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Recipes for the digital quantum simulation of lattice spin systems
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Abstract

We describe methods to construct digital quantum simulation algorithms for quantum
spin systems on a regular lattice with local interactions. In addition to tools such as the
Trotter-Suzuki expansion and graph coloring, we also discuss the efficiency gained by
parallel execution of an extensive number of commuting terms. We provide resource
estimates and quantum circuit elements for the most important cases and classes of spin
systems. As resource estimates we indicate the total number of gates N and simula-
tion time T , expressed in terms of the number n of spin 1/2 lattice sites (qubits), target
accuracy ε, and simulated time t . We provide circuit constructions that realize the sim-
ulation time T (1)∝ nt 2/ε and T (2q)∝ t 1+ηnη/εη for arbitrarily small η = 1/2q for the
first-order and higher-order Trotter expansions. We also discuss the potential impact of
scaled gates, which have not yet been fully explored.
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1 Introduction

The idea that the simulation of quantum systems, while exponentially hard on a classical com-
puter, can be done efficiently on a quantum computer dates back three decades, to Richard
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Feynman [1]. A specific task of a digital quantum simulator consists of Hamiltonian simulation,
i.e. the propagation of an initial state ψ(0) to the state ψ(t) at a later time t > 0 according to
the dynamics generated by a Hamiltonian H(τ) via the time-dependent Schrödinger equation,
iħh∂τψ(τ) = H(τ)ψ(τ), for 0 ≤ τ ≤ t. Quantum simulation has been studied for a variety of
quantum systems on several simulator platforms [2]. Systems that can be simulated include
quantum field theories [3], quantum chemistry [4], and fermionic lattice models [5, 6]. Ex-
perimental demonstrations of quantum simulation have been realized using superconducting
circuits [7,8], ion traps [9], and semiconductor spin qubits [10].

The resources required to simulate the time evolution of a discrete quantum system on a
quantum computer can be quantified in terms of the system size (measured in the number of
qubits n required to store its quantum state), as well as the duration t and desired accuracy ε
of the simulation. For a lattice of spins 1/2, n directly represents the number of lattice sites.
The measure we use to quantify the simulation complexity is the duration T = T (n, t,ε) of the
simulation, not to be confused with the simulated time t.

One of the early results of quantum simulation was the insight that quantum systems with
local interactions can be simulated efficiently on a quantum computer using the Trotter de-
composition [11]. The number m of elementary, discrete time increments needed to simulate
the quantum evolution of a system during time t within accuracy ε turns out to be propor-
tional to t2/ε. The elementary time increments consist of the simulation of a local interaction
for a small time step ∆t = t/m. Since m ∝ t2 the time steps scale as ∆t ∝ 1/t. If time
increments can be implemented on a quantum computer with a native gate with a gate time
proportional to the simulated time (‘scaled gate’), tg ∝ ∆t ∝ 1/t, then the overall simula-
tion time T scales as T = mtg∝ t, i.e., the simulation time T is proportional to the simulated
time t. In many cases, scaled gates may not be available, but it turns out that the method of
higher-order Trotterization can approach computation times∝ t1+η/εη where η can be made
arbitrarily small [12, 13]. The concept of scaled gates is also related to the analog blocks in
digital-analog quantum simulations [8]. Similar estimates can be made for the general class
of sparse Hamiltonians [14]. It is also known that there is no sub-linear scaling of T with the
simulated time t, a restriction known as “no fast-forwarding theorem” [14].

Another question relates to the scaling of the simulation time T with the size of the sim-
ulated system, e.g., measured in the number of qubits n required to store its quantum state.
Raeisi et al. [12] find that for k-local Hamiltonians H =

∑

j H j where each H j acts on at most

k qubits, T asymptotically scales as n(2+η)k−1 t1+η/εη, again with arbitrarily small η. If the
number of qubits with which each qubit can interact is bounded by a constant, the model is
called physically k-local, and T is found to scale as n1+η t1+η/εη, i.e., nearly linear in both the
simulated time t and the system size n [12].

A useful observation is that for interacting sites described by a regular graph, and in par-
ticular for lattices (such as those shown in Fig. 1), graph coloring according to Vizing’s the-
orem allows for the decomposition of the Hamiltonian into a number K of commuting parts
which does not grow with the system size. This allows for efficient algorithms with simulation
times asymptotically scaling as t, and independent of n, up to poly-logarithmic corrections
in nt/ε [15]. In this paper, we study the Hamiltonian simulation of spin models on a lattice
that constitutes a digital quantum simulation of physically 2-local Hamiltonians. We provide
explicit algorithms with the same asymptotic scaling.

The microscopic understanding of magnetic phenomena, starting from ferromagnetism
typically requires a quantum model [16]. Magnetic behavior can be modeled by spin models
where spins are typically located on a lattice, see Fig. 1. The Heisenberg exchange interaction
between the spins is short-range and it is often an excellent approximation to assume that only
nearest neighbor spins are coupled. Hamiltonian quantum simulation of such spin models can
provide useful insight into the time-dependent phenomena of magnetic systems that is often
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Figure 1: Lattice spin system with local interactions, in one (a) and two (b,c) spatial
dimensions. A spin system can be described as a graph with vertices (edges) repre-
senting sites i (non-zero couplings Ji j ̸= 0). In a regular lattice, the coordination
number and the chromatic index K are equal. The coordination number counts the
number of nearest neighbors, while the chromatic index of a graph is the number
of colors needed to color all edges without two same-colored edges meeting at any
vertex. (a) One-dimensional lattice, K = 2, (b) square lattice, K = 4, (b) hexagonal
lattice, K = 3.

hard to compute classically, even in cases where the ground state of the system is relatively easy
to obtain. Quantum circuits for the digital quantum simulation of disordered one-dimensional
Heisenberg chains have been developed and their scaling in n and t analyzed by Childs et
al. [13], where typically t∝ n was chosen to simulate self-thermalization where information
needs to propagate through the entire system.

It is known that the Heisenberg interaction and other spin-spin interactions–when com-
bined with local coupling of individual spins to an (effective) magnetic field –generate a uni-
versal set of quantum gates for spin-1/2 qubits [17]. The Heisenberg interaction alone can
generate universal quantum computing on three-spin-1/2 exchange-only or decoherence-free
subspace qubits [18]. Here, we will be concerned with the opposite simulation direction,
where a universal quantum computer simulates a spin system.

2 Spin models

To begin, we define our general spin model, describing a finite number n of spins
Si = (S x

i , S y
i , Sz

i ) where i = 1,2, . . . , n whose dynamics are described by the Hamiltonian

H =
∑

i< j

Hi j =
∑

i< j

∑

αβ

Jαβi j Sαi Sβj +
∑

iα

hαi Sαi , (1)
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where the spin operators fulfill the angular momentum commutation rules,
�

Sαi , Sβj
�

= iδi j
∑

γ εαβγS
γ
i , and where the interactions Jαβi j and external fields hαi can be time

dependent. The length of the spin is arbitrary at this point but we will later choose S = 1/2
where each spin can be represented by one qubit. We choose units in which ħh= 1 throughout
this paper. The site indices i and j run from 1 to the number of sites n, and the Cartesian
coordinate indices α, β , and γ take the values x , y , and z for a three-dimensional spin. The
term Hi j is defined such that it contains only spin operators Si and S j; such that we can, e.g.,
include the hαi terms in Hi,i+1 for i < n and in Hn−1,n for i = n. Note that

�

Hi j , Hi′ j′
�

= 0 for
disjoint pairs {i, j} ∩

�

i′, j′
	

= ;. The connectivity graph defined by all nonzero Ji j tensors is
completely general at this point, but will be restricted below to regular physical lattices that
are constrained by locality and spatial dimension. The isotropic Heisenberg model represents
an important special case where Jαβi j = δαβ Ji j and thus

H =
∑

i< j

Ji jSi · S j +
∑

i

hi · Si . (2)

The Hamiltonian generates the time evolution of the spin system in the form of a time-
ordered exponential

ψ(t) = T exp

�

−i

∫ t

0

H(τ)dτ

�

ψ(0) = U(t)ψ(0) , (3)

which can be approximated as a product of a finite number m of simple operator exponen-
tials, U(t) ≈
∏m−1

p=0 exp {−i(t/m)H(pt/m)} with the earliest times appearing on the right of
the product. If the Hamiltonian is time-independent, one has U(t) = exp(−i tH), but this
will not be assumed here. In general, these exponentials cannot be decomposed into factors
exp(−i tHi j) operating on spin pairs because various pairs of terms in H do not commute.
To approximate U(t), we divide H into a sum of K non-commuting parts Hk each of which
consists only of commuting terms,

H =
K
∑

k=1

Hk , Hk =
∑

(i, j)∈Pk

Hi j , (4)

with [Hk, Hl] ̸= 0 for k ̸= l. Here, the sets Pk are chosen such that they do not contain any
common spins, and thus

�

Hi j , Hnm

�

= 0 for (i, j), (n, m) ∈ Pk, and thus

exp(−iτHk) =
∏

(i, j)∈Pk

exp(−iτHi j) =
∏

(i, j)∈Pk

Ui j . (5)

The problem of finding a minimal number K of sets Pk with this property is equivalent to
the edge coloring problem of the graph G consisting of n vertices (one for each spin) and an
edge for each non-zero Ji j . In graph theory, the minimal K is referred to as the chromatic
index (Fig. 1). Vizing’s theorem [12] states that for a graph G of degree deg(G), one has
deg(G) ≤ K ≤ deg(G) + 1. For bipartite lattices, K = deg(G). Here, the degree deg(G) of G
is defined as the maximum number of edges containing the same vertex, i.e., the maximum
number of spins coupled to one and the same spin. In the case of all-to-all coupling where all
n(n−1)/2 possible couplings between spins are assumed to be nonzero, the graph describing
the spin model is the complete graph with degree n− 1 and K = n− 1 if K is even and K = n
if n is odd. In both cases, we find K = O(n).

In the following, we will study spin models on a regular lattice with local interactions,
with each spin (in the bulk) being coupled to at most its deg(G) = z adjacent spins where the
coordination number z of the lattice is independent of n. Examples of lattice spin models in
one and two dimensions are shown in Fig. 1. In this case K = z and we will use the notation
K for both the coordination number and chromatic index.
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Figure 2: Quantum circuit for the quantum simulation of a spin system. (a)
Quantum circuit for the Hamiltonian simulation of the lattice spin system shown in
(c) with K = 4 within the first-order Trotterization. Colors and labels A, B, C, and D
represent corresponding edges in the lattice. The depicted sequence is repeated m
times where m∼ K2 t2nJ2. (b) Elementary time increment simulating the interaction
between spins i and j during the time t/m.

3 First-order Trotter-Suzuki expansion

The non-commutativity of the Hk can be dealt with using the Trotter-Suzuki expansion. The
first-order Trotter-Suzuki formula [19,20] allows for a digital quantum simulation using alter-
nating simulations of the non-commuting parts Hk of H =

∑

k Hk,

e−i t
∑

k Hk = lim
m→∞

� K
∏

k=1

e−i tHk/m

�m

= lim
m→∞

S(1)(t, m)m . (6)

A practical quantum simulation will use only a finite number m of interactions and will thus
incur an error

∆
(1)
K (t, m) =











e−i t
∑

k Hk −

� K
∏

k=1

e−i tHk/m

�m








=
t2

2m











∑

k<l

[Hk, Hl]











+O
�

� t
m

�3�

, (7)

5

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.030


SciPost Phys. Core 8, 030 (2025)

U1

Rz(α)U2

H

H

H

H

H

H

H

H

S

S Rz(β)
S

S Rz(γ)
V1

V2

Figure 3: Quantum circuit for a general two-spin interaction
U = V1 ⊗ V2 exp(−iαS x

1 S x
2 − iβS y

1 S y
2 − iγSz

1Sz
2)U1 ⊗ U2 using controlled-NOT

(CNOT) and single-qubit gates. The blue, yellow, and green shaded sections imple-
ment the commuting operations exp(−iαS x

1 S x
2 ), exp(−iβS y

1 S y
2 ), and exp(−iγSz

1Sz
2),

respectively. The greyed-out Hadamard gates can be omitted as they cancel each
other.

where the higher-order contributions can be more precisely written as an exponential [21]. Us-
ing the upper bound





∑

k<l [Hk, Hl]


≤
∑

k<l ∥[Hk, Hl]∥ ≤
K(K−1)

2 maxk<l ∥[Hk, Hl]∥ and eval-
uating the commutators for the spin model Eqs. (1) and (4),
[Hk, Hl] = i
∑

i Jiik Jiil

∑

αβγ εαβγS
α
i Sβik Sγil , where ik is the unique site such that (i, ik) ∈ Pk,

we find ∥[Hk, Hl]∥ ≤
6
8 nJ2, and

∆
(1)
K (t, m)≤

3
4

t2

2m
K(K − 1)

2
nJ2 , (8)

where J denotes an upper bound on the interaction strengths, Ji j ≤ J . In order to suppress

the error below ε, such that ∆(1)K (t, m) ≤ ε, it is thus sufficient to choose a sufficiently fine
discretization of time, such that

m≥
3

16
K(K − 1)

t2

ε
nJ2 . (9)

The required number of elementary spin-spin coupling operations Ui j = exp(−iτHi j) within
the first-order Trotter-Suzuki expansion can then be given as

N (1) = m
nK
2
=

3
32

K2(K − 1)
t2

ε
n2J2 . (10)

A quantum circuit realizing the digital quantum simulation of a spin system is shown in Fig. 2.
The circuit size (gate count) is proportional to N (1); as we show below, the CNOT count for
general spin-spin interactions amounts to 6N (1), which is reduced to 3N (1) in the case of
Heisenberg interactions. To quantify the circuit depth (simulation time) we observe that the
elementary spin-spin coupling operations Ui j = exp(−iτHi j) inside each Hk can be executed
in parallel (Fig. 2a). Therefore, we find for the simulation time,

T (1) = mK tg =
3
16

K2(K − 1)
t2

ε
nJ2 tg , (11)

where tg is the maximum time required to execute Ui j = exp(−iτHi j) with the simulated
time increment τ = t/m. The quantum circuit for Ui j may contain ‘fixed’ quantum gates that
require a gate time that is independent of τ, others may be ‘scaled’, i.e., require a gate time
proportional to τ (see also the concept of digital-analog simulation [8]). In the case of a digital
quantum simulation, there are some fixed gates, such as CNOT, and thus tg = t∞+ st/m with
t∞ > 0, s ≥ 0. Assuming that some of the used quantum gates (e.g., CNOT, H, etc.) have a
fixed gate time, and noting that for large m the contribution of scaled gates to the gate time is
small and can be bounded by a constant, we set s = 0 and t∞ > 0, and thus tg = t∞ = const.
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The results for the circuit depth and simulation run time, Eqs. (10) and (11), do not achieve
the best possible scaling in n and t. In the following two sections, we discuss two possibilities
to further improve the scaling. On the one hand, one can resort to higher-order Trotter-Suzuki
expansions within digital quantum simulation. On the other hand, if scaled gates are available,
one can proceed without the use of higher-order Trotter-Suzuki expansions.

4 Higher-order Trotter-Suzuki expansion

The second-order and higher-order Trotter-Suzuki formulas [22] can be written as

S(2)(t, m) =
K
∏

k=1

e−i tHk/2m
1
∏

k=K

e−i tHk/2m , (12)

S(2q)(t, m) =
�

S2p−2(pq t, m)
�2

S2p−2((1− 4pq)t, m)
�

S2p−2(pq t, m)
�2

, (13)

with pq = (4− 41/(2q−1))−1 for q > 1. As in the first-order case, limm→∞ S(2q) = e−i t
∑

k Hk , for
all q ≥ 1, but the convergence becomes faster for higher orders of the Trotter-Suzuki formula.
This leads to improved error bounds which can be found in Refs. [21,23,24],

∆
(2q)
K (t, m) =




e−i t
∑

k Hk −
�

S(2q)(t, m)
�m




 (14)

= c1
t2q+1

m2q

K
∑

k1,...,k2q+1







�

Hk2q+1
, . . .
�

Hk2
, Hk1

�

�





 , (15)

where c1 is a constant that can depend on q (similarly for all ci below). Evaluating the com-
mutators for a local spin Hamiltonian, we find for the error

∆
(2q)
K (t, m)≤ c2

(K t)2q+1

m2q
n . (16)

Keeping the error below ε then requires,

m≥ c3
(K t)1+1/2q

ε1/2q
n1/2q , (17)

which leads to an interaction gate count of

N (2q) = c4m
nK
2
≳ c5

n1+1/2qK2+1/2q t1+1/2q

ε1/2q
. (18)

Again assuming that the interaction gates simulating Hi j inside each Hk can be executed in
parallel, we find for the simulation time,

T (2q) = c4mK tg ≳ c6
K2+1/2q t1+1/2q

ε1/2q
n1/2q tg . (19)

The fact that both the number of interaction gates N (2q) and the simulation time T (2q) can in
principle be made to scale arbitrarily close to linearly in the simulated time t, has been pointed
out in Ref. [14]. Also the vanishing influence of the target accuracy ε on the simulation time
with increasing order has been recognized. The fact that the exponent of the problem size n
can also be suppressed is specific to constructions where the interaction gates for commuting
interactions [15], as illustrated in Fig. 2.
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Rz(α/2)
Rz(α/2)

H

H X−1/2

X+1/2

H S Z
=

(a)

(b)

Figure 4: Quantum circuit for the Heisenberg interaction. (a) Implementation of
exp(−iαS1 · S2) = SWAPα/π using controlled-NOT (CNOT) and single-qubit gates.
The blue-shaded section implements a controlled-phase gate CPHASE(α). (b) Re-
placement for first three gates in (a) that eliminates one CNOT gate.

5 Implementation

To realize elementary interaction gates Ui j , we use the decomposition [25]
U = exp(−iτHi j) = V1 ⊗ V2 exp(−iαS x

1 S x
2 − iβS y

1 S y
2 − iγSz

1Sz
2)U1 ⊗ U2, where

Hi j =
∑

αβ Jαβi j Sαi Sβj +
∑

α(h
α
i Sαi + hαj Sαj ), and where U1,2 and V1,2 are one-qubit gates. This

unitary can be assembled using elementary gates with the circuit shown in Fig. 3, requiring
six CNOT gates. The special case of Heisenberg interactions allows for a simpler circuit with
only three CNOT gates, as shown in Fig. 4.

The gate implementations comprise both fixed-length gates such as Hadamard and CNOT,
and the scaled gate Rz(α) where α ∝ τ for an interval τ ∝ 1/m of simulated time. With
increasing number m of time intervals, the fixed-length gates will dominate the execution
time of such interaction gate constructions.

Depending on the quantum hardware, the interaction gates U = exp(−iτHi j) for some
Hi j may be native, i.e., directly implementable in time proportional to τ, similar to the analog
blocks in digital-analog simulation [8]. We call this implementation a scaled gate. If all required
interaction gates are available as scaled gates, then tg = st/m with s a constant and t∞ = 0,
and Eq. (11) turns into

T (1) ≤ Kst , (20)

with K and s constants describing the degree of the lattice graph and the ratio between simu-
lation time and simulated time for the slowest scaled gate. In this case, we obtain a simulation
time linear in the simulated time already using the first-order Trotter expansion. The higher-
order Trotter expansions do not provide any improvement in this case. The exclusive use of
scaled gates renders the simulation time T independent of the number m of discrete time steps.
Therefore, at least for time-independent problems, one can choose m = 1 which corresponds
to a direct analog quantum simulation.
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6 Conclusions

We have shown explicit circuit constructions that realize the resource estimates for first-order
and higher-order Trotter-Suzuki product formulas. We conclude with an open question. Given
a set of available native one- and two-qubit scaled gates, which other scaled gates can be
efficiently constructed with this set? Do universal sets of scaled gates exist that allow for the
synthesis of arbitrary scaled gates Ui j? Answering these questions may give further insight
into which simulation tasks can be performed even more efficiently than shown here.
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