euler equation. The system entropy therefore saturates in time as a consequence of the
ballistic-reversible quantum transport of particles.

The remainder of the manuscript is organised as follows. In Sec. 2, we formulate the quan-
tum RD dynamics in the terms of the Lindblad master equation. In Sec. 3, we recall the basic
aspects of the Keldysh path integral needed for the understanding of our results. In Sec. 4, we
show how the initial conditions of the dynamics can be inserted in the Keldysh path integral
via boundary terms in addition to the bulk Keldysh action. In Sec. 5, we derive the Boltzmann
equation in the Euler-scaling limit for the Bose and the Fermi gases in d spatial dimensions
subject to binary annihilation reactions A+ A → ;. In Sec. 6, we eventually provide an ap-
plication of the Boltzmann equation to the study of inhomogeneous fermionic systems with a
trapping potential in d = 1. In Appendix A, we discuss some aspects of the Doi-Peliti path-
integral formulation of classical RD systems, which are useful for comparison with the Keldysh
quantum RD formulation. Additional details on the calculations are reported in Appendix B.
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2 Quantum reaction-diffusion models

In this Section, we introduce the quantum RD models considered throughout the text. For the
sake of simplicity, we start from a system on a lattice, discussed in Subsec. 2.1. In Subsec. 2.2,
we obtain the associated continuum limit in space both for bosons and fermions.

2.1 The master equation formalism

We consider a d-dimensional lattice system of bosons or fermions. Each lattice site is identified
by the array of indices i = (i1, . . . , iα, . . . , id) ∈ Zd (α = 1,2 . . . d) of a hyper-cubic lattice with
Id sites, with eα the unit-vector pointing in the α-th direction and l the lattice spacing. The
bosonic (fermionic) operators satisfy the canonical (anti)commutation relations

[ai, a†
j ]ξ = δij , [ai, aj]ξ = [a

†
i , a†

j ]ξ = 0 , (2)

with [a, b]ξ = ab − ξba and ξ = +1 for bosons, ξ = −1 for fermions. Throughout our
discussion we will consider spinless fermions, which are frequently used in many-body physics.
In d = 1, spinless fermions can be mapped to spins 1/2 via Jordan-Wigner transformation [77].
The standard quantum mechanical normalisation of state vectors in Fock space is used:

ai |ni〉=
p

ni |ni − 1〉 , a†
i |ni〉=
p

ni + 1 |ni + 1〉 . (3)

Clearly, fermions satisfy the additional constraint ni = 0,1 due to the Pauli exclusion principle.
The dynamics of the quantum many-body density matrix ρ is governed by a quantum master
equation in Lindblad form [32,33]:

ρ̇(t) = L[ρ(t)] = − i
ħh
[H,ρ(t)] +D[ρ(t)] . (4)

The Lindblad map is trace-preserving, namely, at any instant of the evolution one has Trρ = 1
(provided the initial density matrix has also trace 1). The Hermitian Hamiltonian H in Eq. (4)
determines the unitary evolution: in our quantum RD settings, we consider the free hopping
Hamiltonian

H = −
J
l2

∑

i

d
∑

α=1

(a†
i ai+eα + a†

i+eα
ai) +
∑

i

a†
i Viai , (5)

where J/l2 [units ħh time−1] is the hopping rate. This parameterisation of the hopping rate is
chosen so that in the continuum limit, discussed in Subsec. 3.1, J has units [length2 · time−1].
The term Vi represents an external single-body potential. In Sec. 5, we will consider the poten-
tial Vi to vary on a macroscopic length scale ℓ≫ l. This will allow us to derive the Boltzmann
equation in the Euler-scaling limit. Eq. (5) provides a quantum generalisation of the stochastic
hopping considered in classical RD models. It is, however, important to note that in classical
RD, stochastic hopping on the lattice amounts to diffusive transport of particles in the contin-
uum. In the quantum case, Eq. (5) gives ballistic coherent transport of particles. The Lindblad
dissipator D encodes irreversible reaction processes, and it is usually written in terms of the
quantum jump operators Li,α:

D[ρ] =
∑

i

d
∑

α=1

[Li,αρL†
i,α −

1
2
{L†

i,αLi,α,ρ}] . (6)

We consider throughout the manuscript two different reactions. First, we study the case of
one-body decay A→ ; at rate Γd in Sec. 4 [units time−1]:

Li,α =
1
d

p

Γd ai . (7)
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Second, we consider pair annihilation A+ A→ ; at rate Γ in Secs. 5 and 6. The form of the
associated jump operators depends on the quantum statistics of the particles. In the bosonic
case, we consider the annihilation operator LB,ann

i given by:

LB,ann
i,α =

1
d

√

√ Γ

ld
a2

i , (8)

with
p

Γ/ld the annihilation reaction rate. In the fermionic case, the exclusion principle im-
plies that, within the quantum RD processes scenario, two identical fermions cannot overlap,
and reactions must occur between nearest neighbours. Accordingly, we define the following
fermionic annihilation operator

LF,ann
i,α =

√

√ Γ

ld+2
aiai+eα . (9)

In Eq. (8), the constant Γ has units [lengthd · time−1]. In Eq. (9), instead, Γ has units
[lengthd+2 · time−1].

2.2 The continuum limit

The continuum-space limit is identified by considering infinite sites Id →∞, vanishing lattice
spacing l → 0, with the dimensionful volume V = (l I)d held fixed. Accordingly, the sum ld

∑

i
over lattice sites turns into the integral

∫

dd x . In order to maintain the correct dimensional
properties, one must rescale the fields by a certain power of the lattice spacing l. In the
quantum formulation both fields are rescaled in the same way

ai

ld/2
→ψ( x⃗) ,

a†
i

ld/2
→ψ†( x⃗) . (10)

Then, the engineering dimension of the fields ψ( x⃗) and ψ†( x⃗) is L−d/2 with L some arbitrary
length unit. In this sense, the fields represent density amplitudes. We also note that the rescal-
ing (10) is different from the one adopted in the classical Doi-Peliti case, briefly explained in
App. A, where one rescales ϕ with ld (units of a density) and the conjugated field ϕ̄ with l0.
The hopping Hamiltonian (5) reads, in the continuum limit,

H =

∫

dd x H(ψ) , (11)

with the Hamiltonian density

H =ψ†( x⃗)[−J∇2 + V ( x⃗)]ψ( x⃗) . (12)

Analogously, the dissipator (6) turns into

D[ρ] =
∫

dd x
d
∑

α=1

[LαρL†
α −

1
2
{L†
αLα,ρ}] , (13)

where L(†)α = L(†)α ( x⃗). For one-body decay (7), the continuum limit is simply

Lα( x⃗) =
1
d

p

Γdψ( x⃗) . (14)

6
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This expression is linear in the destruction operator and therefore it produces quadratic terms
in the dissipator (13). These terms can be exactly treated, as we discuss in Sec. 4. The con-
tinuum limit of the binary annihilation (8) and (9) depends on the quantum statistics. In
particular, we find

LB,ann
α ( x⃗) =

1
d

p
Γψ2( x⃗) , LF,ann

α ( x⃗) =
p
Γψ( x⃗)∂xαψ( x⃗) . (15)

These jump operators are quadratic in the destruction operators and therefore they produce
quartic terms in the dissipator (13). These quartic terms render the Lindblad dynamics not ex-
actly solvable. In the Keldysh field theory representation of the master equation, quartic terms
amount to quartic interaction vertices in the fields of the theory. Crucially, in the fermionic
case, quartic interaction vertices also contain spatial gradients of the fields, which are absent
in the bosonic case. This important difference for A+ A→ ; eventually renders the physical
macroscopic behaviour of the Fermi gas different to the one of the Bose gas.

3 Keldysh field theory of reaction-diffusion models

In this Section, we briefly review some aspects of the Keldysh path integral formalism for the
quantum master equation. These aspects are necessary for the understanding of the results
presented in Secs. 4 and 5. In Subsec. 3.1, we summarise from Refs. [64–67] the closed-
time contour characterising the nonequilibrium Keldysh action. Bosonic and fermionic Green’s
functions are building block of the Keldysh field theory and they are discussed in Subsec. 3.2.
In Subsec. 3.3, we discuss the regularisation of the interaction vertices in the Keldysh action
which must be considered when treating open systems.

3.1 Keldysh formalism for open systems

Starting from the formal solution of the Lindblad equation, the first step to derive a field
theory is to perform a Trotter decomposition of the evolution operator. It is now convenient
to consider the set of bosonic [fermionic] coherent states |{ψ}n〉 = ⊗i

�

�ψi,n

�

at the time slice
tn, defined as the eigenstates of the annihilation operator, namely:

ai

�

�ψi,n

�

=ψi,n

�

�ψi,n

�

. (16)

This entails the explicit definition

�

�ψi,n

�

= eξψi,na†
i |0〉 , (17)

with |0〉 the vacuum state in the many-body Fock space. It is here important to stress that albeit
we use the same symbol ψ for the eigenvalue both in the fermions and in the bosons case, the
valuesψ takes are different in the two cases. For bosonsψ ∈ C is a complex number, and ψ̄ is
the associated complex conjugate. For fermions, instead, ψ is a Grassmann field belonging to
an anticommuting algebra: [ψi,n,ψj,n]+ = 0, ∀i, j, with the Grassmann field ψ̄ independent
from ψ. The resolution of the identity at time step n takes the form:

1n =
1

p
π

1+ξ

∫

∏

i

dψ̄i,ndψi,ne−
∑

i ψ̄i,nψi,n |{ψ}n〉 〈{ψ}n| . (18)

7

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.014


SciPost Phys. Core 8, 014 (2025)

Figure 1: Out-of-equilibrium time integration contour. (a) Time evolution of a
wave function |ψ(t)〉 along a single, forward-time integration contour from t0 to t.
(b) Time evolution of a density matrix ρ(t) for the open-system out-of-equilibrium
dynamics generated by the Lindbladian superoperator L. The integration of the en-
suing Keldysh actions is performed along a closed time contour, determined by the
forward (+) and the backward (-) branch between times t0 and t. The two branches
are connected at the initial t0 and final time t of the dynamics.

The above completeness relation can be inserted on both sides of the density matrix ρn, using
the superscript

�

�{ψ}+n
�

for states acting from the left, and
�

�{ψ}−n
�

for states acting from the
right:

ρn =
1
π1+ξ

∫

∏

i

dψ+i,ndψ̄+i,ndψ−i,ndψ̄−i,n

· e−
∑

i ψ̄
+
i,nψ

+
i,n e−
∑

i ψ̄
−
i,nψ

−
i,n
�

�{ψ}+n
� 


ξ{ψ}−n
�

�




{ψ}+n
�

�ρn

�

�ξ{ψ}−n
�

.

(19)

Accordingly, the eigenvalues {ψ}+n of
�

�{ψ}+n
�

will identify the forward fields, as they evolve
the density matrix forward in time, when reading from right to left. The eigenvalues {ψ}−n
of
�

�{ψ}−n
�

will instead define the backward fields, which evolve the state backward in time as
they must be read from left to right. A pictorial representation of the forward and backward
fields, and of the closed Keldysh integration contour, is given in Fig. 1.

Multiplying times the identity, we connect the ρn to ρn+1 at the subsequent time slices via
an element-wise notation. In particular, the Lindbladian dynamics is rendered by means of the
“supermatrixelement”




ψ+n+1

�

�L
� �

�ψ+n
� 


ψ−n

�

�

�

ψ−n+1〉. It is now useful to recall that expectation
values of normal-ordered functions of ladder operators acting on coherent states turn into
functions of the respective coherent states eigenvalues:

〈{ψ}n|M(ai, a†
j )
�

�{ψ′}m
�

= e
∑

k ψ̄k ,nψ
′
k ,m M(ψ̄i,n,ψ′j,m) . (20)

We assume henceforth the Hamiltonian H, in Eq. (12), and the jump operators Lα( x⃗) and
L†
α( x⃗), in Eq. (13), to be normal-ordered, so as all the creation operators lie on the left of the

destruction operators. Applying this substitution and exponentiating, it is possible to write an
expression for the density matrix element at time n+ 1, where second order terms in δt are
suppressed. By taking the continuum time limit N →∞, δt → 0, with Nδt = t− t0, the terms
with (ψ̄+i,n+1 − ψ̄

+
i,n)ψ

+
i,n [ψ̄

−
i,n(ψ

−
i,n+1 −ψ

−
i,n)] can be written as δt ψ̄+i,n∂tψ

+
i,n [δtψ̄−i,n∂tψ

−
i,n].

Similarly, the Trotter decomposition of the evolution operator, initially a sum of finite time
slices
∑

nδt, turns into the integral
∫

d t ′. Besides, fields at adjacent time slices n, n+ 1 can
be evaluated at the same time t ′ = t0+ nδt, n= 1, 2 . . . N . In the continuum picture, we shall
also introduce the symbol Dψµ, indicating infinite-dimensional integration over the possible
field configurations, each of which must be considered at each infinitesimal Trotter time slice,
namely:

Dψµ = lim
I ,N→∞

N
∏

n=0

I
∏

i=0

dψµi,n
p
π

1+ξ
, (21)

with µ= +,−. We eventually evolve from the initial to the final time, noticing that the + and
− fields are connected at the boundaries. We now take the trace of the density matrix at the

8
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final time argument n= N defining the partition function Z = trρ(t):

Z =

∫

D[ψ+, ψ̄+,ψ−, ψ̄−] e
−
∫

x ψ̄+(t0)ψ+(t0) 〈{ψ+(t0)}|ρ(t0) |ξ{ψ−(t0)}〉 eiS[ψ+,ψ̄+,ψ−,ψ̄−] , (22)

with
∫

x =
∫

dd x . We note that in the path integral in Eq. (22) boundary terms are present,
where the fields are evaluated at the initial time t0. The bulk functional S[ψ+, ψ̄+,ψ−, ψ̄−] is
named the Keldysh action, and it can be conveniently written as

S =

∫ t

t0

d t ′
∫

d x[ψ̄+i∂t ′ψ+ − ψ̄−i∂t ′ψ− − iL] , (23)

where we dropped the explicit dependence on space-time variables ψµ( x⃗ , t ′) = ψµ, with the
Lindbladian L(ψ+, ψ̄+,ψ−, ψ̄−) evaluated in terms of coherent states:

L=
H+ −H−

iħh
+
�

(L+ L̄−)
(1+ξ)/2 + ( L̄−L+)

(1−ξ)/2 − 1−
1
2
(L̄+L+ + L̄−L−)

�

. (24)

When the final t → +∞ and initial t0 → −∞ times are sent to infinity, one focuses on the
stationary state properties of the dynamics. Besides, initial-time boundary terms are neglected,
as they do not affect the stationary state, and one obtains the Keldysh partition function ZK :

ZK =

∫

D[ψ+, ψ̄+,ψ−, ψ̄−] e
iS[ψ+,ψ̄+,ψ−,ψ̄−] . (25)

The Keldysh partition function obeys the normalisation ZK = 1, which follows from the trace-
preservation property of the Lindblad dynamics. The Keldysh partition function ZK therefore
carries no memory of the initial state, which is contained in the boundary terms of Eq. (22).
In the case of our quantum RD models, however, the interesting dynamics manifests in the
approach towards the stationary state. We will therefore consider in Sec. 4 the whole partition
function (22) in order to compute how correlation functions actually depend on the initial-
boundary terms.

The Hamiltonian H± = H(ψ̄±,ψ±) and the jump operators L j,+ = L j(ψ̄+,ψ+),
L j,− = L j(ψ̄−,ψ−), L̄ j,+ = L†

j (ψ̄+,ψ+) and L̄ j,− = L†
j (ψ̄−,ψ−), after normal ordering, are

evaluated on the forward (+) and backward (−) contour, respectively. In the quantum RD
case of the quadratic hopping Hamiltonian (5), the Hamiltonian density Eq. (12) evaluated in
terms of fields ψ±, ψ̄± reads as:

H± = ψ̄±(−J∇2 + V )ψ± . (26)

It is convenient at this point to introduce the so-called Keldysh rotation [65] of the bosonic
field variables, defined by:

ψµ =
φc +µφq
p

2
, ψ̄µ =

φ̄c +µφ̄q
p

2
, (27)

with µ = +,−. The new fields φc , φq are called classical and quantum fields, respectively.
In classical-quantum basis, named henceforth the retarded-advanced-Keldysh (RAK) basis, the
Hamiltonian term H+−H− in the Lindbladian (24), with the quadratic H± of Eq. (26) is given
by a sum H =Hc +Hq, where Hc/q is defined by

Hc/q = φ̄q/c(−J∇2 + V )φc/q . (28)

For the Keldysh rotation of fermionic fields, we follow the convention of Ref. [78], namely:

ψµ =
φ1 +µφ2p

2
, ψ̄µ =

φ̄2 +µφ̄1p
2

, (29)
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with µ = +,−. Note that this convention for the rotation of fermionic fields is different from
that adopted for bosons (27). We also avoid for fermions the c, q notation, and use indices 1,
2, as no classical behaviour is associated to fermions. In the RAK basis, the Hamiltonian term
H =H+ −H− turns into H1 +H2

H1/2 = φ̄1/2(−J∇2 + V )φ1/2 . (30)

The Keldysh rotation is extremely useful in order to get rid of redundant degrees of freedom
in the Green’s functions associated to the field theory (23)-(30). We elucidate this aspect in
the next Subsection.

3.2 Green’s functions

In the Keldysh field theory, one defines four two-point Green’s functions in the ± basis. We
thus use henceforth a convenient space-time notation for the position variable x = ( x⃗ , t), so
as Green’s functions are conveniently written as

Ĝ±(x1, x2) =

�

GT (x1, x2) G<(x1, x2)
G>(x1, x2) G T̃ (x1, x2)

�

= −i

�

〈ψ+(x1)ψ̄+(x2)〉 〈ψ+(x1)ψ̄−(x2)〉
〈ψ−(x1)ψ̄+(x2)〉 〈ψ−(x1)ψ̄−(x2)〉

�

, (31)

which take the names of time-ordered GT , lesser G<, greater G>, and anti-time-ordered G T̃

correlation functions. The reason follows from the fact that on the closed integration contour
in Fig. 1, the backward fields follow in time the forward ones. In particular, Green’s functions
can be connected to expectation values of time-ordered correlation functions of the second-
quantised field operators a(x), a†(x), where time-ordering is performed along the Keldysh
contour [64–67]. Their expressions read

iGT (x1, x2) = 〈T[a(x1)a
†(x2)]〉 , (32a)

iG<(x1, x2) = ξ〈a†(x2)a(x1)〉 , (32b)

iG>(x1, x2) = 〈a(x1)a
†(x2)〉 , (32c)

iG T̃ (x1, x2) = 〈T̃[a(x1)a
†(x2)]〉 , (32d)

where Θ(t1 − t2) is the Heaviside theta function. In the previous equation, T , and T̃ denote
time and anti-time ordering along the Keldysh contour, respectively. For time ordering, the
operator at the latest time goes to the left, while for anti-time ordering it goes to the right.
In the case of fermions, a minus sign is also added for each permutation necessary to bring
the operators to the desired order. In the previous equation (32), all the operators appearing
in the expectation value are meant in the Heisenberg representation. The Heisenberg repre-
sentation of dynamical two-point correlation functions, where the two operators are placed at
different times, in the dissipative setup is not trivial, and we refer the reader to Section 5.2 of
Ref. [79] for a detailed discussion. Expressions in Eq. (32) make it evident that the equal-time
evaluation of the Green’s functions allows us to calculate the particle density, via the relation
〈n( x⃗ , t)〉 = 〈a†(x)a(x)〉. The ± basis, though directly constructed from the closed contour
functional integral, contains a large degree of redundancy. From Eq. (32), one, indeed, sees
that the same quantum mechanical operator can correspond to different Green’s functions. In
fact, from Eq. (32) it follows that not all the Green’s functions are independent of each other:

GT + G T̃ − G< − G> = 0 . (33)

It is then convenient to use the Keldysh rotation Eqs. (27) (bosons) and (29) (fermions). Then,
the expressions for the Green’s functions are given in the bosonic cq basis by:

ĜRAK
B (x1, x2) =

�

GK(x1, x2) GR(x1, x2)
GA(x1, x2) 0

�

= −i

�

〈φc(x1)φ̄c(x2)〉 〈φc(x1)φ̄q(x2)〉
〈φq(x1)φ̄c(x2)〉 〈φq(x1)φ̄q(x2)〉

�

, (34)
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Figure 2: Diagrammatic representation of Green’s functions. (a) Feynman dia-
gram of the Keldysh matrix ĜRAK

B,F of propagators in Eqs. (34) and (35). (b)-(c)-(d)
Feynman diagrams of the retarded GR

0 (b), advanced GA
0 (c), and Keldysh GK

0 (d)
propagators, respectively. For all graphs, the leftmost lines are always associated to
fields φµ entering the vertex x1, and the rightmost lines depict the fields φ̄µ exiting
the vertex x2, with µ = c, q (bosons), µ = 1, 2 (fermions). In the bosonic case, solid
lines represent classical fields φc , φ̄c , whereas dashed lines represent quantum fields
φq, φ̄q. In the fermionic case, solid lines represent fields φ1, φ̄2, whereas dashed
lines represent fields φ2, φ̄1. In the figure, the subscript 0, in GR,A,K

0 refers to the fact
that the displayed Green’s functions are the bare ones, i.e., they are associated to the
quadratic part of the Keldysh action (see the discussion in Sec. 4).

where the indices R, A, K stand for retarded, advanced, Keldysh, respectively. For fermions the
RAK basis reads as:

ĜRAK
F (x1, x2) =

�

GR(x1, x2) GK(x1, x2)
0 GA(x1, x2)

�

= −i

�

〈φ1(x1)φ̄1(x2)〉 〈φ1(x1)φ̄2(x2)〉
〈φ2(x1)φ̄1(x2)〉 〈φ2(x1)φ̄2(x2)〉

�

. (35)

The advantage of the RAK basis is now made explicit since the redundancy of the Green’s
functions is removed. As a matter of fact, for bosons, the qq entry in Eq. (34) is identically
vanishing 〈φq(x1)φ̄q(x2)〉 ≡ 0. For fermions, similarly, the entry (2,1) of (35) is identically
zero 〈φ2(x1)φ̄1(x2)〉 = 0. Furthermore, this definition neatly identifies the physical meaning
of the three Green’s functions. The retarded and advanced Green’s functions GR,A are response
functions defining the spectral properties of the quasiparticle modes of the many-body system.
Conversely, the Keldysh Green’s function GK carries information on the statistical occupation
of quasiparticle modes and it depends on the initial distribution. Indeed, in the operatorial
formalism the Green’s functions GR,A,K read as

iGR(x1, x2) = Θ(t1 − t2)〈[a(x1), a†(x2)]ξ〉 , (36a)

iGA(x1, x2) = −Θ(t2 − t1)〈[a(x1), a†(x2)]ξ〉 , (36b)

iGK(x1, x2) = 〈[a(x1), a†(x2)]−ξ〉 . (36c)

Clearly, GK is connected to the particle density via evaluation at equal space-time points
x1 = x2 = x:

iGK( x⃗ , t, x⃗ , t) = 2ξ〈n( x⃗ , t)〉+ 〈[a(x), a†(x)]ξ〉 . (37)

We note that the second term 〈[a(x), a†(x)]ξ〉 on the right hand side of (37) is divergent in
the infinite volume limit (it is proportional to a Dirac delta of zero argument). This divergence
can be regularised by introducing an ultraviolet – short-distance – cutoff. In Fig. 2, we re-
port a diagrammatic representation of the Green’s functions GR,A,K , which will be used in the
derivation of the results of Secs. 4 and 5.

We list here few important properties of the Green’s functions, which will be used in
the next Sections. First, the following Hermitian conjugation properties define the so-called
“causal structure” [65] of Keldysh theory:

�

GK(x1, x2)
�†
=
�

GK(x2, x1)
�∗
= −GK(x1, x2) , (38a)

�

GR(x1, x2)
�†
=
�

GR(x2, x1)
�∗
= GA(x1, x2) . (38b)
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Here the adjoint amounts to complex conjugation plus swap of space-time indices. It is possible
to parameterise the anti-Hermitian GK in terms of the GR and the GA:

GK(x1, x2) = GR ◦ F − F ◦ GA . (39)

Here, we introduced the notation A◦ B, where ◦ denotes a space-time convolution, namely

(A◦ B)(x1, x2) =

∫

d x3A(x1, x3)B(x3, x2) . (40)

The function F is called the bosonic (fermionic) distribution function and is a Hermitian func-
tion, namely:

�

F(x1, x2)
�†
=
�

F(x2, x1)
�∗
= F(x1, x2) . (41)

Physical information can be easily extracted from the Green’s functions considering the set
of Wigner coordinates

x =
x1 + x2

2
, x ′ = x1 − x2 , (42)

with the inverse change of coordinate x1 = x + x ′/2, x2 = x − x ′/2. The Wigner transform of
the Green’s functions is a Fourier transform in the relative space-time coordinate x ′ [80–82],
which introduces a conjugated momentum-frequency vector k = (k⃗,ε):

A(x , k) =

∫

dd x ′d t ′e−i(k⃗· x⃗ ′−εt ′)A
�

x +
x ′

2
, x −

x ′

2

�

=

∫

d x ′e−ikx ′A
�

x +
x ′

2
, x −

x ′

2

�

, (43)

with kx ′ = k⃗ · x⃗ ′ − εt. In Appendix B, we review the fundamental properties of the Wigner
transform needed for the analysis. Wigner-transforming in space x⃗ ′ the equal-time (t ′ = 0)
Keldysh Green’s function (37), we establish a direct connection with the phase-space ( x⃗ , k⃗)
occupation function n( x⃗ , t, k⃗):

iGK( x⃗ , t, k⃗, 0) = 1+ 2ξn( x⃗ , t, k⃗) . (44)

Here, n( x⃗ , t, k⃗) is known as the one-body Wigner function, i.e., the semiclassical quasidistri-
bution function [83–85]. The spectral function A(x , k) (in the Wigner coordinates) is directly
related to the retarded Green’s function GR(x , k) through the relation

A(x , k)≡ i[GR(x , k)− GA(x , k)] = −2 ImGR(x , k) , (45)

where the second identity follows from Eq. (38). The spectral function gives information about
the quasiparticle spectrum of the model and it is sharply peaked around the quasiparticle
dispersion relation, as long as quasiparticle excitations are well-defined. We will exploit this
aspect in the derivation of the kinetic equation for A+ A→ ; of Sec. 5.

3.3 Regularisation of tadpole diagrams

The perturbative expansion of the interaction vertices of the Keldysh field theory possibly leads
to ill-defined diagrams. In the present manuscript, a relevant class of such diagrams is given by
tadpole graphs. The latter are diagrams involving contractions of fields connected to the same
vertex, which entail the evaluation of equal-space-time x1 = x2 propagators in Fig. 2. This
leads to ill-defined quantities since GR,A(0) are ill-defined for equal time arguments due to the
ambiguity Θ(0) (cf. Eqs. (36a) and (36b)). It is thus necessary to introduce a regularisation
scheme for these diagrams, which will be relevant in Sec. 5 for the interacting theory of binary
annihilation A+ A→ ;.
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We will do this by introducing a temporal regularisation in the Keldysh action (23) in the
form of an infinitesimal time shift ϵ > 0. The origin of this time shift can be understood by
heading back to the discrete-time formulation of the Keldysh action of Subsec. 3.1, as explained
in Refs. [67, 86]. Equal-time arguments arise, indeed, because of the continuum-time limit
δt → 0 after Eq. (20), but are absent in a time-discrete picture. In fact, operators in Eq. (20)
are evaluated against coherent states at adjacent (but different) time slices in the construc-
tion of the path integral via the Trotter decomposition. Consequently, the terms L̄+(t)L+(t)
[ L̄−(t)L−(t)] come from the expectation 〈ψ+n+1|L

† L|ψ+n 〉 [〈ψ
−
n |L

† L|ψ−n+1〉], where coherent
states appear with increasing [decreasing] time arguments from the right to the left.1 The
following condition then finds a natural justification:

L̄+(t)L+(t)→ L̄+(t)L+(t − ϵ) , (46a)

L̄−(t)L−(t)→ L̄−(t)L−(t + ϵ) . (46b)

Conversely, no prearranged convention can be identified for the time direction of operators
L̄−(t)L+(t) and L+(t)L̄−(t) since they couple operators L and L† evaluated on the different
forward and backwards contours. A beneficial choice follows from probability conservation
and symmetry with respect to the time shift ϵ, i.e., by requiring that the ensuing Keldysh
action vanishes when dropping ± indices for any of ϵ, and that the regularised expression
reduces to the original one in the limiting case ϵ → 0. Hence, under these assumptions, we
find the symmetric regularisation:

L̄−(t)L+(t)→
1
2

L̄−(t)L+(t + ϵ) +
1
2

L̄−(t)L+(t − ϵ) . (47)

Of course, this structure must also be carried over to the RAK basis, so that the interaction
vertices in the RAK basis can be still distinguished in terms of the (t±ϵ) regularisation. We do
this in Sec. 5, where the interacting Keldysh field theory associated to A+A→ ; is considered.
We will consider ϵ to be finite in order to compute equal-time Green’s functions: the latter will
be vanishing (if Gµν(ϵ) ∼ Θ(−ϵ) = 0) or nonzero (if Gµν(ϵ) ∼ Θ(ϵ)). After this, we will be
eventually able to safely set ϵ = 0 in the expressions resulting from the tadpole diagrams.

4 Initial-time boundary conditions

In this Section, we study the Keldysh partition function (22) containing both the boundary
initial terms and the bulk Keldysh action S. We set in Eq. (22) the final time t →∞, and the
initial time t0 = 0. This allows us to study correlation functions in the time interval [0,+∞]
without losing information on the initial state, and therefore to eventually go beyond the
stationary state physics. We will consider both pure states, with a prescribed mean initial
density, and mixed thermal-Gibbs states. In Subsec. 4.1, we study the simple case of one-body
decay A→ ; for bosons (14) (the calculations easily generalises to the fermionic case) in an
initial pure coherent state. This is an exactly solvable case which allows to benchmark the
effect of the boundary initial term in the Keldysh action. In particular, we find that boundary
terms at t0 = 0 are necessary in order to obtain the correct dynamical approach of the density
towards the steady state devoid of particles. The same analysis is performed in Subsec. 4.2
for the case of one-body A→ ; decay for bosons from thermal initial states. In Subsec. 4.3,
we show how disconnected diagrams in the perturbative expansion of the boundary terms
generate the normalisation of the Keldysh partition function.

1This reasoning assumes that L† L is normal ordered if L and L† are. This is true for Eq. (15), but it is not true
in general. In the latter case, one needs to insert one additional resolution of the identity between L and L† in
writing the coherent-state path integral, cf. the discussion in Appendix A2 of Ref. [67].
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4.1 Coherent initial state

We consider an initial pure state

|Ψ0〉=
1
p
N

∏

i

|Ψ〉i , |Ψ〉i =
∞
∑

ni=0

p

ñ0
ni

p
ni!
|ni〉 , (48)

with the normalisation factor N =
∏

i eñ0 . The state |Ψ0〉 is normalised 〈Ψ0|Ψ0〉 = 1 and it
is a tensor product of coherent states |Ψ〉i at each lattice site i. The initial average particle
number is ñ0 on each lattice site (the state is translational invariant). The state Eq. (48) can
be interpreted as the quantum analogue of the initial states considered in the field theory of
classical RD systems [8–10] (see also Appendix A). In the classical case, indeed, each lattice
site is occupied by a number of particles distributed according to a Poissonian probability. In
the quantum case, the Poissonian distribution is obtained squaring the amplitudes in the state
|Ψ0〉. We also note that the state (48) has a clear interpretation in momentum space (see
Eq. (66) below for the definition of Fourier transformed operators). In particular, using the
definition (17), the initial state (48) is recognised as a coherent state of the mode k = 0

|Ψ0〉=
1
N

exp(
p

ñ0V b̂†
k=0) |0〉=

1
N

exp(
p

N b̂†
k=0) |0〉 . (49)

This representation of the initial state makes transparent that initially only the mode k = 0 is
occupied. This state is therefore akin to a Bose-Einstein condensate, which for a macroscopic
occupation N ≫ 1 of the mode k = 0 can be, indeed, represented within the Bogoliubov
approximation [87] with a coherent state of the mode k = 0.

The matrix element of the state ρ(t0) = |Ψ0〉 〈Ψ0| in the coherent state basis at time t0 = 0
is

〈{ψ+(t0)}|ρ(t0) |ξ{ψ−(t0)}〉=
1
N

∏

i

exp
¦

p

ñ0[ψ̄+,i(t0) + ξψ−,i(t0)]
©

. (50)

Taking the space continuum limit and rescaling the fields ψ± and ψ̄± according to Eq. (10)
and the particle density as n0 = ñ0/l

d we obtain the boundary term (t0 = 0)

〈{ψ+(0)}|ρ(0) |ξ{ψ−(0)}〉=
1
N

exp
¦

p

n0

∫ ∞

0

dt δ(t)

∫

x

�

ψ̄+ +ψ−
�©

, (51)

which must be inserted in the action according to Eq. (22). The normalisation factor N ,
which in the continuum limit reads N = exp

�∫

x n0

�

, is crucial in order to maintain the trace-
preservation property Z = ZK = 1. When N is not included in the Keldysh action, the calcula-
tion of physical Green’s functions will have to take into account a different normalisation, i.e.,
Z =N .

As a first benchmark, we consider one-body decay A→ ; as in Eq. (14) for the bulk Keldysh
action. This case is exactly solvable yielding an exponential decay in time of the particle
density. We discuss the bosonic case for the sake of illustration purposes, as the fermionic case
can be worked out similarly.

The Keldysh bulk action (23) reads

S =

∫ ∞

0

d t

∫

x
dd x
�

ψ̄+(i∂t+J∇2/ħh+
i
2
Γd)ψ+−ψ̄−(i∂t+J∇2/ħh−

i
2
Γd)ψ−−iΓdψ̄−ψ+

�

. (52)

In addition to the bulk action (52), in the path integral (22), we have the boundary term
∫

x
dd x ψ̄+(0)ψ+(0) =

∫ ∞

0

d t δ(t)

∫

dd x ψ̄+ψ+ , (53)
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and the other boundary term containing the information on the initial state is given in Eq. (51).
Here, we set the external potential V ( x⃗) = 0. We notice that the boundary term (53) is
quadratic in the fields and therefore it determines the Green’s function together with the
quadratic bulk action (52). The matrix of Green’s functions associated to Eqs. (52) and (53) is
obtained by Gaussian integration (see also the next Subsec. 4.2 for the details) and it reads:2

iĜ±0 (x) =

�

N( x⃗ , t)e−Γd t/2Θ(t) 0
N( x⃗ , t)e−Γd |t|/2 N( x⃗ , t)eΓd t/2Θ(−t)

�

, (54)

with the imaginary Gaussian

N( x⃗ , t) =
� i

4πJ t

�d/2
exp
�

− i
x2

4J t

�

, (55)

and x = x1− x2. Note that the Green’s functions are, indeed, both space and time translation
invariant G±0 (x) ≡ G±0 (x1 − x2) = G±0 ( x⃗1 − x⃗2, t1 − t2). When t → 0, the imaginary Gaussian
tends to a Dirac delta N( x⃗ , t) → δ( x⃗). One can also check that Eq. (33) holds due to prob-
ability conservation. These Green’s functions do not carry information on the system initial
population, which is contained in Eq. (51).

Performing the Keldysh rotation (27), the bulk Keldysh action reads:

S =

∫ ∞

0

d tdd x
�

φ̄c(i∂t + J∇2/ħh−
i
2
Γd)φq + φ̄q(i∂t + J∇2/ħh+

i
2
Γd)φc + iΓd |φq|2

�

. (56)

The Keldysh matrix of the rotated Green’s functions GRAK is given by the following entries:

iĜRAK
0 (x) =

�

N( x⃗ , t) e−Γd |t|/2 N( x⃗ , t) e−Γd t/2Θ(t)
−N( x⃗ , t) eΓd t/2Θ(−t) 0

�

. (57)

Correlations between fields φq and φ̄q vanish as a result of probability conservation. We note
that iGK

0 ( x⃗1, t1, x⃗2, t1) = δ( x⃗1− x⃗2), and iGK
0 (0) = iGK

0 (x , x)→ δ(0), thus yielding the bosonic
statistics. This fact is consistent with Eq. (37) and it shows that the stationary density of the
system is zero. This is consistent with the observation that the action (52) and (53) solely
describes the stationary state of the system and therefore the associated Green’s function (57)
does not carry memory on the initial state. Also we note that the Keldysh component GK does
not vanish, even for Γd = 0. This comes from the fact that we are explicitly keeping track of
the boundary initial term (53), which leads to the appearance of terms |φq|2 in the action. In
the absence of the boundary initial term (53), the Keldysh component GK vanishes for Γd = 0
and in order to reintroduce it, one needs to insert an infinitesimal regularisation factor in front
of the term |φq|2 in the Keldysh action [65].

In order to account for the dynamical approach to the stationary state, we then need to
include the boundary term (51). This boundary term is linear in the fields and therefore it can
be included in the source term J± = ( j±, j̄±)T of the generating functional Z[J+, J−]

Z[J+, J−] =
1
N

∫

D[ψ±, ψ̄±] e
−
∫

x ψ̄+(0)ψ+(0) 〈{ψ+(0)}|ρ(0) |{ψ−(0)}〉

· eiS[ψ+,ψ̄+,ψ−,ψ̄−] exp

�

i

∫ t

0

dt

∫

x
[J†
+Ψ+ − J†

−Ψ−]

�

,

(58)

2We use the symbol Ĝ±0 [Ĝ
RAK
0 ] to indicate the matrix of bare, i.e., non-interacting, steady-state Green’s function

in the ± [RAK] basis. When interactions are introduced, we use the symbol Ĝ± [ĜRAK] to indicate dressed steady-
state Green’s functions. The notation Ĝ±0,S [Ĝ

RAK
0,S ] is used for bare physical Green’s functions including the effect of

all the initial-time boundary conditions.
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with the spinors Ψ± = (ψ±, ψ̄±)T . The factor N appearing in the denominator on the first
line of the previous equation is the one normalising to unity the Poissonian initial state ρ(t0)
of Eq. (48). It must be introduced by hand as it had been discarded from the definition of
the boundary term (51), implying that the full partition function is now normalised to N (see
Subsec. 4.3). In particular, from Eq. (51), one can see that the source fields are redefined as

j+(x)→ j+(x)− i
p

n0δ(t
′) , j̄−→ j̄− + i

p

n0δ(t
′) , (59)

in order to account for the initial boundary terms (with j̄+ and j− unchanged). In the present
case, Z[J+, J−] can be exactly evaluated by Gaussian integration obtaining

Z[J+, J−] =
1
N

exp

�

−i

∫

dx1

∫

dx2( j̄+(x1),− j̄−(x1))G
±
0 (x1, x2)( j+(x2),− j−(x2))

T

�

. (60)

Via functional differentiation of Z[J+, J−] one calculates iG<0,S , with the source fields redefined
as in (59). When setting all external sources J± = 0 to zero, time integration is deleted by the
δ(t) constraining the initial configuration, while space integration of the normalised imaginary
Gaussian N( x⃗ − y⃗ , t) of Eq. (55) gives a unit factor. This eventually allows to write the lesser
Green’s function as

iG<0,S(x1, x2) =
δ2Z

δ j̄+(x1)δ j−(x2)

�

�

�

J±=0
= n0 e−

Γd
2 (t1+t2) + iG<0 (x1 − x2) , (61a)

iG<0,S(x , x ′) = n0 e−Γd t + iG<0 (x
′) , (61b)

with G<0 (x1 − x2) = 0, and where on the second line we used Wigner coordinates. Setting
equal space-time coordinates x1 = x2, or, equivalently, x ′ = 0, we find

iG<0,S(x1, x1) =
δ2Z

δ j̄+(x1)δ j−(x1)

�

�

�

J±=0
= n0 e−Γd t1 Θ(t1) + iG<0 (0) , (62a)

iG<0,S(x , 0) = n0 e−Γd t + iG<0 (0) . (62b)

The same derivation can be analogously carried on in the RAK basis. In particular, for the
Keldysh Green’s function iGK

0,S one has:

iGK
0,S(x1, x2) = 2n0e−

Γd
2 (t1+t2) + iGK

0 (x1 − x2) , (63a)

iGK
0,S(x , x ′) = 2n0e−Γd t + iGK

0 (x
′) , (63b)

with iGK
0 (x1−x2) = iGR

0 (x1−x2)−iGA
0(x1−x2) as given in Eq. (57). Both the Green’s functions

in Eq. (61b) and (63) are not time translational invariance since they depend not only on the
relative time t ′, but also on the centre of mass time t. The latter dependence is present in the
first first term on the right hand side, which couples to the initial density n0. Only for Γd = 0,
time translational invariance is recovered. This comes from the fact that for Γd = 0, the initial
state (49) is stationary with respect to the Hamiltonian evolution since only the mode k = 0
is populated. At equal space-time points:

iGK
0,S(x1, x1) = 2n0 e−Γd t1 Θ(t1) + iGK

0 (0) , (64a)

iGK
0,S(x , 0) = 2n0 e−Γd t Θ(t) + iGK

0 (0) . (64b)

Conversely, the retarded and advanced Green’s functions are not modified by the presence
of initial conditions, namely iGR

0,S = iGR
0 and iGA

0,S = iGR
0 , thus confirming how they only

carry information concerning the steady-state properties of the systems, as we have discussed
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in Subsec. 3.2. From Eqs. (62) and (64) we arrive at the expected exponentially decaying,
space-independent laws for the particle density:

〈n( x⃗ , t)〉= n0e−Γd t . (65)

This calculation exemplary shows the importance of taking into account the boundary terms
(51) in order to describe the full dynamics of the density. The bulk Keldysh action (52), in
fact, solely describes the stationary state with zero density of particles.

4.2 Thermal initial state

We consider here a second relevant choice of initial conditions, which represent thermody-
namic equilibrium. To do this it is convenient to introduce the Fourier transform ψ̂k, with
momentum k, of the continuum-space operators ψ( x⃗) (10):

ψ̂k =
1
p

V

∫

V
dd xeik⃗· x⃗ψ( x⃗) , with inverse ψ( x⃗) =

1
p

V

∑

k⃗

e−ik⃗· x⃗ψ̂k . (66)

In the previous equation,
∑

k⃗ =
∑

n⃗, where k⃗ = 2πn⃗/I and n⃗ is a d-dimensional vector of
integers which labels the allowed momenta. In each space dimension, we assume periodic
boundary conditions with I the associated length of the system as defined before Eq. (2). As
in the previous subsection, we focus on translationally invariant systems. The initial grand
canonical density matrix reads as

ρ(0) =
1
N

e−β(H−µN) =
1
N

∏

k

e−βnk(Jk2−µ) , (67)

with µ the chemical potential associated to the total particle number N . The advantage
of the momentum representation is that the initial density matrix is diagonal in momen-
tum space. For a negative chemical potential, the bosonic normalisation factor is given by
NB = tr{e−β(H−µN)}=

∏

k[1− exp
�

−β(Jk2 −µ)
�

]−1, so that the density matrix is normalised
to one. The fermionic normalisation is instead NF =

∏

k[1+ exp
�

−β(Jk2 −µ)
�

]. Let us now
express the initial condition in terms of coherent states. It is clear that creation operators will
act on state 〈ψ+(0)| on the left, while destruction operators will act on state |ψ−(0)〉 on the
right leading to the expression

〈{ψ+(0)}|ρ(0) |ξ{ψ−(0)}〉=
1
N

∏

k

exp
�

ξ ˆ̄ψ+,k(0)ψ̂−,k(0)e
−β(Jk2−µ)
�

. (68)

We now take the infinite volume limit V →∞. In this limit, the allowed momenta k⃗ span
continuously the real numbers and the matrix element of the initial state over coherent states
(68) becomes

〈{ψ+(0)}|ρ(0) |ξ{ψ−(0)}〉=
1
N

exp
¦

−
∫ ∞

0

dt δ(t)

∫

dd k
(2π)d

exp
�

−ξβ(Jk2 −µ)
� ˆ̄ψ+ψ̂−
©

. (69)

In the previous expression we used the identity 〈ψ|unk
k |ψ

′〉 = eψ̄ψ
′uk , see, e.g., Ref. [65], with

uk = e−β(Jk2−µ) the Boltzmann weight. The expression in Eq. (69) can be readily gener-
alised to initial states of the GGE form ∼ exp(−

∑

i βiQ i) where Q i are conserved charges
of the Hamiltonian and βi the associated Lagrange multiplies [62, 63]. In the present case,
we consider the case of a grand canonical state Q1 = H and Q2 = N , for concreteness of
the presentation. It is also important to note that the states (67) are, in general, mixed,
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in contrast to the initial condition (48) which is a pure state. Moreover, the initial bound-
ary term (67) is quadratic in the fields, differently from (51) which is linear. Boundary
terms at time t = 0 which couple to quadratic expressions in the fields have been consid-
ered also in Ref. [88]. Therein generic initial states ρ0 are considered and the expectation
value 〈{ψ+(0)}|ρ(0) |ξ{ψ−(0)}〉= exp(iδS(u)) is exponentiated into the Keldysh action (25)
by definining the generating function δS(u). Physical Green’s functions are obtained by taking
derivatives with respect to the counting parameters u. For the (generalised) Gibbs (67) states
we do not need to introduce the generating function δS(u) since the matrix element (69) is
already exponential in the fields. This allows to compute the Green’s functions directly by
Gaussian integration, as we now detail. We specialise again to the case of bosons, while the
generalisation to fermions is immediate.

Let us start by considering the Keldysh action in the RAK basis together with the boundary
conditions

Stot = S +
1
2

∫ ∞

0

d t δ(t)

∫

dd k
(2π)d
�

ˆ̄φcφ̂c(1− uk) +
ˆ̄φcφ̂q(1+ uk) +

ˆ̄φqφ̂c(1− uk) +
ˆ̄φqφ̂q(1+ uk)
�

,

(70)
with uk = exp(−β(Jk2 − µ)) the Boltzmann weight and S is the “bulk” action defined in
Eq. (52), written in the momentum basis:

Stot =

∫ ∞

0

d t

∫

dd k
(2π)d

�

ˆ̄φc
1− uk

2
δ(t)φ̂c +

ˆ̄φc

�

i∂t − Jk2/ħh−
i
2
Γd +

1+ uk

2
δ(t)
�

φ̂q

+ ˆ̄φq

�

i∂t − Jk2/ħh+
i
2
Γd +

1− uk

2
δ(t)
�

φ̂c +
ˆ̄φq

�

iΓd +
1+ uk

2
δ(t)
�

φ̂q

�

. (71)

One can solve the functional integral by inverting the matrix of momentum-space inverse
propagators, given by:

(Ĝ−1
0,S)

RAK(k⃗, t1, t2) =

�

0 (G−1
0 )

A

(G−1
0 )

R (G−1
0 )

K

�

+
i
2
δ(t1)δ(t2)δ(k⃗1 − k⃗2)

�

1− u 1+ u
1− u 1+ u

�

, (72)

with
(G−1

0 )
R/A(k⃗, t1, t2) = δ(k⃗1 − k⃗2)δ(t1 − t2)[i∂t − Jk2 ± iΓd/2] ,

and
(G−1

0 )
K(k⃗, t1, t2) = iΓdδ(k⃗1 − k⃗2)δ(t1 − t2) .

Let us drop the explicit dependence on k⃗ for the sake of simplicity. Using the definition
(Ĝ−1

0,S)
RAK ◦ ĜRAK

0,S = 1, we can find the following two equations for GR
0,S:

∫

d t2
i
2
δ(t1)δ(t2) (1− uk)G

R
0,S(t2, t3) =

i
2
δ(t1)G

R
0,S(0, t3) = 0 , (73a)

∫

d t2

�

( i∂t1
− Jk2 +

iΓd
2
)δ(t1 − t2) +

i
2
δ(t1)δ(t2) (1− uk)

�

GR
0,S(t2, t3) = δ(t1 − t3) .

(73b)

From the first equation one has that GR
0,S(0, t2) = 0, consequently the second equation

gives GR
0,S(t1, t2) exactly as in Eq. (57). Because of the general conjugation property

GA(t1, t2) = [GR(t2, t1) ]∗, GA
0,S(t1, t2) is calculated immediately and it has the same form as

in Eq. (57). We therefore see that GR,A
0,S carry information only about the quasi-particle disper-

sion relation ϵk = Jk2. On the contrary GR,A
0,S do not depend on the initial distribution 1±u, and
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therefore they coincide with their stationary limit. In particular, GR,A
0,S (t1, t2) = GR,A

0,S (t1− t2) are
time translational invariant, as expected for Green’s functions describing the stationary state.
Although we have shown this in the simple noninteracting case of one-body decay, this is a
general property of GR/A. In fact, in the general interacting case one can simply replace above
±iΓd/2→ ΣR/A, with ΣR/A the retarded and advanced components of the self energy (see the
definitions in the next Subsec. 5.2). Equation (73a), however, does not depend onΣR implying
that in general GR(0, t2) = 0. This implies the causality structure GR/A(t1, t2)∼ Θ(±(t1− t2)).
Interactions therefore dress the Green’s functions GR/A compared to their bare values GR/A

0,S
still preserving their analytic properties. The effect of the initial condition is, instead, evident
on the Keldysh Green’s function GK

0,S . In particular, substituting the solution for GR,A
0,S in the

equation for the advanced Green’s function

∫

d t2

��

i∂t1
− Jk2/ħh−

iΓd
2

�

δ(t1 − t2) +
i
2
δ(t1)δ(t2) (1+ uk)

�

GA
0,S(t2, t3)

+

∫

d t2
i
2
δ(t1)δ(t2) (1− uk)G

K
0,S(t2, t3) = δ(t1 − t3) ,

(74)

the operator ( i∂t1
−Jk2− iΓd

2 )G
A
0,S(t1, t3) = δ(t1− t3) from Eq. (73b) and therefore one obtains

the desired boundary condition relating the Keldysh and the advanced Green’s function at the
initial time:

GK
0,S(0, t2) = −

1+ uk

1− uk
GA

0,S(0, t2) = − (2n̂0(k) + 1 )GA
0,S(0, t2) . (75)

The initial particle density n̂0(k) is simply the Bose-Einstein distribution at inverse-temperature
β , namely n̂0(k⃗) = nBE(k⃗) = {exp[β(Jk2−µ)] −1 }−1. Also for the Keldysh Green’s function,
Eq. (75) holds true in general for interacting systems. This further confirms that GK , in general,
keeps track of the statistical occupancy of the eigenmodes. In order to derive the expression
for the full Keldysh Green’s function as a function of t1, we consider the last equation:
∫

d t2

��

i∂t1
− Jk2/ħh+

iΓd
2

�

δ(t1 − t2) +
i
2
δ(t1)δ(t2) (1− u)

�

GK
0,S(t2, t3)

+

∫

d t2

�

iΓd δ(t1 − t2) +
i
2
δ(t1)δ(t2) (1+ u)

�

GA
0,S(t2, t3) = 0 .

(76)

Substitution of the initial-time Green’s functions in the latter equation yields:

�

i∂t1
− Jk2/ħh+

iΓd
2

�

GK
0,S(t1, t2) = iΓd GA

t1,t2
. (77)

This equation can be solved by means of the Laplace transform in the first time variable t1,
which is the suitable tool to keep the information on the initial condition (75). Expressing
the solution in the Wigner coordinates (42), we obtain the momentum-space Keldysh Green’s
function

iGK
0,S( x⃗ , t, k⃗, t ′) = 2 n̂0(k⃗) e

−iJk2 t ′/ħh e−Γd t + e−iJk2 t ′/ħh e−Γd |t
′|/2 . (78)

The Keldysh Green’s function therefore depends on the initial distribution n̂0(k⃗). Furthermore,
GK

0,S(t, t ′) is not stationary, i.e., not time translational invariant, since it depends not only on
the difference t ′ = t1− t2 between the two times, but also on the combination t = (t1+ t2)/2.
In the stationary limit t1,2→∞ and t →∞ (while t ′ can remain finite), Eq. (78) reduces to
the stationary Green’s function in Eq. (57). In addition, as noted also in Subsec. 4.1 for the
initial state |Ψ〉0, we see that also at Γd = 0, the Keldysh Green’s function is stationary. This is

19

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.014


SciPost Phys. Core 8, 014 (2025)

expected since for zero decay the initial grand canonical state (67) is stationary with respect
to the Hamiltonian evolution. Equation (78) thereby neatly shows how the inclusion of the
boundary terms related to the initial state ρ(0) impact on the structure of the Green’s functions
so that the latter encompass the whole dynamics beyond the stationary state for Γd ̸= 0. In
particular, we get the time evolution of the density by considering the equal-space x⃗ ′ = 0 and
equal-time t ′ = 0 evaluation of GK

0,S (cf. Eqs. (37) and (44)) which yields

iGK
0,S( x⃗ , t, 0, 0) = 2

∫

dd k
(2π)d

n̂0(k⃗) e
−Γd t + δ( x⃗ ′)
�

�

x⃗ ′=0 = 2 n0 e−Γd t + δ( x⃗ ′)
�

�

x⃗ ′=0 , (79)

with n0 the homogeneous initial density. From this we again conclude that the density decays
exponentially in time as in Eq. (65). We note that the exponential decay does not depend
on the space dimensionality d since it does not couple to the space structure of the problem.
Furthermore, we expect the exponential decay to apply more generically, for any initial con-
dition, since the decay A → ; does not couple different particles. In concluding, we note
that the derivation explained in this Subsection can be adapted to the case when the initial
boundary term (69) is disregarded. In particular, setting uk = 0, one has from (75) that
GK

0,S(0, t2) = −GA
0,S(0, t2), which together with (77) and the result for GR,A

0,S (t1, t2) allows to
conclude that GRAK

0,S (t1, t2) coincide with the expressions in Eq. (57), as anticipated in (54) and
(55).

4.3 Perturbative expansion of the initial conditions

In this Subsection, we present an alternative approach to obtain the exponential decay in
Eq. (65). This approach considers the boundary terms at t = 0 due to initial conditions as
perturbations compared to the bulk Keldysh action (52). One then perturbatively expands
the boundary terms and computes the ensuing correlations functions via Wick theorem with
respect to the quadratic weight (52). This approach is similar to the one followed in Refs. [9,
10, 22] for classical RD systems (briefly recalled in Appendix A). This discussion therefore
provides a first simple example of the use of perturbation theory in the Keldysh framework.
Furthermore, it also allows to show how the perturbative expansion of the initial conditions
correctly reproduces the normalisation Z = N of the Keldysh path integral (22). We will
explain the method in the case of bosons, but the generalisation to fermions follows along the
same lines. In the case of the Poissonian initial conditions Eq. (48), the coupling between fields
and initial average density

p
n0 is linear, as one can see from Eq. (51). Hence, one directly

finds that in the ± basis:

exp
¦

−
p

n0

∫

dd y

∫ ∞

0

d t y δ(t y)[ψ−(y) + ψ̄+(y)]
©

=
∞
∑

j=0

(−pn0) j

j!

¦

∫

dd y[ψ−( y⃗ , 0) + ψ̄+( y⃗ , 0)]
© j

.
(80)

Inserting the latter equation as the initial-time conditions in Eq. (22) the full partition function
reads

Z =
∞
∑

j=0

(−1) jn j/2
0

j!

∫

D[ψ+, ψ̄+,ψ−, ψ̄−]e
iS0 e−
∫

x ψ̄+(t0)ψ+(t0)

·
∫ j
∏

k=1

dd yk

j
∏

k=1

[ψ−( y⃗k, 0) + ψ̄+( y⃗k, 0)] =
∞
∑

j=0

Z( j) ,

(81)
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with S0 the quadratic action (52) including quantum hopping and one-body decay. All odd
terms in such expansion vanish by symmetry. Thus, the partition function can be expressed as
a sum of powers of n0 (or even powers of

p
n0). Moreover, one can see that terms of typeψψ,

ψ̄ψ̄ also vanish, so that only mixed terms 〈ψ−( y⃗1, 0)ψ̄+( y⃗m, 0)〉0 . . . 〈ψ−( y⃗n, 0)ψ̄+( y⃗2 j , 0)〉0
with m ̸= 1, n ̸= 2 j, are nonzero. Its pictorial representation only includes disconnected
diagrams where free propagators connect ψ− (ψ+) fields and ψ̄+ (ψ̄−). As an example, the
first non-trivial term reads

Z(2) =
n0

2
2

∫

dd y1dd y2〈ψ−( y⃗1, 0)ψ̄+( y⃗2, 0)〉0 . (82)

Here, 〈. . .〉0 denotes the average of the Gaussian weight given by the action (52) and (53).
The physical non-interacting Green’s function G<0,S(x1, x2) computed in the presence of initial
conditions, which in the operatorial formalism corresponds to the particle density, as discussed
in Subsec. 3.2 for Eq. (32), is instead given by:

iG<0,S(x1, x2) =
1
Z

∞
∑

j=0

(−1) jn j/2
0

j!

∫ j
∏

k=1

dd yk · 〈ψ+(x1)ψ̄−(x2)
j
∏

k=1

[ψ−( y⃗k, 0) + ψ̄+( y⃗k, 0)]〉0 ,

(83)
where the ratio 1/Z indicates that the expectation value must be normalised with respect to
the full partition function. Again, terms containing an odd number of fields, proportional to
an odd power of

p
n0, vanish. Then, the second-order correction to G<0,S , which is the first

non-vanishing one, reads:

G<0,(2)(x1, x2)=
1
Z

n0

2

∫

dd y1dd y2〈ψ+(x1)ψ̄−(x2)[ψ−( y⃗1, 0)ψ̄+( y⃗2, 0) +ψ−( y⃗2, 0)ψ̄+( y⃗1, 0)]〉0

=
1
Z

n0

2
2e−Γd

t1+t2
2 +

Z(2)
Z

G<0,(0)(x1, x2) . (84)

In the first term of the second line of Eq. (84), we have again used the normalisation of the
Gaussian propagator N( x⃗ , t) in Eq. (55) to integrate over the spatial variables y⃗1, y⃗2. The last
equation shows that the propagator G<0,S changes compared to to the bulk propagator G<0,(0)
as a consequence of boundary conditions factors. One may then ask what happens to G<0,S
at higher orders in the expansion in n0. In this simple case, as no interactions are present,
all Feynman diagrams corresponding to (2+ j)-point correlation functions (∼ n j

0 with j > 1)
necessarily contain fully disconnected vacuum-to-vacuum bubbles, i.e., Feynman diagrams
with no external legs. One can then factorise out the connected part, which is given by Eq. (84).
The remaining multiplicative factor is given by the sum of all disconnected vacuum-to-vacuum
diagrams. Hence, a recursive scheme is found, where the 2 j-th term in the power-series for Z
corrects the 2 j + 2-th order G<0,(2 j+2)(x1, x2). Summing up all orders:

G<0,S = G<0,(0) + G<0,(2) + G<0,(4) + . . .=
�

n0e−Γd
t1+t2

2 + G<0
�1+ Z(2) + Z(4) + . . .

Z

= n0e−Γd
t1+t2

2 + G<0 (x1, x2) . (85)

Setting x1 = x2 and remembering that G<0 = 0 from (54), we recover the result of Eq. (62)
for the particle density. We note, similarly to the observation made after (78), that G<0,S is not
time translation invariant as a consequence of the boundary terms due to the initial condition.
In particular, the first term on the right hand side of (85) accounts for the dynamical approach
to the vacuum stationary state (G<0 = 0). The analysis of this Subsection is an example of
linked cluster theorem, see, e.g., Refs. [4, 89], which states that only the connected diagrams
actually correct the correlation functions. Disconnected diagrams, instead, contain at least one
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vacuum-to-vacuum bubble. These bubbles can be factorised and cancel out upon resummation
with the normalisation factor Z . In this simple example, as the theory is non-interacting,
connected diagrams appear at second order only and the propagator is determined by G<0,(2).
Let us eventually show that the sum of the vacuum-to-vacuum bubbles correctly retrieve the
normalisation Z = N of the coherent state (48), N = e

∫

x n0 . Discarding this term from the
boundary condition (51) leads, indeed, to a different normalisation of the full generating
functional, i.e., ZK = 1, but Z = N . This can be directly obtained also from the functional
integral representation. In fact, it is clear that Z(2) = n0

∫

dd y . Calculating the full series of

corrections in Eq. (81), one can check that 1+ Z(2) + Z(4) + ... = en0
∫

dd y = N = Z , i.e., the
sum of all vacuum-to-vacuum bubbles retrieves the normalisation of the partition function Z .

One can repeat the same procedure in the RAK basis (56), arriving to a similar result

GK
0,(2)(x1, x2) =

1
Z

n0

2
4e−Γd

t1+t2
2 +

Z(2)
Z

GK
0,(0)(x1, x2) . (86)

Summing up all orders of the perturbative series in n0 and dividing by the partition function
Z , the vacuum-to-vacuum bubbles cancel out and the expression in Eq. (63) is consistently
recovered. Hence, evaluation at equal space-time x1 = x2 = x yields

GK
0,S(x , x) = 2n0e−Γd t + iGK

0 (0) , (87)

which coincides with Eq. (64). The derivation of this section concerns the coherent initial
state of Subsec. 4.1. However, the derivation can be also extended to Gibbs initial states of
Subsec. 4.2. Namely the perturbative expansion of (69) generates diagrams of all order in uk
(since the initial condition is in this case quadratic in the fields), which upon resummation
generate the normalisation factor NB,F . The Green’s functions are similarly affected only by
the first order term in uk of the expansion of (69) since higher order terms contain vacuum-
to-vacuum bubbles. In this way, the result (78) is eventually retrieved.

5 Binary annihilation

In this section we consider the case of binary annihilation A+ A → ; (15). Unlike single-
particle decay this leads to an interacting theory. For the latter process, the Keldysh action can
be readily written from Eqs. (24), (28) and (30). In the RAK basis it reads [x = ( x⃗ , t) and the
notation after (22) for space integrals]:

S = S0 + Sint = S0 + iΓ

∫ ∞

−∞
dt

∫

x

�1
2
φ̄cφ̄q(φ

−ϵ
c φ

−ϵ
c +φ

−ϵ
q φ

−ϵ
q )

−
1
2
φϵcφ

ϵ
q(φ̄cφ̄c + φ̄qφ̄q) + φ̄cφ̄q(φ

ϵ
cφ

ϵ
q +φ

−ϵ
c φ

−ϵ
q )
�

,

(88a)

with

S0 =

∫ ∞

−∞
d t

∫ ∞

−∞
d t ′
∫

x

∫

x ′
(φ̄c , φ̄q)x

�

0 (GA
0)
−1

(GR
0 )
−1 (G−1

0 )K

�

x ,x ′

�

φc
φq

�

x ′
, (88b)

for bosons. For the fermions, similarly, one has

S = S0 + Sint =

= S0 +
iΓ
4

∫ ∞

−∞
dt

∫

x

�

(−∇⃗φ̄1φ̄1 + ∇⃗φ̄1φ̄2 + ∇⃗φ̄2φ̄1 − ∇⃗φ̄2φ̄2) · (φϵ1∇⃗φ
ϵ
2 +φ

ϵ
2∇⃗φ

ϵ
1)

+ (∇⃗φ̄1φ̄2 + ∇⃗φ̄2φ̄1) · (φ−ϵ1 ∇⃗φ
−ϵ
1 +φ

−ϵ
1 ∇⃗φ

−ϵ
2 +φ

−ϵ
2 ∇⃗φ

−ϵ
1 +φ

−ϵ
2 ∇⃗φ

−ϵ
2 )
�

,

(89a)
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with the quadratic part S0 as

S0 =

∫ ∞

−∞
d t

∫ ∞

−∞
d t ′
∫

x

∫

x ′
(φ̄1, φ̄2)x

�

(GR
0 )
−1 (G−1

0 )K
0 (GA

0)
−1

�

x ,x ′

�

φ1
φ2

�

x ′
. (89b)

In Eqs. (88a) and (89a), we used the notation φ±ϵ = φ(t ± ϵ) in the interaction vertices for
the time shift regularisation, which will be needed to evaluate tadpole diagrams. The coupling
constant iΓ , appearing in the Keldysh actions in Eqs. (88a) and (89a), is purely imaginary, due
to the interactions being entirely originated by the dissipation in the Lindblad dynamics. In
both the bosonic and fermionic cases, interactions vertices are quartic in the fields. This is in
contrast to classical binary annihilation, where also cubic interaction vertices are present, cf.
Appendix A. For fermions, in addition, spatial gradients of the fields are present.

In both Eqs. (88b) and (89b), the bare inverse propagators are defined as

(GR/A
0 )−1(x , x ′) =

1
ħh
(iħh∂t + J∇2

x − V ( x⃗)± i0+)δ(x − x ′) , (90a)

(G−1
0 )K(x , x ′) = 2i0+F0(x , x ′) . (90b)

Here, we have further introduced the infinitesimal shifts ±i0+, which account for the retarded
and advanced nature of the propagators. In Sec. 4, this regularisation was not needed since a
finite one-body decay Γd ̸= 0 already shifts the poles in the lower [upper] half of the complex
plane for GR(ε) [GA(ε)].

We note that in Eqs. (88a)-(89b) all time integrals are evaluated on the whole real axis
t ∈ (−∞,∞). At this point one may then wonder how the initial boundary terms are kept into
account. Indeed, as discussed in Sec. 4, these initial boundary terms restrict the time integra-
tion axis in t ∈ (0,∞). The initial conditions of Subsecs. 4.1 and 4.2 are, however, stationary
for the Hamiltonian dynamics. This means that the bare Green’s functions G0( x⃗1, x⃗2, t1 − t2)
associated to S0 are functions of t1 − t2 only. These Green’s function can be equivalently ob-
tained by Gaussian inversion of S0 in (88b) and (89b). In this case, the information on the
initial occupation function F0 is enforced by introducing a regularisation factor 2i0+F0 (90),
with F0 the initial distribution function (39), in the q− q and 1,2 components for bosons and
fermions, respectively [65, 90]. This results in the very same Green’s functions (Γd = 0 and
V ( x⃗) = 0) we obtained in Eqs. (63) and (78). In this way, both the initial conditions discussed
in Sec. 4 are implemented in a quadratic bare action S0. The interaction part (88a) and (89a)
in Γ can then be treated by perturbative expansion with respect to S0 via Wick’s theorem.
This is the approach we will follow in the next Subsections and this is why we reported in
Eqs. (88a)-(89b) all the time integrals over the whole real line. In any case, at the level of
the kinetic equation, the regularisation factor 2i0+F becomes soon unimportant since a finite
value of (G−1)K is produced by the interactions. The information on the initial occupation
function is then eventually enforced as an initial condition to the obtained kinetic equation.

In Subsec. 5.1, we show that the interaction terms in the Keldysh action do not modify the
normalisation of the Keldysh partition function. In Subsec. 5.2, we set up the study of A+A→ ;
via kinetic equations of the Boltzmann form for the particle density. We show how these
equation naturally emerges in the Euler-scaling limit of weak dissipation. In Subsecs. 5.3 and
5.4, we eventually specialise the derivation of the kinetic equations to bosons and fermions,
respectively. The convention used to depict Feynman diagrams is the one defined in Fig. 2.

5.1 Normalisation of the Keldysh partition function

We explicitly compute first-order perturbative corrections in Γ to ZK , and demonstrate that
their contribution is identically vanishing, i.e., that ZK ,(1) = 0. This is done for the bosonic
case, but can be easily extended to the fermionic one.
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Figure 3: Diagrammatic representation of ZK ,(1). Diagrams constituting the first-
order perturbative corrections to the Keldysh partition function ZK . Feynman rules
for propagators are given in Fig. 2, i.e., solid lines here represent classical fields, while
dashed lines are quantum fields. The ϵ in the diagram corresponds to the time argu-
ment of the associated diagram. In (a), for example, we have GA(ϵ)GR(ϵ). Because
of the regularisation of the dissipative interaction vertices introduced in Subsec. 3.3,
all diagrams vanish, i.e., ZK ,(1) = 0. By the same token, higher-order corrections
ZK ,(m) with m> 1 also vanish.

Taylor-expanding exp(iSint) in powers of Γ as in Eq. (81) and averaging 〈. . .〉0 over the gaus-
sian weight exp(iS0) one obtains a power-series of free 4m-point Green’s functions of order
Γm. Let us truncate the expansion at first order in Γ , i.e., considering 4-point Green’s functions.
The diagrams are obtained by contracting the fields in each vertex via Wick’s theorem. As no
external legs are present, the diagrams are pictorially represented by vacuum-to-vacuum bub-
bles, similarly to Subsec. 4.3 where vacuum-to-vacuum diagrams in the expansion of Z in the
initial boundary conditions were considered. The diagrams where vanishing qq-propagators
are present are zero. We then remain with the following expression for ZK ,(1), whose diagram-
matic representation is given in Fig. 3:

ZK ,(1) = iΓ

∫

x ,t

�

2GA
ϵGR
ϵ + 2GA

−ϵG
R
−ϵ +

3
2

GK
−ϵG

R
−ϵ −

3
2

GA
ϵGK
ϵ

�

. (91)

In this equation, we denote with Gµν±ϵ = Gµν0 (t+ϵ/2, t−ϵ/2) = Gµν0 (ϵ) (given in Eq. (57) with
Γd = 0) the Green’s functions evaluated according to the time regularisation of the interaction
vertices (88a). Note that it is fundamental to keep track of this regularisation since vacuum-
to-vacuum bubbles as in Fig. 3 involve contractions of fields at the same space-time vertex and
therefore lead to the ambiguity of fixing Θ(0). Clearly, as GR/A(t1, t2) ∼ Θ(±(t1 − t2)), each
term contains at least a null propagator GR

−ϵ ∼ Θ(−ϵ) = 0 and GA
ϵ ∼ Θ(ϵ) = 0, entailing that

ZK ,(1) is identically vanishing. This procedure can be hierarchically extended to higher-m or-
der corrections ZK ,(m), implying that the Keldysh partition function ZK = 1 is not modified by
the presence of dissipative interactions. This calculation is directly extended to the fermionic
case, where Wick’s theorem can directly applied to the set of 4-point interacting Green’s func-
tions. The difference is that interaction vertices must now be considered with their spatial
derivatives as defined in Eq. (89a). We will show in Subsec. 5.4 how to compute the related
expectation values. Nevertheless, one can show that, again, all vacuum-to-vacuum bubbles in
the interaction vertices vanish because of the regularisation prescription.

5.2 Boltzmann equation from the Euler-scaling limit of the self-energy

We aim to study the system in the weak dissipation regime Γ → 0. This is the reaction-limited
regime. In particular we consider the Euler-scaling limit [69, 70], where the space and time
are simultaneously sent to infinity and their ratio is kept finite:

x , t →∞ , Γ → 0 , with x̄ = Γ x , t̄ = Γ t fixed. (92)

We are hence interested in the large-scale properties of the system, i.e., on the dynamics taking
place on large space-time scales x , t ∼ Γ−1. Simultaneously, we consider the regime where the
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external potential V ( x⃗) in (88a) and (89a) is slowly varying on a length scale set by Γ :

V ( ¯⃗x) = V (Γ x⃗) . (93)

The reaction-limited regime can be therefore identified with a weak interaction regime, in the
sense that the coupling iΓ to the quartic parts of the action (88a) and (89a) is small. In this
regime, the system can be still locally described by the density of quasiparticles in phase space.
The interaction scrambles the density of quasiparticles (44) and induce a finite lifetime. The
large-scale equation describing these phenomena is the Boltzmann equation, which we here
obtain from the Euler-scaling limit (92) of the expansion in Γ of the Keldysh action (88a) and
(89a).

The starting point of the analysis is the Dyson equation for the dressed Green’s functions
Ĝ:

[Ĝ−1
0 − Σ̂] ◦ Ĝ = 1 , (94)

where ◦ notation refers to the convolution product according to the definition (40). In the
previous equation, Σ̂ is called self-energy matrix and it describes how interactions modify the
bare propagator Ĝ0 turning it into the dressed one Ĝ. The self-energy matrix is obtained by
summing all the irreducible diagrams [64–66], namely those diagrams which cannot be subdi-
vided into two disconnected diagrams by cutting a single internal propagator line. Irreducible
diagrams feature an internal sector, displaying loops, and two external propagators. Depend-
ing on the two external propagators, Σ̂ can be written as a 2x2 matrix, whose 2-valued indices
take value depending on the external propagator jointed on each side. The self-energy matrix
for bosons Σ̂B and fermions Σ̂F reads as

Σ̂B(y1, y2) =

�

0 ΣA(y1, y2)
ΣR(y1, y2) ΣK(y1, y2)

�

, (95a)

Σ̂F(y1, y2) =

�

ΣR(y1, y2) ΣK(y1, y2)
0 ΣA(y1, y2)

�

. (95b)

The different structure of Σ̂ in the two cases follows from the different definition of Keldysh
rotation (27) and (29). For bosons, specifically, Σ̂B in the Keldysh indices has the same struc-
ture as the inverse Ĝ−1

B of the propagators matrix (34). For fermions, instead, Σ̂F has the same
structure as the matrix ĜF (35) itself. Points y1, y2 are the space-time coordinates of the inter-
action vertices where Σ connects to the external legs, and as such are internal vertices which
must be integrated out. Interestingly, the causality structure of the matrix of inverse Green’s
functions ensued by probability conservation in Keldysh theory, can be extended to the self-
energy as well. Accordingly, its classical-classical (2,1 entry for fermions) entry identically
vanishes. From the Dyson equation the Keldysh entry Eq. (94) yields the coupled equation:

[(G−1
0 )

R −ΣR] ◦ GK = ΣK ◦ GA . (96)

We note that, due to the interactions, ΣK acquires a nonvanishing finite value and therefore
(G−1)K similarly becomes finite. This is the reason why we can drop the regularatisation factor
2i0+F0 in the derivation of the Boltzmann equation, as hinted after Eq. (89b). The previous
equation carries information on occupation density of the system. In order to make such
information more explicit, we use the parameterisation (39) of the Keldysh Green’s function
in terms of the distribution function F . One then writes a quantum kinetic equation for the
distribution function F(y1, y2):
�

−i(∂t1
+ ∂t2

)− J(∇2
x⃗1
−∇2

x⃗2
) + (V ( x⃗1)− V ( x⃗2))

�

F(x1, x2) = Ĩcoll[F] . (97)
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The expression on the left hand side is called the kinetic term, while we refer henceforth to
the right hand side as the collision integral. The latter is written as

Ĩcoll[F] = Σ
K ◦1− (ΣR ◦ F − F ◦ΣA) . (98)

Equations (97) and (98) completely describe the microscopic dynamics of the model. In
order to derive an effective description for the large-scale slow degrees of freedom we now take
the Euler-scaling limit (92) and (93). In the present context this can be achieved exploiting
the Wigner transform (43). In the Wigner coordinates (42), the Euler scaling limit reads as

x1, x2→∞ , Γ → 0 , with x̄ = Γ
x1 + x2

2
fixed, Γ (x1 − x2)≪ 1 . (99)

This limit identifies the centre of mass as the the slow variable, which changes on a large scale
x ∼ Γ−1. Vice versa, the relative coordinate x ′ = x1− x2 changes on a much shorter scale. The
fast dependence on x ′ can then be integrated out by Wigner transform deriving an effective
equation for the slow-emergent degree of freedom. This approach is routinely followed in
deriving kinetic equations from Keldysh formalism, see, e.g., Refs. [64–67]. In particular,
within the limit (99), one may turn the convolution C(x1, x3) of any two space-time two-point
functions A(x1, x3), B(x3, x2) into a derivative expansion of the respective Wigner transforms
A(x , k), B(x , k), akin to the Moyal star-product expansion performed in hydrodynamics [91–
96]. In particular, in the Euler scaling limit, each derivative comes with a scaling factor Γ and
therefore one can truncate the series of phase-space derivatives with its zeroth [first] order,
namely to the term corresponding to the product of their transforms [of the first derivatives of
their transforms]:

C(x1, x2) = A(x1, x3) ◦ B(x3, x2)
WT
−−→ C(x , k) = AB +

iΓ
2
[∂ x̄A∂kB − ∂kA∂ x̄ B] +O(Γ 2) . (100)

We call the truncation of the derivative expansion to the first order the Wigner approximation.
The expression (100) singles out the slow modes, whose dynamics take place on the long
space-time scales ∼ Γ−1. The fast dynamics occurring on shorter space-time scales, which is
contained in the higher orders of the derivative expansion, is zoomed out in the Euler limit
(99). Applying the prescription (100) to Eqs. (97) and (98) one obtains

iΓ
�

∂ t̄+ v⃗g(k⃗)·∇⃗ x̄−
1
ħh
∇⃗ x̄ V ( ¯⃗x)·∇⃗k

�

F( x̄ , k) = Ĩcoll[F] = iΣK(x , k)+2F(x , k)ImΣR(x , k) . (101)

An important point is here in order. Namely in (101) we assumed that ReΣR(x , k) = 0. The real
part of the self energy, indeed, generically contributes to dressing εk( x⃗)=Jk2+V ( x⃗)+ReΣR(x , k)
the quasi-particle dispersion relation εk( x⃗) as a consequence of interactions. In the present
case, where interaction terms are purely dissipative, we will show in Subsecs. 5.3 and 5.4 that
this assumption holds true. Namely, in the Euler scaling limit, the self energy is purely imagi-
nary – ReΣR = 0 – and therefore the dispersion relation simply remains εk( x⃗) = Jk2 + V ( x⃗).
This expression is the one obtained within the local density approximation, which is valid for
a slowly varying potential as in Eq. (93) (cf. also Appendix B for additional details). The
associated group velocity vg(k⃗) =∇kεk( x⃗)/ħh = 2Jk/ħh. The imaginary part of the self energy
ImΣR appears, instead, inside the collision integral and it determines the finite quasi-particle
lifetime due to dissipation. We note that the left hand side of this equation is proportional
to Γ . Consequently, in order to have a finite scaling limit according to Eq. (99), one needs to
consider terms of Ĩ[F] which are linear in Γ . At the Euler-scale, therefore, the only diagrams
which determine the Boltzmann equation come from first-order terms in the self energy. These
diagrams, as we detail in Subsecs. 5.3 and 5.4, are of tadpole form.
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In order to bring (101) to a calculable form for the phase-space density (44), one needs to
rely on one additional assumption. In particular, the phase-space density n( x⃗ , t, k⃗) provides
the quasi-particle basis [70, 97] for the representation of conserved charges of the Hamilto-
nian (12). We consequently expect n( x⃗ , t, k⃗) to be the emergent slow degree of freedom as
long as quasi-particles are well defined. This is true in the limit where the spectral function
A(x , k)∼ δ(ε−εk( x⃗)) is a sharply peaked function of ε. In the weak dissipation regime, as we
explain in Appendix B, this is still true and we can therefore introduce the so-called “on-shell”
distribution function

F̃( x⃗ , t, k⃗)≡ F( x⃗ , t, k⃗,ε= εk( x⃗)) . (102)

We note that F̃ turns into a function of only three variables. The mass-shell approximation
of the distribution function F̃ therefore amounts to saying that quasiparticles remain well-
defined even throughout time evolution, albeit with a finite, but long, lifetime. This is precisely
the reason allowing to recast (101) in the form of a Boltzmann equation for the occupation
function n( x⃗ , t, k⃗). The latter is connected to the on-shell distribution function as follows:

F̃( x⃗ , t, k⃗)≈ 2π

∫

dε
2π

F(x , k)δ(ε− εk( x⃗))

=

∫

dε
2π

iGK(x , k) = iGK( x⃗ , t, k⃗, t ′ = 0) = 1+ 2ξn( x⃗ , t, k⃗) .
(103)

The first equality in Eq. (103) relies on the on-shell assumption and therefore on the peaked
structure A(x , k) ∼ δ(ε− εk( x⃗)) of the spectral function. The second equalities follows from
the parameterisation (39) and its Wigner transform in the Euler-scaling. The third equality
is the definition of the inverse Wigner transform, which leads to the Keldysh Green’s function
GK( x⃗ , t, k⃗, t ′ = 0) evaluated at equal times t ′ = 0. In the last equality, we used (44). We
note that the quasi-particle assumption (102) is the key assumption necessary to connect the
Keldysh kinetic approach of the manuscript to the TGGE approach of Refs. [36, 38, 40, 42–
44,54,57]. The TGGE method relies, indeed, on the existence of stable excitations, the quasi-
particles, which are labelled by the momentum k. These excitations are stable as a consequence
of the entirely elastic scattering they undergo [98]. Elastic scattering is, in turn, determined
by the extensive number of conservation laws associated to the Hamiltonian (12). In the pres-
ence of weak integrability breaking interaction (in our case dissipation), quasi-particles are no
longer stable, but they can still be defined since they decay on a long time scale. In the Keldysh
language, the statement of well-defined quasi-particles is precisely given by (102), which can
be therefore interpreted as the existence of a GGE state describing the system dynamics. The
time dependence of the GGE, hence the name TGGE, follows from the collision integral, i.e.,
the slow decay of the quasi-particles and conserved charges expectation values.

5.3 The bosonic Boltzmann equation

In the Euler-scaling limit (99), the collision integral Ĩ[F] is determined by terms at first order
in Γ . Diagrams of order Γ associated to the interaction vertices Eq. (88a) are tadpole and they
are drawn in Fig. 4. These diagrams determine the self-energy ΣR/A/K

(1) entries as

ΣR
(1)(y, y ′) = Γδ(y ′)[GA

0,−ϵ(y, y ′) + GK
0 (y, y ′)] , (104a)

ΣA
(1)(y, y ′) = Γδ(y ′)[GR

0,ϵ(y, y ′)− GK
0 (y, y ′)] , (104b)

ΣK
(1)(y, y ′) = ΣR

(1)(y, y ′)−ΣA
(1)(y, y ′) , (104c)

where we employed, following the equal-time regularisation prescription of (3.3), cf. also
Fig. 3, the regularised retarded (advanced) Green’s functions GR

0,ϵ (GA
0,−ϵ)

GR
0,ϵ( y⃗ , t, y⃗ ′, t ′) = −iN( y⃗ ′, t ′)e−iV (Γ y⃗)t ′ , and GA

0,−ϵ( y⃗ , t, y⃗ ′, t ′) = iN( y⃗ ′, t ′)e−iV (Γ y⃗)t ′ . (105)
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Figure 4: Self-energy diagrams for the bosonic binary annihilation. Feynman di-
agrams for the (a) retarded ΣR

(1), (b) advanced ΣA
(1) and (c) Keldysh ΣK

(1) entries of

the self-energy matrix Σ̂ at first order in perturbation theory in Γ . The diagrammatic
conventions are the same as in Fig. 2. Even though internal loops exclusively con-
tribute to the self-energy, the external legs are also drawn in figure, in order to clarify
the meaning of the c/q-valued Keldysh matrix indices. For example, in ΣR

(1), one has

a dashed line exiting the internal vertex (φ̄q) and one solid line entering it (φc) and
it is therefore associated to the retarded c − q entry. Each diagram has an implicit
factor Γ in front, while the relative signs are reported in the figure.

Furthermore, we use the Wigner variables (42) y = (y1+ y2)/2 and y ′ = y1− y2 for the cen-
tre of mass and the relative coordinate, respectively. The expressions (105) are computed
from contractions as GR

0,ϵ = −i〈φϵc φ̄q〉0 and GR
0,ϵ = −i〈φcφ̄

−ϵ
q 〉0 [G

A
0,ϵ = −i〈φ−ϵq φ̄c〉0 and

GA
0,ϵ = −i〈φqφ̄

ϵ
c 〉0] in (88a) tracking the time regularisation shift ϵ. Because of the same reg-

ularisation, contractions of vertices generating GR
0,−ϵ = GA

0,ϵ ∼ Θ(−ϵ) = 0 are identically zero.
The diagrams associated to the self energy in Eq. (104) are drawn in Fig. 4. The self-energy
Σ̂(1) of Eq. (104) clearly displays the causality structure which is also typical of the matrix Ĝ of
Green’s functions. The classical-classical entry is indeed identically vanishing, while one has
that [ΣR

(1)]
† = ΣA

(1) and [ΣK
(1)]

† = −ΣK
(1), using Eqs. (38).

The expressions appearing in Eq. (104) are the bare free Green’s functions GR
0 and GA

0
associated to the quadratic action (88b) in regime where the potential V is slowly varying
according to Eq. (93). The expressions are explicitly reported in App. B [cf. Eq. (B.5)]. For
the Keldysh Green’s function GK

0 , we consider the parameterisation GK
0 = GR

0 ◦ F − F ◦ GA
0 and

keep F as the unknown of the quantum kinetic equation, in order for it to be self-consistently
derived. This approach is referred to as perturbative Born approximation. One can also evalu-
ate the self energy (104) in terms of the dressed Green’s functions GR,A, which should then be
determined self-consistently [99]. The latter approach is called self-consistent Born approxi-
mation and it yields non-perturbative results since it amounts to resumming the infinite class
of one-particle reducible diagrams obtained by concatenating the tadpole structure of Fig. 4.
In this manuscript, we do not use it because this resummation leads to terms of order O(Γm),
with m> 1, which are subleading in the scaling limit (99).

We now proceed to the evaluation of the collision integral Ĩ[F] for bosonic binary anni-
hilation. We first need to Wigner-transform the self-energy entries in Eq. (104). This can be
done by exploiting the inverse of the Wigner convolution theorem (100), which transforms
products of two-point functions into convolutions of their Wigner transforms [65]. This leads
to the following self-energy terms:

ΣR/A(x , q) = Γ

∫

dd k
(2π)d

dε
2π

�

± GK
0 (x , k) + GR/A

0,ϵ (x , q)
�

, (106)

ΣK(x , q) = ΣR(x , q) − ΣA(x , q) = Γ

∫

dd k
(2π)d

dε
2π

�

2GK
0 (x , k)− 2iImGR

0,ϵ(x , k)
�

, (107)
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with the Wigner transform of the regualarised retarded and advanced Green’s function (105)

GR/A
0,ϵ (x , q) = ∓2πiδ(ε− εk( x⃗)) . (108)

From the conjugation properties in Eq. (38), it follows that GK
0 (x , k) is purely imaginary. It

is then clear that the self-energy matrix elements in these expressions are purely imaginary
quantities: ReΣR(x , q) = 0. This is the result we anticipated after Eq. (101) and it implies that
the dispersion relation εk( x⃗) and the external potential V are not renormalised by dissipative
interactions in the Euler scaling limit, as it is, instead, generically the case for Hamiltonian
interactions. In addition, the self energy entries ΣR,A,K(x , q) are, in this case, actually indepen-
dent on q. After rearranging the terms as in Eq. (101), and writing GK

0 in terms of F in order
to exploit the self-consistent approach, the collision integral reads:

I[F] = Γ

∫

dd k
2π

∫

dε
2π

�

1− F(k)− F(q) + F(k)F(q)
�

2ImGR
0,ϵ(x , k) . (109)

We can now remove the integral over frequencies ε using Eq. (108), thus considering the
on-shell distribution F̃ according to the quasi-particle approximation (102). Enforcing the
relation between the on-shell distribution function and the occupation function n(x , k⃗) given
in Eq. (103), we eventually obtain the kinetic equation in terms of n(x , k⃗). Reintroducing the
notation with separated rescaled space x̄ = Γ x⃗ and time t̄ = Γ t variables, Eq. (99), this has
the shape of the following Boltzmann-like equation:

�

∂ t̄ + v⃗g(k⃗) · ∇⃗ x̄ −
1
ħh
∇⃗ x̄ V · ∇⃗k

�

n( ¯⃗x , t̄, k⃗) = −4

∫

ddq
(2π)d

n( ¯⃗x , t̄, k⃗)n( ¯⃗x , t̄, q⃗) . (110)

The kinetic term describes the ballistic spreading of quasiparticles, with group velocity
v⃗g(k⃗) = ħhk⃗/m, under the drive of an external force −∇⃗x V/ħh. The collision integral char-
acterises rearrangements of the momentum occupation function n( ¯⃗x , t̄, k⃗) due to interactions.
Because the interaction here considered is purely dissipative, the right hand side of Eq. (110)
describes particle losses. As a consequence of this, the collision integral is strictly negative
I[n] < 0 implying that the density of particles is strictly descreasing. We also notice that the
decay of a mode n( ¯⃗x , t̄, k⃗) does not depend on the value of the mode k⃗ itself. Modes initially
equally occupied decay therefore at the same rate.

The Boltzmann equation (110) is valid in arbitrary dimension d. In the homogeneous
case, i.e., when the initial state is translational invariant and no potential is present V = 0, the
Wigner function reduces to the occupation function in momentum space n( ¯⃗x , t̄, k⃗) = n( t̄, k⃗).
The integral over k⃗ of Eq. (110) leads to a closed equation for the spatial density:

dn( t̄)
d t̄

= −4n2( t̄) , with n( t̄) =

∫

dkd

(2π)d
n( t̄, k⃗) , (111)

which coincides with the homogeneous classical rate equation for pair annihilation (see also
the discussion in Appendix A). For binary annihilation in the noninteracting Bose gas the den-
sity decays according to the mean field exponent (1) in arbitrary spatial dimensions d:

n( t̄) =
n0

1+ 4n0 t̄
∼ t̄−1 . (112)

In one spatial dimension d = 1, the Boltzmann equation here above matches previous pre-
dictions for the Bose gas subject to weak binary losses derived within the TGGE framework
[36,57]. In Ref. [36], in addition, the Bose gas is studied also in the presence of Lieb-Liniger
quartic interactions. In that case, in Eq. (110) not only the collision integral is modified by the
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interaction, but also the kinetic term. The group velocity is, in particular, dressed by the inter-
action. This effect, within the Keldysh formalism is expected to emerge from nonvanishing real
parts of the self-energy ΣR due to the Hamiltonian interactions. It is, however, hard to explic-
itly show this aspect since one would need to resum diagrams of all order in the Hamiltonian
interaction. The result of [36] is, indeed, based on the generalised hydrodynamics [100,101]
description of the interacting Bose gas and, as such, it is nonperturbative in the Hamiltonian
interaction. We further discuss on the relation between the TGGE ansatz and our perturbative
expansion in the next Subsec. 5.4 for fermions.

5.4 The fermionic Boltzmann equation

The derivation of the Boltzmann equation for fermions requires some additional care com-
pared to the case of bosons. From the technical point of view, indeed, the nearest neighbour
annihilation (9) arising from the fermionic repulsion introduces additional spatial gradients
(15) in the interaction vertices (89a). These gradients render the self-energy Σ̂ a differential
operator acting from both sides on the free propagators. In the Euler-scaling limit, we again
consider only first-order terms in Γ , which have the form of tadpole diagrams. Hence, when-
ever two fields from an internal loop or from an external leg are contracted together with 0, 1,
2 differential operators, the corresponding propagator is differentiated 0, 1, 2 times, namely
one has that:

〈∇⃗φµ(x1)∇⃗φ̄ν(x2)〉0 = lim
a→x1

lim
b→x2

∇⃗a∇⃗bGµν0 (a, b) . (113)

We recall that fields φµ, with µ= 1, 2, are entering the vertices, whereas conjugated fields φ̄µ
are outgoing from those, so that the association between diagrams and propagators still follows
the convention used for bosonic fields, i.e., the representation given in Fig. 2. Moreover, we
use blue lines to indicate spatial gradients of the corresponding fields according to (113). The
tadpole diagrams associated to the fermionic self-energy at order Γ are reported in Fig. 5.

The derivation of the Boltzmann equation from the diagrams in Fig. 5 then proceeds along
similar lines as in the case of bosons. The details have been worked out in Ref. [56] and
we therefore do not report them here for the sake of brevity. The resulting Boltzmann-like
equation in the Euler scaled variables ¯⃗x = Γ x⃗ and t̄ = Γ t reads:

�

∂ t̄ + v⃗g(k⃗) · ∇⃗ x̄ −
1
ħh
∇⃗ x̄ V · ∇⃗k

�

n( ¯⃗x , k⃗, t̄) = −
∫

ddq
(2π)d

(k⃗− q⃗)2 n( ¯⃗x , k⃗, t̄)n( ¯⃗x , q⃗, t̄) . (114)

We mention that the collision integral contains in principle also terms proportional to the
spatial gradient∇ x̄ n of the Wigner function. We neglect these terms here, as they are negligible
in the Euler scaling limit according to Eq. (100). The action of Σ̂ as a differential operator on
real functions, as in the right hand side of Eq. (98), yields purely imaginary functions. As
a consequence, as in the case of bosons, no renormalisation of the quasi-particle dispersion
relation and potential. The factor (k⃗− q⃗)2 is the main difference with respect to the Boltzmann
equation (110) for bosons. It includes the effect of the fermionic anticommutative statistics,
entailing nearest-neighbour interaction, which is absent in the bosonic theory. This difference
in the collision integral yields a largely enriched dynamics of the Fermi gas, which displays an
interesting behaviour in both homogeneous and non-homogeneous scenarios.

In the homogeneous case, in particular, a closed rate equation for the particle density n( t̄)
as in Eq. (111) cannot be obtained. The density accordingly does not follow the mean field
prediction and it decays in generic dimensions d as [56]

n( t̄)∼ t̄−
d

d+1 . (115)
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Figure 5: Self-energy diagrams for the fermionic binary annihilation. Feynman
diagrams for the (a) retarded ΣR

(1) and (b) advanced ΣA
(1) entries of the self-energy

matrix at first order Γ . The Keldysh component is given by ΣK
(1) = Σ

R
(1) −Σ

A
(1) and its

diagrammatic representation is not reported for the sake of brevity. External legs are
drawn in the figure in order to make explicit the meaning of the 1/2-valued Keldysh
matrix indices in Eq. (95b), and how derivatives affect the external propagators.
Namely, an external blue left leg denotes differentiation with respect to the second
argument of the ensuing propagator, while an external blue right leg denotes differ-
entiation with respect to the first argument of the ensuing propagator. All the other
diagrammatics conventions are as in Fig. 2. Each diagram has an implicit factor Γ/4,
while the relative sign is reported.

This result should be contrasted with the analogous result (112) for homogeneous bosons.
Here, mean field decay is valid in any d, while in the fermionic case, on the contrary, devia-
tions from mean field are present in any dimension d. For fermions the mean-field decay is
approached only asymptotically for large d values. In inhomogeneous cases as well, as we
discuss in detail in the next Sec. 6, the collision integral also determines rich dynamics for the
Wigner function n( ¯⃗x , k⃗, t̄). Differently from the bosonic case, the modes k⃗ do not decay all at
the same speed and one therefore obtains non-trivial profiles for the Wigner function in phase
space ( ¯⃗x , k⃗).

It is also important to mention that in spatial dimension d = 1, Eq. (114) coincides with
previous results derived assuming the TGGE relaxation ansatz in Refs. [38,42–44]. The result
of the analysis is a Boltzmann-like equation akin to (114), where the collision integral again
describes losses on the lattice. The continuum space limit of these results has been carried
out in Ref. [40] and it leads to (114) in d = 1. The present study therefore shows how the
Boltzmann equation can be equivalently reobtained from the Euler-scaling limit of the Keldysh
field-theoretical description. Equation (114) in d = 1 has been also derived in Ref. [55] from
the Feynman-Vernon influence functional of the interacting Bose-Hubbard chain. Therein one
integrates out the bath degrees of freedom in the system-bath Keldysh action and then takes
the limit of strong dissipation (Zeno regime), which eventually renders Eq. (114).
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6 Dynamics of the lossy Fermi gas

In this Section, we numerically solve the inhomogeneous fermionic Boltzmann equation (114)
for a one-dimensional gas. Our aim is to determine the behaviour of the total particle number
N . In the rescaled Euler coordinates (92), N is obtained as

N( t̄) =

∫

d x̄ n( x̄ , t̄) , with n( x̄ , t̄) =

∫

dk
2π

n( x̄ , k, t̄) , (116)

where n( x̄ , t̄) is the spatial density of particles. In the presence of reactions, the dynamics
is irreversible. In order to quantify this aspect, we will further calculate the von Neumann
thermodynamic entropy S. The von Neumann entropy is, indeed, constant in time for unitary-
reversible dynamics. In the presence of dissipation it displays, instead, a time dependence
S( t̄), which quantifies irreversibility. Crucially, in the reaction-limited regime, as discussed
in Sec. 5.2, quasi-particles are still well defined and the system in the Euler-scaling limit is
described by a time-dependent maximal entropy state of the GGE form. For these maximal
entropy states, the von Neumann entropy S( t̄) can be calculated on the basis of the knowledge
of the Wigner function n( x̄ , k, t̄) [39,70,94]. For free-fermionic systems, in particular, one has

S( t̄) =

∫

d x̄ s( x̄ , t̄) , (117a)

with the entropy density

s( x̄ , t̄) = −
∫

dk
2π
[n( x̄ , k, t̄) ln(n( x̄ , k, t̄)) + (1− n( x̄ , k, t̄)) ln(1− n( x̄ , k, t̄))] , (117b)

which is the von Neumann entropy per unit length of a GGE. In the Euler-scaling limit (92),
moreover, the state of the system is locally equivalent at each space-time point ( x̄ , t̄) to a
GGE [39, 69, 70, 94, 100–102], and therefore s( x̄ , t̄) represents the density of von Neumann
entropy of the reduced density matrix at the space-time point ( x̄ , t̄). The entropy S obtained
by integrating s in space thus represents the total entropy of all fluid cells, i.e., the meso-
scopic regions around a rescaled space-time point ( x̄ , t̄) which are locally described by a
GGE [39, 69, 70, 94, 100–107]. In addition, we also note that the expression above for S is,
in the context of integrable systems, the Yang-Yang entropy formula for free fermions [108].
This analysis can be therefore considered as an application of the generalised hydrodynam-
ics description of integrable models [100, 101, 103], to a case with slowly varying potential
and weak integrability breaking from dissipation. Furthermore, we will compute the Rényi
entropies Sα( t̄) of order α, which are obtained from the Wigner function according to

Sα( t̄) =

∫

d x̄ sα( x̄ , t̄) , (118a)

with

sα( x̄ , t̄) =
1

1−α

∫

d x̄

∫

dk
2π

ln[nα( x̄ , k, t̄) + (1− nα( x̄ , k, t̄))] . (118b)

Here α is an arbitrary positive real number. In the limit α → 1, the expression (118) gives
the von Neumann entropy in (117). As in the case of the von Neumann entropy density
s( x̄ , t̄), the Rényi entropy density sα( x̄ , t̄) characterises in the Euler-scaling limit the reduced
density matrix at the space-time point ( x̄ , t̄). For α = 2, namely, s2( x̄ , t̄) measures purity of
the local GGE state at the space-time point ( x̄ , t̄). The expression (118) has been proved in
Refs. [109,110] using the quench action method, whereby it is shown that for non-interacting
systems Sα is fixed by the knowledge of n( x̄ , k, t̄) (this is not the case for interacting systems).
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We note that Rényi entropies for open quantum systems have been computed in Refs. [111–
113] for free fermionic [111,112] and bosonic [113] lattice models in the presence of single-
body decay (7) and/or creation. In this case the Lindbladian is quadratic and therefore exactly
solvable, as outlined in Sec. 4, and the Rényi entropies can then be exactly computed from
the knowledge of the two-point fermionic/bosonic correlation function. In the case of binary
annihilation of this manuscript, the Lindbladian (88a)-(88b) and (89a)-(89b) is quartic, the
dynamics is not exactly solvable and therefore the approach of Refs. [111–113] cannot be
pursued. For binary annihilation, the description of the dynamics of the Rényi entropies at the
Euler scale necessarily requires considering the large scale description provided by the kinetic
equation (110) and (118) or, equivalently, the TGGE ansatz, as we do here.

Namely, we will study the dynamics of the particle number (116) and entropies (117)
and (118) in two different scenarios involving a quantum quench of the trapping potential
in the presence of binary annihilation dissipation. We consider the instantaneous change,
at t = 0, of the confining potential, from a “pre-quench” potential V0(x) to a “post-quench”
potential V (x). Both the pre and post-quench potential are taken to be slowly varying in space
according to (93). In Subsec. 6.1, we consider a quench from an anharmonic potential V0 to
an harmonic confining potential V . In Subsec. 6.2, we study the dynamics ensuing from a
release of the initial harmonic confinement V0 resulting into the expansion of the gas in free
space (V ≡ 0). We use henceforth the substitution J = ħh

2

2m . This allows us to connect to the
quantum mechanics representation of the kinetic energy, whose eigenvalue is determined by
the mass m.

6.1 Double- to single-well confinement quantum quench

We consider in one spatial dimension a quantum quench of the trapping potential from a pre-
quench double-well V0(x) to a post-quench harmonic well V (x), respectively defined by:

V0(ϵx) =
A
4
(ϵx)4 −

mω2

2
(ϵx)2 , (119a)

V (ϵx) =
mω2

2
(ϵx)2 . (119b)

Here, we have introduced the adimensional parameter ϵ = ħhn(0,0)Γ/J . In the reaction-limited
regime ϵ≪ 1, so that both the pre-quench and the post-quench potentials are slowly varying
on a large scale set by Γ−1 according to (92). In this regime, the ground state of the pre-
quench potential V0 can be determined with the local density approximation [39]: one treats
the quantum gas as consisting of a collection of mesoscopic fluid cells, whose characteristic
size is much smaller than the typical length of variation ℓ ∼ Γ−1 of the trapping potential
V0(x). Therefore, V0(x) is assumed to be locally constant and can be reabsorbed into a local
chemical potential µ− V0(x). Alternatively, one defines a position-dependent dispersion rela-
tion ε(0)k (x) = ħh

2k2/2m+ V0(x) [and, similarly, εk(x) = ħh2k2/2m+ V (x) for the post-quench
dynamics] for each of the mesoscopic fluid cells at the rescaled space point ϵx . We thus de-
termine the initial phase-space distributions n0(x , k) for the ground state of the Fermi gas in
the local density approximation, starting from the Fermi-sea, i.e., we consider the quantum
system to be at zero temperature. To this end, we introduce the Fermi-Dirac statistics, whose
definition at a generic inverse temperature β is given by

n0(ϵx , k,β) =
1

eβ[ε
(0)
k (ϵx)−µ] + 1

, (120)
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with µ the chemical potential. In its zero-temperature limit, β →∞, n0 reduces to the Heav-
iside theta function

lim
β→∞

n0(ϵx , k,β) = n0(ϵx , k) =

¨

1 , ifε(0)k (ϵx)−µ < 0 ,

0 , ifε(0)k (ϵx)−µ > 0 .
(121)

Hence, the curve ζ= {(ϵx , k) ∈ R2 |µ− ε(0)k (ϵx) = 0} defines the perimeter of the initial-time
occupation function n0(ϵx , k) in phase space (ϵx , k). Inside ζ, all modes are equally populated
and n0(x , k) = 1, i.e., the initial state is locally a Fermi sea. This zero-temperature state (121)
therefore has zero entropy (117) since the occupation function n0 takes only the values 0 and
1. In the absence of dissipation, the dynamics ensuing from such zero entropy states has been
studied in the framework of zero-temperature generalised hydrodynamics in Ref. [114]. In
the presence of binary annihilation dissipation, instead, the dynamics of the Fermi gas with
both pre and post-quench harmonic potential has been considered in Ref. [40]. Inserting the
definition of V0(x) given in Eq. (119b), the perimeter ζ is given by

ζ=

�

(ϵx , k) ∈ R2
�

�

�µ−
ħh2k2

2m
−

A
4
(ϵx)4 +

mω2

2
(ϵx)2 = 0

�

, (122)

which corresponds to a bimodal curve (see Figs. 7(a) and 8(a) below). When integrating over
momenta, the initial particle density n0(x) features an initial double-bumped profile.

Once the initial state is determined, we evolve it with the harmonic trap (119b) potential.
It is then useful to introduce the dimensionless Euler-scaled space-time coordinates x̃ , t̃ and
the rescaled momentum k̃ (cf. also Ref. [40]):

t̃ = ϵt
J(2N0)3/2

ħhn(0, 0)ℓ3
HO

, x̃ =
ϵ
p

2N0ℓHO
x , k̃ =

ℓHO
p

2N0

k , (123a)

with ℓHO =
p

ħh/mω the harmonic oscillator characteristic length. The bimodal initial particle
distribution n0( x̃ , k̃) in the rescaled coordinate is then specified by the condition stemming
from Eq. (121)

B − k̃2 + x̃2 − C x̃4 > 0 , (124)

with the parameters B = µ/µHO and C = AµHO/m
2ω4 determining A and N0 (equivalently A

and µ). The parameter µHO = N0ħhω is the chemical potential of a gas of N0 particles confined
within a harmonic potential. For an harmonic pre-quench potential with frequencyω therefore
B = 1, while in our case of (119a) B ̸= 1. The extremal coordinates of n0( x̃ , k̃) are given by:

x̃0 =

√

√ 1
2C

�

1+
p

1+ 4BC
�

, k̃0 =
p

B . (125)

The Boltzmann equation (114) in the rescaled coordinates is eventually conveniently rewritten
as
�

∂

∂ t̃
+Ω
�

k̃
∂

∂ x̃
− x̃

∂

∂ k̃

�

�

n( x̃ , q̃, t̃) = −
∫ +∞

−∞
dq̃ (k̃2 − q̃2)n( x̃ , k̃, t̃)n( x̃ , q̃, t̃) , (126)

with the adimensional parameter

Ω=
2n(0, 0)ℓHO

(2N0)3/2
= 2n(0, 0)

�

2J
8ħhωN3

0

�1/2

, (127)

expressing the relative strength between coherent motion (J = ħh2/2m) and confinement (ω).
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Figure 6: Double- to single-well confinement quantum quench and decay expo-
nents at Ω= 0. (a) Decay of the rescaled particle number Ñ( t̃), defined in Eq. (128),
in rescaled time t̃ for increasing values of Ω. Increasing Ω leads to a transition from
a power-law decay to an accelerated power-law decay with superimposed oscilla-
tions. At long times, all the curves with Ω ̸= 0 tend towards a unique curve with
decay mean-field-like decay Ñ( t̃) ∼ t̃−1. For the data shown in the figure, we set
the parameters in Eq. (124) of the pre-quench anharmonic potential V0 as B = 0.1
and C = 0.3. (b) Effective decay exponents ξeff, evaluated by setting b = 1.1 in
Eq. (130), with parameters B = 0.1 and C = 0.3, B = 0.45 and C = 0.45, B = 1 and
C = 0.8, respectively from top to bottom, and Ω = 0. As the ratio B/C decreases,
entailing that k̃0 in Eq. (125) decreases and that the initial distribution is increas-
ingly deformed with respect to the circular-harmonic shape, the long-time effective
decay exponent ξeff > 1/2 shows a power-law decay accelerated with respect to the
homogeneous prediction Ñ( t̃)∼ t̃−1/2.

As written above, we are interested in the dynamics as a function of time of the total particle
number (116) and the von Neumann (117) and Rényi entropies (118). In the adimensional
Euler-scaled coordinates x̃ and t̃ (123a), we accordingly define the rescaled particle number
Ñ( t̃) and entropies S̃α

Ñ( t̃) =
N( t̃)
N0

=

∫

d x̃ dk̃ n( x̃ , k̃, t̃)
∫

d x̃ dk̃ n( x̃ , k̃, 0̃)
, (128a)

S̃α( t̃) =
πϵ

N0
Sα( t̃) =

1
1−α

∫

d x̃ dk̃ log
�

n( x̃ , k̃, t̃)α + (1− n( x̃ , k̃, t̃))α
�

. (128b)

When reactions are not present Icoll[n( x̃ , k̃, t̃)] = 0, the kinetic equation can be solved
analytically using the method of characteristics. The characteristic equations

¨

˙̃x = Ωk̃ ,
˙̃k = −Ω x̃ ,

(129)

define harmonic circular trajectories in the rescaled phase space, with rescaled period
T̃ = 2π/Ω. When two-particle losses are included, the solution is determined by both phase-
space rotations and by the non-vanishing collision integral on the right hand side of Eq. (126).
The numerical solution to Eq. (126) allows us to identify two regimes in the decay of Ñ( t̃) as a
function of t̃ depending on the chosen value ofΩ. We show this in Fig. 6(a)-(b). In the limiting
regime where Ω≪ 1, the evolution along characteristic trajectories of the Wigner function is
suppressed. This corresponds to the decay for Ω= 0 in Fig. 6(a). Therein, the dominant term
in determining the dynamics of the density distribution is the collision integral. Consequently,
we expect the decay to be slower than in the bosonic mean-field case, as an effect of the (k̃−q̃)2
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factor, which further limits reactions to occur when particles have similar momenta. In this
limit, we, indeed, find power-law decay, as quantified by the effective exponent ξeff [6]:

ξeff = −
log
�

Ñ(bt̃)/Ñ( t̃)
�

log(b)
. (130)

If Ñ( t̃) asymptotically approaches a power law, namely Ñ( t̃) ∼ t̃−ξ at long times, then
limt→∞ ξeff = ξ, for any value of b. Here, b is a scaling parameter. In the numerical evalua-
tion of Eq. (130), we use henceforth b = 1.1. In Fig. 6(b), we, indeed, see that for Ω= 0, the
decay effective exponents converges at long time. The asymptotic value, interestingly depends
on the parameters B and C characterising the anharmonicity of the initial state. In the case
when B and C are taken such that the extremal coordinates Eq. (125) satisfy x̃0 ∼ k̃0, the ini-
tial bimodal distribution is approximately circular (cf. also Fig. 7(a) below) and one obtains
Ñ( t̃) ∼ t̃−1/2. This case is achieved in Fig. 6(b) for B = 1 and C = 0.8. This observation
matches the result of Ref. [40, 56]. In Ref. [40], in particular, it has been analytically shown
that for an initial harmonic V0(x) potential and Ω = 0, the decay exponent is identical to the
homogeneous case (115). This can be understood since when both V0 and V are harmonic,
taking the limit Ω → 0, amounts to considering N0 ≫ 1 according to Eq. (127). In the limit
N0≫ 1, the initial density profile around its maximum at x̃ = 0, where most of the reactions
take place, becomes approximately flat and homogeneous. The homogeneous decay exponent
(115) is therefore recovered. In the cases B = 0.45, C = 0.45 and B = 1, C = 0.8, however,
the anharmonicity of the initial state is more pronounced (cf also Fig. 8(a) below). Here, the
initial density distribution does not become flat in the limit Ω → 0 and therefore the effect
of the initial density inhomogeneity cannot be neglected. This eventually causes the decay
Ñ( t̃) ∼ t̃−ξ in Fig. 6(b) with 1/2 < ξeff < 1. We therefore conclude that anharmonicity of
the initial state causes a faster decay for small Ω than in the case where also the pre-quench
potential V0 is harmonic.

As Ω increases, we can see from Fig. 6(a) that oscillations are superimposed to the power-
law decay. These oscillations are understood because of phase-space rotations (c.f. Figs. 7(b)
and 8(b) below). At short times the gas mostly depletes at the space points corresponding
to the two minima of the double well (Fig. 7(b)), where initially most particles are located.
Simultaneously, long-lived modes with non vanishing ±k are formed on the right (left) of the
trap x̃ ( x̃ < 0). These modes travel towards the edges of the trap and bounce back. In this
way, the density of particles gets peaked around the centre x̃ = 0. When the two counter-
propagating modes meet at the centre of the trap they lead to an acceleration of the decay.
This happens at time which is approximately t̃ ∼ π/Ω. The resulting breathing motion of
the quantum gas renders particle losses periodically accelerated at period T̃ ∼ π/Ω. At long
times, for any Ω ̸= 0, the curves Ñ( t̃) collapse towards a unique power-law with mean-field-
like behaviour Ñ( t̃) ∼ t̃−1. Remarkably, both for both considered cases B = 1, C = 0.8, and
B = 0.1, C = 0.3, as shown in Fig. 6. The asymptotic mean-field-like decay therefore does
not depend on how much the pre-quench potential V0(x) deviates from an harmonic shape. A
similar transition to an accelerated oscillatory decay has been, indeed, also observed in [40]
for an initial harmonic pre-quench potential V0. In that case, the transition to the accelerated
decay takes place at times t̃ ∼ π/(2Ω). For Ω large, therefore, one has asymptotic mean-field
decay for both harmonic and anharmonic pre-quench potentials.

In Fig. 7, we report the dynamics of the rescaled entropies (128) as a function of the
rescaled time t̃ for different values of α = 1,2, 3. In Fig. 7(c), specifically, we consider the
case Ω = 0, where the contour in Fig. 7(a) does not undergo rotations in phase space. We
take the parameters B = 1 and C = 0.8 so that the initial contour in Fig. 7(a) is approximately
circular. This corresponds to a prequench potential V0(x) weakly deviating from the harmonic
shape. We observe that all the rescaled entropies S̃α( t̃) have similar dynamics as a function of
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Figure 7: Weak anharmonicity — double-to single-well confinement quench and
entropy decay. (a)-(b) Wigner distribution n( x̃ , k̃, t̃) in the rescaled ( x̃ , k̃) phase
space, at selected rescaled times t̃ = 0, 10, respectively. In both panels, we set
Ω = 0.1, in Eqs. (126) and (127). In the initial state distribution we set B = 1,
C = 0.8. For this choice of parameters, the extremal coordinates (125) of the initial
distribution x̃0 ∼ k̃0 are approximately equal and the distribution is approximately
circular-harmonic in phase space. (c) Rescaled Rényi entropies S̃α( t̃) for α = 1, 2,3,
defined in Eq. (128), as function of the rescaled time t̃ for Ω = 0. In the inset: ef-
fective exponents of the curves in panel (c). All the Rényi entropies asymptotically
decay as S̃α( t̃) ∼ t̃−1/2. (d) Rescaled Rényi entropies S̃α( t̃) as a function of t̃ for
Ω = 1. In this case an accelerated oscillatory decay is observed. At long times, all
the entropies display decay S̃α( t̃)∼ t̃−1 with mean field exponent.

t̃ independently of the Rényi index α. The entropies at t̃ = 0 are zero since the initial state
(121) is a ground state. As time progresses, dissipation scrambles the occupation in phase
space rendering 0< n( x̃ , k̃, t̃)< 1 within the Fermi contour. This corresponds to an increased
mixedness of the local GGE state at the space-time point ( x̃ , t̃), as further witnessed by the
Rényi entropy S̃2, which quantifies the local purity of the GGE state at the space-time point
( x̃ , t̃). At longer times, dissipation clearly drives the system towards the vacuum (since parti-
cles can only be lost) and therefore the state gets purified and S̃α( t̃) decreases after reaching
a maximum value. From the numerical calculation of the associated effective exponent (130),
see inset of Fig. 7(c), we quantify the asymptotic decay in time as a power law S̃( t̃) ∼ t̃−1/2.
The decay exponent is therefore the same as that found for the density in Fig. 6 for the same
choice of parameters B = 1 and C = 0.8. For Ω > 0, as in Fig. 7(d), the breathing motion
of the fermionic gas induces oscillations, as in the case of the density decay. Moreover, the
entropies, for all values of α, decay at long times with a mean-field exponent S̃α( t̃)∼ t̃−1.

We note that the fact that the entropies, in particular the von Neumann entropy
S( t̃) ≡ S1( t̃) (117), are not monotonic as a function of time, does not contradict the sec-
ond law of thermodynamics. In the context of open quantum systems weakly coupled to a
reservoir at thermal equilibrium at temperature T , entropy production σ is given, as shown,
e.g., in Refs. [115–119], by

σ(t) =
dS(t)

dt
+J , with J = − 1

T
d〈H〉

dt
. (131)

The entropy production σ ≥ 0 is proven [115–117] to be nonnegative, which is the state-
ment of the second law of thermodynamics. The entropy production thus represents the total
amount of entropy produced per unit time in the system and environment due to the irre-
versibility of the dynamics. The two terms on the right hand side of (131), individually, are
not bound to be nonnegative. The first term is the time derivative of the system von Neumann
entropy. This is precisely the contribution we have computed. The second term J is the en-
tropy exchanged between the system and the environment due to exchange of heat. Here, this
quantity is positive, so entropy flows from the system to the environment, since the energy in
the system is monotonically decreasing. The system’s energy decreases as a consequence of
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Figure 8: Strong anharmonicity — double- to single-well confinement quench
and entropy decay. (a)-(b) Particle distribution n( x̃ , k̃, t̃) in the rescaled ( x̃ , k̃)
phase space, at selected rescaled times t̃ = 0, 10, respectively. In both panels, we
set Ω = 0.1. In the initial state distribution, we set B = 0.1, C = 0.3. The initial
distribution therefore displays a pronounced bimodal shape significantly deviating
from the harmonic-circular shape. (c) Rescaled Rényi entropies S̃α( t̃) as a function
of the rescaled time t̃ for Rényi index values α = 1, 2,3 (from top to bottom) and
Ω = 0. All the Rényi entropies decay asymptotically as S̃α( t̃) ∼ t̃−1/2 as in the case
of Fig. 7. (d) Rescaled Rényi entropies S̃α( t̃) as a function of t̃ for Ω = 1. All the
entropies decay as S̃α( t̃)∼ t̃−1 at long times with superimposed oscillations.

the loss in time of particles. Since particles are only lost, the environment behaves as a zero
temperature bath, T → 0 in Eq. (131), and therefore J → +∞. This divergence of J , in the
presence case of dissipative losses, makes σ ≥ 0 even if the change of system entropy dS/dt
can be negative (due to purification of the state as explained above).

In Fig. 8, we discuss the dynamics of the rescaled entropies S̃α( t̃) as a function of t̃ for
a different choice of the parameters B = 0.1 and C = 0.3 characterising the initial anhar-
monic potential. For this choice of parameters the initial distribution in Fig. 8(a), displays a
pronounced bimodal profile. In Fig. 8(c), for Ω = 0, we observe that all the entropies decay
asymptotically S̃α( t̃) ∼ t̃−1/2 (the effective exponents are reported in the inset). For the en-
tropy, therefore, the anharmonicity of the pre-quench potential does not modify the asymptotic
decay exponent, in contrast to from the previously discussed case of the density. In Fig. 8(d),
we consider the case Ω= 1, where rotations in phase space of the Fermi contour (cf. Fig. 8(b))
are present. In this case, we again find, similarly to Fig. 7, that the breathing motion of the
gas lead to an eventual accelerated decay S̃( t̃)∼ t̃−1.

6.2 Deconfinement from the harmonic trap

As a second example, we study the dynamics of the Fermi gas initially confined by a pre-quench
harmonic potential

V0(ϵx) =
mω2

2
(ϵx)2 , (132)

with ϵ given by the expression shown after Eq. (119b). At time t = 0, the confining potential
is suddenly switched off, so that the initial bump density profile is allowed to freely expand
in space (post-quench potential V (x) ≡ 0). As no external potential affects the post-quench
dynamics, the Boltzmann equation (114) takes the simplified form (in the dimensionful Euler-
scaled variables x̄ , t̄ (92))

�

∂

∂ t̄
+
ħhk
m
∂

∂ x̄

�

n( x̄ , k, t̄) = −
∫

dq
2π
(k− q)2 n( x̄ , k, t̄)n( x̄ , q, t̄) . (133)

However, the initial confining trap V0 determines the shape and the size of the initial distribu-
tion n0(ϵx , k,β). In the local density approximation, the ground state is obtained by taking the
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zero-temperature (β →∞) limit of the Fermi-Dirac distribution, with ε(0)k (ϵx) determined by
the harmonic potential. The perimeter ζ of the initial bump distribution is therefore an ellipse
in the (ϵx , k) plane:

ζ=

�

(ϵx , k) ∈ R2
�

�

�µ−
ħh2k2

2m
−

mω2

2
(ϵx)2 = 0

�

. (134)

Then, n0(ϵx , k) = 1 inside ζ, i.e., for ε(0)k (ϵx)< µ, while it is vanishing otherwise. Integrating
over the surface internal to ζ (134), the chemical potential can be evaluated to be µ= N0ħhω.
At this point, we defined dimensionless Euler-scaled variables x̃ and t̃ as in Eq. (123a). The
momentum is similarly rescaled as in (123a). Thus, the ellipse contour in (134) turns into a
circle

x̃2 + k̃2 < 1 , (135)

as shown in Fig. 9(a). Besides, Eq. (133) takes the rescaled form:

�

∂

∂ t̃
+Ωk̃

∂

∂ x̃

�

n( x̃ , k̃, t̃) = −
∫ +∞

−∞
dq̃ (k̃2 − q̃2)n( x̃ , k̃, t̃)n( x̃ , q̃, t̃) , (136)

with Ω given in Eq. (127). The rescaled particle number Ñ and entropies S̃ are also as in
Eq. (128).

Once more, the (136) can be solved numerically via the method of characteristics. The set
of equations defining the characteristic trajectories is given by

¨

˙̃x = Ωk̃ ,
˙̃k = 0 .

(137)

Momenta remain constant throughout the full evolution, meaning that momentum modes
do not get mixed, as it happened in the case of harmonic confinement. Conversely, position
coordinates evolve via the simple relation d x̃/d t̃ = Ωk̃ = Ωk̃0 identifying straight horizontal
lines in phase space, i.e., the trajectories are parallel to the x̃ axis. Hence, in absence of particle
losses the initial circle is stretched into an elongated disc, as shown in Fig. 9(b): particles
located on the x̃ axis stay still, while extremal modes k̃0 = ±1 slide with velocity ±Ω. This
corresponds to the initial distribution of particles spreading in two opposite directions. The
parameter Ω then plays the role of an “escape” velocity. By varying its value one can still
identify two well-separated decay behaviours for the density, as discussed in Ref. [56].

We briefly review here the results of Ref. [56] for the decay as a function of time of the
density and how it depends on Ω. In this manuscript, we then additionally focus on the dy-
namics as a function of time of the von Neumann and Rényi entropies. In particular, we study
the entropy dynamics in the trap-release quench for different values of Ω.

In the limiting case Ω → 0, the evolution along the characteristic curves is once more
suppressed, and one obtains the same decay as in the homogeneous setting (115), i.e., the
algebraic decay Ñ( t̃) ∼ t̃−1/2. Increasing the value of the escape velocity Ω, the system ap-
proaches an unexpectedly slow decay. As particles propagate in free space, the local spatial
density decreases. Consequently, the Wigner function n( x̃ , k̃, t̃) for each value of x̃ becomes
supported on a narrow interval of k⃗ values, as one can see from Fig. 9(b). Reactions are con-
strained to take place between particles with the same momentum. This kind of reactions is
further suppressed by the fermionic statistics, which manifest in the blocking factor (k̃ − q̃)2

in the collision integral. As a result, for every finite value of Ω > 0, at short times one has an
approximate algebraic decay Ñ( t̃) ∼ t̃−ξ. The exponent ξ gets smaller and smaller as Ω in-
creases. At longer times, a slower non-algebraic decay. Such non-algebraic decay is a property
specific to the Fermi gas due to the blocking factor in the collision integral of Eq. (136).
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Figure 9: Entropy dynamics in a trap-release quench of the Fermi gas with bi-
nary annihilation. (a)-(b) Particle distribution n( x̃ , k̃, t̃) in the rescaled ( x̃ , k̃) phase
space, at selected times t̃ = 0, 10, respectively. We set Ω = 0.1. (c) Rescaled Rényi
entropies as a function of t̃ for Rényi indices α = 1, 2,3 (from top to bottom) and
Ω = 0.1. All the entropies first increase in time and reach a maximum value, after
which a slow non-algebraic decay is established. (d) Rescaled entropies as a function
of rescaled time for Ω= 1. Here, the entropies first increase in time as a consequence
of reactions, and then saturate to an approximately constant value as a consequence
of ballistic-reversible spreading in free space.

In Fig. 9(c)-(d), we report the dynamics of the rescaled entropies S̃α( t̃) as a function of the
rescaled time t̃. In Fig. 9(c), instead, we take Ω = 0.1, which allows to identify two regimes
also for the entropy dynamics, similarly to the aforementioned discussed case of the density.
First the entropy increases in time and reaches a maximum value. This corresponds to the
regime where particles are still concentrated around the centre of the trap and reactions are
frequent. The density decays in time as a power-law as a consequence of the reactions and
the entropy, instead, increases due to the increased mixedness of the local state describing
each fluid cell at the rescaled point x̃ , t̃. As the gas expands in free space, reactions become
scarcer and scarcer. Consequently, the slower non-algebraic decay of the density translates
into a similar slower non-algebraic decay for the entropy. The entropy slowly decays towards
zero, which signals the slow, non-algebraic approach of the system towards the vacuum. Also
in this case, as commented after Eq. (131), the entropy decrease is not in contradiction with
the second law of thermodynamics since the entropy flux J due to heat exchange between
the system and the environment is divergent (zero-temperature bath). We observe that for
Ω = 0, the behaviour of the rescaled entropies is similar to the one discussed in Fig. 7(c).
In particular, the slow, non-algebraic, asymptotic decay is not present in this case. On the
contrary, the entropies decay as S̃α( t̃)∼ t̃−1/2 asymptotically in time. In Fig. 9(d), we, instead,
consider the case of a larger Ω value (Ω = 1). The entropies increase monotonically in time
and eventually saturate to a constant. The saturation is caused by the fact that for large
Ω the spreading of particles in free space is so rapid that reactions are almost completely
suppressed due to the fermionic blocking factor (k − q)2 recalled above. The dynamics is
therefore governed by the ballistic propagation of the gas in free space. This is precisely the
left hand side of Eq. (136), while the collision integral can be approximately neglected (the
system can be considered as being approximately isolated). The ensuing Euler equation is
time reversible [69,70] and therefore it does not lead to production of entropy (both the von
Neumann (117) and Rényi (118) entropy are conserved under Euler evolution). The behaviour
of the entropies in Fig. 9(d) is therefore intrinsically related to the the fact that in the present
quantum RD models transport is ballistic. In classical RD systems, instead, inhomogeneities
in the initial state are smoothed out by diffusion, which is irreversible, resulting in a further
growth of entropy.
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7 Conclusions

In this manuscript, we elaborated and further developed in details the results of the work
[56], considering many-body fermionic and bosonic gases subject to dissipative loss processes.
The ensuing quantum reaction-diffusion dynamics, where quantum coherent motion replaces
classical diffusion, was formulated in terms of the Markovian quantum master equation in the
Lindblad form. We discussed these models in continuum space, with the Hamiltonian term
(12) describing Hamiltonian-coherent quantum transport, and the jump operators (13)-(15)
modelling irreversible reactions. Exploiting the Keldysh path-integral representation of the
quantum master equation, summarised in Sec. 3, we obtained a field theory formulation of the
dynamics. Importantly, the partition function Z in Eq. (22) contains both a bulk contribution
with the Keldysh action S and additional boundary terms. In the latter, the fields are computed
only at the initial time t0 (t0 = 0 throughout the manuscript). While the bulk Keldysh action
S describes the stationary state of the dynamics, boundary terms account for the dynamical
approach to the steady state.

We explicitly showed this aspect in Sec. 4, where we benchmarked the inclusion of the
boundary terms in the exactly solvable case of one-body decay A→ ;. We studied both pure
initial states, such as the initial state in Eq. (49) where only the mode k = 0 is initially occupied,
and thermal initial conditions of (generalised) Gibbs form (67). In both cases, we showed
that the inclusion of the boundary terms changes the Keldysh Green’s function GK

0,S , which
depends on the initial occupation function. In particular, the Keldysh Green’s function, cf.
Eq. (63) associated to (49) and Eq. (78) associated to (67), is not time-translation invariant
in the presence of boundary terms. From this result, we retrieved exponential decay (65)
of the particle density towards the stationary state devoid of particles. In Subsec. 4.3, we
also discussed the effect of the initial-boundary terms on the normalisation of the partition
function Z . We did this by means of a perturbative expansion of the initial-boundary terms with
respect to the bulk Gaussian weight S0 (56) determined by coherent hopping and decay. This
expansion further confirms that GK

0,S is not translationally invariant. Furthermore, we found
that the normalisation of the partition function Z is Z = N , where N is the normalisation of
the initial state (see Eqs. (49) and (67)). This normalisation is therefore different from that
of the bulk Keldysh action (25) ZK = 1, where no boundary terms are present [64–67].

In Sec. 5, we then moved to considering the interacting, not exactly solvable, case of binary
annihilation A+ A→ ;. We consider the dynamics in the so-called reaction-limited regime of
weak dissipation, i.e., small Γ . Since dissipation determines the quartic interaction vertices
with coupling Γ in (88a) (bosons) and (89a) (fermions), the reaction-limited regime can be
tackled by means of perturbative expansions. First, in Subsec. 5.1, we showed that the per-
turbative expansion of the interaction vertices does not alter the normalisation of the Keldysh
partition function ZK = 1 (and therefore also of the partition function Z =N ). Subsequently,
in Subsec. 5.2, we described how a kinetic description of the quantum RD dynamics in the
form of a Boltzmann equation can be derived in the reaction-limited regime. The derivation
is based on the Euler-scaling limit of hydrodynamics (92) and (93). In the Euler scaling limit,
the Moyal derivative expansion of the kinetic equation can be truncated at first order in space-
time derivatives and the kinetic equation takes the form a Boltzmann equation (101). In this
equation, the collision integral is given by dissipation, and we compute it in the Euler-scaling
limit from the tadpole diagrams in Fig. 4 (bosons) and 5 (fermions). The main result of the
analysis is eventually given by the kinetic equation (110) (bosons) and (114) (fermions). For
bosons in homogeneous setups, one finds algebraic decay with mean-field exponent (112) in
all spatial dimensions. For fermions, instead, algebraic decay (115) with exponent different
from the mean-field one is observed in all dimensions, as already pointed out in Ref. [56]. In
Sec. 6, we eventually specialise the analysis to fermions in one spatial dimension in the pres-
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ence of a trapping potential. We discuss the experimentally relevant case of quenches of the
trapping potential. We find that for an initial anharmonic potential, in Fig. 6, the decay of the
particle density is accelerated compared to both the case of translationally invariant systems
(115) and harmonic confinement. We then characterise the irreversibility of the dynamics due
to dissipation by computing the time-dependence of the von Neumann (117) and Rényi en-
tropies (118). We find that for quantum quenches from an anharmonic to harmonic potential,
in Figs. 7 and 8, the entropy decays asymptotically in time according to a power law with the
same exponent as the density. Specifically, for small coherent hopping/strong confinement,
the entropy decays algebraically in time with non mean-field exponent, see Figs. 7(c) and
8(c). Here, the corresponding decay exponent is not changed upon tuning the anharmonicity
of the initial potential. For strong coherent hopping/weak confinement, instead, the entropies
decays algebraically with mean-field exponent, see Figs. 7(d) and 8(d). In all cases, the de-
cay of the entropy comes from the asymptotic cooling of the gas due to heat exchange with
the surrounding zero-temperature bath (since particles can only be lost from the system). For
the different trap-release quench, in Fig. 9, we, instead, observe that entropy monotonically
increases in time and eventually saturates. This saturation is explained in terms of the under-
lying quantum ballistic motion, which is described by the Euler equation. The latter does not
contain viscosity terms and it is therefore reversible, thus preventing any entropy production.

As a future perspective, it would be interesting to study the case where also Hamiltonian
interactions are present. For example, either by introducing contact interactions in the Bose
gas [120], or by considering spinful Fermi models such as the mass-imbalanced Fermi-Hubbard
model [121]. For weak interactions the treatment in terms of the kinetic-Boltzmann equation
still applies. The presence of Hamiltonian interactions, in general, leads to a breaking of the
integrability of the Hamiltonian and results in hydrodynamic diffusion of the remaining con-
served charges, as shown in Ref. [122]. It is then natural to wonder, for example by considering
the particle density, how quantum diffusive transport can affect the asymptotic decay law and
the associated exponents compared to the case of ballistic transport discussed here. At the
same time, it is also interesting to look at the effect of Hamiltonian integrability breaking on
the entropy dynamics. Moving away from the regime of weak dissipation (reaction-limited),
it is of fundamental importance to understand the quantum analogue of the diffusion-limited
regime, for which currently there are no analytical predictions. This regime cannot be treated
via the kinetic-Boltzmann equation and it requires a renormalisation group analysis. As shown
in Refs. [8–10,22,23] for classical RD, specifically, one needs to perturbatively expand both the
initial-boundary terms and the interaction vertices to identify the renormalisation group flow
of the coupling constants. In the present quantum case, we expect that quantum diffusion-
limited binary annihilation A+A→ ; can be similarly tackled by including the initial-boundary
terms as explained in Sec. 4. In this sense, it is also particularly interesting to compare the
asymptotic behaviour of fermions and bosons. While in the classical case occupancy restric-
tions do not affect the asymptotic diffusion-limited decay (since the particle density is already
low), in the quantum case it is not immediate to understand whether bosons and fermions
could yield the same decay law. We leave the analysis of these important points for future
studies.
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A Classical reaction-diffusion field theory for binary annihilation

In this Appendix, we briefly discuss the field theory formulation of classical binary annihilation
A+A→ ;. This is achieved via the Doi-Peliti path integral representation of the classical master
equation [8–10,22,23]. For the purpose of this work, we just report here the Doi-Peliti action
for classical A+ A→ ; for the sake of comparison with the quantum Keldysh description in
Eqs. (88a)-(89b). As a matter of fact, a full description of the renormalisation programme
within classical RD models is beyond the scope of this work, and we refer to [8–10,22,23] for
a detailed discussion. For classical binary annihilation A+ A→ ; the Doi-Peliti action is

S [ϕ, ϕ̃] =

∫ ∞

0

d t

∫

dd x ϕ̃ (∂t − D∇2 )ϕ +
�

2 Γ ϕ̃ϕ2 + Γ ϕ̃2ϕ2 − n0 ϕ̃ δ(t)
�

. (A.1)

This action describes a system where multiple occupancy of the same lattice site is allowed and
therefore is akin to the bosonic quantum RD formulation (88a). The field fields ϕ and ϕ̃ are,
indeed, complex valued fields associated to the eigenvalues of the destruction and creation
operators, respectively, introduced in the coherent-state path integral description of the classi-
cal master equation. In particular, ϕ is related to the mean density n= 〈ϕ〉, while ϕ̃ is related
to complex conjugate field ϕ̄ through the so-called Doi shift ϕ̃ = 1+ ϕ̄. In the classical case,
therefore, the mean density is linear in the field, while in the quantum case is quadratic as dis-
cussed in Eqs. (32) and (37). This is also consistent with the different engineering dimensions
of ϕ ∼ ℓ−d and ϕ̃ ∼ ℓ0 in the continuum limit compared to the quantum symmetric case of
(10). The quadratic part of the action (A.1) reflects classical stochastic diffusive motion with
diffusion constant D. In the quantum case in Eq. (88b), an imaginary factor is present in front
of the time derivative reflecting the different ballistic transport present in the quantum case,
with coherent hopping amplitude J . In both the cases, the quadratic part of the action leads to
a fully off-diagonal propagator. For the classical action (A.1), the Green’s function associated
to the quadratic part are

〈ϕ( x⃗ , t)ϕ̃( x⃗ ′, t ′)〉= Θ(t − t ′)
�

1
4πD(t − t ′)

�d/2

exp

�

−
(x − x ′)2

4D(t − t ′)

�

, (A.2)

〈ϕ̃( x⃗ , t)ϕ( x⃗ ′, t ′)〉= Θ(t ′ − t)
�

1
4πD(t ′ − t)

�d/2

exp

�

−
(x − x ′)2

4D(t ′ − t)

�

, (A.3)

which are the classical analogue of GR and GA in Eq. (57) (Γd = 0), respectively. For binary
annihilation 〈ϕ( x⃗ , t)ϕ( x⃗ ′, t ′)〉= 〈ϕ̃( x⃗ , t)ϕ̃( x⃗ ′, t ′)〉 ≡ 0 and therefore there is no classical ana-
logue of the Keldysh Green’s function (36c). The boundary term proportional to δ(t) reflects
the Poissonian initial condition which is typically taken in classical RD. In this initial condition,
each lattice site is occupied by a number of particles distributed according to a Poissonian with
parameter n0. The latter is the same for each lattice site and hence the initial state is homoge-
neous. The coupling to the initial density n0 is linear in the fields ϕ̃ in a similar way to Eq. (50).
In the quantum case, since the coefficients of the series in (48) are, however, amplitudes (not
probabilities) the parameter associated to the state is

p
n0.
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Figure 10: Interaction vertices for classical A+ A→ ;. Here in the diagrams, time
flows from right to left, as indicated by arrows on the fields. Both vertices (a) and (b)
feature two incoming ϕ fields, that are used to connect to earlier sources via fields
ϕ̃. Vertex (a) has only one “surviving” outgoing ϕ̃ field, while (b) has two ϕ̃ fields.
Panel (c) represents the Y-shaped cubic diagram where initial-time sources n0 have
been expanded to second-order in perturbation theory in n0, and connected to vertex
(a) via two bare propagators (A.2) and (A.3). (c) thus provides the starting point for
the tree-level Dyson equation for the tree-level density ntree(t). The latter is obtained
by nesting vertex (a) recursively. By combining (a) and (b) together, one defines the
fundamental diagram (d) providing the one-loop correction to ntree. The loop series
is thus given by repeated iteration of (b).

Considering the interacting – non-quadratic – part of the action, we give in Fig. 10 a pic-
torial representation of the interaction vertices 2Γ ϕ̃ϕ2 and Γ ϕ̃2ϕ2. The interaction vertices
in Eq. (A.1) are both cubic (Fig. 10(a)) and quartic (Fig. 10(b)) differently from the quantum
bosonic case (88a), where only quartic vertices are present. The interacting Lagrangian in-
cludes a three-legged (Fig. 10(a)) and a four-legged vertex (Fig. 10(b)), both featuring two
incoming ϕ fields which can be used to connect vertices to the two initial condition sources
n0ϕ̃. One then perturbatively expands both the cubic and quartic interaction vertices in Γ and
the initial boundary terms in n0. The expansion of the initial boundary term is akin to the ex-
pansion we performed in Subsec. 4.3 in the simpler case of one-body decay (no interaction ver-
tices therefore). For instance, the vertex 2Γ ϕ̃ϕ2 connects two sources to one surviving particle
ϕ̃ via the Y-shaped diagram in Fig. 10(c), which is determined using Feynman rules. Clearly,
higher-order diagrams may show a recursive structure, where fundamental graphs, e.g., the
tree-level Y-shaped graphs, are nested with each other. Hence, considering a given vertex ex-
panded to any order, one can write a Dyson equation for the dressed propagator, similarly to
the quantum case in Eq. (94). The Dyson equation considers the infinitely many one-particle-
reducible diagrams which can be drawn in terms of the considered vertex at the chosen order
of the perturbative expansion. In our example, one can see that at first order in Γ , and second
in n0, the Y-shaped fundamental diagram of Fig. 10(a) can be recursively “mounted” into an
infinite-order tree-level graph. One can then easily write a recursive equation for the dressed
Green’s function G( x⃗ , t), which in our picture corresponds to the homogeneous tree-level den-
sity G( x⃗ , t) = ntree(t), leading to the phenomenological rate equation [8–10,22,23]:

dntree(t)
d t

= −2 Γ n2
tree(t) . (A.4)

Hence, neglecting the four-fields vertex and considering in the Dyson equation only the vertex
−2Γ ϕ̃ϕ2 to tree-level, simply reproduces the mean-field result.

In the manuscript, we have discussed how Eq. (A.4) describes the dynamics in the reaction-
limited regime Γ/D ≪ 1, when the fast diffusive mixing erases spatial fluctuations in the
density. For finite diffusive mixing Γ/D ∼ 1, diffusion-limited regime, Eq. (A.4) describes the
dynamics only in high spatial dimensions. In low dimensions, instead, spatial fluctuations are
important and one has algebraic decay with exponent different from that predicted by mean
field. This decay can be obtained by considering the one-loop correction to the tree-level
density. Loop corrections are built by combining both interaction vertices, as depicted in the
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diagram in Fig. 10(d). Sources n0 must be connected to the right of the one-loop-level Dyson
equation via two bare propagators as in Fig. 10(c). Internal momenta must now be integrated
over the entire momentum space, due the internal loop, leading to d-dependent ultraviolet-
divergent, for d > 2, and infrared-divergent, for d < 2, contributions. The latter are removed
by systematic renormalisation. A detailed explanation of the renormalisation programme is
detailed in Refs. [8–10, 22, 23]. We here report just the final result for the power-law decay
for the sake of completeness:

〈n〉(t)∼











(Dt)−d/2 , if d < 2 ,

ln(Dt)/Dt , if d = 2 ,

(Γeff t)−1 , if d > 2 ,

(A.5)

with the effective reaction rate Γeff defined by non-universal corrections stemmed from the
loop expansion in d > 2. Crucially, a different decay exponent is identified depending on the
space dimension being above or below the critical dimension dc = 2. For d = 1, namely, decay
〈n〉(t) ∼ (Dt)−1/2 different from the mean field prediction (A.4) is observed. The diffusion-
limited decay is controlled by the time two far apart particle take, on average, to meet and it
is therefore determined by the diffusion constant D (note, indeed, the different scaling of time
compared to Eq. (A.4)). In d = dc = 2 the mean field algebraic decay exponent is still valid
but logarithmic corrections are present on top of it.

B Green’s function in the presence of a slowly varying potential

In this Appendix, we report the derivation of the Green’s function GR,A in Eq. (105) in the
presence of an external potential V ( ¯⃗x) = V (Γ x⃗). We assume the latter to be slowly varying on
a length scale set set by Γ according to (93). For the sake of convenience, we also set Γd = 0.
The equation defining the Green’s function is
§

δ(x1 − x2)
�

i∂t2
+ J∇2

x2
− V
�

Γ
x⃗1 + x⃗2

2

��ª

◦ GR/A
0 (x2, x3) = δ(x1 − x3) . (B.1)

The Wigner transform (43) of the previous equation yields

�

(ε− Jk2) +
i
2
(∂t + 2J k⃗ · ∇⃗x) +

1
4

J∇2
x − V (Γ x⃗)e

i
2 (
←−
∂x
−→
∂k−
←−
∂k
−→
∂x )
�

GR/A
0 (x , k) = 1 . (B.2)

In order to simplify the previous equation, we now consider the Euler scaling limit (99). In this
limit derivatives with respect to the slow centre of mass coordinate are small and therefore
the expression (B.2) can be truncated at the first nonvanishing order in the derivatives in
x . Accordingly, one retrieves the following simple expression for the retarded and advanced
Green’s functions in momentum space expressed in the rescaled coordinate x̄ = Γ x:

GR/A
0 ( x̄ , k) =

1

ε− Jk2 − V ( ¯⃗x)± iδ
, (B.3)

with δ > 0 displacing the pole in the upper or lower complex half-plane, thus determining
the GR/A

0 (x , k) being retarded or advanced, respectively. Within the Euler-scaling limit, slow
variations of the potential with respect to the centre of mass x accordingly determine a slow
dependence of the Green’s functions on x . Clearly, the expression can be anti-Wigner trans-
formed in the frequency variable. This leads to:

GR/A
0 ( ¯⃗x , t, k⃗, t ′) = ∓ie−iεk( ¯⃗x)t ′Θ(±t ′) = ∓ie−iJk2 t ′−iV ( ¯⃗x)t ′Θ(±t ′) . (B.4)
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Therefore, the quasi-particle dispersion relation εk( ¯⃗x) = J k⃗2 + V ( ¯⃗x) is locally modified by
the presence of the external potential according to a local density approximation valid for a
slowly varying potential. One can then anti-Wigner transform (B.4) with respect to the spatial
momentum variable, in order to reach the final expression:

GR/A
0 ( x⃗ , t, x⃗ ′, t ′) = ∓i

�

i
4πJ t ′

�d/2

exp

�

−i
x⃗ ′2

4J t ′

�

e−iV ( ¯⃗x)t ′Θ(±t ′) . (B.5)

In the case of equal time arguments t ′ = 0, the previous expression yields the regularised
retarded GR

0,ϵ and advanced GA
0,−ϵ Green’s functions in Eq. (105) by putting Θ(ϵ) = 1. We

observe that the free Green’s functions GR/A/K
0 in case of a non-vanishing external potential

V are given by the product of two terms: the first term is translationally-invariant, solely
depends on the relative coordinate x⃗ ′, and describes free quantum-ballistic propagation in a
homogeneous space. Conversely, the second term is not translationally invariant as it encodes
the confinement of quasiparticles modes due to the potential V ( x⃗), and it depends on the
centre-of-mass ¯⃗x coordinate only. No explicit dependence on the centre of mass time variable
t appears, as time-translational invariance in the absence of boundary-initial terms still holds.
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