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Abstract

We demonstrate that the Carroll limit of general relativity coupled to matter captures
the chaotic mixmaster dynamics of near-singularity limits. Zooming in on the behavior
of general relativity close to spacelike singularities reveals rich and solvable ultra-local
Belinski-Khalatnikov-Lifshitz (BKL) dynamics, which we show to be captured by a Carroll
limit. Specifically, building on recent work on geometric Carroll expansions of general
relativity, we establish that leading-order Carroll gravity, with suitable matter coupling,
accurately describes well-known cosmological billiards behavior. Since the Carroll limit
implements the ultra-local limit off shell, this opens up the door to a wide range of possi-
ble tractable applications, including spatially inhomogeneous setups and the emergence
of spikes at late times. This further suggests that Carroll gravity, along with its sub-
leading corrections, could serve as a valuable tool for studying deep infrared physics in
AdS/CFT.
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1 Introduction

It has long been known that general relativity can lead to rich yet tractable behavior in the
vicinity of spacelike singularities [1, 2]. Roughly speaking, spatial derivatives are suppressed
in such Belinski-Khalatnikov-Lifshitz (BKL) near-singularity limits, leading to emerging ultra-
local behavior. The archetypical solution of Einstein’s equations in this limit is given by the
Kasner metric,

ds2 = −d t2 + t2p1 d x2 + t2p2 d y2 + t2p3 dz2 , (1)

which describes a spatially homogeneous geometry that expands anisotropically with fixed
scaling exponents. This metric is Einstein if the scaling exponents pa satisfy particular rela-
tions. In the absence of matter, these relations are

∑

a

pa = 1 ,
∑

a

(pa)
2 = 1 . (2)

The near-singularity region of highly symmetric black hole solutions are described by a single
Kasner geometry, corresponding to a fixed set of values of the scaling exponents. The rich dy-
namics of BKL limits arises in situations where the Kasner exponents vary dynamically through
the space of solutions that is parametrized by relations such as (2).

This dynamics can be sourced in several different ways. First, we can modify the Kasner
Ansatz (1) by adding curvature to its spatial slices. To obtain a curved metric whose spatial
slices are homogeneous but anisotropic, it is useful to start from a thee-dimensional group
manifold such as SO(3), whose natural metric is both homogeneous and isotropic. Anisotropy
can then be introduced using scaling exponents similar to the pa in the Kasner metric (1), and
this is known as the ‘mixmaster’ model [3]. As we briefly review in Section 2.2 below, the
presence of spatial curvature introduces a potential in the space of scaling exponents, leading
to rich and chaotic dynamics.

Additionally, interesting dynamics can be obtained by adding matter couplings. Notably,
the idea of BKL limits was revisited some time ago in the context of of supergravity, where the
p-form couplings were shown to lead to chaotic dynamics characterized by affine Lie algebras,
as reviewed in [2, 4]. These rich symmetry structures arise naturally when the dynamics in
the space of scaling exponents is mapped to a particle moving in an external hyperbolic ge-
ometry, an idea going back to Chitre and Misner [5, 6]. This particle motion is constrained
by potentials which are determined by the setup at hand. At late times, the potentials lead
to sharp walls, resulting in a ‘cosmological billiard motion’ with reflections at the walls. For
example, the four-dimensional mixmaster model mentioned above maps to billiard dynamics
in a two-dimensional hyperbolic triangle, corresponding to the SL(2,Z) fundamental domain.
In more intricate supergravity settings, the billiard table can be seen as the Weyl chamber of
an affine Lie algebra [4].

More recently, the BKL phenomenon has been revisited through the lens of the AdS/CFT
correspondence. To see how this may arise, let us first work out explicitly how a planar AdS-
Schwarzschild black hole in 3+1 dimensions gives rise to a Kasner geometry near its singularity.
Far behind the horizon, z≫ zH , the metric becomes

ds2 =
L2

z2

�

−
�

1− (z/zH)
3
�

d t2 +
dz2

1− (z/zH)3
+ d x2 + d y2

�

(3)

≈ −dτ2 +τ−2/3d t2 +τ4/3
�

d x2 + d y2
�

, (4)

where we have introduced a new ‘interior time’ coordinate τ= τ(z) and we have rescaled the
remaining coordinates. This corresponds to a Kasner metric of the form (1) with pt = −1/3
and px = py = 2/3, which satisfy the conditions (2) above.
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While the exterior geometry of these AdS-Schwarzschild black holes is dynamically sta-
ble, their interiors are notoriously unstable. Matter fields experience infinite growth as they
approach a spacelike singularity, causing significant backreaction [7, 8]. Generally speaking,
the Schwarzschild singularity is said to be finely tuned within the range of potential near-
singularity behaviors, making it an unusual late-time solution. Therefore, this inherent insta-
bility of the Schwarzschild singularity must be carefully considered in any holographic inves-
tigation of the black hole interior.

Motivated by this conceptual challenge, Frenkel, Hartnoll, Kruthoff and Shi [9] investi-
gated a class of AdS black holes obtained by deforming the dual CFT with a relevant scalar
operator, finding that such a deformation leads to the emergence of Kasner geometries other
than (4) as the endpoint of the interior’s evolution. Subsequent studies with different types of
deformations [10–29] have revealed a plethora of rich near-singularity dynamics similar to the
cosmological billiards discussed previously, depending on the matter content and interactions
within the gravitational theory. In particular, this includes BKL-like phenomena such as Kasner
inversions, the rapid collapse or expansion of the Einstein-Rosen bridge, and finite or infinite
series of bounces similar to those seen in cosmological billiards. Holographically, there have
been attempts to interpret these phenomena in terms of RG flows of the boundary CFT [30],
and several field theory observables have been proposed to capture specific imprints of the
BKL-type dynamics of the black hole interior [27–38].

Despite this recent progress, there is still no firm understanding of how the near-singularity
Kasner exponents and their potentially chaotic dynamics arise from a boundary perspective.
In order to isolate the relevant bulk dynamics, and to be able to fully explore its possibilities,
building on earlier observations in [4,39], we develop a novel approach to the near-singularity
dynamics of general relativity coupled to matter, focusing on the ultra-local structure that
arises naturally at late interior times. In this limit, the light cone collapses to a line, which
corresponds to a ‘small speed of light’ contraction of the Lorentz algebra that leads to the
Carroll algebra [40, 41]. Geometrically, the Carroll limit can be described in terms of fully
covariant curved spacetime geometry using a toolkit similar to the Newton–Cartan geometry
associated to non-relativistic limits, as recently reviewed in [42].

Over the past years, there has been a surge of interest in Carroll limits. This has mainly
been motivated by flat space holography, where Carroll field theories naturally arise since the
asymptotic BMS symmetries at null infinity can be interpreted as the symmetries of a conformal
Carroll structure [43]. For this reason, conformal Carroll symmetries have been proposed as
a guiding principle for holography in asymptotically flat spacetimes [44–46], complementing
the celestial holography approach [47–49].

In this paper, however, we will use the ultra-local Carroll limit to describe bulk physics,
focusing specifically on the near-singularity BKL dynamics of black holes. Our main aim will
be to demonstrate explicitly that a theory of Carroll gravity, consisting of dynamical Carroll
geometry coupled to matter, can describe the aforementioned mixmaster behavior. Moreover,
this Carroll theory of gravity is directly obtained from an ultra-local limit of the bottom-up
AdS/CFT model that was recently introduced in [23] to obtain mixmaster dynamics near the
singularity of an asymptotically AdS black hole.

We want to argue that this approach to near-singularity dynamics is promising for several
reasons. First, since the ultra-local limit is implemented off shell on the level of the geometry,
the Carroll theory of gravity that we consider [50–53] is inherently much simpler than full
general relativity (GR). In particular, as emphasized in [39,50,53,54], its evolution equations
always consist of ordinary differential equations, instead of the hyperbolic partial differential
equations of GR. As such, our approach will allow us to construct a much larger class of models
where the emergence of BKL-type behavior can be observed explicitly, either analytically or
numerically, than what would be tractable in full GR. Additionally, the Carroll theory of gravity
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that we use can be seen as the leading order in the ultra-local expansion of GR that was
recently constructed in [53], building on a related construction of the off-shell non-relativistic
expansion in [55–58]. While we only focus on the leading-order action in the present paper,
our approach is therefore naturally equipped to explicitly studying subleading corrections to
near-singularity BKL dynamics in a tractable way.

This paper is organized as follows. We start out by reviewing salient features of BKL dy-
namics in Einstein gravity. For this, we first introduce a useful parametrization of Kasner-type
geometries with time-dependent scaling exponents in Section 2.1, and we show how it gives
rise to the interpretation of such geometries as trajectories in a minisuperspace parametrized
by the scaling exponents. In Section 2.2, we then introduce the mixmaster model, and we show
how it leads to nontrivial trajectories, which can furthermore be mapped to billiard dynamics
on a hyperbolic triangle. Section 3 then introduces the necessary Carroll tools, including a
brief overview of curved Carroll geometry, the off-shell ultra-local expansion of general rela-
tivity introduced in [53] and the coupling to Carroll limits of matter actions. We then show
in Section 4.1 that leading-order vacuum Carroll gravity admits Kasner solutions1 and simi-
larly leads to trajectories in an external Minkowski space. Motivated by the recently-proposed
AdS/CFT model from [23], we then demonstrate explicitly in Section 4.2 that the Carroll limit
of gravity coupled to three abelian gauge fields reproduces the full dynamics of the mixmaster
model. Finally, we summarize our findings and set out several future directions in Section 5.

2 Kasner geometries and BKL in Einstein gravity

We first review some aspects of Kasner metrics and BKL dynamics in Einstein gravity. The rich
dynamics that we are interested in arises when the Kasner exponents in (1) are allowed to
vary in time. Additionally, it is convenient to introduce a lapse function. We therefore now
consider metrics of the form

ds2 = −e−2α(t)d t2 + e2β1(t)d x2 + e2β2(t)d y2 + e2β3(t)dz2 . (5)

From this, the vacuum Einstein equations reproduce Kasner geometries with fixed scaling ex-
ponents, as we will show in Section 2.1. Following for example [2], this parametrization
naturally suggests an interpretation of such geometries as null geodesics in an external three-
dimensional Minkowski ‘minisuperspace’ parametrized by the scaling exponents.

As depicted in Figure 1, a particular Kasner geometry then corresponds to a null line inside
the light cone of this external Minkowski space, which maps to a point on a given hyperbolic
slice inside this light cone. To illustrate how the rich and chaotic BKL-type dynamics arises,
we briefly review the mixmaster model in Section 2.2. Here, we will see that adding spatial
curvature introduces a potential in the space of allowed scaling exponents, leading to sharp
walls at late times. This leads to rich and chaotic dynamics, which can be mapped to billiard
dynamics of a particle on a hyperbolic slice (or any other spacelike slicing of the light cone
interior).

2.1 Kasner geometries in vacuum

With the metric Ansatz (5), the t t component of the vacuum Einstein equations implies

0= −2
�

β̇1β̇2 + β̇1β̇3 + β̇2β̇3

�

. (6)

1The fact that Carroll gravity has Kasner-type solutions with fixed scaling exponents as in (1) was observed
in [59, 60] and was also pointed out by M. Henneaux during the 2022 Vienna Carroll Workshop. However, these
references did not reproduce BKL or mixmaster dynamics from Carroll gravity. Our aim in the present paper is to
demonstrate this connection explicitly, following earlier observations in [4,39],
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β̄a

(a)

β̄a

(b)

Figure 1: On shell, metrics of the form (5) map to trajectories in an external three-
dimensional Minkowski spacetime. The vacuum Kasner solutions map to straight
null lines, and spatial curvature or matter coupling can give curved trajectories.

This equation gives a simple constraint which we can solve for the time derivative of one of
the parameters, but we can also see it as a statement on the norm of the βa vector. To see this
more clearly, we can redefine the scaling exponents as follows,

β1 =
1
p

6

�

β̄1 − β̄2 −
p

3β̄3

�

, (7a)

β2 =
1
p

6

�

β̄1 − β̄2 +
p

3β̄3

�

, (7b)

β3 =
1
p

6

�

β̄1 + 2β̄2

�

, (7c)

so that the equation above becomes

0=
�

− ˙̄β2
1 +

˙̄β2
2 +

˙̄β2
3

�

. (8)

This means that we can think of ˙̄βa as a vector in a Minkowski ‘minisuperspace’, and the
Hamiltonian constraint encoded by the t t component of the Einstein equations requires this
vector to be null.

The space-time components, corresponding to the momentum constraint, are identically
satisfied. The space-space components of the Einstein equations encode the evolution equa-
tions, and they imply

0= β̈a + β̇a

�

α̇+ β̇1 + β̇2 + β̇3

�

. (9)

From this, we see that it is useful to redefine our choice of lapse function as follows,

α(t)→ α(t)− (β1(t) + β2(t) + β3(t)) , (10)

so that the evolution equations become

0= α̇β̇a + β̈a = e−α
d
d t

�

eαβ̇a

�

. (11)

To further simplify this, we can then introduce a new time coordinate τ(t) such that we have
dτ = e−αd t, which absorbs what remains of the lapse function. Now using dots to denote
τ derivatives, the evolution equations are then simply

β̈a = 0 , (12)
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which is the geodesic equation in flat space. Combining this with the previous equation,
we see that the βa (or equivalently the β̄a) parametrize null geodesics in the external three-
dimensional Minkowski spacetime. As a result, we can parametrize them using

β̄a(τ) = v̄aτ+ β̄
(0)
a , (13)

where v̄a is a three-dimensional null vector. By choosing the initial position β̄ (0)a appropriately,
we can furthermore ensure that β̄a(τ) lies inside the light cone of the origin of the Minkowski
superspace for τ > 0, as illustrated in Figure 1a above. This trajectory can then be mapped to
a single point on a spacelike slice of the interior of the light cone, such as the hyperboloid in
Figure 1a.

2.2 Mixmaster model

In the above, we saw how Kasner solutions of the vacuum Einstein equations can be rein-
terpreted as null geodesics in an external Minkowski spacetime parametrized by the scaling
exponents. In this picture, non-trivial dynamics can arise in several ways.

First, we can modify the Kasner Ansatz (5) to include a homogeneous but anisotropic
metric on spatial slices. The most famous example of this is the ‘mixmaster’ model [3], which
we will briefly review below. Additionally, interesting dynamics can be obtained from matter
couplings. In particular, we will focus on the setup proposed in [23], which obtains dynamics
equivalent to that of the mixmaster model behind the horizon of an asymptotically planar
AdS black hole, using three massive Abelian gauge fields. We will build on this construction to
obtain the same dynamics from matter-coupled Carroll gravity in Section 4 below. For now, we
give a qualitative overview of the mixmaster dynamics as it arises from its original construction
which uses spatial curvature.

The idea is to replace the metric on spatial slices of the Kasner geometry (5) with a
‘squashed’ anisotropic version of the natural metric on SO(3). To construct the latter, we
parametrize a group element g ∈ SO(3) using coordinates x i = (θ ,ϕ,ψ) as follows,

g(θ ,ϕ,ψ) = exp(ψT3)exp(θT1)exp(ϕT3) . (14)

Here, the (Ta)bc = εabc are generators of the Lie algebra, and we set ε123 = +1. In this
parametrization, the Maurer–Cartan form is given by

g−1d g = (cosϕdθ + sinϕ sinθdψ)T1 + (sinϕdθ − cosϕ sinθdψ)T2 (15)

+ (dϕ + cosθdψ)T3 .

Using the invariant Killing metric κab = δab on the Lie algebra, we obtain a homogeneous and
isotropic metric on the three-dimensional SO(3) group manifold,

dσ2 = κ(g−1d g, g−1d g) = dθ2 + dϕ2 + dψ2 + cosθ dφdψ . (16)

To introduce anisotropy in this spatial metric while retaining homogeneity, we can deform the
Killing metric using Kasner-type scaling exponents βa(t). Introducing also a lapse function
α(t) as before, the resulting spacetime metric is

ds2 = −e2α(t)d t2 + e2β1(t)(cosϕdθ + sinϕ sinθdψ) (17)

+ e2β2(t)(sinϕdθ − cosϕ sinθdψ) + e2β3(t)(dϕ + cosθdψ) .

The Ricci scalar of the spatial slices of this metric is given by

R(3)(t) = e−2β1 + e−2β2 + e−2β3 −
1
2

�

e2(β1−β2−β3) + e2(β2−β3−β1) + e2(β3−β1−β2)
�

, (18)
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where all scaling exponents βa(t) depend on time. After redefining the lapse and subsequently
absorbing it by reparametrizing the time coordinate as in (10) and (11) above, the Hamiltonian
constraint now gives

β̇ T Aβ̇ = e2(β1+β2+β3)R(3) = −V (β) , (19)

where we have introduced the potential

V (β) =
1
2

�

e4β1 + e4β2 + e4β3
�

−
�

e2(β1+β2) + e2(β1+β3) + e2(β2+β3)
�

. (20)

The evolution equations are similarly modified in terms of this potential.
We will analyze a closely related set of equations that we obtain from Carroll gravity in

detail in Section 4. For now, we see that the nontrivial spatial curvature modifies the vacuum
solution of Einstein’s equations in terms of null geodesics in the Minkowski space of βa scaling
exponents. Mapping these trajectories to the motion of a particle on a slicing of the interior
of the light cone, as illustrated in Figure 1b, the spatial curvature acts as a potential for this
particle. The first three terms of the potential dominate, and they allow the trajectories to
become timelike. At late times, when the components of βa will typically be large, these terms
lead to hard walls, restricting the trajectory to

β1 ≤ 0 , β2 ≤ 0 , β3 ≤ 0 . (21)

As we will see explicitly in Section 4.2, this region maps to a triangle on a spatial slice inside
the light cone in β̄a space, and the mixmaster dynamics can be described as the billiard motion
of a particle on this triangular region.

3 Leading-order Carroll gravity

We now introduce the necessary technology for the ultra-local Carroll expansion that was
developed in [53], which built on the non-relativistic Newton–Cartan expansion developed
in [55–57]. As we will see, an ultra-local c → 0 expansion of Lorentzian geometry results in
Carroll geometry plus subleading corrections, including an appropriate notion of connection
and curvature. This ultra-local structure is naturally adapted to the near-singularity region of
black holes, as illustrated in Figure 2 below.

Applied to the Einstein–Hilbert action, the leading-order theory of Carroll gravity obtained
from this ultra-local expansion is given by [53]2

c3

2κ

∫

dd x
p

−g R=
c2

2κ

∫

dd x e
�

KµνKµν − K2
�

+O(c0) , (22)

where Kµν is the extrinsic curvature of spatial slices, as we will see below. Note that this is
precisely the kinetic part of the ADM Lagrangian in fully covariant notation. Likewise, applying
the same expansion procedure to the Maxwell action leads to

−
1

4gc

∫

dd x
p

−g gµνgρσFµρFνσ =
1

2gc2

∫

dd x e hµνEµEν +O(c0) . (23)

As we will see, the tensor hµν can be interpreted as the inverse of a (degenerate) spatial metric
hµν which, together with a ‘time’ vector field vµ determines the leading-order Carroll geom-
etry.3 Since the leading-order Carroll limit of the Maxwell action only contains the electric

2This equality holds up to boundary terms. The resulting action also appeared in [50–52].
3Since the spatial metric hµν is degenerate, the inverse hµν is not uniquely determined, which is reflected by its

transformation (28) under local Carroll boosts.
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t

x

(a)

vµ

hµν

(b)

Figure 2: Illustration of (a) the ultra-local Carroll limit of the Lorentzian causal struc-
ture, where light cones are contracted to a line, together with its subleading correc-
tions, and (b) the curved Carroll geometry with time vector field vµ and spatial de-
generate metric hµν, which appears naturally near spacelike singularities.

field, it is often called the ‘electric’ limit of electromagnetism [50,52,60–62]. By analogy, the
leading-order Carroll limit (22) obtained from the Einstein–Hilbert action is also sometimes
known as the ‘electric Carroll limit’ of general relativity.4

As in ordinary Lorentzian gravity, actions for Carroll matter can be coupled to Carroll
gravity, which results in metric equations of motion sourced by the corresponding energy-
momentum tensors. By projecting these equations along components tangential and normal
to a spatial hypersurface, we obtain a decomposition in constraint and evolution equations.
Due to their ultra-locality, the evolution equation of these models is particularly simple, and we
will discuss some of its general features in Section 3.2. We then work out the specific example
of ‘electric’ Carroll gravity (22) coupled to the electric limit (23) of the Maxwell action in
Section 3.3.

3.1 Some background on Carroll geometry

Our approach to the ultra-local c → 0 Carroll limit and its subleading corrections [53] starts
by explicitly introducing a speed of light in our Lorentzian spacetime metric,

gµν = c2TµTν +Πµν . (24)

This decomposition singles out a particular timelike vielbein Tµ, in analogy to the choice of
spatial slicing implicit in the Ansatz (5). The timelike vielbein Tµ and the spatial vielbeine con-
tained in Πµν form a local frame in a given Lorentzian geometry, around which we define our
ultra-local expansion. This frame can be complemented with a corresponding decomposition
of the inverse metric,

gµν = −
1
c2

VµV ν +Πµν . (25)

where Vµ is the inverse timelike vielbein and Πµν contains the inverse spacelike vielbeine. As
such, they satisfy the usual orthonormality and completeness relations

TµVµ = −1 , TµΠ
µν = 0 , VµΠµν = 0 , −VµTµ +Π

µρΠρν = δ
µ
ν . (26)

4Using different parametrizations, ‘magnetic’ Carroll limits can also be obtained, but we will not need them
here. Whereas electric actions typically only contain time derivatives of the fields (corresponding to the extrinsic
curvature in gravity), magnetic Carroll actions typically contain only spatial derivatives (or spatial curvature in
gravity). To retain Carroll invariance, the latter also come with constraints that strongly restrict their dynamics in
time, so they are unsuitable for describing BKL dynamics.
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If the one-form Tµ satisfies the integrability condition T∧dT = 0, we can think of it as defining
a spatial hypersurface, and Πµν then is the induced metric on this hypersurface. In Lorentzian
geometry, a decomposition such as (24) is not invariant under local Lorentz boosts, which
mix spacelike and timelike vielbeine. As we will see shortly, this carries over to the Carroll
boosts that arise from such local Lorentz boosts. Nonetheless, even though they are not boost-
invariant, it will often be useful to use ‘spacelike’ and ‘timelike’ projections for our Carroll
equations, in particular when solving equations of motion.

After implementing this decomposition, we expand its geometric variables as follows,

Vµ = vµ + c2Mµ +O(c4) , Πµν = hµν + c2Φµν +O(c4) , (27a)

Tµ = τµ +O(c2) , Πµν = hµν +O(c2) , (27b)

where the subleading terms in the second line can be obtained from those in the first line using
the expansion of (26). In this expansion, we assume that our metric variables are analytic, and
we furthermore only take even powers into account. This truncation is self-consistent, and it
will furthermore prove to be sufficient for our purposes.

At leading order, the local Lorentz boosts of our original Lorentz frame result in

δvµ = 0 , δτµ = λµ , δhµν = vµλν +λµvν , δhµν = 0 , (28)

which are known as Carroll boosts. The parameter λµ is spatial in the sense that it satisfies
vµλµ = 0, which means that it can be consistently raised as λµ = hµρλρ without this being
ambiguous under the boost transformations itself.

We see that the time vector field vµ and the spatial metric hµν are invariant under Carroll
boosts. As such, they can be seen as the fundamental metric-like quantities of Carroll geometry,
as illustrated in Figure 2b. Other boost-invariant quantities include the vielbein determinant
e = det(τµτν + hµν) as well as

Kµν = −
1
2
Lvhµν , (29)

which we refer to as the extrinsic curvature of spatial slices. It is easy to see that vµKµν = 0,
which implies that contractions such as K = hµνKµν are also boost-invariant.

In this geometric Carroll expansion, it is furthermore convenient to replace the Levi-Civita
connection of the Lorentzian geometry with a connection ∇̃ that is compatible with the boost-
invariant Carroll metric variables vµ and hµν,

∇̃ρvµ = 0 , ∇̃ρhµν = 0 . (30)

Several choices of such connections are possible, but they all have nonzero ‘intrinsic’ torsion
on generic backgrounds [63]. In the following, the only property we will need of our Car-
roll connection of choice is that it projects to a (Euclidean) Levi-Civita connection on spatial
hypersurfaces [53]. This means that fully-projected derivatives such as

hµρhνσ∇̃ρωσ , (31)

of spatial tensors (which satisfy vµωµ = 0) can be computed in terms of the three-dimensional
Levi-Civita covariant derivative on spatial slices.

3.2 Equations of motion with general matter coupling

Applying the metric decomposition (24) to the Einstein–Hilbert action, we obtain [53]

c3

2κ

∫

dd x
p

−g R=
c2

2κ

∫

dd x e
h

�

KµνKµν −K2
�

+ c2Πµν
(C̃)

Rµν + c4ΠµρΠνσ∂[µTν]∂[ρTσ]
i

. (32)
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This is known as the ‘pre-ultra-local’ parametrization of the Einstein–Hilbert action, as it still
describes the full dynamics of Einstein gravity, but using variables that are adapted to the
ultra-local c→ 0 expansion. To leading order in this expansion, the Ricci tensor and extrinsic
curvature terms in (32) reduce to the Carroll quantities introduced in the previous section,

Kµν = −
1
2
LVΠµν = Kµν +O(c2) , (33)

(C̃)

Rµν = R̃µν +O(c2) . (34)

For our present purposes, we will not need the subleading order terms in such expansions.
Indeed, we will only need the leading-order terms in the expansion of the action (32),

c3

2κ

∫

dd x
p

−g R=
c2

2κ

∫

dd x e
�

KµνKµν − K2
�

+O(c0) . (35)

As we mentioned above, up to an overall factor of c2, this gives what is usually referred to as
the ‘electric’ Carroll limit of Einstein gravity. Note that all Riemann curvature terms in (32)
only appear from subleading order onwards, and they are thus suppressed in this leading-order
electric action.

The same procedure can be applied to obtain an ‘electric’ Carroll matter Lagrangian from
a given field theory coupled to Lorentzian geometry. The result is a field theory with Carroll
background geometry, which therefore can be coupled to dynamical Carroll gravity. Given
such an action for matter-coupled Carroll gravity,

Se[v, h] + Sm[φ; v, h] =
1

2κ

∫

dd x e
�

KµνKµν − K2
�

+ Sm[φ; v, h] , (36)

we first write down the metric equations of motion and then consider the specific example of
abelian Yang–Mills (23) which we will treat in detail below.

Varying the gravity action with respect to vµ and hµν gives

δSe =
1

2κ

∫

dd x e
�

2Gv
µδvµ + Gh

µνδhµν
�

, (37)

where we have [53]

Gv
µ = −

1
2
τµ
�

KρσKρσ − K2
�

− hνρ∇̃ρ
�

Kµν − Khµν
�

, (38a)

Gh
µν = −

1
2

hµν
�

KρσKρσ − K2
�

+ K
�

Kµν − Khµν
�

− vρ∇̃ρ
�

Kµν − Khµν
�

. (38b)

Varying the matter action with respect to the background metric gives the currents

δSm = −
∫

dd x e
�

T v
µδvµ +

1
2

Th
µνδhµν
�

. (39)

They can be combined into a total boost-invariant energy-momentum tensor [64–66]

Tµν = −vµT v
ν − hµρTh

ρν , (40)

but we only need the individual currents for the gravity equations of motion.
Combining the variations (37) and (39) we get the following matter-coupled equations of

motion
Gv
µ = κ T v

µ , Gh
µν = κ Th

µν . (41)
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It is useful to take the spatial and temporal projections of these equations of motion using the
projectors −vµτµ and hµρhρν, which leads to [53,60],

1
2

�

KρσKρσ − K2
�

= vµGv
µ = κ vµT v

µ , (42a)

−hαµhρν∇̃ρ
�

Kµν − Khµν
�

= hαµGv
µ = κhαµT v

µ , (42b)

LvKµν = KKµν − 2Kµ
ρKρν −κhαµhβν Th

αβ +
κ

(d − 1)
hµν
�

T v
ρ vρ + Th

ρσhρσ
�

. (42c)

We can interpret the first two equations as constraints on initial data (hµν, Kµν) on a given
initial time slice. The third equation the determines the evolution of this initial data along
a given vµ time vector. In fact, the equations above can be identified with subsets of the
full (covariant) ADM constraint and evolution equations for Einstein gravity, where particular
terms, such as the three-dimensional Ricci scalar, drop out in the Carroll limit. As emphasized
in [53], the fact that these terms are suppressed makes the equations significantly simpler
than their full Lorentzian analogues in general relativity. In particular, instead of the usual
hyperbolic partial differential equation, the evolution equation is just an ordinary differential
equation with respect to the time coordinate associated to the vµ vector field. As we will see
explicitly in Section 4.2, this ultra-local simplification makes the equations easily tractable.

3.3 Carroll gravity coupled to electric limit of Maxwell

Now let us consider the specific example of the Carroll limit of gravity coupled to electro-
magnetism. Following a similar procedure as what we outlined above for the Einstein–Hilbert
action, the leading-order term in the ultra-local c→ 0 limit of the Maxwell action leads to the
‘electric’ Carroll limit of electromagnetism [50,60,61]

SEMe =
1

2g

∫

dd x e vµvνhρσFµρFνσ , (43)

where we identify Eµ = vρFρν with the electric field. Varying the action with respect to the
gauge field, we get the matter equation of motion

0= ∂µ
�

e v[µhν]ρvσFρσ
�

. (44)

Next, varying the action with respect to vµ and hµν as in (39) leads to the energy-momentum
currents

T v
µ = −

1
2g

�

τµ
�

vαFαρhρσvβ Fβσ
�

+ 2Fµρhρσvβ Fβσ
�

, (45a)

Th
µν =

1
2g

�

hµν
�

vαFαρhρσvβ Fβσ
�

− 2vαFαµvβ Fβν
�

. (45b)

Note that we have vµhνρTh
µν = 0, which corresponds to a Ward identity due to Carroll boost

invariance. Additionally, note that the last term in T v
µ contains a contribution proportional to

hαµFµρhρσ, which encodes the magnetic field. Even though the action (43) only depends on
the electric field, this term arises from the variation of the vµ fields. For our purposes, we will
only need the electric field coupling, so we will set the magnetic field to zero in the following.
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With this, the Hamiltonian constraint (42a), the momentum constraint (42b) and the evo-
lution equation (42c) resulting from the coupling of leading-order Carroll gravity to the electric
Carroll limit of the Maxwell action (43) are given by [60]

1
2

�

KρσKρσ − K2
�

= −
κ

2g
hµνEµEν , (46a)

−hαµhρν∇̃ρ
�

Kµν − Khµν
�

= 0 , (46b)

LvKµν − KKµν + 2Kµ
ρKρν =

κ

g

�

EµEν −
hµν
(d − 1)

EρEρ

�

. (46c)

In the following, we will consider a straightforward generalization of these equations, involv-
ing not one but three gauge fields.

4 Mixmaster dynamics from Carroll gravity

We now want to show that the Carroll theories of gravity obtained from an ultra-local expan-
sion of general relativity can capture BKL dynamics. Mirroring the metric Ansatz (5) that we
used in Einstein gravity, we now take the Carroll Ansatz

vµ∂µ = −eα(t)∂t , hµνd xµd xν = e2βx (t)d x2 + e2βy (t)d y2 + e2βz(t)dz2 . (47)

In Section 4.1, we first show that evaluating equations of motion of pure Carroll gravity on
this Ansatz leads to equations equivalent to the ones we obtained from pure Einstein gravity in
Section 2.1. As before, this leads to the interpretation of the vacuum Kasner-type solutions as
null geodesics in a three-dimensional Minkowski minisuperspace parametrized by the scaling
exponents. Next, inspired by the bottom-up AdS/CFT model recently proposed in [23], we
consider Carroll gravity coupled to three electric gauge fields in Section 4.2. We show that the
resulting equations of motion fully capture the dynamics of the mixmaster model [67] that we
briefly discussed in Section 2.2.

To begin, let us list some further geometric properties of our Ansatz (47). While the inverse
spatial metric hµν transforms nontrivially under the local Carroll boosts (28), which affects its
space-time components, its space-space components are unambiguous. Using the coordinates
xµ = (t, x i) from the Ansatz above, where x i = (x , y, z) are the spatial coordinates, we have

hi j∂i∂ j = e−2βx (t)∂ 2
x + e−2βy (t)∂ 2

y + e−2βz(t)∂ 2
z . (48)

The square root of the metric determinant, the extrinsic curvature and its trace are

e =
q

det (τµτν + hµν) = e−α+βx+βy+βz = e−α
p

h , (49a)

Kµνd xµd xν = eα(β̇x e2βx d x2 + β̇y e2βy d y2 + β̇ze2βz dz2) , (49b)

K = hi jKi j = eα
�

β̇x + β̇y + β̇z

�

. (49c)

As we mentioned previously, the extrinsic curvature is purely spatial. For this reason, contrac-
tions such as the trace (49c) are only sensitive to the spatial components (4.2) of the inverse
spatial metric, which are not modified by local Carroll boosts.
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4.1 Kasner geometries in vacuum

In vacuum, the equations of motion (42) for leading-order Carroll gravity reduce to

0=
1
2

�

KρσKρσ − K2
�

, (50a)

0= −hαµhρν∇̃ρ
�

Kµν − Khµν
�

, (50b)

LvKµν = KKµν − 2Kµ
ρKρν . (50c)

Note that the Carroll covariant derivative ∇̃ρ in the momentum constraint (50b) is fully
projected onto the spatial hypersurface, where it simply reduces to the Levi-Civita covariant
derivative, as we discussed around (31) above. As a result, using the Ansatz (47) the right-
hand side of (50b) will vanish identically, since the extrinsic curvature Kµν, its trace K and
the spatial metric hµν are independent of the spatial coordinates. Therefore, the momentum
constraint is identically satisfied.

The Hamiltonian constraint gives

0=
1
2

�

K i jKi j − K2
�

=
1
2

e2α
�

�

β̇2
1 + β̇

2
2 + β̇

2
3

�

−
�

β̇1 + β̇2 + β̇3

�2�
(51)

= e2α
�

− ˙̄β2
1 +

˙̄β2
2 +

˙̄β2
3

�

. (52)

This is equivalent to what we got from the time-time component of the Einstein equation in (6)
above. Using the transformation (7), we see that ˙̄βa is a null vector in a three-dimensional
Minkowski minisuperspace. The evolution equation (50c) then leads to

0= e2(α+βa)
�

β̈a + β̇a

�

α̇+ β̇1 + β̇2 + β̇3

��

. (53)

Up to an overall prefactor, this is what we obtained from the Einstein equations in (9). As
we did there, it is useful to first shift the lapse function α(t) as in (10), and subsequently
reparametrize t = t(τ) to absorb the lapse completely. The evolution equations then reduce
to

β̈a = 0 . (54)

Together with the constraint equation (51), this means that the trajectories parametrized by
βa(τ) (or equivalently by β̄a(τ)) correspond to null geodesics, as in Figure 1a.

4.2 Mixmaster dynamics from electric matter coupling

We now consider coupling Carroll geometries of the form (47) to three copies of the electric
Carroll gauge field described by the action (43). For the gauge fields, we take

A1 = f1(t)d x , A2 = f2(t)d y , A3 = f3(t)dz . (55)

Solving the gauge field equations of motion (44) on the background (47), we obtain the fol-
lowing solutions, with φa arbitrary constants,

ḟ1 = φ1e−αeβ1−β2−β3 , ḟ2 = φ2e−αeβ2−β3−β1 , ḟ3 = φ3e−αeβ3−β1−β2 . (56)

This leads to electric fields Ea
µ = vρF a

ρν along each of the spatial axes, given by

E1 = −φx eβx−βy−βz d x , E2 = −φy eβy−βz−βx d x , E3 = −φzeβz−βx−βy d x , (57)
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and the magnetic fields hµρhνσFρσ vanish identically. With this matter content, the constraint
and evolution equations (46) give

1
2

�

KρσKρσ − K2
�

= −
κ

2g
hµν
�

E1
µE1
ν + E2

µE2
ν + E3

µE3
ν

�

, (58a)

−hαµhρν∇̃ρ
�

Kµν − Khµν
�

= 0 , (58b)

LvKµν − KKµν + 2Kµ
ρKρν =

κ

g

�

E1
µE1
ν + E2

µE2
ν + E3

µE3
ν

�

(58c)

−
κ

g

hµν
(d − 1)

hρσ
�

E1
ρE1
σ + E2

ρE2
σ + E3

ρE3
σ

�

.

Note that there are no source terms in the momentum equation, which is therefore again
identically satisfied since there is no spatial dependence in the metric Ansatz (47).
Again, it is now convenient to redefine the lapse and subsequently absorb it by reparametrizing
the time coordinate t = t(τ) such that

α(t)→ α(t)−
�

βx + βy + βz

�

, eα(t)
d
d t
β(t) =

d
dτ
β(t(τ)) . (59)

The Hamiltonian constraint (58a) and the evolution equations (58c) then become

−2
�

β̇1β̇2 + β̇1β̇3 + β̇2β̇3

�

= −
κ

g
V (β) , β̈a =

κ

2g

�

1− ∂βa

�

V (β) , (60)

where the following potential is sourced by the gauge field couplings,

V (β) = φ2
1 e2β1 +φ2

2 e2β2 +φ2
3 e2β3 . (61)

In regions where this potential and its derivatives are negligible, we see that we recover the
vacuum solutions discussed in the previous section. In particular, in such regions, the trajectory
βa(τ) is approximately given by the straight null lines

βa(τ)≈ vaτ+ β
(0)
a . (62)

Additionally, we see that as βa grows in time, the potential (61) will become exponentially
steep. At late times, the potential therefore effectively bounds off the region

β1 ≤ 0 , β2 ≤ 0 , β3 ≤ 0 , (63)

as in Equation (21) for the SO(3) mixmaster model. When the null trajectories reach the
boundary of this region, the potential peaks, allowing the tangent vector βa(τ) to briefly be-
come timelike, bouncing the trajectory off the potential wall and returning to another approx-
imately null trajectory.

To further analyze the resulting dynamics, it is useful to change variables to the barred
coordinates introduced in (7). The constraint equation then becomes

− ˙̄β2
1 +

˙̄β2
2 +

˙̄β2
3 = −

κ

g
V
�

β(β̄)
�

(64)

= −
κ

g

�

φ2
1 e
p

2/3(β̄1−β̄2−
p

3β̄3) +φ2
2 e
p

2/3(β̄1−β̄2+
p

3β̄3) +φ2
3 e
p

2/3(β̄1+2β̄2)
�

,

while the evolution equations become

¨̄β1 =
1
p

6

κ

g

h

φ2
1 e
p

2/3(β̄1−β̄2−
p

3β̄3) +φ2
2 e
p

2/3(β̄1−β̄2+
p

3β̄3) +φ2
3 e
p

2/3(β̄1+2β̄2)
i

, (65a)

¨̄β2 =
1
p

6

κ

g

h

φ2
1 e
p

2/3(β̄1−β̄2−
p

3β̄3) +φ2
2 e
p

2/3(β̄1−β̄2+
p

3β̄3) − 2φ2
3 e
p

2/3(β̄1+2β̄2)
i

, (65b)

¨̄β3 =
1
p

2

κ

g

h

φ2
1 e
p

2/3(β̄1−β̄2−
p

3β̄3) −φ2
2 e
p

2/3(β̄1−β̄2+
p

3β̄3)
i

. (65c)
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Figure 3: Three sample evolutions of the equations (65) in the γa variables (67)
from τ= 0 to log (1+τ) = 23, showing strong dependence on the initial conditions.
All trajectories start from γ1 = −1/5, γ2 = −1/6 and γ3 = 0. We solve the initial
velocity γ̇1 from the constraint (64) with γ̇3 = 2 and (a) γ̇2 = −11/10, which gives
a trajectory that bounces around in the lower left and right corner before flying off
towards the top corner, while taking (b) γ̇2 = −9/10, it bounces between the lower
right corner and the upper left wall, and with (c) γ̇2 = −7/10, the trajectory bounces
between all three walls.

In these coordinates, the potential walls (63) parametrize a cone with triangular cross-sections
for fixed (negative) values of β̄1,

β̄2 ≤ −β̄1/2 , β̄2 ≥ β̄1 −
p

3β̄3 , β̄2 ≥ β̄1 +
p

3β̄3 . (66)

Using hyperbolic slices, this would map to a triangle in hyperbolic space. However, we will
just use a flat slicing for simplicity. Correspondingly, we introduce coordinates

γ1 =
β̄2

β̄1
, γ2 =

β̄3

β̄1
, γ3 = log(−β̄1) , (67)

such that the region bounded by the potential is always given by

γ1 ≥ −1/2 , γ1 ≤ 1−
p

3γ2 , γ1 ≤ 1+
p

3γ2 . (68)

We plot a few examples of the resulting dynamics in Figure 3 below. As time progresses, the
deflection of the trajectories becomes increasingly sharp, ending up with billiard dynamics
inside the triangular region (68).

5 Summary and outlook

In this work, we have put forward the ultra-local Carroll expansion of general relativity as a
novel and useful tool for studying Belinski–Khalatnikov–Lifshitz (BKL) dynamics near spacelike
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singularities. As a first example, following earlier observations in [4, 39], we have explicitly
shown that mixmaster dynamics can be obtained from the leading-order Carroll limit of gravity
coupled to three abelian gauge fields, following the bottom-up AdS/CFT model which was
introduced recently in [23]. This further suggests that Carroll expansions may be a useful tool
in constructing new tractable models of the dynamics beyond the horizon in holography.

Several immediate followup studies are possible. First, since the leading-order Carroll
gravity models we considered here implement the strict ultra-local limit off shell, the resulting
evolution equations (42c) are ordinary differential equations for all choices of initial data. In
the above, we have used a spatially homogeneous Carroll metric Ansatz to mirror the min-
isuperspace models in Einstein gravity that we aimed to reproduce. However, we can in fact
also easily obtain tractable models incorporating spatial inhomogeneity, in contrast to Einstein
gravity, where spatial inhomogeneity almost always leads to partial differential equations and
greatly complicates solving the evolution equations.

While BKL dynamics is often argued to be generic in the late time limit for any choice
of initial data, the formidable complexity of the full evolution equations makes it hard to
explicitly see the emergence of BKL from inhomogeneous initial data without resorting to
intricate numerical simulations. It would be very interesting to see if our Carroll models can
reproduce key features that are observed in such simulations of Einstein gravity, such as late-
time spikes [68], in a much more straightforward numerical setting, and we hope to return
to this shortly. Additionally, in the context of AdS/CMT, it could be interesting to investigate
if these phenomena may have some boundary interpretation in well-known setups breaking
translation symmetry in for example holographic superconductors.

Next, the Carroll gravity models we employed above are in fact only the leading order
theories in a systematic ultra-local expansion of general relativity [53]. What is more, the
intrinsic curvature of spatial slices does not enter into this expansion until next-to-leading
order. As we illustrated in Section 2.2, spatial curvature plays a key role in BKL dynamics by
sourcing potential walls such as in the original SO(3) or Bianchi IX mixmaster model [3]. In
the above, building on earlier observations in [4, 39], we were able to reproduce dynamics
equivalent to the mixmaster model in a Carroll limit of the model proposed in [23], using
only potential walls sourced by matter. However, to capture the full richness of BKL dynamics,
our current Carroll models should be extended to also be sensitive to spatial curvature and its
resulting potential walls.

It would also be very interesting to use subleading orders in the Carroll expansion of gen-
eral relativity to obtain an analytic or numerical description of the subleading corrections to
BKL limits. One can furthermore hope that such subleading corrections may help to extend our
understanding of BKL dynamics in holography further away from the singularity and towards
the horizon. Specifically, the bulk Carroll dynamics that we studied appears at late interior
times, which begs the question if it has an interpretation in terms of a boundary RG flow.
Likewise, it would be interesting to see if the Carroll limit has an imprint in the question of
identifying boundary observables that reconstruct the experience of an infalling observer in
the bulk [69,70].
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