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Abstract

We propose an alternative to the Bethe Ansatz method for repulsive strongly-interacting
fermionic (or bosonic) mixtures on a ring. Starting from the knowledge of the solution
for single-component non-interacting fermions (or strongly-interacting bosons), we ex-
plicitly impose periodic condition on the amplitudes of the spin configurations. This
reduces drastically the number of independent complex amplitudes that we determine
by constrained diagonalization of an effective Hamiltonian. This procedure allows us to
obtain a complete basis for the exact low-energy many-body solutions for mixtures with
a large number of particles, both for SU(κ) and symmetry-breaking systems.
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1 Introduction

Exactly solvable quantum many-body systems are rare in physics, and generally exist only
in one-dimensional (1D) spatial geometries. For a long time these systems have been seen
more as toy models rather than models that can describe real physical set-ups. However,
in the last decades they gained also this status thanks to their implementation in cold-atom
laboratories that enabled quantum simulations of many-body [1–3] as well as of few-body
physics in 1D [4–6].

Ultracold gases are extremely rich and versatile. They can be realized with bosonic or
fermionic atoms, which can be non-interacting or with tunable interactions up-to very strong
repulsive or attractive interactions, and eventually with a spin or color degree of freedom
that can be very large [7]. The stronger the interaction strength, the more correlated the
atoms are, and the more difficult it is to get numerically an accurate description of the system,
especially for long-time dynamics. For these reasons, exact solutions for quantum systems are
gaining more and more interest and are becoming essential both for deep understanding of
fundamental physics and for benchmarking classical and quantum simulators.

Exact solutions for 1D homogeneous systems are well-known in the literature. Celebrated
examples are 1D bosons or fermions with contact interactions that are solvable by the Bethe
Ansatz both in the case of repulsions [8–12] and attractions [3, 13–18], the latter giving rise
to many-body bound states or pairing. In the presence of an inhomogeneous confinement
there are generally no exact solutions for interacting systems, except for systems with infinite
repulsive interactions such as impenetrable bosons, the Tonks-Girardeau (TG) gas [19], or
impenetrable bosonic or fermionic mixtures [2,4,5,20–23]. The key point for this category of
exact solutions is that impenetrable particles behave like non-interacting fermions as long as
the correct symmetry exchange is taken into account. The mixture many-body wavefunction is
thus mapped on that for non-interacting fermions, and the exchange properties are determined
by the diagonalization of an effective Hamiltonian related to the contact matrix [21,23–26].

Until now, this method was essentially applied only to mixtures under external confine-
ment, such as harmonic or box traps, and not to ring systems, with the sole exception of the
ground-state of non-degenerate symmetric mixtures with vanishing momentum [27]. Ring
trapping potentials have become available in the experiments with ultracold atoms, and are
nowadays realized with unprecedented precision and smoothness (see e.g. Ref. [28] and ref-
erences therein). The ring geometry, corresponding to imposing periodic boundary conditions,
is the most suitable geometry to study the thermodynamic limit, due to absence of boundaries
or inhomogeneities. Also, finite-size rings are important for studying mesosocopic effects, such
as the response to applied gauge fields [29,30] as well as for applications to atomtronics [31].
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The exact solutions for mixtures on a ring are generally provided by the Bethe Ansatz
[10, 11,13, 32], whose resolution becomes increasingly complex as the number of atoms and
components increases [33–37]. Inspired by the contact matrix method introduced in [21,23],
we propose here an alternative to the Bethe Ansatz, the necklace Ansatz, for calculating the
spectrum and the many-body eigenstates for fermionic or bosonic mixtures in the strongly
repulsive limit.

The first building block of our procedure is the solution for a single-component quantum
gas on a ring. It allows us to write the many-body wavefunction of a fermionic/bosonic mixture
for a given sector, i.e., a given order of particles. The second step consists in regrouping the
sectors that are equivalent up to a permutation of identical particles in snippets. The number
of snippets fixes the number of independent solutions for the spin components. The third
step, which is the crucial point of the procedure, is to regroup the snippets that are the same
on the ring up to a rotation, i.e. that belong to the same necklace. The fact that the many-
body wavefunction has to be the same on snippets belonging at the same necklace fixes a
phase relation between the snippets’ amplitudes. This reduces further the complexity of the
problem: one needs to determine a number of complex coefficients that is equal to the number
of different necklaces minus one, because of the normalization condition. The last step is to
determine these complex amplitudes. This is done by solving a constrained diagonalization of
an effective Hamiltonian for each value of the quantized total momentum.

The article is organized as following. In Sec. 2 we remind the solution for a spinless Fermi
gas and for a single-component TG gas on a ring and we remind the main steps of the Bethe
Ansatz in order to find the solution for a fermionic/bosonic mixture in the strongly repulsive
limit. The necklace Ansatz is detailed in Sec. 3 and many examples are given in Sec. 4. Our
concluding remarks are given in Sec. 5.

2 Strongly-interacting quantum gases on a ring

2.1 Single-component particles on a ring

Let us consider the ground state for N spinless fermions or N TG bosons on a ring of length L,
with coordinates X = {x1, . . . , xN} [38,39]:

ΨGS(X ) =

�

ΨSD(k
F
ℓ x j) ,

AΨSD(k
B
ℓ x j) ,

(1)

with ΨSD(kℓx j) being the Slater determinant built with the ring single-particle orbital solutions
∼ eikℓx j and A is the symmetrization operator.

For the case of N even fermions, kF
ℓ
= {−N

2
2π
L , (−N

2 + 1)2π
L , . . . , 0, . . . , (N

2 − 1)2π
L }; for

the case of N odd fermions, kF
ℓ
= {−N−1

2
2π
L , . . . , 0, . . . , N−1

2
2π
L }; for the case of N even TG

bosons, kB
ℓ
= {−N−1

2
2π
L , . . . ,−πL ,+πL , . . . , N−1

2
2π
L }; and for the case of N odd TG bosons,

kB
ℓ
= {−N−1

2
2π
L , . . . , 0, . . . , N−1

2
2π
L }.

Remark that, for all K = 2πn
L ,

ΨK(X ) = eiK(
∑

j x j)/N)ΨGS(X ) =

�

ΨSD((k
F
ℓ +K/N)x j) ,

AΨSD((k
B
ℓ +K/N)x j) ,

(2)

is a solution with total momentum

PN ,n =
N
∑

j=1

ħh
�

kF,B
j +

K
N

�

=
N
∑

j=1

ħhkF,B
j +

2nπħh
L
= PN ,n

F,B +ħhK , (3)

3

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.022


SciPost Phys. Core 8, 022 (2025)

and energy

EN ,n
∞ =

ħh2

2m

N
∑

j=1

�

kF,B
j +

K
N

�2

=
ħh2

2m

N
∑

j=1

�

kF,B
j +

2nπ
LN

�2

. (4)

2.2 Quantum mixtures on a ring

Let us now consider a fermionic or a bosonic spin mixture with κ components, obeying the
Hamiltonian

Ĥ =
κ
∑

σ=1

Nσ
∑

i=1

−
ħh2

2m
∂ 2

∂ x2
i,σ

+
κ
∑

σ

gσσ

Nσ
∑

i=1

Nσ
∑

j>i

δ(x i,σ − x j,σ) +
1
2

κ
∑

σ ̸=σ′=1

gσσ′
Nσ
∑

i=1

Nσ′
∑

j=1

δ(x i,σ − x j,σ′) ,

(5)
where the i, j’s are the particle’s indices that go from 1 to Nσ (Nσ′), the σ,σ′’s are the spin
indices that go from 1 to κ and the gσσ′ ’s are the inter- and intra-species interaction strengths.
The latter concerns only identical bosons since for identical fermions s-waves contact interac-
tions are not allowed. Here and in the following, we are interested in the limit gσσ′ → +∞,
for anyσ,σ′. In this strongly interacting regime, the many-body wavefunction vanishes when-
ever x i = x j .

2.3 The Bethe Ansatz solution at strong interaction

In this section, we briefly summarize the Bethe Ansatz solution for strongly-interacting quan-
tum mixtures on a ring. In SU(κ) mixtures, when gσσ′ = g for anyσ,σ′, the systems described
by Hamiltonian (5) can be solved exactly at any interaction strength and for generic κ using
the Bethe Ansatz [11,40–44].

In the following, we only treat the strongly interacting regime g → ∞, as it
constitutes the main focus of this work. In this regime, in each coordinate sector
θQ(X ) = θ (xQ(1) < xQ(2) · · · < xQ(N)), Q being the permutation operator, the Bethe Ansatz
wavefunction reads:

ΨBA,Q(X ) = aQ(Λ
(2)
1 , . . .Λ(2)N2

; . . . ;Λ(κ)1 , . . .Λ(κ)Nκ
)
∑

P

(−1)(1−ηB)|P| exp
¦

i
∑

j

kP( j)xQ( j)

©

, (6)

where the wavevectors k j , j = 1 . . . N are the charge rapidities; Λ(σ)m are the spin rapidities
rescaled by the interaction constant [45,46] with σ = 2 . . .κ being the label of the spin species
and m= 1 . . . Nσ being the label of the particle with the spin σ. The sum is performed over all
the possible permutations P in the symmetric group SN ; ηB = 0, 1 for fermionic and bosonic
mixtures, respectively. The notation |P| indicates the number of transpositions linking the
permutation P with the identical sector defined by k1 ≤ k2 ≤ · · · ≤ kN . We remark that, at
intermediate or weak interactions, the amplitudes aQ depend also on the charge rapidities. As a
consequence, in the general case, the amplitudes also depend on the permutation P. However,
in the strongly interacting limit we consider, such dependence drops out due to the decoupling
of spin and charge degrees of freedom, and the amplitudes of the Bethe wavefunction only
depend on the permutation Q indicating the coordinate sector.

The charge and spin rapidities are specified by a set of charge and a set of spin quantum
numbers, respectively {I j}, j = 1 . . . N and {J (σ)m }, m = 1 . . . Nσ, and they are determined by
imposing the periodic boundary conditions for the charge and for the spin part of the wave-
function [47,48].

In the strongly interacting regime, the charge rapidities can be calculated explicitly using:

Lk j = 2π
�

I j ±
1
N

κ
∑

σ=2

Nσ
∑

n=1

J σm
�

, (7)
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where the + sign is for fermions and the − is for bosons. The possible values of the quantum
numbers depend on the statistics of the particles. In the next paragraph, we outline the Bethe
Ansatz solution for two-component mixtures at infinite interaction strength.

SU(2) mixtures For the case κ = 2, the quantum numbers obey the following rules. For
bosonic mixtures, {I j} and {J (2)m } are integers if N and N2 have the same parity, and half-
integers otherwise [44]. For Fermi gases, the nature of the quantum numbers is more com-
plicated. For odd N , both {I j} and {J (2)m } are integers or half-integers depending on N2 be-
ing even or odd respectively. For even number of particles, {I j} are integers and {J (2)m } are
half-integers for even N2, while for N2 odd the quantum numbers are {I j} and {J (2)m } are
half-integers and integers respectively.

Bethe Ansatz provides an analytical expression for the amplitudes aQ(Λ
(2)
1 , ...Λ(2)N2

):

aQ(Λ
(2)
1 , ...Λ(2)N2

)∝ (−1)|Q|
∑

R

∏

1≤m<n≤N2

Λ
(2)
R(m) −Λ

(2)
R(n) − 2i

Λ
(2)
R(m) −Λ

(2)
R(n)

N2
∏

l=1

�

Λ
(2)
R(l) − i

Λ
(2)
R(l) + i

�yQ(l)

, (8)

where the integer yQ(l) labels the position of the l-th spin down in the coordinate sector θQ(X )
and |Q| indicates the number of transpositions mapping Q into the identical coordinate sector
x1 ≤ x2 ≤ · · · ≤ xN . The summation runs over all the possible permutations R of the N2 spin
rapidities.

For each set of {k j} and of spin quantum numbers {J (2)m }, the spin rapidities can be ob-
tained by imposing periodic boundary conditions on the amplitudes aQ. This yields the N2
non-linear coupled Bethe equations:

2N arctan(Λ(2)m ) = 2πJ (2)m +
N2
∑

n=1

2arctan(Λ(2)m −Λ
(2)
n ) , m= 1 . . . N2 . (9)

In this limit, amplitudes (8) coincide, up to a normalization constant, with the ones of the
Bethe wavefunction for the isotropic Heisenberg spin chain [49–53]. The Bethe equations (9)
coincide with the ones of the Heisenberg model. This implies that the 1/g-correction to the
energy spectrum of the quantum mixture can be calculated from the Heisenberg spin chain
with a suitable definition of an effective exchange coupling [46]. Remarkably, this equivalence
holds for a generic value of κ [54].

Finding all the solutions to the Bethe equations is a challenging task, already for moderate
values of N [33–35]. In order to obtain a complete set of complex roots [55] one has to include
exceptional (or “singular”) solutions and introduce regularizations of the equations [36, 56,
57]. Furthermore, the Bethe equations become significantly more intricate as κ increases [37].

3 The necklace Ansatz

In this section we will outline an alternative procedure to the Bethe Ansatz at strong interaction
for deriving the amplitudes aQ that we will call the necklace Ansatz. The word ‘necklace’
appears in combinatorics to describe a string of N coloured beads, which can have up to κ
different colours, assuming that all rotations are equivalent [58].

Analogously to the trapped case [21, 23], in the fermionized regime, we can write the
many-body wavefunction for a mixture starting from the single-component many-body wave-
function ΨK(X ) (see Eq.(2)) on the basis of particle sectors θQ(X ) yielding

Ψ(X ) =
∑

Q∈SN

aQθQ(X )ΨK(X ) . (10)
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c2 c2 e
−i 2nπN

c1 c1 e
−i 2nπN c1 e

−i 4nπN c1 e
−i 6nπN

Figure 1: Schematic representation of the necklaces, their link to the snippets and
the corresponding wavefunction amplitudes for the case of a 2+2 bosonic (fermionic)
mixture.

The N ! sectors can be regrouped in Ns = N !/(
∏κ
ν=1 Nν!) snippets, with Ns being the dimension

of the Hilbert space, where each snippet is an ensemble of sectors that are equivalent under
permutation of identical particles [5]. Notice that, for each snippet s, aQ = as for all Q ∈ s,
using the symmetry under exchange of identical particles within the mixture. We can then
rewrite Eq. (10) as

Ψ(X ) =
Ns
∑

s=1

asΨK,s(X ) , (11)

where ΨK,s(X ) =
∑

Q∈s θQ(X )ΨK(X ) is the wavefunction that includes all coordinate sectors
corresponding to the same snippet. We outline below the procedure for finding the as coef-
ficients for the Ns independent spin-configurations corresponding to the ground- and excited
states of the spin Hamiltonian.

In order to build the necklace Ansatz, the key observation is that, because of the periodic
boundary conditions, there are families of equivalent snippets. This implies that the as coeffi-
cients are not all independent. Let us clarify this point by making an example on two sectors
for the sake of clarity. We consider the sector x1 < x2 < x3 < · · · < xN corresponding to the
identity permutation Q = Id, and the sector x2 < x3 < · · · < xN < x1 obtained by the cyclic
permutation Q′( j) = j + 1, where the cyclic condition implies Q′(N) = 1. On a ring these
two sectors correspond – up to a rotation – to the same necklace, hence the many-body wave-
function has to be the same on these two sectors [49]. This means that, observing that the
sector θQ′(x) can be obtained from θId(X ) by applying the transformation x1 → x1 + L, and
taking into account that ΨK(x1+ L, x2, . . . , xN ) = eiKL/NΨK(x1, x2, . . . , xN ), the amplitudes in
the sector θQ′(x) have to satisfy aQ′ = e−iKL/N aId.

Using the fact that all the sectors that contribute to a given snippet have the same weight
aQ, we can extend the reasoning above to the snippets and regroup them in families when they
correspond to the same necklace up-to a rotation (see Fig. 1). The Nℓ snippets, belonging to
the same ℓ-th necklace family, are connected by a q-cycle permutation Q̃q(i) = Q(i + q) with
q = 1, . . . ,Nℓ−1. Setting cℓ the complex amplitude for a given snippet of the ℓ-th necklace, the
periodicity of the wavefunction along the ring imposes that in the many-body wavefunction
the amplitudes of the snippets obtained by the Q̃q permutation coincide with cℓ times the phase

factor e−i qKL
N , such that all the amplitudes of the snippets belonging to the ℓ-th necklace read

cℓ, e−i KL
N cℓ, e−i 2KL

N cℓ, . . . , e−i
(Nℓ−1)KL

N cℓ .

6
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Figure 2: Necklaces for a 3+3 bosonic (fermionic) mixture. There is one high-
symmetry necklace with pℓ = 2 and three 6-period necklaces.

The number of snippets Nℓ belonging to the same necklace is generally N , except for high-
symmetry necklaces that have a pattern that repeats itself with a period pℓ < N , in such a case
Nℓ = pℓ.

The condition for the ℓth rotated necklace to come to its initial position is that
NℓKL/N = 2πn, with n a relative integer. This recovers the condition K = 2πn/L for most
families where Nℓ = N , but gives a more restrictive condition for high-symmetry configura-
tions. The allowed values of the quantum number n depend on the type of necklace, see Sec. 4
for examples.

Notice that this Ansatz reduces drastically the number of coefficients required to define the
wavefunction, from the number of snippets Ns to the number of independent necklaces Nneck
(minus one, because of the normalization condition). The number of necklaces is given by

Nneck = (Ns −
M
∑

j=1

p j)/N +M , (12)

M being the number of high-symmetry configurations with period pℓ < N . Notice that our
Ansatz provides by construction a complete set of solutions at strong coupling. This can be a
noticeably harder task if the Bethe Ansatz methods are used instead [34,36,55,57,59]. As an
illustrative example, let us consider a two-component balanced mixture. For N = 4, Ns = 6 and
M = 1 with period p1 of length 2 (↑↓↑↓). This gives Nneck = (6−2)/4+1= 2. Indeed we have
two families of snippets that correspond to two necklaces (see Fig. 1): {↑↑↓↓,↑↓↓↑,↓↓↑↑,↓↑↑↓}
and {↑↓↑↓,↓↑↓↑}. For N = 6 we have Ns = 20 and again M = 1 with period of length p1 = 2
(↑↓↑↓↑↓). This gives Nneck = (6− 2)/6+ 1= 4, see Fig. 2. For the case N = 8, Ns = 70. There
are 2 possible periodic configurations with period smaller than N : one with period of length
p1 = 2, and the other with period of length p2 = 4. This gives Nneck = (70−2−4)/8+2= 10.

The coefficients in the wavefunction (10) are determined by solving the Schrödinger equa-
tion in the limit of large repulsive interactions. In this regime, spin and orbital part decouple
and we are left to solve the eigenvalue problem for the contact matrix V whose form depends
on the type of mixture under consideration (see Appendices B and C for details and examples).
In the fermionic SU(2) case the contact matrix in the snippets’ basis reads

[V SU F ]i, j =
ħh4

m2

� ∑

ℓi
δd αℓi

, j = i ,
−vi, j , j ̸= i ,

(13)
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while in the bosonic SU(2) case we have

[V SU B]i, j =
ħh4

m2

� ∑

ℓi
(δd + 2δb)αℓi

, j = i ,
vi, j , j ̸= i ,

(14)

where δd is equal to one if ℓi and ℓi +1 correspond to distinguishable particles (two different
spins) and zero otherwise, while δb is equal to one only for next-neighbor identical bosons.
We indicate αℓi

as the nearest-neighbor exchange constant, given by

αℓi
= N !

∫

dx1,. . .dxNθId(x1, . . . , xN )δ(xℓi
−xℓi+1)

�

∂ΨK
∂ xℓi

�2

. (15)

For the off-diagonal terms we have vi, j = αℓi
if the snippets i and j differ from the exchange of

two nearest-neighbor particles with different spins, set at positions ℓi (ℓ j + 1) and ℓi + 1 (ℓ j),
and zero otherwise.

In the homogeneous system, translation symmetry implies that all αℓi
’s are equal and

depend solely on the number of particles. From now on we will set αℓi
= α(N). We no-

tice that the matrix −V/g corresponds to the Hamiltonian of a Heisenberg spin chain with a
hopping amplitude α(N)/g, that depends on the number of particles and interaction strength
g [21,23–25,27,60].

4 Illustration of the method

In the next subsections, we will illustrate our method using a few representative cases. We
show that the necklace Ansatz provides the same solutions as the Bethe Ansatz in the strongly
interacting limit (see also results in Appendix D, whose range of validity is discussed in Ap-
pendix E). The illustrative examples below herald analysis of more complicated problems
where the direct solution to the Bethe Ansatz equations is very difficult to access.

4.1 Spectrum and eigenstates of a 2+2 SU(2) bosonic mixture

Let us consider the case of a bosonic SU(2) mixture with N↑ = 2 N↓ = 2 on a ring of length
L. For such a system, the number of snippets is Ns = 6 and we have two necklaces, i.e. two
families of snippets. To the snippets of the first necklace, given by {↑↑↓↓,↑↓↓↑,↓↓↑↑,↓↑↑↓},
we assign the coefficients {c1, c1e−inπ/2, c1e−inπ, c1e−i3nπ/2}, while to the second necklace
{↑↓↑↓,↓↑↓↑}, we assign the coefficients {c2, c2e−inπ/2}, see Fig. 1. Remark that we have set
K/N = 2nπ/4, n being a relative integer, and that solutions with c2 different from zero must
have even values of n (c2e−inπ = c2). Thus, we expect two spin states if n is even and only
1 when n is odd and that Néel spin-configurations, namely configurations with alternating
spin-up and spin-down, are forbidden in this case.

In order to find c1 and c2 as functions of n, we solve the conditioned eigenvalue problem

α(4)















6 0 0 0 1 1
0 6 0 0 1 1
0 0 6 0 1 1
0 0 0 6 1 1
1 1 1 1 4 0
1 1 1 1 0 4































c1

c1e−inπ/2

c1e−inπ

c1e−i3nπ/2

c2

c2e−inπ/2

















= ξn

















c1

c1e−inπ/2

c1e−inπ

c1e−i3nπ/2

c2

c2e−inπ/2

















. (16)
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Setting ξ̃n = ξn/α
(4), we obtain the following system of equations






























(6− ξ̃n)c1 +(1+ e−inπ/2)c2 = 0 ,
(6− ξ̃n)c1e−inπ/2 +(1+ e−inπ/2)c2 = 0 ,
(6− ξ̃n)c1e−inπ +(1+ e−inπ/2)c2 = 0 ,
(6− ξ̃n)c1e−i3nπ/2 +(1+ e−inπ/2)c2 = 0 ,
(1+ e−inπ/2 + e−inπ + e−i3nπ/2)c1 +(4− ξ̃n)c2 = 0 ,
(1+ e−inπ/2 + e−inπ + e−i3nπ/2)c1 +(4− ξ̃n)c2e−inπ/2 = 0 ,

(17)

that has six solutions summarized in Table 1. Note that there are two families of equations
in Eq. (17): the first 4 differ only by the phase factor of the first member, and the second 2
by the phase factor of the second member. As Eq. (17) is overdetermined, we conclude that
for n ̸= 0, the solution has either c1 = 0 or c2 = 0. Only if n = 0 (modulo 4), we can have a
situation when both coefficients are non-vanishing. We notice that the solution of Eq.(17) for
c1 = 0 shows that c2 is different from zero only if (1+ e−inπ/2) = 0, implying that n is even, as
was anticipated above. Similarly, the solution of Eq. (17) for c2 = 0 yields as possible values
n = 1, 2,3 (modulo 4), showing that the allowed values of K are all the multiples of 2πħh/L.
This is at the origin of the fractionalization of the period of persistent currents, see Sec. 4.4.
It follows from the above structure of the solution that the c j ’s solution with a given n is a
solution also for n′ = n+ 4.

One could think that there are too many equations for determining c1 and c2, but the
imposition of this sort of gauge invariance condition for the two coefficients is necessary in
order to find and select all (and only) the physical solutions. Indeed if one tries to get c1 and
c2 directly from the minimization of the energy one obtains the equations
�

(12− 4ξ̃n)c1 +(1+ 2 cos(nπ/2) + cos(nπ))c2 = 0 ,
(1+ 2 cos(nπ/2) + cos(nπ))c1 +(4− 2ξ̃n)c2 = 0 ,

(18)

that allows solutions that are not physical, such as c2 ̸= 0 for n= 1.
To ascertain the validity of these solutions, one can verify that they have the correct sym-

metry. This could be done using the natural representations of SU(κ) (or equivalently SN ),
the Young diagrams. These diagrams are collections of boxes that schematically represent the
particle-exchange symmetry of a physical state. Precisely, boxes in line (resp. column) refer to
symmetric (resp. anti-symmetric) exchanges so that line diagram corresponds to a three-
particles fully symmetric state and a column to a three-particles fully anti-symmetric state.

All other configurations represent more exotic states with mixed symmetries, each correspond-
ing to a different representation of SN . The usual procedure to connect our physical states to
these diagrams is through the use of class sum operators, verifying that they are eigenstates of
the 2-cycle class-sum operator Γ (2) = 1

2

∑

i< j Pi, j , [61,62] where Pi, j is the operator which per-

mutes the i-th and j-th elements. Γ (2)’s eigenvalues are directly connected to the irreducible
representations of SU(κ), and thus to the Young diagrams. Indeed the relation between the
eigenvalues γ(2)’s and a Young diagrams with a number of boxes µi at row i is [63]

γ(2) =
1
2

∑

i

[µi(µi − 2i + 1)] . (19)

For n = 0 the total momentum P is zero and we find (i) the fully symmetric state with
c1 = c2 = 1/

p
6 with eigenvalue ξ0/α

(4) = 8, and (ii) the solution c1 = 1/(2
p

3), c2 = −1/
p

3
with ξ0/α

(4) = 2 that corresponds to the symmetry represented by the Young diagram .

For n = ±1 (P = ±2πħh/L), we find the solutions (iii) and (iv) with amplitudes c1 = 1/
p

2,
c2 = 0 and ξ±1/α

(4) = 6. Both have symmetry . For n = 2, we find two solutions: (v) one
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Table 1: Solution for the 2+2 SU(2) bosonic mixture. ξ̃n are the rescaled eigenvalues
ξn/α

(4).The last column indicates the symmetry of the solution with the associated
Young diagram (YD).

n ξ̃n c1 c2 γ(2) YD
-1 6 1/2 0 2
0 8 1/

p
6 1/

p
6 6

2 1/(2
p

3) −1/
p

3 0
1 6 1/2 0 2
2 6 1/2 0 0

4 0 1/
p

2 2

with c1 = 1/2, c2 = 0 and ξ2/α
(4) = 6 ( ), and the last one (vi) with c1 = 0, c2 = 1/

p
2 and

ξ2/α
(4) = 4 ( ). The values for the spin-states coefficients are summarized in Table 1. These

states constitute a complete and orthogonal basis for the spin configurations. One can readily
check that the obtained values for the c j yield the same wavefunctions as those obtained from
the Bethe Ansatz solution in the strongly interacting limit (see e.g. [49,64]).

4.2 Spectrum and eigenstates of a 4+2 SU(2) fermionic mixture

Let us now consider a 4+2 SU(2) fermionic mixture. For such a system Ns = 6!/(4!2!) = 15
and Nneck = (15− 3)/6+ 1 = 3. To the snippets of the first necklace {↑↑↑↑↓↓,↑↑↑↓↓↑,↑↑↓↓↑↑,
↑↓↓↑↑↑,↓↓↑↑↑↑,↓↑↑↑↑↓}we assign the coefficients {c1, c1e−inπ/3, c1e−i2nπ/3, c1e−inπ, c1e−i4nπ/3,
c1e−i5nπ/3}, to the second {↑↑↑↓↑↓,↑↑↓↑↓↑,↑↓↑↓↑↑,↓↑↓↑↑↑,↑↓↑↑↑↓,↓↑↑↑↓↑}, we assign the co-
efficients {c2, c2e−inπ/3, c2e−i2nπ/3, c2e−inπ, c2e−i4nπ/3, c2e−i5nπ/3}, and to the third {↑↑↓↑↑↓,
↑↓↑↑↓↑,↓↑↑↓↑↑} we assign the coefficients {c3, c3e−inπ/3, c3e−i2nπ/3}. Remark that we have
set K/N = 2nπ/6, n being a relative integer, and that solutions with c3 different from zero
must have even values of n (c3e−inπ = c3). Thus, we expect 3 possible spin configurations if n
is even and only 2 if n is odd. Indeed, by solving the conditioned eigenvalue system (C.1), we
find that every even value of n allows for 3 solutions and every odd n allows for 2 solutions.
Therefore, there are 15 independent solutions for n from n = −2 to n = 3, that are given in
Table 2.

4.3 3+3 mixtures: from SU(2) to symmetry breaking mixtures

The necklace Ansatz can also be used to analyze systems with gσσ′ ̸= gσσ in Eq. (5) as long
as the system is strongly interacting. In this subsection, we consider arguably the simplest
scenario. The generalization to other cases is straightforward just as in the trapped cases [24,
60] or for the problem in a ring with vanishing total momentum [27].

Here we will consider a 3+3 mixture and we will compare the cases of a SU(2) fermionic
mixture and of a SU(2) bosonic mixture g↑↑ = g↓↓ = g↑↓, with a symmetry breaking (SB)
case of a bosonic mixture where the SU(2) symmetry is explicitly broken (1/g↑↑ = 1/g↓↓ = 0
and g↑↓ is large but finite) [27]. For a 3 + 3 mixture there are 20 snippets and Nneck = 4
independent necklaces, one of which has a period of length 2. We assign to the snip-
pets of the first necklace {↑↑↑↓↓↓,↑↑↓↓↓↑,↑↓↓↓↑↑,↓↓↓↑↑↑,↓↓↑↑↑↓,↓↑↑↑↓↓} the amplitudes
{c1, c1e−iφ , c1e−2iφ , c1e−3iφ , c1e−4iφ , c1e−5iφ}; to those of the second necklace {↑↑↓↑↓↓,↑↓↑↓↓↑,
↓↑↓↓↑↑,↑↓↓↑↑↓,↓↓↑↑↓↑,↓↑↑↓↑↓} the amplitudes {c2, c2e−iφ , c2e−2iφ , c2e−3iφ , c2e−4iφ , c2e−5iφ};
to those of the third necklace {↑↓↑↑↓↓,↓↑↑↓↓↑,↑↑↓↓↑↓,↑↓↓↑↓↑,↓↓↑↓↑↑,↓↑↓↑↑↓, } the ampli-
tudes {c3, c3e−iφ , c3e−2iφ , c3e−3iφ , c3e−4iφ , c3e−5iφ}; and finally to the necklace of period 2
{↑↓↑↓↑↓,↓↑↓↑↓↑}, {c4, c4e−iφ} where φ = 2nπ/6 with n being a relative integer. From the
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Table 2: Solution for the 4+2 SU(2) fermionic mixture. ξ̃n are the rescaled eigen-
values ξn/α

(6). The coefficients c j are not normalized. The last column indicates the
symmetry of the solution with the associated Young diagram (YD).

n ξ̃n c1 c2 c3 γ(2) YD
-2 3 e2iπ/3 1 2eiπ/3 -9

(7−
p

17)/2 −(3+
p

17)/4 e2iπ/3 1 (
p

17− 1)/4 eiπ/3 -5

(7+
p

17)/2 (−3+
p

17)/4 e2iπ/3 1 (
p

17+ 1)/4 e−i2π/3 -5

-1 1
p

3e−iπ/6 1 0 -9

5 ei5π/6/
p

3 1 0 -5

0 0 1 1 1 -15

5−
p

5 −(1+
p

5)/4 (−1+
p

5)/4 1 -5

5+
p

5 (−1+
p

5)/4 −(1+
p

5)/4 1 -5

1 1
p

3eiπ/6 1 0 -9

5 e−i5π/6/
p

3 1 0 -5

2 3 e−2iπ/3 1 2e−iπ/3 -9

(7−
p

17)/2 −(3+
p

17)/4 e−2iπ/3 1 (
p

17− 1)/4 e−iπ/3 -5

(7+
p

17)/2 (−3+
p

17)/4 e−2iπ/3 1 (
p

17+ 1)/4 ei2π/3 -5

3 2 1 0 0 -5

4 0 1 0 -9

condition that c4e−2iφ = c4, we expect that c4 has to be zero if n is not zero or a multiple of 3.
So we expect 4 solutions if n= 0 and if n= 3, and 3 solutions for the cases n= −2,−1,1 and
2, namely 20 independent solutions.

The contact V matrices corresponding to the three different cases are given in Appendix C.
The resulting spin states are presented in Table 3 for the SU(2) fermionic mixture, in Table 4
for the SU(2) bosonic mixture, and in Table 5 for the SB bosons. Remark that the SB states
for a given n are very similar to the SU(2) fermionic ones for n ± 3. This is due to the fact
that this SB bosonic mixture can be seen as a SU(2) fermionic mixture up-to a symmetrization
operation of the particles in each component [27].

4.4 Persistent current in a SU(3) fermionic mixture

We will consider here the case of three SU(3) fermions rotating in a ring of length L with
rotation frequency Ω [54,64]. The Hamiltonian of the system reads

H =
3
∑

j=1

1
2m

�

p j −
mΩL
2π

�2

+ g
∑

j<ℓ

δ(x j − xℓ) . (20)

The effect of the rotation is to produce an artificial gauge field yielding an effective flux
Φ= ΩL2/(2π) [28–31], which in turn induces a persistent current of particles in the ring. Such
currents can be used for characterizing the different phases of the system [65–69]. In analogy
with superconducting rings, the ground state energy and the current are periodic functions of
the gauge flux, with a period that is defined as the quantum of flux of the particles [70].
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Table 3: Solution for the 3+3 SU(2) fermionic mixture. ξ̃n are the rescaled eigen-
values ξn/α

(6). The coefficients c j are not normalized. The last column indicates the
symmetry of the solution with the associated Young diagram (YD).

n ξ̃n c1 c2 c3 c4 γ(2) YD

-2 1
2(7−

p
17) e2iπ/3

2 (3+
p

17) e2iπ/3 1 0 -5

1
2(7+

p
17) e−iπ/3

2 (−3+
p

17) e2iπ/3 1 0 -5

3 0 e−iπ/3 1 0 -9

-1 1 2eiπ/3 eiπ/3 1 0 -9

4 ei2π/3 eiπ/3 1 0 -3

5 0 e−i2π/3 1 0 -5

0 0 1 1 1 1 -15

6 0 1 -1 0 -3

5−
p

5 −1
2(3+

p
5) 1 1 3

2(−1+
p

5) -5

5+
p

5 1
2(−3+

p
5) 1 1 −3

2(1+
p

5) -5

1 1 2e−iπ/3 e−iπ/3 1 0 -9

4 e−i2π/3 e−iπ/3 1 0 -3

5 0 ei2π/3 1 0 -5

2 1
2(7−

p
17) e−2iπ/3

2 (3+
p

17) −2iπ/3 1 0 -5

1
2(7+

p
17) eiπ/3

2 (−3+
p

17) −2iπ/3 1 0 -5

3 0 eiπ/3 1 0 -9

3 2 0 1 1 0 -5

4 -1 1 -1 -3 -9

5−
p

13 1
2(3+

p
13) 1 -1 1

2(1−
p

13) -3

5+
p

13 1
2(3−

p
13) 1 -1 1

2(1+
p

13) -3

Strong repulsive [54,64] and attractive [18,71,72] interactions induce a fractionalization
of the period of the persistent current. In the attractive case, this phenomenon is related to the
formation of two-body and many-body bound states, respectively for fermionic and bosonic
mixtures. The period is reduced by a factor equal to the number of particles forming the bound
state. In the repulsive case, the period of the persistent current is reduced, both for bosons
and fermions, by a factor equal to the number of particles in the mixture. In this interaction
regime, the fractionalization is due to the formation of spin excitations in the ground state of
the gas, occurring as one applies the gauge flux [45,46,54].

Here, we use the necklace Ansatz to compute the energy levels of the SU(3) fermionic mix-
ture, at infinite and at large but finite repulsive interactions, as a function of an effective gauge
flux Φ. In this case the snippets can be divided into two necklaces, one {• ◦ ▷,◦ ▷ •,▷ • ◦} with
the amplitudes {c1, c1e−i2πn/3, c1e−i4πn/3}, and another {◦ • ▷,• ▷ ◦,▷ ◦ •} with the amplitudes
{c2, c2e−i2πn/3, c2e−i4πn/3}. The computed spin states and the corresponding eigenvalues are
given in Table 6.
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Table 4: Solution for the 3+3 SU(2) bosonic mixture. ξ̃n are the rescaled eigenval-
ues ξn/α

(6). The coefficients c j are not normalized. The last column indicates the
symmetry of the solution with the associated Young diagram (YD).

n ξ̃n c1 c2 c3 c4 γ(2) YD

-2 1
2(17−

p
17) e−iπ/3

2 (−3+
p

17) e2iπ/3 1 0 5
1
2(17+

p
17) eiπ/3

2 (3+
p

17) e2iπ/3 1 0 5
9 0 e−iπ/3 1 0 9

-1 11 2eiπ/3 eiπ/3 1 0 9
8 e−i2π/3 eiπ/3 1 0 3
7 0 −eiπ/3 1 0 5

0 12 1 1 1 1 15
6 0 1 -1 0 3

7−
p

5 1
2(−3+

p
5) 1 1 −3

2(1+
p

5) 5
7+
p

5 −1
2(3+

p
5) 1 1 3

2(1−
p

5) 5
1 11 2e−iπ/3 e−iπ/3 1 0 9

8 ei2π/3 e−iπ/3 1 0 3
7 0 −e−iπ/3 1 0 5

2 1
2(17−

p
17) eiπ/3

2 (−3+
p

17) e−2iπ/3 1 0 5
1
2(17+

p
17) e−iπ/3

2 (3+
p

17) e−2iπ/3 1 0 5
9 0 eiπ/3 1 0 9

3 10 0 1 1 0 5
8 -1 1 -1 -3 9

7−
p

13 1
2(3−

p
13) 1 -1 1

2(1+
p

13) 3
7+
p

13 1
2(3+

p
13) 1 -1 1

2(1−
p

13) 3

Table 5: Solution for the 3+3 symmetry breaking bosonic mixture. ξ̃n are the
rescaled eigenvalues ξn/α

(6). The coefficients c j are not normalized. The last col-
umn indicates the expectation value of the 2-cycle class-sum operator Γ (2).

n ξ̃n c1 c2 c3 c4 〈Γ (2)〉
-2 1 2e−iπ/3 ei2π/3 1 0 5

4 ei2π/3 ei2π/3 1 0 5
5 0 e−i2π/3 1 0 8

-1 1
2(7−

p
17) e−2iπ/3

2 (3+
p

17) eiπ/3 1 0 4.78
1
2(7+

p
17) eiπ/3

2 (−3+
p

17) eiπ/3 1 0 7.21
3 0 e−i2π/3 1 0 5

0 2 0 1 -1 0 3
4 1 1 1 -3 7

5−
p

13 −1
2(3+

p
13) 1 1 1

2(1−
p

13) 5.67
5+
p

13 1
2(−3+

p
13) 1 1 1

2(1+
p

13) 9.72

1 1
2(7−

p
17) e2iπ/3

2 (3+
p

17) e−iπ/3 1 0 4.78
1
2(7+

p
17) e−iπ/3

2 (−3+
p

17) e−iπ/3 1 0 7.21
3 0 ei2π/3 1 0 5

2 1 2eiπ/3 e−i2π/3 1 0 5
4 e−i2π/3 e−i2π/3 1 0 5
5 0 ei2π/3 1 0 8

3 0 -1 1 - 1 1 4.2
6 0 1 1 0 5

5−
p

5 1
2(3+

p
5) 1 -1 3

2(−1+
p

5) 3.611
5+
p

5 −1
2(−3+

p
5) 1 -1 −3

2(1+
p

5) 7.18
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Table 6: Solution for 3 SU(3) particles. ξ̃n are the rescaled eigenvalues ξn/α̃
(3).The

last column indicates the symmetry of the solution with the associated Young diagram
(YD).

n ξ̃n c1 c2 γ(2) YD
-1 3 1/

p
2 0 0

3 0 1/
p

2 0
0 6 1/2 -1/2 3

0 1/2 1/2 -3

1 3 1/
p

2 0 0
3 0 1/

p
2 0

The effect of the rotation enters in the energy landscape. Indeed the energy of the spin
state η with the eigenvalue ξ̃nη and the quantum number nη

Eη = ϵ
N ,nη −

ξ̃nη

g
α(N) , (21)

with

ϵN ,nη =
ħh2

2m

N
∑

j=1

�

kF,B
j +

2nηπ

LN
−

2π
L
Φ̃

�2

, (22)

where Φ̃= Φ/Φ0, Φ0 = h/m.
We plot in Fig. 3 the energy landscape for the cases g → ∞ (thin lines) and

g = 100mL/ħh2. At infinite interactions, we observe the expected 1/N fractionalization of
the periodicity of the energy landscape [45, 46, 54, 64]. At finite interactions, the parabola
branches that display the most symmetric spin configurations and are centered in Φ̃ = 0,1, ...
have the largest energy corrections and thus correspond to the lowest energy (see Fig. 3),
while the intermediate parabolas have a higher energy, as expected when fractionalization is

3.5

4

5

5.5

0 0.2 0.4 0.6 0.8 1

Ẽ
j

Φ̃

Figure 3: Energy landscape Ẽ j = E jmL2/(ħh2π2) for a SU(3) three-fermions sys-
tem, as a function of Φ̃ at infinite interactions (thin lines) and for g = 100mL/ħh2

(thick lines). From left to right the different parabolas correspond to n j = −1 (violet
curves), 0 (green curves), 1 (blue curves), 2 (orange curves) and 3 (yellow curves).
The black dotted horizontal line corresponds to the ground state energy of the three
particles at Φ̃= 0.
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not yet achieved. This result displays the same features as those predicted in [46, 54] for the
case of mixtures on a ring lattice: at increasing interactions, the parabolas corresponding to
fractional values of the flux quantum decrease more and more in energy with respect to the
ones centered at integers values of the reduced flux until they become all degenerate. To sim-
plify the discussion, we have considered odd number of particles for each spin component.
Conversely, we would have to include the parity effect, occurring in fermionic systems with
even number of particles per spin species [70]. However, this does not change qualitatively the
outcomes as it only results in a shift of the whole energy landscape by Φ0/2. We finally point
out that, in the presence of a lattice, the energy correction depends also on the center-of-mass
motion. In this case, not only the offset of the parabola branches is modified, but also their
curvature [46,54].

5 Concluding remarks

In this article, we have presented an alternative to the Bethe Ansatz, called the necklace Ansatz,
which allows one to access the many-body wavefunction of a quantum mixture on a ring in
the limit of strong repulsive contact interactions. Our method applies to both SU(κ) mixtures
and mixtures where the exchange symmetry is broken by taking different values for intra- and
inter-component interaction strengths.

The necklace Ansatz allows one to obtain all the possible spin configurations very directly
and brings a deep insight on their connection with the total momentum. The simplicity of this
approach with respect to solving the Bethe’s equations relies on the following facts: (i) being
in the strongly interacting limit allows us to build the solution for an N -fermion (boson) mix-
ture using as a building block the solution for N free fermions (N TG bosons); (ii) we reduce
the dimension of the problem by organizing the sectors in snippets – groups of sectors that are
equivalent under the permutation of identical particles, and the snippets in necklaces – groups
of snippets that are equivalent up-to a rotation and thus can be represented by the same neck-
lace. This drastically reduces the number of independent amplitudes to be determined in the
many-body wavefunction. The remaining amplitudes, which are as many as the number of
necklaces, are finally obtained by the constrained diagonalization of an effective Hamiltonian
represented on the snippet basis. This approach yields by construction the complete basis of
solutions in the given energy subspace. It also complements the method previously devel-
oped for mixtures under external confinement [21], solving the open issue on how to impose
periodic boundary conditions within this formalism.

The necklace Ansatz tames the factorial increase of the Hilbert space with increasing the
particle number. In addition, the connection between our Ansatz and combinatorial neck-
laces can mitigate the problem of generating and enumerating [58,73,74] possible orderings
of strongly interacting atoms on a ring as well as spin configurations of the dual Heisen-
berg chain.1 This will further simplify numerical calculations and allow one to obtain the
many-body wavefunction of strongly correlated mixtures of relatively large systems. Such a
wavefunction will be used as a starting point in the future for accurate calculations of both
equilibrium and dynamical properties of 1D mixtures in ring geometries.

1Furthermore, this connection might guide the studies of mathematical symmetries of a few-body system (see,
e.g., Refs. [75,76] for corresponding studies in a trap) using the existing literature, see, e.g., Ref. [77].
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A Alternative derivation of the necklace Ansatz

For completeness, we present an alternative derivation of the Ansatz introduced in the main
text. To this end, we study the auxiliary Hamiltonian

ĥ= −
ħh2

2m
∂ 2

∂ y
+

κ
∑

σ=1

Nσ
∑

i=1

gIσδ(y − x i,σ)−
κ
∑

σ=1

Nσ
∑

i=1

ħh2

2m
∂ 2

∂ x2
i,σ

+
κ
∑

σ=1

gσσ

Nσ
∑

i=1

Nσ
∑

j>i

δ(x i,σ − x j,σ) +
1
2

κ
∑

σ ̸=σ′=1

gσσ′
Nσ
∑

i=1

Nσ′
∑

j=1

δ(x i,σ − x j,σ′) . (A.1)

Here, we consider N =
∑κ
σ=1 Nσ + 1 particles, introducing explicitly a single ‘impurity’ atom

(y coordinate) in the Hamiltonian ĥ in comparison to Eq. (5). Note that with a proper re-
definition of the coordinates and the numbers of particles, the Hamiltonian Ĥ can always be
written in the form of Eq. (A.1). By explicitly introducing the ‘impurity’ in this way, we set a
reference frame, which allows us to order the snippets in a natural way.

Any solution to Eq. (A.1) has the form (see, e.g., Ref. [78])

Ψh(y, X ) = eiP y/ħhφP(X̃ ) , (A.2)

where X̃ is a set of coordinates of the majority particles measured with respect to the position
of the impurity y , i.e., x̃ i,σ = Lθ (y − x i,σ)+ x i,σ− y; P is the total momentum of the system.
In the impenetrable limit, 1/g = 0 and 1/gσσ′ = 0, the function φP is an eigenstate of the
Hamiltonian

ĥP = −
ħh2

2m

κ
∑

σ=1

Nσ
∑

i=1

∂ 2

∂ x̃2
i,σ

−
ħh2

2m

�

κ
∑

σ=1

Nσ
∑

i=1

∂

∂ x̃ i,σ

�2

+ i
ħhP
m

κ
∑

σ=1

Nσ
∑

i=1

∂

∂ x̃ i,σ
. (A.3)

The last term in ĥP can be eliminated by the gauge transformation:

φP(X̃ ) = exp

�

i
P
ħh

∑

i,σ x̃ i,σ

1+
∑

σ Nσ

�

fP(X̃ ) , (A.4)

where fP solves the following Schrödinger equation


−
ħh2

2m

κ
∑

σ=1

Nσ
∑

i=1

∂ 2

∂ x̃2
i,σ

−
ħh2

2m

�

κ
∑

σ=1

Nσ
∑

i=1

∂

∂ x̃ i,σ

�2


 fP = ε fP . (A.5)
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First, we note that for every ordering Q(X̃ ), fP can be written as

fP(Q(X̃ )) = c̃Q exp

�

−i
PF y
ħh
− i

PF

ħh

∑

i,σ x̃ i,σ

1+
∑

σ Nσ

�

ΨF , (A.6)

where ΨF is a state that describes a system of 1 +
∑

σ Nσ spin-polarized fermions, and PF
is the total momentum of that state; c̃Q is an arbitrary coefficient. Indeed, the solution in
Eq. (A.6) satisfies the boundary conditions, i.e., it vanishes whenever any two particles meet.
To argue that any solution of Eq. (A.5) has the form of Eq. (A.6), one can design a proof by
contradiction, i.e., show that one can construct a fermionic state ΨF from a solution Eq. (A.5).
To this end, it is useful to consider the known solution to the problem of one impurity in a
Fermi gas in the frame co-moving with the impurity [79–81].

We see that any eigenstate of ĥ has the form

Ψh(y, X ) =
∑

Q

c̃QΘQ(X̃ )exp

�

i
(P −PF )y
ħh

+ i
P −PF

ħh

∑

i,σ x̃ i,σ

1+
∑

σ Nσ

�

ΨF (y, X ) , (A.7)

where the sum runs over all orderings of X̃ coordinates. The connection of this expression to
the Ansatz in Eq. (10) becomes clear when working with the sector basis and remarking that
K = (P −PF )/ħh. Indeed, let us consider an example: three SU(3) fermions, i.e., the system
in Sec. 4.4 with Φ = 0. Without loss of generality, we assign the coordinates y, x1, x2 to the
particles • ◦ ▷. Let us now write the function Ψh(y, X ) on the six possible sectors

(• ◦ ▷) = {y < x1 < x2; x̃1 < x̃2} , Ψh(y, X ) = c̃1ΨK(y, X ) , (A.8)

(• ▷ ◦) = {y < x2 < x1; x̃2 < x̃1} , Ψh(y, X ) = c̃2ΨK(y, X ) , (A.9)

(▷ • ◦) = {x2 < y < x1; x̃1 < x̃2} , Ψh(y, X ) = c̃1e
iKL

3 ΨK(y, X ) , (A.10)

(◦ • ▷) = {x1 < y < x2; x̃2 < x̃1} , Ψh(y, X ) = c̃2e
iKL

3 ΨK(y, X ) , (A.11)

(◦ ▷ •) = {x1 < x2 < y; x̃1 < x̃2} , Ψh(y, X ) = c̃1e
2iKL

3 ΨK(y, X ) , (A.12)

(▷ ◦ •) = {x2 < x1 < y; x̃2 < x̃1} , Ψh(y, X ) = c̃2e
2iKL

3 ΨK(y, X ) , (A.13)

where ΨK(y, X ) = eiK(y+x1+x2)/3ΨF (y, X ). To write down the wavefunction on sectors in this
way, we used the definition of x̃ i = Lθ (y − x i) + x i − y to connect the two orderings of
{ x̃1, x̃2} to the six orderings of {y, x1, x2}. We see that Ψh indeed reproduces the necklace
Ansatz reported in Sec. 4.4 when choosing K = 2πn/L, c1 = c̃1 and c2 = c̃2e2πni/3.

Note that if the impurity belongs to the component σ′, by defining Q′ = Q(y → x1,σ′),

the values of c̃Q must satisfy the property: c̃Q = c̃Q′ exp
h

i P−PF
ħh(1+
∑

σ Nσ)
L jy,x1,σ′

i

, where an integer

jy,x1,σ′
is the distance between y and x1,σ′ on a lattice for the ordering Q.

Finally, let us consider the system in Eq. (A.1) coupled to the Aharonov-Bohm flux as in
Sec. 4.4. To this end, we substitute: −iħh∂ /(∂ x i,σ)→−iħh∂ /(∂ x i,σ)−mΩL/(2π) and for the
impurity −iħh∂ /(∂ y)→ −iħh∂ /(∂ y)−mΩL/(2π) in Eq. (A.1). The transformation to the co-
moving with the ‘impurity’ frame of reference according to Eq. (A.2) separates the flux from
the interaction potential explicitly, see, e.g., Supplementary of Ref. [82]. This means that the
relative dynamics of the system is independent of the value of Φ. In particular, the interaction
between particles is disconnected from Φ in agreement with Sec. 4.4.
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B Derivation of the effective Hamiltonian

In order to obtain the effective low-energy Hamiltonian, we have followed the procedure out-
lined in [23]. We expand in order of 1/gσσ′ the Hamiltonian (5) on the snippet basis ΨK,s:

[Ĥ]s,s′ ≃ [Ĥgσσ′→∞]s,s′ + [Heff]s,s′ , (B.1)

where [Ĥgσσ′→∞]s,s′ = EN ,ns
∞ δs,s′ ,

[Heff]s,s′ = −
κ
∑

σ

1
gσσ





∫

dXΨ∗K,s g2
σσ

Nσ
∑

i=1

Nσ
∑

j>i

δ(x i,σ − x j,σ)ΨK,s′





gσσ→∞

−
κ
∑

σ ̸=σ′=1

1
gσσ′





1
2

∫

dXΨ∗K,s g2
σσ′

Nσ
∑

i=1

Nσ′
∑

j=1

δ(x i,σ − x j,σ′)ΨK,s′





gσσ′→∞

.

(B.2)

By setting gσσ′ = βσσ′ g, we can write

[Heff]s,s′ = −
1
g
[V ]s,s′ , (B.3)

where V is the contact matrix, whose elements

[V ]s,s′ =
κ
∑

σ

1
βσσ





∫

dXΨ∗K,s g2
σσ

Nσ
∑

i=1

Nσ
∑

j>i

δ(x i,σ − x j,σ)ΨK,s′





gσσ→∞

+
κ
∑

σ ̸=σ′=1

1
βσσ′





1
2

∫

dXΨ∗K,s g2
σσ′

Nσ
∑

i=1

Nσ′
∑

j=1

δ(x i,σ − x j,σ′)ΨK,s′





gσσ′→∞

,

(B.4)

can be evaluated using the cusp condition [83].
For SU(2) mixtures βσσ′ is the same for any σ,σ′, so that we can set βσσ′ = 1. We thus

obtain Eqs. (13) and (14 respectively for fermions and bosons.
Remark that the contact matrix elements (15) do not depend on the momentumK (n) [83].

Indeed α(N) is equal, up to the dimensional constant ħh2/(mL), to the difference between the
total kinetic energy and the center-of-mass kinetic energy [27, 84], thus it does not depend
on the ring current [83]. This result is consistent with the Bethe formalism, by doing the
expansion of the Bethe equations with respect to the inverse of the interaction strength (see
Appendix D).

C Contact matrices

In this Appendix, we provide the contact matrices V that have been used in order to obtain
the results outlined in the main text.
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The conditioned eigenvalues problem for the 4+2 SU(2) fermionic mixture takes the form



















































2 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0
0 2 0 0 0 0 −1 −1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 −1 −1 0 0 0 0 0 0
0 0 0 2 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 2 0 0 0 0 −1 −1 0 0 0 0
0 0 0 0 0 2 0 0 0 0 −1 −1 0 0 0
−1 −1 0 0 0 0 4 0 0 0 0 0 −1 0 −1
0 −1 −1 0 0 0 0 4 0 0 0 0 −1 −1 0
0 0 −1 −1 0 0 0 0 4 0 0 0 0 −1 −1
0 0 0 −1 −1 0 0 0 0 4 0 0 −1 0 −1
0 0 0 0 −1 −1 0 0 0 0 4 0 −1 −1 0
−1 0 0 0 0 −1 0 0 0 0 0 4 0 −1 −1
0 0 0 0 0 0 −1 −1 0 −1 −1 0 4 0 0
0 0 0 0 0 0 0 −1 −1 0 −1 −1 0 4 0
0 0 0 0 0 0 −1 0 −1 −1 0 −1 0 0 4







































































































c1

c1e−inπ/3

c1e−2inπ/3

c1e−inπ

c1e−4inπ/3

c1e−5inπ/3

c2

c2e−inπ/3

c2e−2inπ/3

c2e−inπ

c2e−4inπ/3

c2e−5inπ/3

c3

c3e−inπ/3

c3e−2inπ/3





















































=
ξn

α(6)





















































c1

c1e−inπ/3

c1e−2inπ/3

c1e−inπ

c1e−4inπ/3

c1e−5inπ/3

c2

c2e−inπ/3

c2e−2inπ/3

c2e−inπ

c2e−4inπ/3

c2e−5inπ/3

c3

c3e−inπ/3

c3e−2inπ/3





















































.

(C.1)
For the case of 3+3 SU(2) fermions, the V matrix reads

V
α(6)

=







































































2 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 2 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 2 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 2 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 2 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 2 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0
−1 0 0 0 0 0 4 0 0 0 0 0 −1 0 −1 0 0 0 0 −1
0 −1 0 0 0 0 0 4 0 0 0 0 0 −1 0 −1 0 0 −1 0
0 0 −1 0 0 0 0 0 4 0 0 0 0 0 −1 0 −1 0 0 −1
0 0 0 −1 0 0 0 0 0 4 0 0 0 0 0 −1 0 −1 −1 0
0 0 0 0 −1 0 0 0 0 0 4 0 −1 0 0 0 −1 0 0 −1
0 0 0 0 0 −1 0 0 0 0 0 4 0 −1 0 0 0 −1 −1 0
0 0 0 0 0 −1 −1 0 0 0 −1 0 4 0 0 0 0 0 −1 0
−1 0 0 0 0 0 0 −1 0 0 0 −1 0 4 0 0 0 0 0 −1
0 −1 0 0 0 0 −1 0 −1 0 0 0 0 0 4 0 0 0 −1 0
0 0 −1 0 0 0 0 −1 0 −1 0 0 0 0 0 4 0 0 0 −1
0 0 0 −1 0 0 0 0 −1 0 −1 0 0 0 0 0 4 0 −1 0
0 0 0 0 −1 0 0 0 0 −1 0 −1 0 0 0 0 0 4 0 −1
0 0 0 0 0 0 0 −1 0 −1 0 −1 −1 0 −1 0 −1 0 6 0
0 0 0 0 0 0 −1 0 −1 0 −1 0 0 −1 0 −1 0 −1 0 6







































































. (C.2)

For the case of 3+3 SU(2) bosons, the V matrix reads

V
α(6)

=





























































10 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 10 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 10 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 10 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 10 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 10 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 8 0 0 0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 0 8 0 0 0 0 0 1 0 1 0 0 1 0
0 0 1 0 0 0 0 0 8 0 0 0 0 0 1 0 1 0 0 1
0 0 0 1 0 0 0 0 0 8 0 0 0 0 0 1 0 1 1 0
0 0 0 0 1 0 0 0 0 0 8 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 8 0 1 0 0 0 1 1 0
0 0 0 0 0 1 1 0 0 0 1 0 8 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 1 0 8 0 0 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0 0 0 0 8 0 0 0 1 0
0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 8 0 0 0 1
0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 8 0 1 0
0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 8 0 1
0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 6 0
0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 6





























































. (C.3)
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For the case of 3+3 SB bosons, the V matrix reads

V
α(6)

=





























































2 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 4 0 0 0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 0 4 0 0 0 0 0 1 0 1 0 0 1 0
0 0 1 0 0 0 0 0 4 0 0 0 0 0 1 0 1 0 0 1
0 0 0 1 0 0 0 0 0 4 0 0 0 0 0 1 0 1 1 0
0 0 0 0 1 0 0 0 0 0 4 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 4 0 1 0 0 0 1 1 0
0 0 0 0 0 1 1 0 0 0 1 0 4 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 1 0 4 0 0 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0 0 0 0 4 0 0 0 1 0
0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 4 0 0 0 1
0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 4 0 1 0
0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 4 0 1
0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 6 0
0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 6





























































. (C.4)

The contact matrix for 3 SU(3) fermions reads

V
α(3)

=















3 0 0 −1 −1 −1
0 3 0 −1 −1 −1
0 0 3 −1 −1 −1
−1 −1 −1 3 0 0
−1 −1 −1 0 3 0
−1 −1 −1 0 0 3















. (C.5)

D Energy correction to order O
�1

g

�

: Bethe Ansatz derivation

In this section, we explicitly derive the energy correction at large but finite interaction strength
g for a SU(2) mixture of N particles. To do so, we consider the first-order expansion of the
Bethe equations close to the limit 1

g → 0. In the following, we consider the rescaled interaction

strength u
.
= 2m
ħh2 g, so that u has the dimension of a wavevector. We start from the Bethe

equations valid for any interaction strength, which read:















Lk j = 2πI j + (−1)ηB
∑N↓

b=1 2arctan

�

2(λ̃b−k j)
u

�

+ηB
∑N
ℓ=1 2arctan

�

kℓ−k j
u

�

,

∑N
j=1 2arctan

�

2(λ̃a−k j)
u

�

= 2πJa +
∑N↓

b=1 2arctan

�

λ̃a−λ̃b
u

�

,
(D.1)

where ηB = 1 for bosons and ηB = 0 for fermions. The quantum numbers I j and Jm are

defined in Section 2.3. In the limit u→∞, one has λ̃a
u ≫

k j
u , therefore we expand the arcotan-

gent function according to the first-order expansions arctan(a+ x) = arctan(a)+ x
1+a2 +O(x2)
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and arctan(x) = x +O(x2). We introduce the rescaled spin rapidities Λa
.
= 2λ̃

u and obtain:























Lk j = 2πI j + (−1)ηB

N↓
∑

b=1

2arctan(Λb)− (−1)ηB
4
u

k j

N↓
∑

b=1

1

1+Λ2
b

+
2ηB

u
(
∑

ℓ

kℓ − Nk j) ,

2 arctan(Λa) =
4

uN

∑

j

k j
1

1+Λ2
a
+

2π
N

Ja +
N↓
∑

b=1

2
N

arctan
�

Λa −Λb

2

�

.

(D.2)
A straightforward substitution of the right-hand-side of the second equation in the first equa-
tion yields:























Lk j = 2πI j + (−1)ηB
2π
N

N↓
∑

b=1

Jb +
1
u

�

1
N

∑

ℓ

kℓ − k j

��

2NηB + (−1)ηB

N↓
∑

b=1

4

1+Λ2
b

�

,

2 arctan(Λa) =
1

uN

∑

j

k j
4

1+Λ2
a
+

2π
N

Ja +
N↓
∑

b=1

2
N

arctan
�

Λa −Λb

2

�

,

(D.3)

where we use
∑N↓

a,b=1 arctan
�

Λa−Λb
2

�

= 0. In the limit 1
u → 0, one recovers Eqs.(7) and (9).

We can write the first equation in a more compact form:

k j =
2π
L
I j +

χ

L
+

1
uL
δk j , (D.4)

where we defined:

χ
.
= (−1)ηB

2π
N

N↓
∑

b=1

Jb , (D.5)

δk j
.
=
�

1
N

∑

ℓ

kℓ − k j

�

�

2NηB + (−1)ηB

N↓
∑

b=1

4

1+Λ2
b

�

. (D.6)

Remarkably, χ can include any shift to the rapidities k j which does not depend on the index
j, as for instance an artificial gauge field.

The energy in this strongly interacting limit is:

2m

ħh2 E1/u =
∑

j

k2
j =
∑

j

�

2π
L
I j +

χ

L
+

1
uL
δk j

�2

=
∑

j

�

2π
L
I j +

χ

L

�2

+
2

uL

∑

j

�

2π
L
I j +

χ

L

�

δk j +O
� 1

u2

� .
=

2m

ħh2

�

E∞ +δE1/u +O
� 1

u2

�

�

,

(D.7)

where we introduced the energy correction:

δE1/u =
ħh2

uLm

∑

j

�

2π
L
I j +

χ

L

�

δk j . (D.8)
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Table 7: Energy corrections to first order in 1/u for N = 4 and N↓ = 2 bosons. The
spin rapidities are calculated from Eq. (9). The results are in units of Jeff.

Λ1 Λ2 −δE1/u
Jeff

1/
p

3 −1/
p

3 2

0 ∞ 4

1 ∞ 6

−1 ∞ 6

i −i 6

∞ −∞ 8

Neglecting the O
�

1
u2

�

terms, the energy correction reads:

δE1/u =
ħh2

uLm

∑

j

�

2π
L
I j +

χ

L

��

1
N

∑

ℓ

kℓ − k j

�

�

2NηB + (−1)ηB

N↓
∑

b=1

4

1+Λ2
b

�

=
ħh2

uLm

�

1
N

�

2π
L

∑

ℓ

Iℓ +
Nχ
L

�2

−
∑

j

�

2π
L
I j +

χ

L

�2�
�

2NηB + (−1)ηB

N↓
∑

b=1

4

1+Λ2
b

�

= −
ħh2

uLm

�

4π2

L2

∑

j

I2
j −

4π2

N L2

�

∑

ℓ

Iℓ
�2
��

2NηB + (−1)ηB

N↓
∑

b=1

4

1+Λ2
b

�

. (D.9)

In order to have only first-order correction in 1
u , the spin rapidities Λb are obtained solving the

corresponding Bethe equation in the limit 1
u → 0, Eq. (9). From the last line of Eq. (D.9), we

see that the center of mass momentum does not contribute to the first-order corrections to the
total energy. Moreover, if we introduce an effective coupling

Jeff =
ħh2

uLm

�

4π2

L2

∑

j

I2
j −

4π2

N L2

�

∑

ℓ

Iℓ
�2
�

, (D.10)

the correction to the energy can be expressed as:

δE1/u = −Jeff

�

2NηB + (−1)ηB

N↓
∑

b=1

4

1+Λ2
b

�

, (D.11)

which, up to a constant shift in the bosonic case, coincides with the Bethe Ansatz solution
for the energy of an isotropic Heisenberg spin chain. The ferromagnetic or antiferromagnetic
nature of the ground state is determined by the value of ηB and therefore by the statistics of
the mixture. Remark that JeffuL/2 is equal to the difference between the total kinetic energy
and the center-of-mass kinetic energy, and that JeffuL/2= Jeff gmL/ħh2 = mL/ħh2α(N).

We computed explicitly the energy correction in the case of N = 4 and N↓ = 2 bosons.
First, to determine the correct Λ1 and Λ2, we solved the Bethe equations (9). Then, we used
Eq. (D.11) to evaluate the first-order correction to the energy at infinite interactions. Since
Eq. (D.11) diverges for Λ1,2 = ±i, in order to obtain the corresponding correction we had to
introduce the regularization Λ1,2 = ε± i and then compute the limit of Eq. (D.11) for ε→ 0.

We show the results in Table 7. The energy corrections coincide with the results presented

in the second column of Table 1 (−δE1/u
Jeff
= ξ̃n), where we computed the first-order energy

correction using the necklace Ansatz. More details on the Bethe Ansatz solution for N = 4 and
N↓ = 2, including the exact expression of the corresponding eigenstates, are available in [64].

22

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.022


SciPost Phys. Core 8, 022 (2025)

0.6

1

1.4

1.8

0 0.03 0.06

E
/E

3,
0

∞

h̄2/(mgL)

Figure 4: First three energy levels for a system of 2+1 fermions, in units of
E3,0 = 4π2ħh2/(mL2) as functions of 1/g (in units of mL/ħh2). The horizontal blue
line corresponds to a fully antisymmetric state, and the necklace solution (n = 0 in
Table 8) coincides with the Bethe Ansatz one for any interaction strength (blue cir-
cles). The cross and the plus symbols (the lines are guides to the eyes) lines are the
Bethe solutions that correspond to the first two excited states at infinite interactions.
The tangent thick lines correspond to the necklace solution respectively for n = 1
(green line) and n= 2 (violet line).

E Analysis of the strongly interacting limit

With the aim to specify the validity range of the strong-interaction expansion used in Sec.
D and in the necklace Ansatz, we compare the solution obtained in the strongly interacting
limit for a system of 2+1 fermions with that obtained by the Bethe equations for intermediate
interactions given in Eq. (D.1).

In Fig. 4, we plot the first three energy levels of the Bethe Ansatz solution as a function of
the inverse of the interaction strength. The ground state at infinite interactions corresponds
to the fully antisymmetric state (see Table 8). It does not depend on the interaction strength
(circles) and coincides with the necklace solution with n = 0 (horizontal blue line). The
two excited states at 1/g = 0 (cross and plus symbols) correspond to the necklace solutions
(tangent thick green and violet lines) with n= 1 and n= 2 respectively.

We observe that the solutions obtained in the strong-interaction limit agree with the ener-
gies from the Bethe Ansatz equations for 1/g ≲ 0.03mL/ħh2. This corresponds to an effective
interaction parameter ħh2mLg/N = 10, which provides an estimate for the ratio between the
interaction and kinetic energies for which the necklace Ansatz can still produce accurate re-
sults.

Table 8: Solution for the fermionic 2+1 system. ξ̃n are the rescaled eigenvalues
ξn/α̃

(3). γ(2) indicates the symmetry of the solution, and the associated Young dia-
gram. The last column corresponds to the energies at infinite interactions (in units
of ħh2/(mL2)).

n ξ̃n c1 γ(2) YD E3,n
∞

0 0 1 -3 4π2

1 3 1 0
14π2

3

2 3 1 0
20π2

3
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