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Abstract

The paradigmatic Hatano-Nelson (HN) Hamiltonian induces a delocalization-localization
(DL) transition in a one-dimensional (1D) lattice with random disorder, in striking con-
trast to its Hermitian counterpart. The DL transition also persists in the presence of
a quasiperiodic potential separating completely delocalized and localized eigenstates.
In this study, we reveal that coupling two 1D quasiperiodic Hatano-Nelson (QHN) lat-
tices significantly alters the nature of the DL transition and identify two critical points,
Vc1 < Vc2, when the nearest neighbors of the two 1D QHN lattices are cross-coupled
with strong hopping amplitudes under periodic boundary conditions (PBC). Complete
delocalization occurs below Vc1 and the states are completely localized above Vc2, while
two mobility edges symmetrically emerge about Re[E] = 0 between Vc1 and Vc2. Notably,
under specific asymmetric cross-hopping amplitudes, Vc1 approaches zero, resulting in
localized states even for an infinitesimally weak potential. Remarkably, we also find
that the mobility edges precisely divide the delocalized and localized states in equal
proportions. We demonstrate a possible implementation of these findings in a coupled
waveguided array which can be exploited to control and manipulate the light localization
depending upon the hopping amplitude in the two QHN chains.
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1 Introduction

The concept of localization of the matter waves was laid down by P.W. Anderson in 1958,
wherein the investigation revealed that in the presence of a sufficiently strong random disorder
in the 3D lattice, the electronic conductivity ceases, hence becoming an insulator (frequently
termed as the Anderson localization) [1]. The interesting features of Anderson localization
has been implemented in many domains of physics, such as superconductors [2–4], photon-
ics [5–8] and acoustics [9, 10]. However, it was later demonstrated using a scaling law that
in the lattices of lower dimensions (1D/2D), even an infinitesimally small strength of the ran-
dom disorder localizes all the electronic wave functions [11]. A few years later, in 1980, S.
Aubry and G. André demonstrated that in quasiperiodic lattices, a delocalization-localization
(DL) transition takes place even in lower dimensions [12,13]. In the cosine-modulated Aubry-
André-Harper (AAH) models, the DL transition occurs at a finite value of the quasiperiodic po-
tential, governed by the self-duality of the Hamiltonian in the real and momentum spaces [14].
For closed quantum systems which are described by Hermitian Hamiltonians, there have been
many works based on the AAH model in the last few years [15–24]. Recently, such quasiperi-
odic lattices have been realized in the ultracold atomic systems [25–27].

However, in reality, most of the condensed matter systems are coupled to the environment
that exchanges either energy, or particles, or both with the surroundings. Such open systems
are frequently mapped using a non-Hermitian Hamiltonian. Hatano and Nelson in 1996 intro-
duced one such model which is an extension of the Anderson model with asymmetric hopping
amplitudes. In his work, originally on the superconductors, it was shown that in the pres-
ence of such random disorder, the DL transition is manifested in 1D systems. There have been
many ongoing studies on the localization, spectral properties, self-duality and mobility edges
in various non-Hermitian systems [17, 28–31]. Besides, such systems with asymmetric hop-
ping amplitudes have been gaining attention over the years due to the phenomenon of skin
effect wherein a macroscopic number of bulk states become localized at one of the edges under
open boundaries [32–35].

On the other hand, some recent works have been carried out on coupled AAH chains in
which two disparate chains of atoms are coupled to each other by some interchain hopping
amplitudes [36, 37]. It was demonstrated that such a coupled Hermitian AAH chain shows
interesting properties like the existence of mobility edges. However, to the best of our knowl-
edge, the interplay of the quasiperiodicity and the coupling between the non-Hermitian chains
of Hatano-Nelson(HN) type have not been investigated so far. Therefore, the aim of this work
is to investigate a coupled HN bipartite chain in the presence of AAH type potential to closely
scrutinize the localization behavior in such coupled systems and engineer unique localization
features owing to the combined effect of the strength of the intra/inter chain coupling and the
quasiperiodic potential. Intriguingly, we find that the presence of a strong interchain coupling
between two dissimilar atoms in the two sublattices possessing symmetric and asymmetric in-
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terchain hopping between two atoms of adjacent unit cells render equal proportion of localized
and delocalized states in the presence of quasiperiodic potential. Moreover, we find that in the
latter case, half of the states are localized even for a very weak strength of the quasiperiodic
potential, akin to the study by Anderson on 1D systems. Similar to the previous investigations,
we illustrate that the completely delocalized and localized eigenstates possess entirely com-
plex and real spectra respectively [38, 39], whereas the intermediate regime demonstrates a
mixture of real and complex eigenenergies due to the presence of both delocalized and local-
ized eigenstates. We reveal that the coupling renders distinct properties in the skin effect as
compared to the conventional HN systems, wherein some of the localized states (in the bulk)
under PBC become skin-states under the OBC. Finally, we suggest a possible experimental set-
up in coupled optical waveguides to exploit the uniqueness of the localization of eigenstates
at arbitarily small strength in the quasiperiodic potential.

This work is organized as follows: In Sec.2.1, we discuss the coupled QHN Hamiltonian and
elaborate the method to numerically identify the delocalized and localized phases in Sec. 2.2.
We analytically determine the strength of the quasiperiodic potential (Vc1 and Vc2) where the
localization transitions occur in Sec. 3. In Sec. 4, we demonstrate our unique findings in the
presence of various ratios of the strong interchain coupling between the two QHN chains. We
propose a feasible experimental set-up in coupled optical waveguides in Sec. 5. Finally, Sec. 6
consists of a summary of the work, highlighting the important results and unique findings.

2 Model and methods

2.1 The coupled QHN Hamiltonian

We consider two uni-directional HN chains with quasiperiodic potential (consisting of two
sublattices A and B in a single unit cell) coupled to each other via. an interchain hopping,
which we call a coupled quasiperiodic HN (QHN) Hamiltonian from here on.

The Hamiltonian in such a coupled system is given by,

H =HA+HB +HC , (1)

where, HA(HB) is the Hamiltonian for chain 1(2) of atom A(B) and HC introduces the inter-
chain coupling between chains 1 and 2. The individual terms of the Hamiltonian are described
as,

HA(B) =
N−1
∑

n=1

�

tRc†
n+1,A(B)cn,A(B) + tLc†

n,A(B)cn+1,A(B)

�

+
N
∑

n=1

V cos(2πnα)c†
n,A(B)cn,A(B) . (2)

Figure 1: Schematic diagram of the coupled QHN model. Atoms A are depicted in
green, and atoms B are depicted in purple. The nth unit cell containing the two
atoms is demonstrated by the dashed rectangle. The different interchain hopping
amplitudes are mentioned below and are represented by coloured arrow lines.
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Here, c†
n,x(cn,x) are the fermionic creation (annihilation) operators at the site n of sub-

lattice x = A(B). The first two terms of the Hamiltonian HA(B) define the usual asymmetric
intrachain hopping of the fermions between the nearest neighbour sites in sublattices A(B) and
the second term is the onsite quasiperiodic potential. α is an irrational number approximated
as Fn−1/Fn, where Fn and Fn−1 are the nth and (n-1)th terms of the Fibonacci series respec-
tively. Throughout this work, we have considered α to be (

p
5−1)/2 which approximates the

inverse golden mean ratio. The final part of the Hamiltonian which couples the two distinct
HN chains via. interchain coupling amplitudes is given as,

HC =
N
∑

n=1

�

uRc†
n+1,Acn,B + uLc†

n,Bcn+1,A+wRc†
n+1,Bcn,A+wLc†

n,Acn+1,B

�

. (3)

The interchain coupling uR(uL) is the hopping strength from Bn → An+1(An+1 → Bn),
whereas wR(wL) is the hopping strength of An → Bn+1(Bn+1 → An). All these terms of the
inter and intra chain coupling are depicted in a schematic in Fig. 1.

2.2 Delocalization-localization (DL) transition: The IPR

The localized and delocalized behaviour of the eigenstates of the system is characterised by
estimating the value of the Inverse Participation Ratio (IPR). The IPR for a given eigenstate
(m) is given by [40],

I PRm =

∑N
n=1

∑

x=A,B |ψ
m

n,x |4

(
∑N

n=1

∑

x=A,B |ψm
n,x |2)2

, (4)

where, ψm
n,x is the normalized wave function of eigenstate labelled by m at site n for the

chain x = A, B. Here, N is the size of the system and the number of total eigenstates is given
by L = 2N . It is well known that for the delocalized states, the I PR varies as I PR∼ L−1. In the
thermodynamic limit (N →∞), and therefore I PR ∼ 0. In contrast, for the localized states,
the I PR is independent of the system size and approaches 1 in the thermodynamic limit. All
our numerical estimates are for a lattice with 610 sites, unless specifically mentioned.

3 Analytical understanding of the localization transition

In the following discussion, we analytically estimate the critical value of quasiperiodic potential
for the DL transition in the coupled QHN Hamiltonian as defined in Sec. 2.1. The Hamiltonian
consists of creation and annihilation operators of two sublattices, which can be effectively
combined into a single equation in terms of a spinor representation [41] given as,

b =

�

cA
cB

�

. (5)

Using Eq. (5), one can immediately obtain,

H =
N
∑

n=1

�

b†
nT1 bn+1 + b†

n+1T2 bn

�

+
N
∑

n=1

b†
nε(n)bn . (6)

Here,

ε(n) =

�

Vn 0
0 Vn

�

, (7)
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where Vn is the onsite quasiperiodic potential at the nth lattice site defined as V cos(2πnα).
We now introduce the transfer matrices under PBC as,

T1 =

�

tL wL
uL tL

�

, T2 =

�

tR uR
wR tR

�

. (8)

We introduce the wave function as,

ψm
n =

�

ψm
n,A

ψm
n,B

�

, (9)

where, ψm
n,x is the normalized wave function of eigenstate labelled by m at site n for the chain

x = A, B. Substituting Eq. (9) in Eq. (6), we obtain,
�

Em1− ε(n)
�

ψm
n = T1ψ

m
n+1 + T2ψ

m
n−1 . (10)

Eq. (10) can be disintegrated into the following coupled equations:
�

Em − Vn

�

ψm
n,A = tLψ

m
n+1,A+ tRψ

m
n−1,A+wLψ

m
n+1,B + uRψ

m
n−1,B , (11)

and
�

Em − Vn

�

ψm
n,B = tLψ

m
n+1,B + tRψ

m
n−1,B +wRψ

m
n−1,A+ uLψ

m
n+1,A . (12)

Applying the following canonical transformation

ψm±
n =

ψm
n,A±ψ

m
n,Bp

2
, (13)

and with the following restrictions, i.e., uR = wR = u1 and uL = wL = u2, the system can be
exactly mapped to two uncoupled QHN chains. This can be explicitly written as,

�

Em − Vn

�

ψm+
n =
�

tL + u2

�

ψm+
n+1 +
�

tR + u1

�

ψm+
n−1 , (14)

and
�

Em − Vn

�

ψm−
n =
�

tL − u2

�

ψm−
n+1 +
�

tR − u1

�

ψm−
n−1 . (15)

The full spectrum is therefore composed of the spectra of the two uncoupled QHN chains,
i.e., E−m = Em − Vn and E+m = Em − Vn, which are identical. From Eqs. 14 and 15, one expects
two localization transitions at two critical strengths of the quasiperiodic potential at [42],

Vc1 = 2
�

max(|tL − u2|, |tR − u1|)
�

, (16)

and
Vc2 = 2
�

max(|tL + u2|, |tR + u1|)
�

. (17)

Vc1 provides the maximum value of quasiperiodic potential below which all the eigenstates
are delocalized. Vc2 is that strength of the potential above which all the states become com-
pletely localized. It is interesting to note that one can engineer a system where Vc1 is zero,
when the conditions |tL − u2|= 0 and |tR − u1|= 0 are simultaneously satisfied.
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Figure 2: The localization behavior in a strongly coupled QHN Hamiltonian with
tL = 0.5, tR = 1.0 in a lattice with N = 610 sites under PBC with interchain
hopping between the two adjacent unit cells. Projection of IPR as a function of
the real part of the eigen-energy and quasiperiodic potential (V ) for (a-d) sym-
metric interchain hopping and (e-h) asymmetric interchain hopping. In both the
panels, the DL transition is shown as a dark blue to green transition. In particu-
lar, the parameters of interchain coupling are: (a) uL = uR = wL = wR = 0.25,
(b) uL = uR = wL = wR = 0.5, (c) uL = uR = wL = wR = 0.75, (d)
uL = uR = wL = wR = 1.0, (e)uL = wL = 0.0 and uR = wR = 1.0,
(f)uL = wL = 0.25 and uR = wR = 1.0, (g)uL = wL = 0.5 and uR = wR = 1.0
(h)uL = wL = 0.75 and uR = wR = 1.0.

Figure 3: The fraction of localized states (φl) in blue and delocalized states (φd)
in yellow corresponding to the parameters of Fig 2. States with I PR ≳ 0.1 was
considered localized, otherwise the states are considered to be delocalized in nature.
We have used PBC and the remaining parameters are same as in Fig. 2.
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Figure 4: (a), (b), (c) The energy spectrum in the complex plane under the PBC
in the three regimes of the phase diagram corresponding to Figs. 2(a),(e), and (g).
The delocalized regime with complex loops is demonstrated in blue, whereas the real
spectrum in the localized regime is demonstrated in green color. The intermediate
regime with partial real and complex eigenvalues is demonstrated in red. We have
considered a lattice with 610 sites in all the three cases V = 0.25, 2.0 and 4.5.

4 Numerical results and discussions

In this section, we analyse the phase diagram of the DL transition in the presence of a strong
interchain coupling between the two QHN chains A and B. The ratio of intrachain hopping
strengths of the chains A(B) is tL/tR = 0.5. In the upper panel of Fig. 2, we consider the case
of symmetric interchain coupling. It is clear from Figs. 2(a)-(d) that the DL transition does
not occur at Vc = 2max[JR, JL] (which is the critical value of DL transition in QHN chain). It
is clearly visible that all the eigenstates are perfectly delocalized for V ≲ Vc1 and localized for
V ≳ Vc2. The value of Vc1 and Vc2 as determined in Eqs. (16) and (17) agrees excellently with
all the numerical estimates. Furthermore, as is evident, the eigenstates between these two
critical points are a mixture of both the delocalized and localized states, separated at a critical
energy, termed as the mobility edge.

Next, we consider the case when the interchain coupling is asymmetric in nature in
the lower panel of Fig. 2. It is clear that the localization behavior drastically changes
upon considering a particular strength of asymmetricity, i.e, say, uL = 0.5, uR = 1.0 and
wL = 0.5, wR = 1.0. Such a tendency of Vc1 approaching 0 is expected when |tL − u2| and
|tR− u1| are both zero, as already explained. This particular case is of interest since the local-
ized states appear even for a low value of the quasiperiodic potential, similar to the 1D original
Anderson model, although in this case not all the states are localized.

To have a closer look into the nature of states in between Vc1 and Vc2, we check the frac-
tion of localized (φl) and delocalized states (φd). We consider the states with I PR ≳ 0.1 as
being absolutely localized, and below the limit the states are considered to be delocalized. We
examine these different regions separately by plotting the fraction of localized and delocalized
states as a function of the quasiperiodic potential corresponding to the parameters of Figs. 2.
From Figs. 3(a-h), we can easily infer that there is a co-existence of localized and delocalized
states for a wide regime in the quasiperiodic potential. Moreover, interestingly 50% of these
states are delocalized while the remaining states are localized. This proportionate behaviour is
consistent throughout the entire intermediate region. Furthermore, it is also important to see
that in the case where Vc1 = 0, exactly 50% localized states appear at even a tiny quasiperiodic
potential, as previously discussed.

To infer the nature of the energy spectrum in the complex plane, in Figs. 4(a-c), we have
plotted the eigenenergies in the three important regimes of the phase diagram as discussed in
Fig. 2. We find that for any strength in the symmetric/asymmetric interchain coupling, in the
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Figure 5: The localization behavior in a strongly coupled QHN Hamiltonian with
tL = 0.5, tR = 1.0 for a lattice with N = 610 sites under OBC with interchain hopping
between the two adjacent unit cells. (a) Projection of I PR as a function of the real
part of the eigen-energy and quasiperiodic potential (V ), where the DL transition is
shown as a dark blue to green color transition. The other parameters of interchain
coupling are: (a)uL = 0.5, uR = 1.0, wL = 0.5 and wR = 1.0. (b) The fraction of
localized states (φl) in blue and delocalized states (φd) in yellow, corresponding to
the parameters of Fig 2. Figs. a(i-iii) in the lower panel demonstrates the behavior
of the wavefunction probabilities at different latice sites corresponding to the figure
in the upper panel at V = 1.5. (a-i) skin modes (dark blue regime of I PR), (a-ii)
skin modes in the light blue regime of I PR, and (a-iii) localized modes (in light blue
regime of I PR).

delocalized regime the energy spectrum is completely complex and forms loops. On the other
hand, when the states are entirely localized, the energy spectrum becomes completely real.
This is in agreement to the previous observations demonstrated since early works ( [38,39]).
In the intermediate regime possessing mobility edges, we illustrate the presence of partially
complex and real eigenenergies which arises due to the co-existence of delocalized and local-
ized eigenstates. In addition, the energy spectrum under the OBC with similar features has
been elucidated in Appendix A.

In Fig. 2(g), we find an interesting outcome of localization at a very minute value of the
quasiperiodic potential V under the PBC. However, it is well-known that the non-Hermitian
systems with asymmetric hopping are drastically sensitive to the choice of boundary condi-
tions, wherein the bulk states under PBC turn into skin states localized towards one of the
boundaries under the OBC. Therefore, it becomes important to understand whether the same
localization behavior is retained under the OBC in the coupled QHN system and to understand
the nature of skin states. We plot the phase diagram for the interesting case corresponding
to Fig. 2(g) under the OBC in Fig. 5(a), which exhibits qualitative distinctions in the delocal-
ized/intermediate/localized regimes as compared to its PBC counterpart. It is clear that some
of the localized states under PBC (in green) turn into states with IPR values lying in the light
blue regime. For more clarity about the exact nature of the eigenstates, we plot the percentage
of the delocalized and localized eigenstates in Fig 5(b). One can immediately infer that the
proportion of delocalized and localized states does not remain same (i.e., at 50%) when the
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Figure 6: Schematic diagram of the bilayaer coupled waveguided array with asym-
metric hopping. Atoms A and B which depict the waveguide channels in the optical
set-up are depicted in blue and green respectively.

boundaries are open. It is clear, that the localized wavefunctions under PBC become delocal-
ized(or skin) under the OBC since the fraction of delocalized states(φd) significantly increases.
We plot the wave-function probabilities at different regimes of the phase diagram in Figs. 5(a-
i)-(a-iii). In Fig. 5(a-i), we pick one of the eigenstates from the dark blue regime of the phase
diagram, where we find the existence of a skin state under OBC as expected. Interestingly,
we find that the light blue regime infact consists of both skin states (localized at right edge
as demonstrated in Fig. 5(a-ii)) and localized states where the localization is not necessarily
towards the right edge as shown in Fig. 5(a-iii). This is in stark contrast to the 1D HN sys-
tems in the absence of the interchain coupling, where the localized states under PBC remain
localized even under the OBC. One can therefore infer that additional skin modes are formed
from the localized states under OBC due to the coupling between such QHN chains, and hence
the one-to-one correspondence between the delocalized(skin) states under PBC(OBC) breaks
down in the presence of the coupling.

5 Possible experimental implementation in coupled waveguides

The equation of a coupled waveguide array at position n is written in the form,

−i
dψn

dz
= tLψn+1 + tRψn−1 + Vnψn , (18)

where tL and tR tune the spacing in between the waveguides, and is non-Hermitian in the usual
sense. Eq. 18 is an optical analogue of the Schrodinger equation where the time t is replaced
by propagation distance along the parallel waveguides z, due to the mathematical equivalence
between the two [43,44]. In this work, starting from the two coupled QHN chains, we get two
coupled equations (Eq. 11 and Eq. 12 for the two atoms in the sublattice). We will therefore
obtain two equations similar to Eq. 18 for A and B atoms coupled to each other, given as,

−i
dψn,A

dz
= tLψn+1,A+ tRψn−1,A+wLψn+1,B + uRψn−1,B + Vnψn,A , (19)

and

−i
dψn,B

dz
= tLψn+1,B + tRψn−1,B +wRψn−1,A+ uLψn+1,A+ Vnψn,B . (20)
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Intuitively speaking, since we have two atoms (A and B) in a unit cell, we have two layers
of waveguided arrays (each of them being termed as a coupled waveguided array) as depicted
in the schematic given in Fig. 6. Such a single coupled waveguided array has already been fab-
ricated experimentally on a semiconducting AlGaAs substrate when tL = tR [44]. It has been
demonstrated that the array is composed of a core layer sandwiched between two cladding
layers, where the upper cladding layer is etched quasiperiodically, where one can modulate
the width of the waveguides quasiperiodically to realize the quasiperiodic onsite potential.
The etching makes the core beneath it have a lower effective refraction index, resulting in a
array of coupled 1D waveguides. One can now tune tL and tR (as required in our work) using
a beam-splitter. Because of the two different atoms, we consider another coupled waveguide
placed exactly below it, which could mimic the coupled QHN system as discussed in our main
text. Since our work demonstrates the avenue to tune the strengths of Vc1 and Vc2 to engi-
neer the localization transitions, such a coupled waveguided array can prove to be a boon to
experimentalists working in such optical set-ups.

6 Conclusions

To summarize, this work scrutinizes the different localization attributes in non-Hermitian cou-
pled quasiperiodic chains. The nature of DL transition at a threshold of the quasiperiodic
potential (Vc = 2) for NH-AAH chains with parameters tL = 0.5 and tR = 1.0 is well-known.
However, unlike the generic DL transition in NH-AAH chains, a strong coupling between the
atoms of adjacent unit cells of the two HN chains possessing the same directionalities under
PBC renders an intermediate region, wherein the eigenstates are a mixture of equal proportion
of delocalized and localized states. Interestingly, for the counterpart with asymmetricity with
specific hopping amplitudes, this intermediate region appears even in the presence of very
tiny quasiperiodic potential, where the localized and delocalized states coexist. In this case as
well, the proportion of localized and delocalized states remains identical. Moreover, under an
OBC, we find a mixture of skin states and localized states in a regime of the localized portion
in the PBC phase diagram. This is in contrary to the conventional HN systems where the lo-
calized states under OBC can either be skin modes or be completely localized and the usual
PBC-OBC correspondence that leads the delocalized states to become skin states, keeping the
localized states intact completely breaks down in the presence of the coupling. We believe that
these rich phases due to the coupling in non-Hermitian systems can be utilised in experiments
related to coupled waveguides.
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A Energy spectrum of the coupled QHN model under OBC

Since the non-Hermitian systems with asymmetric hopping amplitudes are sensitive to the
boundary conditions, in Fig. 7, we plot the energy spectrum in the three regimes (i.e., skin,
localized and intermediate regimes) under OBC. The nature of the localized and intermediate
states are identical to those under the PBC (Fig. 4). Interestingly, in the regime where the
skin states are present (as illustrated in Fig. 5 of the main text), the energy spectrum remains
complex. Such a formation of skin states with complex energies has also been observed in
recent works [33, 45]. Moreover, in this regime, a few scattered energies inside the complex
loops arise due to edge effects because of the finite size of the system considered in our work,
which is frequently observed in such kind of non-Hermitian systems. In addition, the partial
reality in energy spectrum as observed in the upper panel of Fig. 7(c) clearly illustrates the
intermediate regime for the special strength of asymmetric interchain hopping as described in
the main text.

B The behavior of IPR with varying system sizes

To comprehend the system size dependence of the IPR with varying system sizes and the rea-
son behind selection of I PR = 0.1 criterion for the separation of delocalized and localized
eigenstates, we have plotted the IPR as a function of the normalized eigenstate index in the
delocalized and localized regimes at a particular strength of the inter and intrachain coupling
amplitudes in Figs. 8(a-b). It is evident that in the delocalized regime, the IPR decreases with
an increase in the size of the system, whereas in the localized regime it remains constant and
overlaps for all system sizes. In the intermediate regime, the delocalized states exhibit the
system size dependence, whereas the localized states remain pinned at a higher value of IPR
close to 1. Furthermore, we have verified this for all other interchain and intrachain coupling
amplitudes and under the OBC. These results which do not convey any additional information
have not been demonstrated here for brevity. Moreover, it is clear from Figs. 8(a-b) that the
threshold I PR = 0.1 is appropriate for the clear distinguishability of the delocalized states
from the localized ones at all system sizes and is therefore considered in our work to estimate
the accurate percentage of delocalized and localized eigenstates in the intermediate regime.
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Figure 7: (a), (b), (c) The energy spectrum in the complex plane under the OBC
corresponding to Figs. 4(a),(b), and (c). The rest of the parameters are same as in
Fig. 4.
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Figure 8: IPR as a function of the normalized eigenstate index (n/L) under PBC in
the (a) delocalized (V = 0.25) and (b) localized(V = 4.5) regimes with four dif-
ferent system sizes (N = 377,610, 987,1597). The other inter/intrachain coupling
amplitudes are: tL = 0.5, tR = 1.0, and uL = uR = wL = wR = 0.25.
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