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Abstract

Order parameters represent a fundamental resource to characterize quantum matter.
We show that pair superfluids can be rigorously defined in terms of a nonlocal order pa-
rameter, named odd parity, which derivation is experimentally accessible by local density
measurements. As a case of study, we first investigate a constrained Bose-Hubbard model
at different densities, both in one and two spatial dimensions. Here, our analysis finds
pair superfluidity for relatively strong attractive interactions. The odd parity operator
acts as the unique order parameter for such phase irrespectively to the density of the sys-
tem and its dimensionality in regimes of total particle number conservation. In order to
enforce our finding, we confirm the generality of our approach also on a two-component
Bose-Hubbard Hamiltonian, which experimental realization represents a timely topic in
ultracold atomic systems. Our results shed new light on the role of correlated density
fluctuations in pair superfluids. In addition, they provide a powerful tool for the experi-
mental detection of such exotic phases and the characterization of their transition to the
atomic superfluid phase.
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1 Introduction

Quantumness is fundamentally rooted in delocalization and entanglement, the latter allow-
ing quantum matter to organize in low temperature phases which escape Landau classifica-
tion of spontaneously symmetry breaking (SSB) phases [1, 2]. Notable examples are topo-
logical phases [3–7], as well as insulators with continuum symmetries, i.e. low dimensional
Mott insulators (MI) [8]. Crucially, while SSB phases are endowed with a local order, the
aforementioned examples are characterized by nonlocal orderings which do not violate the
Mermin-Wagner theorem [9]. Such intrinsic nonlocality allows for insulators with continuous
symmetries both in 1D and 2D to be accurately captured by nonlocal parity operators [10–14],
while nonlocal string order parameters [15–17] result the fundamental quantity to capture
one dimensional topological insulators. Relevantly, from SSB [18–24] to low dimensional
Mott [25–28] and topological [29,30] insulators, experimental setups working with ultracold
bosonic atoms in optical lattices [31–34] have allowed for an in depth description of such
states of quantum matter. Besides the impressive versatility encoded in such quantum simu-
lators, a game changing aspect is represented by highly accurate probing schemes. By indeed
making use of either noise correlators [35,36] or quantum gas microscopy [37] both local and
nonlocal orderings have been efficiently probed.

Although the above discussion focused on insulating states of matter, the notion of nonlocal
orders can be applied also to characterize conducting phases of low-dimensional interacting
fermions [12,38–40]. In this regard, nonlocal parity [11,12] and string [17] operators relative
to the spin degrees of freedom have been efficiently employed to characterize Luther Emery
liquid [11] and superconducting phases [38–40] as well as topological conducting regimes
[38,40] respectively. At the same time, the order parameters of gapped conducting phases in
low dimensional bosonic matter are still unexplored. In this paper we tackle this important
topic.

In particular, we explore conducting phases characterized by bosonic pairing, i. e. pair
superfluids (PSFs) whose existence has been predicted in large variety of physical systems
[41–54] and corresponds to the XY2 phase in spin models [44, 55, 56]. Importantly, PSFs
are neither associated to a symmetry breaking nor to the appearance of topological order,
thus representing an example of a gapped superfluid with continuous symmetry. To perform
our analysis, we consider a paradigmatic model of strongly interacting bosons, namely the
Bose-Hubbard model with a constraint of a maximum of two bosons per site. It was initially
introduced to describe regimes characterized by a large rate of three-body losses in ultracold
atomic gases [41, 42]. Previous theoretical works [41, 43] have established that for weakly
attractive interaction an atomic superfluid (SF) phase occurs while, by increasing the attraction
between bosons, the system undergoes a phase transition. Here, a different SF phase, i.e. the
PSF where pairs of single bosons become the effective elementary constituents, appears. As
we will discuss in details, these different superfluids have been characterized by analyzing
the different long distance decay of the single particle and pair-pair correlation function [41].
Although certainly useful, this approach poses significant challenges. On one hand it makes
difficult to properly locate the transition point. On the other hand, experimental schemes to
probe the long distance behavior of correlators are still characterized by a limited efficiency.
Here, we propose an alternative approach based on local density measurements, which can be
performed with high accuracy through quantum gas microscopy.

Specifically, we exploit the bosonization approach [8, 10, 57] to these system to look for
the nonlocal order parameter which corresponds to the PSF phase in one dimension. In so
doing, we introduce a new nonlocal parameter, named odd parity. The prediction is then
verified also numerically, by extensive DMRG numerical simulation, confirming that the odd
parity is the unique order parameter of the PSF phase, in regimes where the total particle
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Figure 1: Cartoon of a phase with finite odd parity order (see (8) and (10)) for a 1D
(a) and 2D (b) lattice respectively. It amounts to a background of holons (empty sites)
and doublons (doubly occupied sites) in which density fluctuations (single bosons)
occur only in pairs with finite correlation length, highlighted by red shaded regions.
Panels (c) and (d) present the resulting phase diagrams obtained through iDMRG
simulations for the 1D system (with χmax = 200) and a lattice system with M = 6
(with χmax = 1500), respectively. The SF region (depicted in blue) corresponds
to zero expectation value of odd parity, while the PSF region (depicted in red) is
characterized by a non-zero value.

number is conserved. As PSF can occur also in 2D [43,45,46,48], we extend the definition of
odd parity by means of the brane generalization [39, 58] and we verify numerically that our
approach holds also beyond the one dimensional limit. In addition, since sample imperfections
might make it challenging to accurately control the particle density, we show that our method
remains highly robust in a large range of bosonic fillings. Finally, we test the validity of our
predictions on an experimentally feasible two component Bose-Hubbard Hamiltonian where
the SF-PSF phase transition was recently predicted [59–64].

2 The model

We analyse the Bose-Hubbard model corresponding to the following Hamiltonian

H = −t
∑

〈R,R′〉

(b†
R bR′ + h.c.) +

U
2

∑

R

nR(nR − 1) +µ
∑

R

nR , (1)

where R = (x , y) is a generic site of a lattice composed by L rungs and M legs (1 ≤ x ≤ L;
1 ≤ y ≤ M , M = 1 in 1D) schematized in figure (1)(a,b). Here, 〈R, R′〉 indicates nearest-
neighbor sites and bR, b†

R are the bosonic creation and annihilation operators on the site R. In
addition, µ is the system chemical potential and the hopping matrix element t = 1 fixes the
energy scale. In order to favor the bosonic pairing we focus on regimes with on-site attractive
interaction U < 0 and we impose the three body constraint (b†

R)
3 = 0 which allows to prevent

the system collapse. As shown both in the 1D and 2D case in figure (1)(c,d), bosons remain in
the SF phase up to a critical value of the attractive interaction, where PSF emerges. To locate
the SF-PSF transition one can investigate the long distance behavior of the single particle and
pair-pair correlation functions defined as

S(r) = 〈b†
x ,y bx+r,y〉 , (2)

D(r) = 〈(b†)2x ,y(b)
2
x+r,y〉 , (3)
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respectively.1 In fact, one expects that in the SF phase both correlators exhibit algebraic decay,
signaling the presence of quasi-long-range order. In contrast, in the PSF phase, one can argue
that while S(r) exhibits exponential decay, indicating the suppression of single bosons motion,
D(r) should maintain its polynomial decay [41].

These intuitive aspects reflect the specific behavior of two different energy gaps defined
as:

∆α=1,2(L ×M) = E(N +α; L ×M) + E(N −α; L ×M)− 2E(N ; L ×M) , (4)

where E(N ; L × M) is the ground state energy of a system of N particles on L × M sites.
Specifically, one can find that, for a finite size system, ∆2 > ∆1 in SF while ∆2 < ∆1 in
PSF [44]. On the other hand, in the thermodynamic limit one finds that ∆2 = 0 for any value
of U , while ∆1 > 0 when entering the PSF regime and thus explaining the exponential decay
of S(r).

2.1 Bosonization analysis

The 3-body constraint Bose-Hubbard model at filling one is directly connected to spin-1 XXZ
chain with single ion anisotropy [10,44,56,65,66]. This aspect is at the core of the analytical
treatment of (1) in 1D by means of a bosonization approach [8,57]. Specifically, by following
[10, 55], the Hamiltonian (1) is first mapped into a spin-1 model, then each spin-1 variable
is written as a sum of two spin-1/2, which in turn are mapped onto two spinless fermions
via a Jordan Wigner transformation. The two corresponding fermionic ladder operators are
bosonized in the standard way, introducing two bosonic fields φ1,2(x), and their dual fields
θ1,2(x) such that [φα(x),θβ(y)] = iπδαβΘ(x − y), with α,β = 1,2 and Θ(x − y) being the
Heaviside step function. Apart from a coupling term negligible in the low energy limit, the
resulting Hamiltonian decouples when re-written in terms of the symmetric an anti-symmetric
combinations of φ1,2(x), namely φ±(x) = φ1(x) ± φ2(x) and θ±(x) = (θ1(x) ± θ2(x))/2.
Explicitly

H → H+ +H− , (5)

with

H+ ≡
u+
2π

∫

d x
�

K+(∂xθ+)
2 +

1
K+
(∂xφ+)

2
�

+
g

(πa)2

∫

d x cos(2φ+) , (6)

H− ≡
u−
2π

∫

d x
�

K−(∂xθ−)
2 +

1
K−
(∂xφ−)

2
�

−
g

(πa)2

∫

d x cos(2φ−)−
t
πa

∫

d x cos(2θ−) . (7)

Here a is the lattice spacing, g = −aU/2 is the coupling constant, and K± = 2(
p

1± U/tπ)−1

are the Luttinger parameters, while u± = 2ta/K± are the velocities in the ±-channels. We
recognize in H± two sine-Gordon models where the condition U < 0 implies K+ > 2 and
K− < 2. A renormalization group analysis [10] suggests that in this regime the field φ+ never
pins, whereas φ− (for U < −2tπ) can pin to the value 0. The corresponding phase can be
identified with the PSF phase.

On general grounds, the bosonization approach can also be exploited to associate to each
pinning value of the bosonic fields an appropriate lattice nonlocal operator which expecta-
tion value becomes different from zero in the corresponding phase. This was first proposed in
the framework of spin-1 chains in [67]. For fermionic models, this was done in [11, 12, 17].
More specifically, in the bosonic case, it was shown that the MI phase of the 1D Hamilto-
nian (1) can be characterized by the non vanishing of the expectation value of the parity

1In (2) and (3), the y-th leg in the lattice is constant but can assume any value. However, since the model
is isotropic in both hopping and interaction, any y-th leg leads to the same effects. In one dimension, obviously
y = 1.
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operator [10], namely OP( j)≡
∏ j−1

x=1 exp[iπ(nx − 1)], which in the continuous limit becomes
OP(x) ∼ cos(φ+(x)). In the thermodynamic limit, its expectation value will remain finite
when most sites are singly occupied, and holon (empty sites) doublon (doubly occupies sites)
fluctuations occur in correlated pairs.

Here we propose that when instead the field φ− pins to the value 0 a different parity
operator O(o)P should become finite, defined as

O(o)P ( j) =
j−1
∏

x=1

exp [iπnx] . (8)

We name it odd parity,2 since its expectation value is finite when fluctuations occur in the form
of correlated pairs of single bosons. Figure (1)(a) shows a simple cartoon of the case when
this quantity is nonvanishing in 1D.

In fact, one can closely follow the derivation exploited in [11, 17] for the spin parity in
the fermionic case to show how in the continuum limit the proposed non local operator (8)
is connected to the bosonic field φ−. Explicitly, upon rewriting the product of exponentials
as the exponential of a sum, the latter in the continuum (where j is replaced by r) becomes
the integral over x of the density of the bosonic field φ−, which can be written as ∂xφ−. The
integral can then be straightforwardly performed, and the parity operator is identified with
the symmetric form of exp[iπφ−(r)], namely

O(o)P (r)∼ cosφ−(r) , (9)

whose expectation value is finite whenφ−(r) = 0. Thus the latter should be finite in the whole
PSF phase, and vanishing as soon as φ− unpins.

This corresponds to the presence of a uniform density distribution over the chain, in which
holon-doublon density fluctuations may occur only in correlated pairs. Whereas in the PSF
phase 〈(O(o)P ( j) + O(o)P ( j + 1))/2〉 will converge to a finite O(o)P while OP is vanishing. This
capture the prevalence of an holon-doublon distribution over the chain, in which single boson
density fluctuations may occur only in correlated pairs, as shown in the cartoon of figure 1.

When extending this analysis towards the 2D limit, upon exploiting [13, 14, 58] one may
introduce a brane odd parity to capture the PSF phase for an M leg ladder. This is the product
of M odd parities for each x-value in the lattice. Explicitly

O(o)P ( j) =
j−1
∏

x=1

exp



iπ
M
∑

y=1

nx ,y



 , (10)

whose expectation value is nonvanishing at finite M in the thermodynamic limit when in the
disordered background of holons and doublons density fluctuations occur only in correlated
pairs, as shown schematically in figure (1)(b). In fact, based on previous results in similar
cases [14,26,39,68], we argue that its finiteness in the 2D limit M →∞ would be achieved
upon proper rescaling of the argument of the exponential with M . This is consistent with
extrapolating the 2D phase transition by direct inspection of its occurrence at finite M through
the unrescaled operator (10).

3 Numerical results

We present in this section the results we obtained by performing iDMRG [69–71] simulations,
which allows to accurately take into account the quantumness of a given system. We analyse

2Since Oo
P( j) = (−)

j−1OP( j), in the subsequent discussion it will be relevant.
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(b)(a) (c)

Figure 2: Analysis of a 1D system (M = 1) at n̄= 1 by performing iDMRG simulations
with a maximum bond dimension of χmax = 200. The panels (a) and (b) present the
analysis of the correlators in (2),(3) respectively. In the panel (c), the odd parity O(o)P
is evaluated.

first the system of a single chain (M = 1) and then we extend our investigation to larger
systems aiming to reach the 2D limit. Within this algorithm, we can either fix a priori the
particle density, working in the canonical ensemble, or tune the chemical potential, in a grand
canonical framework. In this regime, where the particle number conservation is released, 〈b2

i 〉
is an additional order parameter of PSF [41].

Firstly, for both the 1D and 2D cases, we present a validation at fixed filling n̄ = 1 of the
effectiveness of exploiting the odd parity in estimating the SF-PSF transition, in comparison
to the use of correlators S(r), D(r) as defined in (2, 3). Then we present our resulting phase
diagrams in (µ, U) plane, shown in figure (1)(c,d). Next, for both the 1D and 2D cases, we
further investigate the filling dependence of the SF-PSF phase transition by imposing n̄ ̸= 1
throughout the transition.

Referring to previous discussion about parity operators in section 2.1, the nonlocal order
parameter O(o)P has been extracted from O(o)P ( j) by fixing j to a sufficiently large value to
ensure that, within the region of parameter space where the model exhibits the phase defined
by this parameter (i.e., not close to the transition), the nonlocal order parameter has already
converged to a finite constant. We verified that in the same region the parameter OP( j) has
an oscillating behaviour with vanishing average.

3.1 Results in 1D

Our investigation starts with the study of local correlators in (2) and (3) by fixing n̄ = 1 and
enforcing particle number conservation. As illustrated in figure (2)(a) and (b) and mentioned
before, we find that strong attractions generate an exponential decay of S(r) while D(r)main-
tains its quasi-long range order for any U . This behavior can be compared with that of the odd
parity, as shown in figure (2)(c). Here, O(o)P shows a sharp and well defined transition point.
Specifically, the odd parity becomes finite at a specific Uc which clearly does correspond to the
one where the long-range behavior of S(r) starts to deviate from an algebraic decay.

Our numerical approach makes it also possible to accurately complement this analysis by
incorporating a study of the gaps∆1,2. Since in this case we are interested in single excitations,
we are forced to the finite DMRG and a thermodynamic extrapolation (for comparison, the
calculation of the odd parity using both methods is detailed in Appendix A). In this limit,
figure (3) shows indeed that in the SF ∆1 =∆2 = 0 while, as long as PSF takes place, ∆2 = 0
but ∆1 becomes finite. Notably, the condition ∆1 > 0 turns out to be fulfilled exactly when
O(o)P > 0 therefore unambiguously proving the validity and accurateness of our approach.

6

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.020


SciPost Phys. Core 8, 020 (2025)

(a) (b)

Figure 3: Analysis of the gaps defined in (4) by increasing the size of the chain
L = 60, 80,120, 200,300 for finite DMRG. One can see in (a) the single particle gap
while in (b) the double particle gap. Only the first one remains finite by extrapolating
the thermodynamic limit (TDL) by considering a second order polynomial in 1/L. We
keep as maximum bond dimension χmax = 200.

In order to further enforce our results, restricted so far to the canonical ensemble, we also
inspect the odd parity in the grand canonical ensemble by tuning both U and µ. The resulting
phase diagram is reported in figure (1)(c), based on the analysis of O(o)P . It confirms the
presence of the PSF phase (in red), in which the odd parity order remains robust irrespectively
to the particle density.

3.2 Results in 2D

The simulation of 2D systems using MPS algorithms can be challenging due to the efficiency
of this method relying on covering a finite ratio of the system’s entanglement entropy. How-
ever, the entanglement entropy grows extensively according to the area law, diminishing the
algorithm’s efficiency [71, 72]. In our iDMRG simulations, we address this challenge by con-
sidering an infinite size in the x-direction, achieved through the repetition of a finite unit cell
in the y-direction. The use of periodic boundary conditions accelerates convergence to a 2D
configuration. The resulting infinite cylinder system can be effectively mapped to a 1D system
by following a ‘snake-like’ path [70], initially traversing in the y-direction.

We start again from the canonical ensemble by considering the different behaviours of the
correlators (2) and (3) at n̄ = 1. As in the previous case, figure (4)(a) and (b) shows that for
a sufficiently negative U there is a change in the decay law for S(r) while D(r) conserves his
long distance behavior. As before, this point signals the emergence of the PSF phase. Again,
we show in figure (4)(c) this transition to coincide with the critical Uc where the odd parity
becomes finite.

Then, by increasing M from 3 to 8, we evaluated the odd parity to extrapolate the critical
interaction for SF-PSF transition in the 2D limit,3 as illustrated in figure (4)(c).

For M = 6 we further release the particle number conservation and evaluate again the odd
parity by varying the onsite attractive interaction U in the (µ, U) plane. The resulting phase
diagram, which should be representative of the 2D limit, is shown in figure (1)(d): also in this
case the presence of the PSF phase (in red) is in one-to-one correspondence with the region of
finite odd parity. This is confined between the SF phase (in blue), and the two trivial phases
(in white) corresponding to the n̄= 0 and n̄= 2 cases.

3We consider the case M = 6 as a reliable approximation of a 2D system, given that the difference between this
case and our resulting limit is less than 3%.
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(c)(a) (b)

Figure 4: Analysis for a 2D system by iDMRG simulations. The first two panels (a)
and (b) present the correlators in (2),(3) respectively, by increasing the onsite attrac-
tive interaction U < 0 for M = 6. Panel (c) presents the plot of the SF-PSF transition
for 2D systems as a function of the number of legs M . The inset shows the extrapola-
tion for a square 2D lattice of the critical interaction Uc(2D) = −17.65±0.05 imposing
χmax = 1500. Similar to the 1D case, a comparison of the three plots reveals that,
coinciding with the change in decay observed in S(r) the odd parity becomes finite.

3.3 Arbitrary filling

The previously discussed results for 1D and 2D systems focused first on the canonical ensem-
ble, where we enforced a filling of n̄ = 1. Subsequently, such condition was released upon
exploring the behavior of the system in the grand canonical ensemble, where the number of
bosons is not necessarily constant throughout the SF-PSF phase transitions, and we obtained
the (µ, U) 1D and 2D phase diagrams. To confirm the picture, we now inspect the SF-PSF
transition again in the canonical ensemble, for fixed fillings n̄ ̸= 1.

The results are shown in figure (5) for a 1D (a) and a 2D (b) system. There the odd parity
(8) was evaluated for fillings greater and smaller than one. The SF and PSF phases are again
distinguished through the behavior of odd parity: in the first, the odd parity is zero, whereas
in the other the emergence of a nonlocal order is confirmed by its non zero value. A careful
analysis reveals how at all fillings the transition is second order, in both 1D and 2D cases.4

Moreover, in this way the actual dependence of the critical value of interaction Uc on filling is
obtained.

3.4 Two-species system

The presence of the SF-PSF phase transition we discussed in previous sections is not limited to
the 3-body constrained BHM. For instance, it is observed also in case of two components hard-
core bosons in optical lattice [59–64]. Although, the regime of PSF has not yet been observed,
Bose mixtures in optical lattice have been the subject of intense experimental activity [73–80].
The Hamiltonian we are interested in reads

H = −t
∑

i,σ=A,B

(b†
i,σbi+1,σ + h.c.) + U

∑

i

ni,Ani,B , (11)

where i denotes the generic site of each chain for boson species σ = A, B. For attractive
interchain on-site interaction, the system should show a tendency to create pairs of A-B bosons.

4This is at variance with the case of fixed chemical potential, in which traversing a transition in the (µ, U) plane
may result in the total number of bosons not being conserved, leading to abrupt filling changes. This discontinuity
can also manifest in odd parity, transitioning from zero to a finite value.
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(a) (b)

Figure 5: Evaluation of the odd parity O(o)P for a fixed n̄ ̸= 1 for the 1D system
in (a) and 2D in (b), both by performing iDMRG simulations for χmax = 200,1500
respectively. The n̄ = 1 case is included for comparison with previous results. As
evident from figures, for the considered densities there is no change in the nature of
the transition when moving away from filling one.

As before we can measure the emergence of the odd parity order. The previous definition
(8) in this case becomes

O(o)P ( j) =
j−1
∏

i=1

exp





∑

σ=A,B

iπni,σ



 . (12)

Now the same site on the two chains is either empty or occupied in both chains, whereas the
fluctuations occur in the form of correlated pairs of bosons of the different species as depicted
in figure (6)(a).

In agreement with results in [64, 81], and with bosonization analysis in the fermionic
case [11], O(o)P becomes finite as soon as U < 0, as shown in figure (6)(b).

4 Conclusions

We unveiled the order parameter of the exotic pair superfluid phase. The latter takes the form
of a nonlocal parity operator named odd parity which can be accurately detected through
local density measurements. Such quantity is finite whenever in a disordered background of
holons and doublons single bosons occur in correlated pairs. The prediction is confirmed by a
bosonization analysis and extensive numerical simulations.

Relevantly, we have shown our results to hold both in one and two spatial dimensions, at
any density supporting a pair superfluid phase, and in two different models where such state
of matter takes place. This aspect confirms the generality and the large range of applicability
of our findings. Moreover, we proved the aforementioned points through extensive matrix-
product-state simulations where quantum fluctuation are accurately taken into account. This
makes our results highly robust and reliable in deep quantum regimes where mean-field ap-
proaches are not reliable.

We further stress that a major advantage of nonlocal operators is that they do not break
continuous Hamiltonian symmetries, thus describing orders that can persist in low dimensional
systems even at non vanishing temperatures. Hence the measurement of odd parity order is
even more at hand in present experimental setups, especially because it can be obtained by
means of just local density probes. In conclusion, we believe that our results represent an
important step towards a more complete and accurate characterization of strongly correlated
many-body quantum systems.
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(a)

A) B)

(b)

Figure 6: (a) Schematic representation of the two hard-core bosons chains model.
One can see the direct connection to the previous representation in figure (1)(a).
Now the doublons are composed by A (in blue) and B (in green) bosons with the same
site index. For finite odd parity, such doublons can be decoupled and differ by one
(or more) lattice spacing, while maintaining a finite correlation length highlighted by
the red ellipses. (b) Evaluation of the odd parity in (12) for SF-PSF phase transition
performing iDMRG simulations with a maximum bond dimension of χmax = 400.
Differently from previous case, the transition occurs as soon as the interaction U
becomes negative.
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A Comparison of Odd Parity calculations: finite vs infinite DMRG

As introduced in the text, we exploited two different variants of the DMRG algorithm for our
numerical simulations [71, 82–85] in matrix product states formalism [71, 86–88]. One is
the DMRG for a finite system. We used it for computing the energy gaps and requires an
infinite size extrapolation, as we did in figure (3). The other one is the infinite-size variant of
the DMRG (iDMRG) algorithm [69, 71, 89, 90], and this is the one we exploited to compute
the odd parity (as specified in section 3) in figures (1,2,4-6). It leads to obtain a fixed-point
translationally invariant matrix product wavefunction. When the algorithm is converged, the
resulting quantum state approximates the 1D thermodynamic limit. In this way we are able to
perform our simulations directly for an approximated infinite chain, avoiding the necessity of
an infinite size extrapolation typical of the finite size DMRG results. However, in practice, the
simulated chain is not infinite and we are forced to select a finite maximum j in accordance
with the algorithm, when computing the expectation of the odd parity operator (as in eq.(8)).
Not too close to the transition, O(o)P quickly converges to zero or a constant, and thus a small

value of j is sufficient to have a perfectly converged O(o)P .
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Contrary to the calculation of O(o)P , extracting the gaps requires a finite chain and so finite
size simulations. Indeed the iDMRG method doesn’t support the calculation of excitations and
one has to extrapolate the thermodynamic limit of the systems from a set of finite sizes.

To assess the consistency between the two procedures, we can compare the results from
both algorithm for O(o)P of the 1D Bose-Hubbard model in eq.(1). This is shown in figure
(7). The light blue crosses are the iDMRG results (the same as in figure (2).(c)), while the
red diamonds are the extrapolated results from finite size DMRG. Both methods distinguish
between a region of zero O(o)P (the atomic SF) and one where the same quantity is finite (PSF):
the estimated transition point by iDMRG is in accordance with the extrapolated TDL data.
This comparison shows that, by exploiting the iDMRG method, we are obtaining an accurate
approximation of the TDL, avoiding the extrapolation procedure. Moreover the match between
iDMRG and finite size results is supported by the agreement with the opening of the single
particle gap ∆1 in figure (3).

Figure 7: The figure shows the O(o)P results for: different sizes of a finite chain by
DMRG, the thermodynamic limit extrapolation obtained by these sizes, and the same
quantity obtained by the iDMRG method. The dashed and dotted lines are guide for
the eyes.
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