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Two-loop gradient-flow renormalization of scalar QCD
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Abstract

The gradient-flow formalism is applied to a non-Abelian gauge theory with scalar and
fermionic particles, dubbed “scalar QCD”. It is shown that the flowed scalar quark re-
quires a field renormalization, albeit only beyond the one-loop level. A pseudo-physical,
flow-time dependent renormalization scheme is defined, and the corresponding renor-
malization constant is evaluated at the two-loop level. We also calculate the gluon action
density as well as the condensates of the scalar and the fermionic quark at three-loop
level in this theory. The results validate the consistency of the gradient-flow formalism
in this theory and provide a further step towards applying the gradient-flow formalism
to the full Standard Model.
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1 Introduction

The gradient flow is an established tool in lattice gauge theory calculations [1–5]. It evolves
the regular four-dimensional fields into an auxiliary dimension, the flow time t, according to a
differential equation which is of first order in t. The effect of this evolution is a suppression of
the fields’ high-momentum modes, and thus a regularization of the associated ultra-violet (UV)
divergences.

Aside from an efficient method to determine the lattice spacing [2,6], or a non-perturbative
definition of the renormalized strong coupling [2], the gradient-flow formalism (GFF) also pro-
vides a way to facilitate the calculation and renormalization of operator matrix elements on
the lattice, as well as their combination with perturbatively evaluated Wilson coefficients. A
particularly welcome feature of the GFF is that it evades complications due to the breaking
of Poincaré invariance on the lattice. This opens efficient ways to compute matrix elements
of the energy-momentum tensor on the lattice, for example [7, 8], and most recently higher
moments of parton densities [9,10]. A key to these methods is the so-called short-flow-time ex-
pansion (SFTX), which allows one to express composite operators of the flowed fields in terms
of linear combinations of the regular operators. Proofs of the viability of this method have
been provided in Refs. [10–15]. It requires perturbative matching coefficients between flowed
and regular operators whose calculation leads to non-standard Feynman diagrams and inte-
grals. Nevertheless, the standard methods for perturbative QCD calculations can be adapted to
render such calculations possible at next-to-next-to-leading order (NNLO) and possibly even
beyond that [16–23].

Understandably, the majority of such applications has been focused on QCD up to now.
However, it is worth to consider also other theories, be it for theoretical reasons or due to their
phenomenological relevance, for example in combination with effective field theories. Gener-
alizations of the GFF have been considered in the context of super-Yang-Mills and other super-
symmetric theories [24–31], or scalar theories in three and four space-time dimensions [32–
36], for example.

In this paper, we consider the extension of QCD by the inclusion of scalar quarks. While
the phenomenological relevance of the literal interpretation of this theory is doubtful in the
light of current Large Hadron Collider (LHC) data, our results will be presented for a general
non-Abelian compact gauge group with a scalar field and an arbitrary number of fermionic
matter fields transforming in the corresponding irreducible representation. They can therefore
be easily interpreted in terms of the unbroken weak sector of the Standard Model (SM), for
example, and represent an important step towards a gradient-flow formulation of the full SM.
Nevertheless, for the sake of convenience, we will refer to the underlying theory as scalar
quantum chromodynamics (SQCD) in this paper, to the gauge bosons as gluons, and to the
fermionic and scalar matter fields as quarks and squarks (or scalar quarks), respectively.

While the generalization of the flow equations to SQCD is straightforward, and the renor-
malization of the strong and the scalar coupling is the same as in regular SQCD and can be
found in the literature, we will for the first time compute the flowed field renormalizations of
the quarks and the squarks in this theory, up to two-loop level. In addition to the MS scheme,
they will be presented in the so-called ringed scheme which is suitable also for a lattice re-
alization. As a first application, we will also determine the SFTX of the two squark bilinear
operators, namely the scalar and the Noether current.

The remainder of this paper is structured as follows. In the next section, we define the
flow equations for SQCD and provide the relevant Feynman rules. Subsequently, the concep-
tual aspects for the renormalization of the strong coupling and the flowed fields are discussed,
and the relevant renormalization constants are computed through NNLO in the strong and the
scalar coupling. As an application, we study the SFTX of the scalar bilinear operator and the
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Noether current for the scalar quarks, computing the matching coefficients to the correspond-
ing regular operators through NNLO in Section 4. The resulting flowed anomalous dimensions
of these operators are discussed in Section 5, before we present an outlook and our conclu-
sions in Section 6. In Appendix A, we collect the explicit results for the β-functions which are
relevant for this paper, and in Appendix B, we describe the contents of the ancillary file which
accompanies this paper, and which provides our main results in electronic form.

2 Flow equations and Feynman rules

We consider a gauge theory with a single scalar φ (squark) and nf fermions ψ f (quarks), all
transforming in the fundamental representation of the gauge group. Including the gauge-fixing
terms and the corresponding Faddeev-Popov ghosts c, c̄, the Lagrangian reads

LSQCD = LQCD +Lφ ,

LQCD = −
1
4

F a
µνF a

µν +
n f
∑

f=1

ψ̄ f /D
F
ψ f +

1
2ξ
(∂µAa

µ)
2 + ∂µ c̄aDab

µ cb ,

Lφ = (DF
µφ)

†(DF
µφ)−

λB

4
(φ†φ)2 .

(1)

Here, Aa
µ are the gauge fields (gluons),

DF
µ = ∂µ + gBAa

µ ta , Dab
µ = δ

ab∂µ − gB f abcAc
µ , (2)

are the covariant derivatives in the fundamental and the adjoint representation, respectively,
and

F a
µν = ∂µAa

ν − ∂νA
a
µ + gB f abcAb

µAc
ν , (3)

is the field strength tensor. The ta are the generators of the gauge group in the fundamental
representation, and the f abc are the structure constants. We follow the conventions of Refs.
[4,18], which means that

[ta, t b] = f abc t c , Tr(ta t b) = −TRδ
ab , (4)

with the trace normalization TR to be specified below. It is convenient to define the combina-
tions

aB
s =

g2
B

4π2
, aB

λ =
λB

4π2
, (5)

where gB and λB denote the bare coupling constants of the theory. Unless required, we will
suppress the flavor indices f on the quark fields in the following.

The gradient flow evolves the fields into an auxiliary dimension, the so-called flow time t.
The evolution is governed by the flow equation, which is a first-order differential equation in
t, and associated “initial conditions”, which establish the contact to the regular fields at t = 0.
In the case of the flowed gluon and quark fields Bµ, χ, and χ̄, the flow equations are given by

0= ∂t B
a
µ −Dab

ν Gb
µν − κD

ab
µ ∂νBb

ν ≡F a
B ,

0= ∂tχ −∆χ + gBκ∂µBa
µ taχ ≡Fχ ,

0= ∂t χ̄ − χ̄
←−
∆ − gBκχ̄∂µBa

µ ta ≡ F̄χ ,

(6)

and the initial conditions are

Ba
µ(t = 0, x) = Aa

µ(x) , χ(t = 0, x) =ψ(x) , χ̄(t = 0, x) = ψ̄(x) . (7)
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The gauge parameter κ will be chosen equal to one in our calculations. The flowed field-
strength tensor is given by

Ga
µν = ∂µBa

ν − ∂νBa
µ + gB f abcBb

µBc
ν , (8)

and the flowed covariant derivatives in the fundamental and adjoint representation are defined
as

DF
µ = ∂µ + gBBa

µ ta ,
←−
D F
µ =
←−
∂ µ − gBBa

µ ta , Dab
µ = δ

ab∂µ − gB f abcBc
µ . (9)

Furthermore, we introduced the short-hand notation

∆=DF
µD

F
µ ,

←−
∆ =

←−
D F
µ

←−
D F
µ . (10)

For the flowed scalar fields ϕ, ϕ†, we employ the following flow equations (see also Refs.
[32,35]):

0= ∂tϕ −∆ϕ + gBκ∂µBa
µ taϕ ≡ Fϕ , 0= ∂tϕ

† −ϕ†←−∆ − gBκϕ
†∂µBa

µ ta ≡ F†
ϕ , (11)

with the boundary conditions

ϕ(t = 0, x) = φ(x) , ϕ†(t = 0, x) = φ†(x) . (12)

The flow equations can be implemented in the Lagrangian by introducing Lagrange multi-
plier fields La

µ, λ f , λ̄ f , η, and η†, and defining

LB = −2

∫ ∞

0

dt Tr
�

La
µF

a
B

�

, Lχ =
∫ ∞

0

dt
�

λ̄Fχ+F̄χλ
�

, Lϕ =
∫ ∞

0

dt
�

η†Fϕ+F†
ϕη
�

, (13)

where summation over flavor indices is understood. The flowed Lagrangian then reads

L= LSQCD +LB +Lχ +Lϕ , (14)

where the first term is the regular (i.e., unflowed) part of the Lagrangian given in Eq. (1), and
the remaining terms incorporate the flow equations in Eqs. (6) and (11).

Using Eqs. (13) and (14), one can derive Feynman rules for the flowed fields along the
lines of Ref. [4]. In addition to generalized propagators for the flowed fields, they also involve
so-called flow lines, corresponding to mixed two-point functions of the flowed field and its
associated Lagrange multiplier. They couple to one another or to flowed fields via flowed
vertices which involve integrations over flow-time parameters. For details, we refer to Ref.
[18], where also the complete set of Feynman rules for the non-scalar part of Eq. (14) can be
found. For the regular SQCD Feynman rules involving scalars, on the other hand, we use1

= δi j
1
p2

e−(t+s)p2
, = −

λB

2

�

δi jδkl +δilδ jk

�

,

= i gB(t
a)i j (p

µ − qµ) , = g2
B{t

a, t b}i j δµν .

(15)
1All diagrams in this paper are produced with the help of FEYNGAME [37–39].

4

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.032


SciPost Phys. Core 8, 032 (2025)

Here, i, j, k, l are color indices of the fundamental representation, a, b are color indices of
the adjoint representation, µ,ν are Lorentz indices, s and t are flow-time variables, and the
momenta p and q are assumed outgoing. The Feynman rules for the flowed vertices read

= i gB(t
a)i j

∫ ∞

0

ds
�

2pµ + (1−κ)qµ
�

,

= −i gB(t
a) ji

∫ ∞

0

ds
�

2pµ + (1− κ)qµ
�

,

= g2
B{t

a, t b}i j δµν

∫ ∞

0

ds ,

= g2
B{t

a, t b}i j δµν

∫ ∞

0

ds ,

(16)

where the arrows next to the lines, indicating that the corresponding line is a flow line, point
towards increasing flow time. Dashed arrows indicate that the line can be a flowed propagator
or a flow line.

3 Renormalization constants

It is well known that the renormalization of the fundamental parameters of the flowed La-
grangian is the same as for the regular theory [4]. Since we assume the quarks and the squark
to be massless, the only fundamental parameters of our theory are the coupling constants aB

s
and aB

λ
. Their renormalization in SQCD is known through three-loop level [40] in the MS

scheme, which, however, is only defined perturbatively. The GFF, on the other hand, allows
for a definition of the strong coupling which can be implemented both perturbatively and
non-perturbatively:

αGF
s (t)

π
≡ aGF

s (t) =
E(t)
E0(t)

, with E0(t) =
3nA

32t2
, (17)

where

E(t) =
g2

B

4
〈Ga
µν(t)G

a
µν(t)〉 , (18)
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is the gluon action density, and nA is the dimension of the adjoint representation of the gauge
group. The perturbative expression for E(t) within QCD, and thus the conversion between the
MS and the GF scheme, is currently known through NNLO [16] and has been used for a novel
extraction of the QCD scale ΛQCD in the MS scheme [41] and the MS coupling αs(MZ) [42]. In
Section 3.1, we will generalize this result to SQCD. A similar non-perturbative definition is also
possible for the scalar coupling αλ, of course, but it requires the calculation of 〈(ϕ†(t)ϕ(t))2〉,
which is beyond the scope of the current paper.

Concerning the renormalization of the flowed fields, we write

Ba,R
µ = Z1/2

B Ba
µ ,

χR
f = Z1/2

χ χ f , χ̄R
f = Z1/2

χ χ̄ f ,

ϕR = Z1/2
ϕ ϕ , ϕ†,R = Z1/2

ϕ ϕ† .

(19)

It was shown in QCD that the flowed gluon does not require renormalization [4,5], and since
the same arguments apply to SQCD, we can set ZB = 1 to all orders in perturbation theory.

On the other hand, the flowed quark field turns out to require a non-trivial renormalization
Zχ . A particularly useful renormalization condition which can be implemented both on the
lattice and in perturbation theory is the so-called ringed scheme, defined as

�Zχ

nf
∑

f=1

〈χ̄ f (t) /D
F
χ f (t)〉= −

2ncnf

(4πt)2
, (20)

where nc is the dimension of the fundamental representation of the gauge group. In QCD,
�Zχ is known through NNLO [5,18]. In this paper, we will generalize this result to SQCD, see
Section 3.2.

The flowed squark renormalization Zϕ has not been considered before. Its NNLO expres-
sion will be one of the main results of our calculation. We provide it in a scheme analogous to
the fermionic case by requiring the renormalization condition

�Zϕ〈ϕ†(t)ϕ(t)〉 ≡
nc

32π2 t
, (21)

where the r.h.s. is defined such that �Zϕ = 1+ higher orders.

3.1 The strong coupling of scalar QCD in the gradient-flow scheme

In order to generalize the result for Eq. (18) to SQCD, we need to take into account diagrams
with closed squark loops. The only such diagram which gives a non-zero contribution up
to the two-loop level is shown in Fig. 1 (a); all others which could be generated from the
Feynman rules vanish because they lead to scaleless loop integrals. Two three-loop diagrams
with squark loops are shown in Fig. 1 (b), (c). Since the associated loop integrals are UV
divergent before the renormalization of αs, we adopt dimensional regularization and evaluate
them in D = 4− 2ε space-time dimensions.

All calculations in this paper are carried out by using the tool chain first described in Ref.
[18], albeit slightly updated. It is based on qgraf [43,44] for the generation of the Feynman
diagrams, tapir [45] for inserting the Feynman rules, exp [46] for the identification of the
integral topologies, FORM [47,48] for all algebraic operations, and Kira+FireFly [49–53] for
the reduction to master integrals. At two-loop level, all master integrals are known in analytic
form [2, 17]. At three-loop level, we evaluate all integrals using ftint [23], which uses
pySecDec [54–57] to perform a sector decomposition [58,59] and to evaluate the coefficients
of the Laurent series in ε numerically.
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(a) (b) (c)
Figure 1: Contributions to E(t) involving squarks at (a) next-to-leading order (NLO)
and (b), (c) NNLO. The spiral lines are gluons, the dashed lines are squarks, and
the solid lines are quarks. The lower vertex marked ⊗ denotes the flowed operator
Gµν(t)Gµν(t), the other vertices are regular QCD vertices.

After renormalization of the strong coupling according to Eq. (A.1), we obtain the result

E(t) = asE0(t) (1+ e1 + e2 + h.o.) , (22)

with

en =
n
∑

i=0

�

ei,n−i + e(1l)
i,n−i Lµt + · · ·+ e(nl)

i,n−i L
n
µt

�

ai
sa

n−i
λ , (23)

and

Lµt = ln 2µ2 t + γE ≡ ln
µ2

µ2
t

, (24)

where γE = −Γ ′(1) = 0.577216 . . . is the Euler-Mascheroni constant, and we have implicitly
defined the t-dependent energy scale µt . Here and in the following, as and aλ denote the MS
renormalized couplings defined in Eq. (A.1), with their dependence on the renormalization
scale µ suppressed, and “h.o.” denotes terms of higher orders in as and aλ. For the constant
terms up to three-loop level (n≤ 2) in Eq. (23), we obtain

e10 = eQCD
10 −

5
36

TR ,

e20 = eQCD
20 − TR [0.7639 CA + 0.34532 CF − TR (0.0976 nf + 0.0238)] ,

ei j = 0 , otherwise,

(25)

where the color factors are

CF = TR
n2

c − 1

nc
, CA = 2 TRnc , TR =

1
2

. (26)

The coefficients eQCD
10 and eQCD

20 correspond to the pure QCD result as obtained in Refs.
[16,18]. Since we adopt a different normalization in this paper, let us quote them again here:

eQCD
10 =

�

13
9
+

11
6

ln2−
3
4

ln 3
�

CA −
2
9

TRnf ,

eQCD
20 = 1.74865 C2

A − (1.97283 . . .) TRCAnf +
�

ζ3 −
43
48

�

TRCFnf +
�

1
9
ζ2 −

5
81

�

T2
R n2

f ,
(27)

where ζn ≡
∑

k=1 1/kn is Riemann’s zeta function with ζ2 = π2/6 = 1.64493 . . . and
ζ3 = 1.20206 . . . The exact expression for the TRCAnf term can be found in Ref. [18].
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(a) (b)

Figure 2: Contributions to 〈χ̄†(t) /DF
χ(t)〉 involving squarks. The notation is the same

as in Fig. 1, only that the vertex marked ⊗ now denotes the operator χ̄†(t)χ(t). In
addition, lines with an arrow next to them are the associated flow lines (the arrow
denotes the flow direction), and the symbol ◦ marks a flow vertex.

The logarithmic terms of Eq. (23) can be derived from the renormalization-group equation
(RGE)

µ2 d
dµ2

E(t) =

�

∂

∂ Lµt
+ β s(as, aλ)

∂

∂ as
+ βλ(as, aλ)

∂

∂ aλ

�

E(t) = 0 , (28)

with the beta functions β s and βλ defined in Eq. (A.2). For n≤ 2, this leads to

e(1l)
10 = β

s
20 , e(1l)

20 = β
s
30 + 2β s

20 e10 , e(2l)
20 = (β

s
20)

2 ,

e(nl)
i j = 0 , otherwise.

(29)

The coefficients β s
i j are collected in Eq. (A.3).

Since E(t) and the strong beta function in the MS scheme are independent of aλ through
three-loop level, our results allow us to evaluate the beta function of the strong coupling in
SQCD in the gradient-flow scheme. In analogy to Eq. (A.2), we write

µ2 d
dµ2

aGF
s (µ) = β

GF(aGF
s , aλ)≡ −ε aGF

s −
3
∑

n=0

βGF
n0 (a

GF
s )

n + h.o. (30)

The first two perturbative coefficients are scheme independent, of course, thus

βGF
20 = β

s
20 , βGF

30 = β
s
30 , (31)

while the three-loop coefficient is given by

βGF
40 = β

s
40 − e10β

s
30 +

�

e20 − e2
10

�

β s
20 . (32)

3.2 The flowed fermionic field renormalization

Additional diagrams beyond pure QCD which contribute to the vacuum expectation value
(VEV) of Eq. (20) in SQCD occur only at three-loop level and beyond. Two examples are
shown in Fig. 2. They affect the MS part of the renormalization constant as well as the finite
part which characterizes the ringed scheme. Writing

�Zχ = ζχZχ , (33)
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where Zχ is the MS renormalization, and adopting the notation of Eq. (A.8) for Zχ , we find
for the MS coefficients up to NNLO in as and aλ:

γχ,10 = γ
QCD
χ,10 , γχ,20 = γ

QCD
χ,20 + 0.1771 CFTR ,

γχ,i j = 0 , otherwise,
(34)

where γQCD
χ,i j refers to the QCD results obtained in Refs. [5,18]:

γ
QCD
χ,10 = −

3
4

CF ,

γ
QCD
χ,20 =

�

1
2

ln2−
223
96

�

CACF +
�

3
32
+

1
2

ln2
�

C2
F +

11
24

CFTRnf .
(35)

The conversion factor to the ringed scheme reads, in our notation,

ζχ = 1− as

�

γχ,10 Lµt +
3
4

CF ln 3+ CF ln2
�

+ a2
s

�

γχ,10

2

�

γχ,10 − β s
20

�

L2
µt +

�

γχ,10

�

β s
20 − γχ,10

�

ln 3

+
4
3
γχ,10

�

β s
20 − γχ,10

�

ln2− γχ,20

�

Lµt +
c(2)χ
16

�

+ h.o. ,

(36)

where γχ,i j and β s
i j are given in Eqs. (35) and (A.3).

For the non-logarithmic term at NNLO, we find

c(2)χ = c(2)χ,QCD − 0.3748 CFTR , (37)

where the QCD part was obtained in Ref. [18]:

c(2)χ,QCD = CACF cχ,A + C2
F cχ,F + CFTRnf cχ,R , (38)

with2

cχ,A = −23.7947 , cχ,F = 30.3914 ,

cχ,R = −
131
18
+

46
3
ζ2 +

944
9

ln 2+
160
3

ln2 2−
172
3

ln3+
104
3

ln 2 ln3

−
178

3
ln2 3+

8
3

Li2(1/9)−
400
3

Li2(1/3) +
112

3
Li2(3/4) = −3.92255 . . . ,

(39)

where Li2(x) is the dilogarithm.

3.3 The flowed scalar field renormalization

Adopting the renormalization scheme defined in Eq. (21) for the scalar quark, we need to
compute the scalar squark density up to three-loop level when aiming for the NNLO renormal-
ization constant. The relevant Feynman rule for the operator ϕ†(t)ϕ(t) is the same as for the
regular operator φ†φ:

= δi j .
(40)

2The factor −1/18 should read 1/18 in Eq. (B.3) of Ref. [18] (Eq. (131) in the arXiv version up to v2).
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(a) (b) (c) (d)
Figure 3: Sample contributions to 〈ϕ†(t)ϕ(t)〉 at order as, asaλ, a2

s , and a2
λ

(a–d).
The notation is the same as in Fig. 1. All “mixed” diagrams with both a quartic scalar
and a gauge vertex such as diagram (b) evaluate to zero individually. Diagram (d) is
the only non-vanishing three-loop diagram without a gauge coupling.

Sample diagrams contributing at NLO and NNLO are shown in Fig. 3. In analogy to the
fermionic case, we factorize the ringed renormalization constant into an MS part Zϕ, and
a conversion factor ζϕ:

�Zϕ = ζϕZϕ . (41)

Adopting again Eq. (A.8), we find for the MS coefficients through NNLO:3

γϕ,20 = C2
F

�

−
3
32
+

11
4

ln 2−
9
8

ln3
�

+ CFCA

�

−
65
64
−

7
4

ln 2+
9
8

ln 3
�

+ CFTR

� 1
32
+

1
8

nf

�

,

γϕ,02 = −
1

128
(nc + 1) , γϕ,i j = 0 , otherwise.

(42)

This means that the squark field renormalization is only required at the two-loop level and be-
yond. The color factor (nc+1) of Eq. (42) arises from the contraction of the four-squark vertex
with another pair of Kronecker-δs; an overall factor nc is taken into account in Eq. (21). Out
of 377 three-loop diagrams, only the one shown in Fig. 3 (b) contributes to γϕ,02. Remarkably,
diagrams with both a scalar and a gauge coupling vanish individually at three-loop level, so
that γϕ,11 = 0 as indicated in Eq. (42).

For the conversion factor to the ringed scheme, we find

ζϕ = 1− asCF (1+ 2 ln2) + a2
s

¦

c(2)ϕ,20 − Lµt

�

γϕ,20 + β
s
20CF(1+ 2 ln2)

�

©

+ a2
λ

�

c(2)ϕ,02 − Lµtγϕ,02

�

+ h.o. ,
(43)

where β s
20 is given in Eq. (A.3), and

c(2)ϕ,20 = 3.2133C2
F − 4.268CACF + CFTR (1.086nf + 0.4547) ,

c(2)ϕ,02 = 0.025391 (nc + 1) .
(44)

The logarithmic term is consistent with the RGE

µ2 d
dµ2
�Zϕ〈ϕ†(t)ϕ(t)〉= 0 , (45)

from which one derives
�

∂

∂ Lµt
+ β s(αs, aλ)

∂

∂ αs
+ βλ(αs, aλ)

∂

∂ aλ
− γϕ(αs, aλ)

�

ζϕ = 0 , (46)

3The analytical expressions quoted here are actually obtained from the two-loop calculation of Section 4.2. The
three-loop calculation of 〈ϕ†(t)ϕ(t)〉 allows us to reproduce this result in numerical form.
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(a) (b) (c) (c)
Figure 4: Sample diagrams contributing to the SFTX expansion of ϕ†(t)ϕ(t) at two-
loop level. In total, we find 532 diagrams at this order (11 at one-loop level), includ-
ing those which vanish due to closed flow-time loops.

where γϕ is defined according to the generic form of Eq. (A.7), with the coefficients given in
Eq. (42).

4 Short-flow-time expansions

As an application of our results, we will derive the SFTX of two bilinear flowed squark opera-
tors.

4.1 The scalar bilinear

The first operator we consider is the scalar squark bilinear. Neglecting linear and higher terms
in t, its SFTX takes the form

�Zϕϕ
†(t)ϕ(t) =

1
t

c0(t)1+ c1(t)Zφ†φφ
†φ . (47)

The coefficients c0(t) and c1(t) can be evaluated by applying the method of projectors [60]
(see also Ref. [22], for example). It implies that c0(t) is obtained from the VEV of the operator
on the l.h.s. Using Eq. (21), it immediately follows that

c0(t) =
nc

32π2
, (48)

to all orders in perturbation theory. The coefficient c1(t) is determined by the matrix element
of ϕ†ϕ with two external (regular) φ fields, evaluated at zero momentum. Sample diagrams
are shown in Fig. 4. Requiring c1(t) to be finite determines the MS renormalization constant
Zφ†φ for the unflowed operator φ†φ through two-loop level. As usual, we express it in terms
of the perturbative coefficients of the anomalous dimension γφ†φ , see Eqs. (A.7) and (A.8),
and find4

γφ†φ,00 = 0 , γφ†φ,10 =
3
4

CF , γφ†φ,01 = −
1
8
(nc + 1) ,

γφ†φ,20 = −
5
32

C2
F +

143
192

CACF − CFTR

�71
96
+

5
24

nf

�

,

γφ†φ,02 =
5

128
(nc + 1) , γφ†φ,11 = −

1
4

CF (nc + 1) .

(49)

Since γφ†φ is related to the Higgs mass anomalous dimension in the Standard Model [62,63],
we checked our result by reproducing the SU(2) part of the latter.

4There actually is a result for γφ†φ in the literature from more than 35 years ago [61], which, however, disagrees
with our findings.
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The renormalized expression for c1(t) is then given by

c1(t) =
∞
∑

n,m=0

c1,nman
s am
λ , (50)

with the coefficients up to NNLO (n+m= 2) given as

c1,00 = 1 , c1,10 = −CF

�

5
4
+ 2 ln2

�

, c1,01 =
1
8
(nc + 1) ,

c1,20 = C2
F

�

−
1
32
−

5
32
ζ2 +

47
8

ln2−
7
8

ln2 2+
9
8

ln2 ln3−
39
16

ln3−
9

32
ln2 3

+
15
8

Li2 (1/4)
�

+ CACF

�

−
397
192
−

7
64
ζ2 −

47
8

ln2+
11
8

ln2 2−
9
8

ln 2 ln 3

+
75
16

ln 3+
9
32

ln2 3+
3
4

Li2 (1/4)
�

+ CFTR

�

−
55
96
−

1
32
ζ2 +

11
3

ln2

−
3
2

ln 3+
7
8

Li2 (1/4)
�

+ CFTRnf

�

5
12
+

1
8
ζ2

�

+ c(2)ϕ,20 ,

c1,02 = (nc + 1)
�

−
15

128
−

3
128

ζ2 + c(2)ϕ,02

�

,

c1,11 = CF (nc + 1)
�

3
8
+

3
8

ln 2−
9
16

ln3−
3
8

Li2 (1/4)
�

,

(51)

where c(2)ϕ,02 and c(2)ϕ,20 are given in Eq. (44), and we have set µ= µt for the sake of brevity, see
Eq. (24). The result for general values of µ can be reconstructed from the relation

µ2 d
dµ2

c1(t) =

�

∂

∂ Lµt
+ β s(as, aλ)

∂

∂ as
+ βλ(as, aλ)

∂

∂ aλ

�

c1(t) = γφ†φ c1(t) , (52)

which follows from the renormalization scale independence of the l.h.s. of Eq. (47). For con-
venience of the reader, we include the explicitly µ-dependent terms in the ancillary file accom-
panying this paper, see Appendix B.

4.2 The Noether current

The second example we consider is the Noether current for the squark, given by the operator
φ†←→D Fφ. Its Feynman rules are

= iδi j(p− q)µ ,

= 2 ta
jiδµρ ,

(53)

where the momenta are assumed outgoing.
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Neglecting again higher orders in t, the SFTX of the flowed version of this operator reads

�Zϕϕ
†(t)
←→
D F
µϕ(t) = d(t)φ†←→D F

µφ , (54)

with the coefficients up to NNLO given by

d(t) =
∞
∑

n,m=0

dnman
s am
λ , d00 = 1 , d10 = −CF (1+ 2 ln 2) , d01 = 0 ,

d20 = C2
F

�

111
128
−

1
8
ζ2 +

13
2

ln2−
7
8

ln2 2+
9
8

ln2 ln3−
33
8

ln3−
9

32
ln2 3

+
3
2

Li2 (1/4)
�

+ CACF

�

−
231
256
−

1
8
ζ2 −

19
8

ln2+
11
8

ln2 2−
9
8

ln 2 ln 3

+
21
16

ln3+
9
32

ln2 3+
9
32

Li2 (1/4)
�

+ CFTR

�

7
128

+
5
32

nf

�

+ c(2)ϕ,20

+ d10β
s
20 Lµt ,

d02 = (nc + 1)
�

−
7

512
+ c(2)ϕ,02

�

, d11 = CF

�

−
3

16
−

1
32
ζ2 +

9
32

Li2 (1/4)
�

,

(55)

where c(2)ϕ,20, c(2)ϕ,02, and β s
20 are given in Eqs. (44) and (A.3), respectively. The logarithmic term

is consistent with

µ2 d
dµ2

d(t) = 0 , (56)

which follows from the renormalization scale invariance of both the l.h.s. of Eq. (54) and the
regular Noether current. It is worth noting that the NLO coefficient d10 arises completely from
the ringed-scheme conversion of Eq. (43), while it vanishes in the MS-scheme.

5 Flowed anomalous dimension

The gradient flow can be viewed as a renormalization scheme. The corresponding renormal-
ization group equation for a set of flowed operators Õ = (Õ1, · · · ) in this scheme can be written
as

t
d
dt

Õ(t) = γ̃Õ(t) , (57)

where the flowed anomalous dimension matrix γ̃ can be expressed in terms of the matching
matrix ζ(t) of the SFTX, defined as

Õ(t) = ζ(t)O . (58)

Setting µ2 ∼ 1/t, one finds [19,22]

γ̃=
��

t
∂

∂ t
− β s ∂

∂ as
− βλ

∂

∂ aλ

�

ζ(t)
�

ζ−1(t) + ζ(t)γζ−1(t) , (59)

were the partial derivative w.r.t. t takes into account any power-dependence of ζ(t) on t, and
γ is the anomalous dimension of the regular operator O, i.e.5

µ2 d
dµ2

O = −γO . (60)

5Note that Ref. [22] defines γ with the opposite sign.
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For the Noether current in Eq. (54), we have

Õ(t) = �Zϕϕ†(t)
←→
D F
µϕ(t) , ζ(t) = d(t) , γ= 0 ,

O = φ†←→D F
µφ(t) , t

d
dt

Õ(t) = γ̃dÕ(t) .
(61)

In this case, the first term in brackets of Eq. (59) does not contribute. Given the result in
Eq. (55), we can determine γ̃d through O(ai

sa
j
λ
) with i + j = 3:

γ̃d =
∞
∑

n,m=0

γ̃d,nman
s am
λ , γ̃d,00 = γ̃d,10 = γ̃d,01 = γ̃d,11 = 0 , γ̃d,20 = β

s
20 d10 ,

γ̃d,30 = β
s
30 d10 + β

λ
20 d11 − β s

20 (d
2
10 − 2 d20) , γ̃d,21 = 2βλ20 d02 + (β

λ
11 + β

s
20) d11 ,

γ̃d,12 = 2βλ11 d02 + β
λ
02 d11 , γ̃d,03 = 2βλ02 d02 .

(62)

In the above relations, the renormalization scale is chosen to be µ= µt , such that Lµt = 0, see
Eq. (24); the full relation can be found in the ancillary file to this paper, see Appendix B.

For the scalar bilinear of Eq. (47), on the other hand, we need to take into account the
mixing with the unit operator. Therefore, in this case we set

Õ(t) =
�

1
�Zϕϕ†(t)ϕ(t)

�

, ζ(t) =

�

1 0
1
t c0 c1(t)

�

, γ= γφ†φ ,

O(t) =
�

1

Zφ†φφ
†φ

�

, t
d
dt

Õ(t) = γ̃cÕ(t) .
(63)

This leads to

γ̃c =

�

0 0
−1

t c0 (1+ γ̃1) γ̃1

�

− ζ(t)γφ†φζ
−1(t) , (64)

with

γ̃1 = −
��

β s ∂

∂ as
+ βλ

∂

∂ aλ

�

c1(t)
�

c−1
1 (t) . (65)

This can be easily expressed in terms of the coefficients c1,i j , β
s
i j , and βλi j from Eqs. (51), (A.3),

and (A.4), similar to Eq. (62).

6 Conclusions and outlook

We have presented the generalization of the GFF formalism to a gauge theory with scalar par-
ticles. Aside from possible phenomenologial applications, for example the Higgs sector of the
SM, our results validate the consistency of the formalism in this context. We show that, simi-
lar to the fermionic case, the flowed scalar field requires renormalization, albeit only beyond
NLO. In addition to the MS scheme, we define a quasi-physical scheme for the scalar quarks,
defined at non-zero flow-time, and analogous to the ringed scheme for fermions. It leads to
renormalization group invariant Green’s functions of the scalar field and can be implemented
both perturbatively and on the lattice. We evaluate the corresponding renormalization con-
stant through two loops.

Our results constitute an important step towards a gradient-flow description of the full SM,
which paves the way for novel perspectives on calculations within Standard Model Effective
Field Theory (SMEFT), for example.
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A Renormalization constants

The couplings are renormalized by

aB
s =

�

µ2eγE

4π

�ε

Zs(as, aλ) as , aB
λ =

�

µ2eγE

4π

�ε
�

Zsλ(as)as + Zλ(as, aλ)aλ
�

, (A.1)

where the dependence of the renormalized couplings as and aλ on the renormalization scale
µ has been suppressed. It is governed by the renormalization group equations

µ2 d
dµ2

as = β
s(as, aλ)≡ −ε as −

∞
∑

n=2

n
∑

i=0

β s
i,n−ia

i
s an−i
λ ,

µ2 d
dµ2

aλ = β
λ(as, aλ)≡ −ε aλ −

∞
∑

n=2

n
∑

i=0

βλi,n−ia
i
s an−i
λ .

(A.2)

The coefficients for the strong beta function through two-loop level, i.e. n= 3, are [64]

β s
20 =

1
4

�

11
3

CA −
4
3

nfTR −
1
3

TR

�

,

β s
30 =

1
16

�

34
3

C2
A −

�

4CF +
20
3

CA

�

TRnf −
�

4CF +
2
3

CA

�

TR

�

,

β s
i j = 0 , otherwise,

(A.3)

where nf is the number of quark flavors, and we only take into account a single scalar quark
field, see Eq. (1). For the scalar coupling, the coefficients through two-loop level are [61,65]

βλ20 = −
12C2

F − 3CACF + 12CFTR

4 (nc + 1)
,

βλ11 =
3
2

CF , βλ02 = −
1
8
(nc + 1)−

3
8

,

βλi j = 0 , otherwise.

(A.4)

The renormalization constants in Eq. (A.1) are then given by

Zs = 1− as
β s

20

ε
− a2

s

 
�

β s
20

�2

ε2
+
β s

30

2ε

!

, Zλ = 1− as
βλ11

ε
− aλ

βλ02

ε
, Zsλ = −as

βλ20

ε
. (A.5)

Though well known, let us emphasize the non-multiplicativity of the aλ renormalization, man-
ifest through the non-vanishing expression for Zsλ, and caused by diagrams like the one shown
in Fig. 5.
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Figure 5: Example diagram for the origin of the non-multiplicative renormalization
Zsλ of the scalar coupling aλ.

The anomalous dimension γ of a particular quantity is related to the corresponding renor-
malization constant Z by

µ2 d
dµ2

Z = −γ Z . (A.6)

We write it as

γ= −
∞
∑

n,m=0

γnman
s am
λ . (A.7)

The generic form of an (gauge independent) MS-renormalization constant is then given by

Z = 1− as
γ10

ε
− aλ

γ01

ε
+ a2

s

�

1
2ε2

�

γ2
10 + β

λ
20γ01 + β

s
20γ10

�

−
γ20

2ε

�

+ a2
λ

�

1
2ε2

�

γ2
01 + β

λ
02γ01

�

−
γ02

2ε

�

+ asaλ

�

1
ε2

�

γ01γ10 +
βλ11γ01

2

�

−
γ11

2ε

�

+ h.o.
(A.8)

B Ancillary file

For the reader’s convenience, we provide the results of this paper in an ancillary file in
Mathematica format. A list of the results and their corresponding expressions in the ancillary
file is found in Table 1.

The mixing coefficients c1 and d are provided in both the ringed scheme of the scalar
quarks as well as in the MS scheme. The parameter Xzetaphi allows to switch between the
schemes; setting Xzetaphi=0/1 corresponds to the MS/ringed scheme. The flowed anoma-
lous dimension γ̃d is only given in the ringed scheme.

The results depend on the variables listed in Table 2. Results in the ringed scheme depend
on the numerically known coefficients c(2)ϕ,02 and c(2)ϕ,20 (see Eq. (44)). They can be inserted by
applying the Mathematica replacement rule ReplaceC2.
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Table 1: The expressions of the ancillary file that encode the main results of this
paper.

expression meaning reference

Et E(t) Eq. (22)
zetachi ζχ Eq. (36)
gammaphiphi γφ†φ Eq. (49), Eq. (A.7)
Zphiphi �Zφ†φ Eq. (47)
gammaphi γϕ Eq. (42), Eq. (A.7)
Zphi �Zϕ Eq. (41)
zetaphi ζϕ Eq. (43)
c1 c1(t) Eq. (47)
d d(t) Eq. (54)
tildegammad γ̃d Eq. (62)

Table 2: Notation for the variables in the ancillary file.

symbol meaning definition

nc1 nc + 1 Section 3
tr TR Eq. (4)
cf CF Eq. (26)
ca CA Eq. (26)
na nA Section 3
Lmut Lµt Eq. (24)
as as Eq. (5)
al aλ Eq. (5)
nf nf Eq. (1)
ep ε Section 3.1
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