
SciPost Phys. Core 8, 031 (2025)

Phase transitions in quantum dot-Majorana
zero mode coupling systems

Yue Mao1 and Qing-Feng Sun1,2⋆

1 International Center for Quantum Materials, School of Physics,
Peking University, 100871 Beijing, China

2 Hefei National Laboratory, Hefei, 230088 Anhui, China

⋆ sunqf@pku.edu.cn

Abstract

The magnetic doublet ground state (GS) of a quantum dot (QD) could be changed to a
spin-singlet GS by coupling to a superconductor. In analogy, here we study the GS phase
transitions in QD-Majorana zero mode (MZM) coupling systems: GS behaves phase tran-
sition versus intra-dot energy level and QD-MZM coupling strength. The phase diagrams
of GS are obtained, for cases with and without Zeeman term. Along with the phase
transition, we also study the change of spin feature and density of states. The proper-
ties of the phase transition are understood via a mean-field picture. Our study not only
serves as an analogue to QD-superconductor phase transitions, but also gives alternative
explanations on MZM-relevant experiments.
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1 Introduction

When a quantum dot (QD) couples to a BCS-type superconductor, rich physical contents
emerge in the quantum phase transition of the QD [1–7]. By controlling the intra-dot en-
ergy level, the QD itself could exhibit two kinds of ground states (GSs): a magnetic doublet
state and a spin singlet state. The doublet state represents two degenerate spin-ħh/2 states, a
spin-up state | ↑〉 and a spin-down state | ↓〉. The QD is occupied by one electron, while the
level with opposite spin is repulsed above Fermi surface by the Coulomb interaction and is
empty. The singlet state originates from spinless states |0〉 and 1p

2
(| ↑↓〉− | ↓↑〉), with zero and

two electrons occupied, respectively. When coupled to a superconductor, the doublet state of
the QD could be changed to a singlet state either by the proximity effect of spin-singlet Cooper
pairs or by coupling to the quasiparticles outside the gap [6,8–10]. Whether the GS is doublet
or singlet is mostly determined by the charging energy, the intra-dot energy level, and the
coupling strength [2–7, 11, 12]. This doublet-singlet phase transition plays an important role
in properties of the QD-superconductor hybrid devices, such as 0−π transition of Josephson
junctions [1,13,14] and level crossing of Andreev bound states [2–6].

In certain superconducting systems, there could exist a special Andreev bound state called
Majorana zero mode (MZM), which is its own antiparticle [8, 9, 15–37]. MZM is a hotspot
in condensed matter physics because of its non-Abelian statistics, which can be managed to
achieve fault-tolerated topological quantum computation [38–41]. Like a superconductor, the
MZM also couples to electron and hole simultaneously [42]. Especially, because of its self-
Hermitian property, the half fermionic MZM couples to a certain spin channel, leading to the
resonant equal-spin Andreev reflection [26, 27, 29, 43, 44]. The MZM thus behaves strong
spin-triplet pairing correlations [44,45], and induces a zero bias peak spectrum in both charge
transport and spin-dependent transport [42,43,46].

In platforms for generating MZMs, Coulomb interaction could play an important role by
influencing the Andreev bound states [4, 6, 9, 21, 24–27]. In particular, a QD region can be
formed nearby the MZM, e.g. by an adatom deposited on the iron-based superconductor [9,47]
or by a section of the Majorana nanowire [4–6, 21]. The QD-MZM coupling system can be
regarded as a counterpart to the QD-superconductor hybrid structure, because the MZM is
an Andreev bound state generated by the superconductor. But differently, the coupling term
between the QD and the MZM involves only one spin channel, destroying the spin rotation
symmetry. Compared to coupling with a conventional superconductor, does phase transition
also happen in QD-MZM coupling systems? Will the peculiar features of the MZM lead to
novel transition characteristics?

In this paper, we study the QD-MZM coupling system and find the corresponding phase
transitions. Because spin rotation symmetry is broken, the degeneracy of the magnetic doublet
state is destroyed, with GS becoming a spin-polarized state. By changing the intra-dot energy
level and coupling strength, phase transition of GS happens with spin reversed. We study two
cases without and with Zeeman term (which should be included considering experimental
conditions), and give global phase diagrams showing the phase transition lines. These phase
transitions influence occupation numbers, spin polarization, density of states (DOS), and the
weight of zero energy state. These features are explained by a mean-field picture. Our theo-
retical results are also discussed by comparing with experimental observations. These phase
transitions can provide an insight on MZM-related transport experiments.

The rest of this paper is as follows: In Sec. 2, the model and formula of the system are
given. In Sec. 3, we study the phase transitions without Zeeman term. In Sec. 4, we consider
the Zeeman term and study the corresponding phase transitions. At last, a brief conclusion is
given in Sec. 5. In Appendix A, we explain the role of normal lead in detail.
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2 Model and formula

As shown in Fig. 1, the system we study consists of a QD coupled to a MZM and a normal
lead. The total Hamiltonian is

H = HD +HDM +HN D +HN . (1)

Here HD, HDM , HN D, and HN respectively represent the QD, the coupling between QD and
MZM, the coupling between QD and normal lead, and the normal lead [42,43,46,48,49]:

HD = (ε0 − VZ)d
†
↑d↑ + (ε0 + VZ)d

†
↓d↓ + Un↑n↓ , (2)

HDM = i t(d↑ + d†
↑ )γ , (3)

HN D =
∑

kσ

tN c†
kσdσ + h.c. , (4)

HN =
∑

kσ

εkc†
kσckσ , (5)

where dσ and ckσ are annihilation operators of electrons in QD and normal lead, respectively,
with spin σ =↑,↓. ε0 is the intra-dot energy level of the QD. tN is the hopping strength
between the normal lead and the QD. The electron-electron interaction is included in HD as
the term Un↑n↓, with U the charging energy and nσ = d†

σdσ the particle number operator
[1,4,6,50–54]. In our calculations, we always set U = 1 as the energy unit. γ is the operator
of the MZM. The MZMs always emerge in pair, and their coupling strength is determined
by the overlap of their wavefunctions [16, 22, 48]. Their nonlocality relates to separation
between a pair of MZMs, which can be measured also through the normal lead-QD-MZM
systems [22,55]. In our study, we consider the pair of MZMs are well separated (e.g. as long
as the Majorana nanowire is long). They are almost decoupled and only one MZM γ couples
to the QD [42, 43]. The generation of MZM usually demands the existence of a conventional
superconductor, which is not included in our model. This is because we focus on the MZM
at zero energy, where the DOS is not affected by the superconducting continuum outside the
gap. Also, this is to provide a concise comparison to QD-superconductor systems.

In order to regulate the topological superconductor to the nontrivial phase, a magnetic
term, such as an external magnetic field [18,19] or magnetic exchange coupling of QD [8,9],
is usually demanded. Therefore, the QD inevitably feels a Zeeman energy VZ , which here rep-
resents the effective magnetic field parallel to the spin-up direction. Due to the self-Hermitian
property γ† = γ, the MZM couples to electrons and holes with the same strength t [42], and
only one spin channel is coupled [43]. Inducing the MZM usually demands a large Zeeman
term −VZσz , and in this case the MZM almost just couples to spin +z [22, 43, 44]. This cor-
responds to Eq. (3) where γ is just coupled to the d↑ channel. Note that there are only two
spin-dependent terms in the Hamiltonian: the Zeeman term and the MZM-QD coupling. Even
if VZ is not large and the MZM couples to both +z and −z spin adz + bdz̄ (a, b are normalized
coefficients), one can rotate the spin basis as d↑ = adz + bdz̄ . In this new basis, the MZM still
only couples to d↑, and the spin direction of the Zeeman term is a bit deviated from ↑ spin
direction. If VZ = 0 and the Zeeman term is absent, setting that MZM just couples to d↑ has
no influence on any other term of the Hamiltonian. Therefore, it is reasonable to set that the
MZM couples to electrons and holes of spin-up channel, as shown in Eq. (3).

In fact, when the normal lead is decoupled, the system can be exactly solved by diagonal-
ization. Here we consider the normal lead coupled to the QD, because (i) a lead is usually
needed to probe the existence of MZMs in experiments and (ii) the normal lead can facilitate
the visualization of DOS by directly providing a broadening via the imaginary parts of retarded
Green’s functions. This broadening is important to reflect the MZM signal change along with
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Figure 1: The schematic plot for the QD-MZM coupling system. In addition, the
QD is weakly coupled to a normal lead, for the visualization of DOS and a better
description of practical experiments. ΓN and t respectively indicate the strength of
QD-normal lead coupling and QD-MZM coupling.

the phase transition, as explained in Appendix A. The normal lead-QD coupling strength is
described by ΓN = πρN t2

N with ρN the DOS in the normal lead [46]. In normal lead-QD-
MZM systems, there is also the Kondo effect, which has been studied by researchers [56,57].
It corresponds to the case that the temperature T is comparable to the Kondo temperature
TK . Below we set a weak normal lead-QD coupling with ΓN = 0.01U . What is more, be-
cause the coupling between QD and normal lead is weak, the Kondo temperature TK is very
low [58], and the condition T >> TK is easily met, thus our study is not relevant to the Kondo
regime [56,57,59–61].

Below we first diagonalize the system without normal lead to obtain the GS. By doing this,
the energy level and occupation numbers 〈nσ〉 are exactly solved, and the phase transitions
are revealed. Based on the GS, we introduce the normal lead as the imaginary part of Green’s
function, so that the DOS has a broadening and can be visualized. We represent the MZM by
the normal Fermion operator γ= 1p

2
(c + c†).

When the normal lead is absent, there exist four possible occupations of the QD, and two
possible occupations of the MZM system. Therefore, the Hamiltonian can be written as a 8×8
matrix, in the basis (|0,0, 0〉, |1,1, 0〉, |1, 0,0〉, |0,1, 0〉, |0,0, 1〉, |1, 1,1〉, |1, 0,1〉, |0,1, 1〉). Here

|i, j, k〉= |nc = i, n↑ = j, n↓ = k〉= (c†)i(d†
↑ )

j(d†
↓ )

k|0〉 . (6)

The Hamiltonian has four 2× 2 blocks H1 ⊕H2 ⊕H3 ⊕H4, with

H1 =

�

0 i tp
2

−i tp
2
ε0 − VZ

�

, H2 =

�

0 −i tp
2

i tp
2
ε0 − VZ

�

, (7)

H3 =

�

ε0 + VZ
itp
2

−i tp
2

2ε0 + U

�

, H4 =

�

ε0 + VZ
−i tp

2
i tp
2

2ε0 + U

�

. (8)

The four blocks correspond to eight eigenvalues

ε1,± = ε2,± =
ε0 − VZ ±
p

(ε0 − VZ)2 + 2t2

2
, (9)

ε3,± = ε4,± =
3ε0 + U + VZ ±

p

(ε0 + U − VZ)2 + 2t2

2
. (10)

Focusing on the occupation of the QD, we can find that H1, H2 both correspond to
basis (|n↑ = 0, n↓ = 0〉, |n↑ = 1, n↓ = 0〉), and H3, H4 both correspond to basis
(|n↑ = 0, n↓ = 1〉, |n↑ = 1, n↓ = 1〉). What is more, because H1 = H∗2, H3 = H∗4, their eigenvec-
tors satisfy ψ1,± =ψ∗2,±,ψ3,± =ψ∗4,±. For the above reasons, ψ1,± and ψ2,± (ψ3,± and ψ4,±),
the degenerate eigenstates of H1 and H2 (H3 and H4), have the same occupations of the QD
and indicate spin-up (spin-down) states. Thus, we can just analyze H1 and H3 only.
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The GS energy can only equal to ε1,− or ε3,−. The GS is judged by the sign of ε3,− − ε1,−.
For ε1,− < ε3,−, the GS energy is ε1,−, and its occupation numbers can be obtained from ψ1,−
for Hamiltonian H1

〈n↑〉=
1
2

�

1−
ε0 − VZ
p

(ε0 − VZ)2 + 2t2

�

, 〈n↓〉= 0 . (11)

Because 〈n↓〉= 0, the state of the QD is spin-up and contributed by |0〉 and | ↑〉. For ε1,− > ε3,−,
the GS energy is ε3,−, and its occupation numbers can be obtained from ψ3,− for Hamiltonian
H3

〈n↑〉=
1
2

�

1−
ε0 + U − VZ
p

(ε0 + U − VZ)2 + 2t2

�

, 〈n↓〉= 1 . (12)

Because 〈n↓〉 = 1, the state is spin-down and contributed by | ↓〉 and 1p
2
(| ↑↓〉 − | ↓↑〉). When

the parameters change, the sign of ε3,− − ε1,− can also change and result in the GS transition
between ψ1,− and ψ3,−.

Next we solve the single-particle DOS from retarded Green’s function. The single particle
can be electron eσ or hole hσ, with spinσ =↑,↓. The energy space Green’s function is obtained
from the time space via Fourier transformation

Gr
D,e(h)σe(h)σ(ε) =

∫

d teiεt Gr
D,e(h)σe(h)σ(t) . (13)

The time-space Green’s function of eσ is

Gr
D,eσeσ(t) = −iθ (t)〈g|dσ(t)d†

σ(0) + d†
σ(0)dσ(t)|g〉

= −iθ (t)
∑

j

[〈g|dσ(t)| j〉〈 j|d†
σ(0)|g〉+ 〈g|d

†
σ(0)| j〉〈 j|dσ(t)|g〉]

= −iθ (t)
∑

j

[ei(εg−ε j)t〈g|dσ(0)| j〉〈 j|d†
σ(0)|g〉+ ei(ε j−εg )t〈g|d†

σ(0)| j〉〈 j|dσ(0)|g〉]

= −iθ (t)
∑

j

[ei(εg−ε j)t |eAσ(g, j)|2 + ei(ε j−εg )t |eAσ( j, g)|2] . (14)

Here we use the eigenstate basis j = 1, 2,3, ..., 8 corresponding to ψ1,−,ψ1,+,ψ2,−, ...,ψ4,+.
g indicates the order number j of GS. When ε1,− < ε3,− (ε1,− > ε3,−), g = 1(g = 5) indi-
cates ψ1,− (ψ3,−). Note that the term 〈g|dσ(t)| j〉 is in the Heisenberg representation and can
be transformed to Schrödinger representation 〈g(t)|dσ(0)| j(t)〉 = ei(εg−ε j)t〈g|dσ(0)| j〉. Simi-
larly, we get 〈 j|dσ(t)|g〉 = ei(ε j−εg )t〈 j|dσ(0)|g〉. eAσ(x , y) = 〈x |dσ(0)|y〉 is the representation
of dσ(0) in the j basis. It is obtained by a unitary transformation on Aσ, which is the represen-
tation of dσ(0) in the basis of H1 to H4 (basis Eq. (6)): A↑ is a 8×8 matrix with four nonzero
elements A↑(1,4) = A↑(5,8) = 1, A↑(3,2) = A↑(7, 6) = −1. A↓ is also a 8× 8 matrix with four
nonzero elements A↓(1, 5) = A↓(2,6) = 1, A↓(3,7) = A↓(4, 8) = −1. The transformation is
eAσ = V †AσV , with V = V1 ⊕ V2 ⊕ V3 ⊕ V4 obtained from the eigenvectors of H1 to H4:

V1 =





i t
Ç

t2+2ε2
1,−

i t
Ç

t2+2ε2
1,+p

2ε1,−
Ç

t2+2ε2
1,−

p
2ε1,+
Ç

t2+2ε2
1,+



 , (15)

V2 =





−i t
Ç

t2+2ε2
1,−

−i t
Ç

t2+2ε2
1,+p

2ε1,−
Ç

t2+2ε2
1,−

p
2ε1,+
Ç

t2+2ε2
1,+



 , (16)
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V3 =





i tp
t2+2(ε3,−−ε0−VZ )2

i tp
t2+2(ε3,+−ε0−VZ )2p

2(ε3,−−ε0−VZ )p
t2+2(ε3,−−ε0−VZ )2

p
2(ε3,+−ε0−VZ )p

t2+2(ε3,+−ε0−VZ )2



 , (17)

V4 =





−i tp
t2+2(ε3,−−ε0−VZ )2

−i tp
t2+2(ε3,+−ε0−VZ )2p

2(ε3,−−ε0−VZ )p
t2+2(ε3,−−ε0−VZ )2

p
2(ε3,+−ε0−VZ )p

t2+2(ε3,+−ε0−VZ )2



 . (18)

From the process above, eAσ and Gr
D,eσeσ(t) are solved, and Gr

D,eσeσ(ε) is obtained via Eq. (13)

Gr
D,eσeσ(ε) =
∑

j

�

|eAσ(g, j)|2

ε− ε j + εg + iΓN
+
|eAσ( j, g)|2

ε− εg + ε j + iΓN

�

. (19)

Here, the coupling of normal lead is included as the imaginary part ΓN = πρN t2
N = 0.01U [46].

Similarly, Gr
D,hσhσ(ε) can be solved by substituting dσ by d†

σ in Eq. (14), and is equivalent to

substituting eAσ by eA†
σ in Eq. (19). The single-particle DOS is obtained from the retarded

Green’s function [4]

ρe(h)σ(ε) = −
1
π

Im[Gr
D,e(h)σe(h)σ(ε)] . (20)

3 Phase transition without Zeeman term

First we consider a simple case that the Zeeman term VZ = 0. When the QD-MZM coupling
strength t = 0, the result returns to that of an isolated QD [4–7,11,12]: The QD has a degen-
erate doublet GS in the range −U < ε0 < 0, while the GS is singlet outside this region. The
physics we most concern with is how the doublet state of QD is influenced by the MZM, i.e. the
case −U < ε0 < 0. When the MZM is not coupled to the QD (t = 0), the spin rotation symme-
try leads to the doublet state: With the total occupation number being 1, the two degenerate
states | ↑〉 and | ↓〉 are respectively occupied by just a spin-up electron and just a spin-down
electron. The GS can be either | ↑〉 with 〈n↑〉= 1, 〈n↓〉= 0 or | ↓〉 with 〈n↑〉= 0, 〈n↓〉= 1.

The MZM only couples to spin-up channel with strength t, causing the broken spin rota-
tion symmetry and broken degeneracy of doublet state. According to Eqs. (11,12), the two
eigenstatesψ1,−,ψ3,− consist of both spin-up and spin-down occupation. They are respectively
dominated by spin-up and spin-down components, and can be respectively called spin-up state
and spin-down state.

On this condition, the energies of spin-up state and spin-down state ε1,−,ε3,− are different,
and the GS is determined by the sign of

ε3,− − ε1,− =
1
2

�

2ε0 + U +
q

ε2
0 + 2t2 −
Æ

(ε0 + U)2 + 2t2
�

=
2ε0 + U

2



1−
U

q

ε2
0 + 2t2 +
p

(ε0 + U)2 + 2t2



 . (21)

Note that when t ̸= 0,
q

ε2
0 + 2t2 +
p

(ε0 + U)2 + 2t2 > U , and 1− U
q

ε2
0+2t2+

p
(ε0+U)2+2t2

> 0.

Therefore, the sign of ε3,− − ε1,− is determined by the sign of 2ε0 + U . When ε0 < −U/2
(ε0 > −U/2), ε3,− < ε1,− (ε3,− > ε1,−), the GS is the spin-down stateψ3,− (spin-up stateψ1,−).
As shown in Fig. 2(a), we calculate and compare the energy ε1,−,ε3,−, so that we judge which
is the GS. Then the spin of GS 〈n↑〉−〈n↓〉 is plotted in the ε0, t parameter space. A remarkable
signature is the phase transition at ε0 = −U/2, consistent with Eq. (21). Indeed, the GS is
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Figure 2: (a) The phase diagram versus intra-dot energy level ε0 and MZM coupling
strength t for VZ = 0. Here we plot 〈n↑〉 − 〈n↓〉 to show the spin polarization. (b, c)
The mean-field picture for the phase transition. Without the coupling of MZM, spin
↑ and ↓ have the same average energy level ε̄↑ = ε̄↓ = ε0+U/2. The leakage of MZM
induces a zero-energy peak in spin-↑ channel. Thus, the spin-↑ energy is effectively
increased (decreased) for ε0+U/2< 0 (ε0+U/2> 0), corresponding to a spin-down
(spin-up) GS.

spin-down for ε0 < −U/2 and reversed to spin-up for ε0 > −U/2. The case is different from
coupling to conventional superconductor, where the doublet GS can be changed to spin-singlet
GS [4–7,11,12].

The phase transition can be understood by the single-particle effective energy levels in a
mean-field picture. Due to the intra-dot Coulomb repulsion Un↑n↓, the energy level of certain
spin is lifted from ε0 by the filled electron with opposite spin: The spin-up and spin-down
occupations are determined by their spin-dependent effective energy levels ε↑ = ε0 + 〈n↓〉U
and ε↓ = ε0 + 〈n↑〉U . Without coupling of MZM (t = 0) and for doublet state (−U < ε0 < 0),
the spin-up state | ↑〉 corresponds to 〈n↑〉 = 1 and 〈n↓〉 = 0, so ε↑ = ε0 and ε↓ = ε0 + U are
respectively below and above the Fermi energy EF = 0. Self-consistently, these spin-dependent
effective levels indicate occupation numbers 〈n↑〉 = 1 and 〈n↓〉 = 0 and that only spin-up
channel is occupied [1,4,6]. Similarly, the spin-down state | ↓〉 corresponds to ε↑ = ε0+U and
ε↓ = ε0. The discussion and symbol εσ above is based on that GS spin has been determined.
Before the GS is determined, we consider both cases of spin polarization and take the average.
The average energy levels are ε̄↑ = ε̄↓ = ε0 + U/2, as schematically shown in the two major
DOS peaks in Figs. 2(b, c). Therefore, the GS is degenerate doublet state | ↑〉 and | ↓〉.

When MZM is coupled to QD with t ̸= 0, the MZM leaks into the spin-up channel of the
QD [62], bringing an additional peak at zero energy [zero-energy peaks in Figs. 2(b, c)]. The
spin-up channel is initially located at ε̄↑, the MZM induced zero-energy peak effectively moves
its energy level close to 0. When ε̄↑ = ε̄↓ = ε0 + U/2 < 0, the effective energy level of spin
up is lifted to higher than ε̄↓, as shown in Fig. 2(b). The higher energy of the spin-up channel
indicates that the GS is the spin-down state ψ3,−. On the other hand, for ε0 + U/2 > 0, the
spin-up energy is effectively reduced by MZM coupling, as shown in Fig. 2(c). Thus, the spin-
up channel has the lower energy than spin-down channel, and the GS is spin-up state ψ1,−.
This picture explains the phase transition and spin change in Eq. (21) and Fig. 2(a).

In the presence of QD-MZM coupling t, the broken spin rotation symmetry not only de-
stroys the degeneracy of doublet state for −U < ε0 < 0, but also transforms the initial spin-
singlet state for ε0 < −U or ε0 > 0 to become spin polarized. In other words, the GS is
spin-polarized in the whole phase diagram [Fig. 2(a)], which is distinct from the doublet-
singlet phase diagram in spin-singlet superconductor-QD system [4–7, 11, 12]. In addition, if
the MZM is decoupled, the QD should be occupied by zero or two electrons when ε0 > 0 or
ε0 < −U , and the state should respectively be the spin-singlet |0〉 or 1p

2
(| ↑↓〉 − | ↓↑〉). Thus,

the corresponding spin polarization is nearly zero for very small MZM coupling t.
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Figure 3: Phase transition of GS versus intra-dot energy level ε0 for VZ = 0. (a)
Energy comparison of spin-up and spin-down states ε1,− and ε3,−. ε0 is subtracted
for clarity. (b) The occupation numbers 〈n↑〉, 〈n↓〉 of GS. (c) The spin-resolved single-
particle DOS. (d) The weight of zero-energy spin-up DOS. In these figures (a-d), the
QD-MZM coupling strength t = 0.1U .

We also investigate the features of GS phase transition versus the intra-dot energy level
ε0. In experiments this ε0 can be regulated by applying a gate voltage [4–6, 21]. The QD-
MZM coupling strength is fixed to be t = 0.1U . The energy comparison of states ψ1,−,ψ3,−
is plotted in Fig. 3(a). Because ε1,−,ε3,− are both mainly proportional to ε0, the energies
are simultaneously subtracted by ε0 in Fig. 3(a) for a clear comparison. Just as the Eq. (21)
and Fig. 2(a), ε1,− > ε3,− (ε1,− < ε3,−) for ε0 + U/2 < 0 (ε0 + U/2 > 0), indicating the GS
is the spin-down (spin-up) state. Fig. 3(b) shows the occupation numbers 〈n↑〉, 〈n↓〉 versus
ε0. As ε0 increases and crosses −U/2 and phase transition happens, the spin polarization
of GS undergoes a sharp transition from 〈n↓〉 = 1 to 〈n↓〉 = 0. In the mean-field picture,
ε↑ = ε0+〈n↓〉U also changes from ε↑ = ε0+U = 0.5U to ε↑ = ε0 = −0.5U . For ε↑ = 0.5U > 0,
the spin-up channel is almost not occupied, with 〈n↑〉 ≈ 0. But for ε↑ = −0.5U < 0, the spin-up
channel is almost occupied, with 〈n↑〉 ≈ 1. On the other hand, the MZM-induced zero-energy
peak tends to move 〈n↑〉 to 0.5, thus around ε0 = −U/2, 〈n↑〉 is a bit deviated from 0 or 1. The
lower |ε↑| is, the more evident the MZM-induced zero-energy leakage. Because ε↑ = ±U/2 is
far from zero, the leakage effect is weak and 〈n↑〉 is almost 0 or 1 around ε0 = −U/2. For the
two separated regions ε0 < −U/2,ε0 > −U/2, as ε0 increases, ε↑ increases and 〈n↑〉 decreases,
while the decrease is not sharp due to the MZM coupling, as shown in Fig. 3(b).

Next we study its single-particle DOS. As shown in Fig. 3(c), we plot the spin-resolved
DOS, which is defined as [63]

Sblock
z = ρe↑ −ρe↓ +ρh↑ −ρh↓ . (22)

Here we set e ↑, h ↑ components as positive (red color), and set e ↓, h ↓ components as neg-
ative (blue color). This quantity also reflects the total single-particle DOS. For t = 0 with-
out MZM, the DOS of doublet state is a Coulomb diamond centered at ε0 = −U/2, like
shown in experiments [4, 13]: Two electron levels εe1 = ε0,εe2 = ε0 + U and two hole levels
εh1 = −ε0,εh2 = −ε0 − U , intersecting at points (ε0,ε) = (−U , 0), (0, 0), (−U/2, U/2), and
(−U/2,−U/2). As MZM is coupled to QD, the Coulomb diamond shape almost keeps, but has
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two differences: First, at ε0 = −U/2 the electron spin is reversed due to phase transition, see
the two electron-like levels εe1 ≈ ε0,εe2 ≈ ε0 + U in Fig. 3(c). Because ε0 = −U/2 is the
particle-hole symmetric point, the phase transition just changes the signs of levels, and there
is not a sharp change in the total DOS spectrum. Second, the spectrum opens two gaps at
ε0 = −U , 0. Inside the gaps, the zero-energy positive peak is apparent. Because the MZM cou-
ples to spin-up channel, this peak indicates the high equal-spin Andreev reflection strength,
which is a symbolic signature of the MZM [43,63].

To quantitatively show the MZM signal, we calculate the weight of the zero-energy peak
presented in Fig. 3(d), which is defined as

W =

∫ 0.04U

−0.04U
dε(ρe↑ +ρh↑) . (23)

Because the MZM is only coupled to the spin-up channel, we only consider the DOS from
e ↑-h ↑ block and exclude irrelevant contributions. The weight is high at ε0 = −U , 0, but
low around ε0 = −U/2. The distinct MZM signal can also be understood from the mean-field
picture. In fact, the MZM can always induce a zero energy peak as shown in Fig. 3(c), but the
leakage strength is strongly dependent on the ratio t/|ε↑|. Note that the leakage of MZM is
strong for a low |ε↑| value. For ε0 < −U/2, ε↑ = ε0 + U is zero at ε0 = −U . For ε0 > −U/2,
ε↑ = ε0 is zero at ε0 = 0. Therefore, the weight is maximized at ε0 = −U , 0. If the spin-up
effective level ε↑ is far away from zero (e.g. ε0 = −U/2), the MZM will be prohibited from
leaking into the QD. It indicates that when experimentally probing MZM, even if the MZM
actually exists, its signal may be subtle because it is weakened by a high QD energy level |ε↑|.

4 Phase transition with Zeeman term

Above we study the phase transition without considering the Zeeman term. In fact, this Zee-
man term should be included, because the nontrivial phase of topological superconductors
and MZM are usually induced by a magnetic field [18, 19], or by an exchange coupling from
a magnetic QD [8, 9]. The magnetic direction is approximately parallel to the MZM coupling
channel spin up [43, 44]. Below we study the case with a Zeeman term, which is always set
as VZ = 0.06U . By involving the practical Zeeman term, the phase transition features become
remarkable and can be used to understand MZM-related experiments.

As the Zeeman term is involved, when t = 0, the degenerate doublet GS is destroyed to
a spin-polarized GS by the Zeeman term, where the energies of the spin-up and spin-down
states are split by 2VZ . The phase diagram versus ε0 and t is shown as Fig. 4(a): Basically,
the GS is spin-up for a high ε0, and is spin-down for a low ε0. However, the phase transition
with VZ ̸= 0 does not happen at the particle-hole symmetry point ε0 = −U/2.

To understand this feature, we also use the mean-field picture Figs. 4(b, c). The spin-
dependent effective energy levels are ε↑ = ε0 + 〈n↓〉U − VZ and ε↓ = ε0 + 〈n↑〉U + VZ . When
MZM is absent t = 0, by substituting (〈n↑〉, 〈n↓〉) = (1, 0), (0, 1) and taking the average, one
finds ε̄↑ = ε0 + U/2− VZ , ε̄↓ = ε0 + U/2+ VZ that determine GS spin. The relation ε̄↑ < ε̄↓
destroys the degeneracy of doublet GS to spin-up GS. The MZM can change the spin-up GS
to spin-down through the leakage effect: As shown in Figs. 4(b, c), the MZM effectively lifts
(reduces) the energy of spin-up state towards 0 for ε̄↑ < 0 (ε̄↑ > 0). Thus, if the effective
energy of spin up is lifted to higher than ε̄↓, the GS will be changed to the spin-down state.
This demands two conditions: First, ε̄↓ < 0 (which sufficiently satisfies ε̄↑ < 0) because the
effective energy of spin up is at most raised to 0. Second, the QD-MZM coupling t should
be high enough, so that the spin-up energy can be lifted to overcome the energy difference
ε̄↓−ε̄↑ = 2VZ . Note that for a low ε0, the ratio |ε̄↓−ε̄↑|/|ε̄↓| is low, and the phase transition can
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Figure 4: (a) The phase diagram versus intra-dot energy level ε0 and MZM coupling
strength t for VZ = 0.06U . Here we plot 〈n↑〉−〈n↓〉 to show the spin polarization. (b,
c) The mean-field picture for the phase transition. Without the coupling of MZM, spin
↑ and ↓ have different average energy levels ε̄↑ = ε0+U/2−VZ , ε̄↓ = ε0+U/2+VZ .
ε̄↑ < ε̄↓ causes a spin-up GS. The MZM effectively lifts (decreases) the spin-↑ energy
for ε̄↑ < 0 (ε̄↑ > 0). When the effective spin-↑ energy is lifted over spin-↓ energy, the
GS changes from spin-up to spin-down.
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Figure 5: Phase transition of GS versus intra-dot energy level ε0 for VZ = 0.06U . (a)
Energy comparison of spin-up and spin-down states ε1,− and ε3,−. ε0 is subtracted
for clarity. (b) The occupation numbers 〈n↑〉, 〈n↓〉 of GS. (c) The spin-resolved single-
particle DOS. (d) The weight of zero-energy spin-up DOS. In these figures (a-d), the
QD-MZM coupling strength t = 0.1U .

happen for a relatively low QD-MZM coupling t, as shown in Fig. 4(a). The GS transition line
is vertical without the Zeeman energy [Fig. 2(a)], which means that the GS can only change
by regulating the intra-dot energy level ε0. But the Zeeman term changes the GS transition
line to be oblique [Fig. 4(a)], and it becomes possible to also change the GS via just increasing
QD-MZM coupling strength t, which is studied later.
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The representative phase transition versus intra-dot energy level ε0 is summarized in Fig.
5, fixing t = 0.1U . Compared to the VZ = 0 case Fig. 3(a), the energy of spin-up state ε1,− and
spin-down state ε3,− is respectively reduced and lifted by about VZ . This leads to the change
of critical intra-dot energy level from ε0 = −U/2 to ε0 = εc < −U/2 [Fig. 5(a)]. In Fig. 5(b),
the occupation number 〈n↓〉 is suddenly changed from 1 to 0 at ε0 = εc . But the change of
〈n↑〉 is not remarkable, because the critical energy level εc is about −U and GS tends to be a
double occupation singlet state 1p

2
(| ↑↓〉−| ↓↑〉) and spin-up level always tends to be occupied.

With the Zeeman term, the single-particle DOS versus ε0 still behaves the Coulomb dia-
mond feature, as shown in Fig. 5(c). Unlike the phase transition and spin reversion in Fig.
3(c), here the spin keeps in the range ε0 > εc ≈ −U [see the spectral lines with positive slopes]
indicating the large parameter range of the spin-up GS. When the phase transition happens
(ε0 = εc), the spin-down states intersect at zero energy. Meanwhile, the spin-resolved DOS
peaks with nonzero energy have the energy unchanged but spin sign reversed. Notably, the
zero-energy peak of MZM is subtle on the right of εc , but is obvious on the left. This is because
ε↑ = εc+U ≈ 0 on the left suddenly changes to ε↑ = εc ≈ −U on the right. The sharp increase
of |ε↑| causes the sharp decrease of MZM leakage, which is quantitatively shown in the weight
W [Fig. 5(d)]. This can be analogized to the weight transitions of Andreev bound states in
QD-conventional superconductor system in Ref. [2]. In Fig. 5(d), with the increase of ε0 from
εc , the weight gradually becomes apparent due to the decreased |ε↑|, and it has a large value
for a high energy level ε0, like the VZ = 0 case Fig. 3(d). Correspondingly, in Fig. 5(c) as ε0 is
further increased to about 0, the MZM signal becomes apparent again. These results are similar
to the experimental result by Mourik et al. in a Majorana nanowire (their Fig. 3A) [23]: A QD
region is formed by a section of nanowire with the energy level controlled by the gate voltage,
which corresponds to −ε0 in our work. When regulating the gate voltage, the nonzero-energy
states cross at zero energy. Around the crossing, the zero energy signature seems missing on
one side, but becomes apparent on the other side. Also, on the signature-missing side, as gate
voltage is turned away from the crossing point, the zero energy peak gradually appears [23].
The zero-energy crossing, the sharp change of MZM signal, and the reemergence of zero-bias
peak are very consistent with our results Figs. 5(c, d). Our theoretical analysis can provide
such kind of experiments with a potential understanding from the perspective of QD phase
transitions, with MZM already existed. They also indicate that even if the zero-bias peak is
absent, we can not definitely judge that the MZM is absent.

As shown by the phase diagram Fig. 4(a), the phase transition can also occur by just
increasing QD-MZM coupling strength t. For a fixed intra-dot energy level ε0 = −0.9U , in-
creasing t from zero to the critical value tc indeed leads to the phase transition. As shown
in Fig. 6(a), the energies of spin-up and spin-down states are split by about 2VZ at t → 0,
indicating a spin-up GS. Along with the increase of t, the energies of two states both decrease
but the spin-down energy ε3,− decreases faster. When t reaches tc , ε3,− becomes lower than
ε1,− and the GS becomes the spin-down state ψ3,−. In comparison, for VZ = 0, when t = 0,
ε3,− = ε1,− = ε0 are degenerate in the doublet region. For the same ε0 = −0.9U , due to the
faster decrease of ε3,− versus t, the GS becomes spin-down state as long as t ̸= 0, consistent
with the VZ = 0 phase diagram Fig. 2(a).

The occupation numbers versus t in Fig. 6(b) also show the phase transition. Along
with the increase of t and phase transition happens at t = tc , 〈n↓〉 changes from 0 to 1,
ε↑ = ε0+ 〈n↓〉U changes from −0.9U to 0.1U . Because of the coupling of the MZM, the occu-
pation number 〈n↑〉 always tends to be 0.5 as t increases, for both t < tc and t > tc . For t < tc
and ε↑ = −0.9U , the spin-up channel is almost occupied with 〈n↑〉 ≈ 1. After phase transition
t > tc , ε↑ = 0.1U is much smaller than the QD-MZM coupling t, so the MZM leakage turns
〈n↑〉 to be about 0.5. Therefore, the evolved state of the QD for a large t is almost equally
contributed by a spin-down state 1p

2
| ↓〉 and a double occupation singlet state 1

2(| ↑↓〉− | ↓↑〉).
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Figure 6: Phase transition of GS versus QD-MZM coupling strength t for VZ = 0.06U .
(a) Energy comparison of spin-up and spin-down states ε1,− and ε3,−. ε0 is subtracted
for clarity. (b) The occupation numbers 〈n↑〉, 〈n↓〉 of GS. (c) The spin-resolved single-
particle DOS. (d) The weight of zero-energy spin-up DOS. In these figures (a-d), the
intra-dot energy level ε0 = −0.9U .

The spin-resolved single-particle DOS of the GS is also shown in Fig. 6(c). Like the phase tran-
sition versus ε0, the spin-down levels cross at zero energy at transition point t = tc , and the
nonzero-energy peaks have energy unchanged but spin sign reversed at t = tc . The zero en-
ergy peak, which reflects the leakage of MZM, is subtle when t < tc but apparent when t > tc ,
because |ε↑| is decreased from 0.9U to 0.1U . The weight in Fig. 6(d) gives the quantitative
description of the emergence of strong zero energy peak.

The MZM becomes apparent only when the coupling strength t reaches a critical value tc that
leads to the phase transition. Our theoretical result could provide an understanding of MZM-
related transport measurements. It is consistent with the recent experimental work by Fan et
al. in the platform of iron-based superconductor [9], which is believed as one of condensed
matter systems to realize MZMs [9, 30, 31]. Some adatoms are deposited on the surface of
the superconductor and create nearby MZMs via their exchange coupling. The adatom can be
viewed as a QD, and its coupling strength to the MZM is controlled by the distance between the
adatom and the superconductor surface. As the adatom is pushed toward the superconductor,
the coupling strength increases and the nonzero energy states cross, and the MZM zero-energy
peak appears after this crossing [9].

In phase transitions versus both intra-dot energy level ε0 and QD-MZM coupling strength
t, the single-particle DOS Figs. 5(c), 6(c) exhibit energy level crossing at the transition point
εc , tc . Also, after the phase transition, the MZM zero-energy peak becomes apparent, which
may be mistakenly regarded as the emergence of MZM itself: Similarly, when researchers
regulate topological transition and induce the appearance of MZM, the energy gap usually
closes, and reopens with a new zero-energy peak indicating the MZM emergence [16,33]. Here,
we show that even when MZM already exists, the phase transition of QD leads to the same
feature as that of topological transition. Therefore, the MZM does not necessarily induce a
zero-bias peak. Even if the zero-bias peak does not exist, one can not definitely judge that the
MZM is nonexistent.

12

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.031


SciPost Phys. Core 8, 031 (2025)

5 Conclusion

In summary, the phase transitions in QD-MZM coupling systems are investigated. The phase
diagrams without and with Zeeman terms are both given, showing the transition lines. The
phase transitions can happen via regulating the intra-dot energy level or QD-MZM coupling
strength. Along with these phase transitions, the occupation numbers and single-particle DOS
are studied. The transition features can be understood by the mean-field picture. Our study
not only provides an analogy to QD-superconductor phase transitions, but also offers an un-
derstanding on MZM-probing experiments.
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A The role of normal lead

In Eq. (19), the normal lead just gives a finite broadening to the states, which may seem to be
just a complication in computation. However, this broadening is essential for demonstrating
the change of MZM weight and the inspiration to experimental detections.

In Fig. 7(a), we plot the energy of eigenstates versus ε0. This corresponds to Fig. 5(c) and
can be obtained no matter the normal lead coupling is present or not. For clarity, we also show
Fig. 5(c) again in Fig. 7(b), which can be obtained only when the normal lead is coupled to
the QD. Indeed, the eigenenergies Fig. 7(a) are consistent with the spin-resolved DOS Fig.
7(b). However, compared to Fig. 7(b), Fig. 7(a) lacks the weight information: In Fig. 7(a),
one finds that a zero-energy state always exists. Only in Fig. 7(b) when the QD couples to
normal lead, one can identify that the MZM weight changes violently versus ε0, and notice
that the phase transition plays an important role on the visibility of MZM signal.

Therefore, the coupling of normal lead provides the weight information, which can not
be obtained by just solving the eigenenergy. On the other hand, the normal lead is usually
demanded in MZM detections, thus introducing the lead is natural and consistent with exper-
imental conditions.
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Figure 7: (a) The energy of states versus ε0. (b) In the presence of a normal lead,

the spin-resolved single-particle DOS versus ε0 (the same data as Fig. 5(c), but the

colorbar is adjusted for clarity).

13

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.031


SciPost Phys. Core 8, 031 (2025)

References

[1] E. Vecino, A. Martín-Rodero and A. L. Yeyati, Josephson current through a correlated
quantum level: Andreev states and π junction behavior, Phys. Rev. B 68, 035105 (2003),
doi:10.1103/PhysRevB.68.035105.

[2] R. S. Deacon, Y. Tanaka, A. Oiwa, R. Sakano, K. Yoshida, K. Shibata, K. Hi-
rakawa and S. Tarucha, Tunneling spectroscopy of Andreev energy levels in a
quantum dot coupled to a superconductor, Phys. Rev. Lett. 104, 076805 (2010),
doi:10.1103/PhysRevLett.104.076805.

[3] W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nygård and C. M. Marcus, Tunneling
spectroscopy of quasiparticle bound states in a spinful Josephson junction, Phys. Rev. Lett.
110, 217005 (2013), doi:10.1103/PhysRevLett.110.217005.

[4] E. J. H. Lee, X. Jiang, M. Houzet, R. Aguado, C. M. Lieber and S. De Franceschi, Spin-
resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanos-
tructures, Nat. Nanotechnol. 9, 79 (2013), doi:10.1038/nnano.2013.267.

[5] E. J. H. Lee, X. Jiang, R. Žitko, R. Aguado, C. M. Lieber and S. De Franceschi, Scaling of
subgap excitations in a superconductor-semiconductor nanowire quantum dot, Phys. Rev. B
95, 180502 (2017), doi:10.1103/PhysRevB.95.180502.

[6] M. Valentini et al., Nontopological zero-bias peaks in full-shell nanowires induced by flux-
tunable Andreev states, Science 373, 82 (2021), doi:10.1126/science.abf1513.

[7] A. Bargerbos et al., Singlet-doublet transitions of a quantum dot Josephson
junction detected in a Transmon circuit, PRX Quantum 3, 030311 (2022),
doi:10.1103/PRXQuantum.3.030311.

[8] K. Jiang, X. Dai and Z. Wang, Quantum anomalous vortex and Majorana zero
mode in iron-based superconductor Fe(Te,Se), Phys. Rev. X 9, 011033 (2019),
doi:10.1103/PhysRevX.9.011033.

[9] P. Fan et al., Observation of magnetic adatom-induced Majorana vortex and its hybridization
with field-induced Majorana vortex in an iron-based superconductor, Nat. Commun. 12,
1348 (2021), doi:10.1038/s41467-021-21646-x.

[10] C.-K. Chiu and Z. Wang, Yu-Shiba-Rusinov states in a superconductor with topological Z2
bands, Phys. Rev. Lett. 128, 237001 (2022), doi:10.1103/PhysRevLett.128.237001.

[11] J. Bauer, A. Oguri and A. C. Hewson, Spectral properties of locally correlated electrons in a
Bardeen-Cooper-Schrieffer superconductor, J. Phys.: Condens. Matter 19, 486211 (2007),
doi:10.1088/0953-8984/19/48/486211.

[12] T. Meng, S. Florens and P. Simon, Self-consistent description of Andreev bound
states in Josephson quantum dot devices, Phys. Rev. B 79, 224521 (2009),
doi:10.1103/PhysRevB.79.224521.

[13] J. A. van Dam, Y. V. Nazarov, E. P. A. M. Bakkers, S. De Franceschi and L. P.
Kouwenhoven, Supercurrent reversal in quantum dots, Nature 442, 667 (2006),
doi:10.1038/nature05018.

[14] Q. Cheng and Q.-F. Sun, Switch effect and 0-π transition in Ising superconductor Josephson
junctions, Phys. Rev. B 99, 184507 (2019), doi:10.1103/PhysRevB.99.184507.

14

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.031
https://doi.org/10.1103/PhysRevB.68.035105
https://doi.org/10.1103/PhysRevLett.104.076805
https://doi.org/10.1103/PhysRevLett.110.217005
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1103/PhysRevB.95.180502
https://doi.org/10.1126/science.abf1513
https://doi.org/10.1103/PRXQuantum.3.030311
https://doi.org/10.1103/PhysRevX.9.011033
https://doi.org/10.1038/s41467-021-21646-x
https://doi.org/10.1103/PhysRevLett.128.237001
https://doi.org/10.1088/0953-8984/19/48/486211
https://doi.org/10.1103/PhysRevB.79.224521
https://doi.org/10.1038/nature05018
https://doi.org/10.1103/PhysRevB.99.184507


SciPost Phys. Core 8, 031 (2025)

[15] S. R. Elliott and M. Franz, Colloquium: Majorana fermions in nuclear, particle, and solid-
state physics, Rev. Mod. Phys. 87, 137 (2015), doi:10.1103/RevModPhys.87.137.

[16] E. Prada et al., From Andreev to Majorana bound states in hybrid superconductor-
semiconductor nanowires, Nat. Rev. Phys. 2, 575 (2020), doi:10.1038/s42254-020-0228-
y.

[17] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.-Usp. 44, 131 (2001),
doi:10.1070/1063-7869/44/10S/S29.

[18] Y. Oreg, G. Refael and F. von Oppen, Helical liquids and Majorana bound states in quantum
wires, Phys. Rev. Lett. 105, 177002 (2010), doi:10.1103/PhysRevLett.105.177002.

[19] R. M. Lutchyn, J. D. Sau and S. Das Sarma, Majorana fermions and a topological phase
transition in semiconductor-superconductor heterostructures, Phys. Rev. Lett. 105, 077001
(2010), doi:10.1103/PhysRevLett.105.077001.

[20] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus and
Y. Oreg, Majorana zero modes in superconductor-semiconductor heterostructures, Nat. Rev.
Mater. 3, 52 (2018), doi:10.1038/s41578-018-0003-1.
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