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Abstract

We demonstrate the emergence of scaling laws in the benchmark top versus QCD jet
classification problem in collider physics. Six distinct physically-motivated classifiers
exhibit power-law scaling of the binary cross-entropy test loss as a function of training set
size, with distinct power law indices. This result highlights the importance of comparing
classifiers as a function of dataset size rather than for a fixed training set, as the optimal
classifier may change considerably as the dataset is scaled up. We speculate on the
interpretation of our results in terms of previous models of scaling laws observed in
natural language and image datasets.
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1 Introduction

In just the past few years, neural scaling laws [1] have gained prominence both as an emergent
property of large machine learning (ML) models and as a practical tool for predicting the
performance of such models. Across a wide variety of tasks and architectures, the training or
test loss L is observed to follow a power law,

L(T ) = AT−αT + C , (1)

where T represents a variable such as the size of the training set, the number of parameters,
or the amount of compute; αT is a task-dependent power law index which depends on the
choice of variable T but only weakly on architecture and other hyperparameters; and C is
the irreducible loss which persists in the limit of infinite data/parameters/compute. A first-
principles understanding of the robustness and ubiquity of these power laws remains elusive
(though see [2–4]), but in industry applications, the scaling of performance is so reliable that
it can be used to correctly predict the trained model loss after scaling the model up by multiple
orders of magnitude [5,6].

ML models have also gained prominence as tools for solving problems in physics. A com-
mon application is the processing of data from high-energy particle colliders (see the “living
review” [7] for a continually-updated compendium of references). In such experiments, the
volume of data is enormous, even by industry standards: the Large Hadron Collider (LHC)
generates about 1 petabyte per second of raw data [8], the vast majority of which must be
discarded in order to store the (still enormous) 160 petabytes per year of “interesting” data to
disk. The upgraded High Luminosity LHC (HL-LHC) expects to increase both the total event
rate and the recorded data rate by more than an order of magnitude [9,10]. If some fraction
of the discarded data could be used to train ML models to aid with analysis tasks, that would
have enormous practical implications for the design of the hardware “trigger” that determines
which events to keep for offline analysis. While there is some concern among builders of large
language models that such models might “run out of data” before saturating the returns to
scale, ML models in physics are currently trained on a vanishingly small fraction of the total
data available.1 In spite of this abundant resource, in most collider physics studies using ML
tools, competing models are often compared to one another at some fixed but arbitrary T .

In this paper, we demonstrate empirically that scaling laws also emerge in physics tasks.
Using the benchmark example of discriminating two classes of jets (sprays of collimated par-
ticles detected at high-energy colliders) in simulated data [11], we show that six different
physically-motivated classifiers yield widely-varying power laws, extending over 3–4 orders of
magnitude in training set size T (see Fig. 1). Due to the large variation in αT among classi-
fiers, the “best” classifier may change as a function of T . This phenomenon has only recently
begun to be pointed out (see Refs. [12, 13] for example) and does not yet seem to be widely
appreciated. Consequently, we urge physicists developing ML models to present their results
in log-log space as a function of training set size, both to explore the extent to which power
laws are ubiquitous in physics applications (and perhaps to use physics tools to derive the
power law index), but also to understand the benefit of scaling up the training set compared
to other models. Throughout this paper, we endeavor to use non-technical language which we
hope will be comprehensible to both physicists and non-physicists.

1This observation holds whether or not the training dataset is drawn from simulated data or real data. Inde-
pendent of the subtle question of whether simulations are accurately capturing the true distribution of real data,
the only limitation to scaling up the training sets generated from Monte Carlo event generators seems to be storage
space, rather than any principled reason.
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Figure 1: Performance of various classifiers trained to distinguish top quark jets from
light-quark and gluon QCD jets, as a function of training set size. The classifier archi-
tectures and hyperparameters are discussed in Sec. 4. Power law behavior is evident
over several decades for all six classifiers we consider. The rank ordering among these
six classifiers changes five times as the training set size is increased. If the observed
power laws extend, the ordering may change again at larger training set size.

2 Classification task: Top versus QCD jet discrimination

Here we briefly review the setup of the benchmark classification problem of Ref. [11]. Quarks
are fundamental particles which feel the strong nuclear force, but they are never observed as
free particles because of a property of quantum chromodynamics (QCD) called confinement.
Rather, they manifest at particle detectors as a large number of particles clustered around
a particular direction – a jet. Identifying the primary quark which initiated the jet is a key
analysis task at high-energy colliders, since different physical processes of interest may create
different quarks. The heaviest quark is the top quark, which decays immediately to three
quarks such that each of its decay products forms its own “subjet” within the top quark jet. The
lightest quarks are copiously produced at colliders in events where nothing much of interest
happens, and thus these “QCD jets” can pose a background for searches for rarer processes.

The classification task is therefore to distinguish a top jet from a QCD jet, once some “jet
algorithm” (see [14] for a pedagogical overview) has clustered the detected particles into
jets. The data simply consists of the energies Ei and momenta p⃗i of the particles in the jets,
which can be viewed as an unordered point cloud and is conveniently expressed as a list of
energy-momentum 4-vectors pi = (Ei , p⃗i). In the benchmark dataset of Ref. [11], both classes
of simulated jets have up to 200 constituents, with zero-padding used to balance the size of
the arrays for jets with fewer particles. Early attempts to harness deep learning tools for jet
classification mapped these 4-vectors into a “jet image” [15–17] where the pixels of the image
represent a discretization of the angular coordinates and the grayscale intensity of the pixel is
the total energy in that angular region. Using jet image space to visualize the classes, a top jet
is “three blobs” and a QCD jet is “mostly one blob.” However, this mapping into jet image space
obscures the point cloud nature of jets, so we will focus on classifiers which take functions of
the 4-vector point clouds as input.
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We choose to focus on the particular classification problem of top versus QCD jets because
it is the benchmark jet classification problem which is expected to have the smallest irreducible
loss. In autoregressive language models, the irreducible loss can be attributed to the entropy
of language [18]. For classification problems in physics, the irreducible loss may arise from
quantum mechanics, which implies that there may be jets which cannot be assigned to a dis-
tinct class even in principle. This issue is most apparent in a related problem of distinguishing
quark jets from jets initiated by gluons, the particles which mediate the strong force. While
it has been shown that there are some quark jets which are fully distinguishable from gluon
jets [19,20], such jets make up a set of measure zero of the data manifold, leading to a large
irreducible loss when sampling random jets. This makes it difficult to identify a robust power
law over several decades of T before the saturation of the irreducible loss takes over.

3 Physically-motivated classifiers

3.1 Infrared and collinear safety

QCD is a relativistic quantum field theory, which means that its predictions are probabilis-
tic and covariant under the linear transformations of space and time coordinates allowed by
special relativity. In the regime where observables are calculable as a perturbative series, the
combination of relativity and quantum mechanics implies that certain quantities are ill-defined
because probabilities become singular in the infrared and collinear limits. Infrared (or soft)
singularities arise from a particle emitting another particle whose energy is vanishingly small.
Collinear singularities arise from a particle splitting into two particles, each carrying a fraction
of the energy of the original particles but with their momenta exactly aligned. Observables that
are insensitive to soft-particle emission or collinear splitting are called infrared and collinear
(IRC) safe. The canonical example of a non-IRC safe observable is total particle number, since
this is not robust to soft or collinear emission: two jets which differ only by the addition of an
arbitrarily low-energy particle, or by splitting one particle into two collinear ones, will have
particle numbers that differ by one but are otherwise indistinguishable in perturbation theory.
By contrast, the total energy of the jet is an IRC-safe observable.

The relationship between IRC-safe observables and calculable observables is quite sub-
tle [21, 22], and it is known that IRC-unsafe information can improve classification perfor-
mance (see e.g. [23]). Nonetheless, IRC-safe observables have a satisfying interpretation in
terms of the geometry of the data manifold [22]. Since several studies of scaling laws have
noted the possible relationship of the power law slope to the intrinsic or extrinsic dimension of
the data [2–4], we focus exclusively on IRC-safe classifiers in this work. Our goal is explicitly
not to identify the overall best-performing classifier, but instead to emphasize that such an
assessment always depends on the size of the training set.

3.2 Energy flow polynomials (EFP)

Energy flow polynomials (EFPs) [24] are an overcomplete linear basis for all IRC-safe jet ob-
servables. Let zi be the fraction of the total jet energy carried by particle i, and θi j be the
angular distance between particles i and j in a chosen angular coordinate system (for exam-
ple, in spherical coordinates, θi j =

Æ

(θi − θ j)2 + (φi −φ j)2). The EFPs are in one-to-one
correspondences with loopless multigraphs G, and for G with N vertices and edges (k,ℓ), the
associated EFP is defined as

EFPG =
M
∑

i1=1

· · ·
M
∑

iN=1

zi1 · · · ziN

∏

(k,ℓ)∈G

θik il , (2)
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where M is the number of particles in the jet. This definition is manifestly permutation-
symmetric and therefore respects the point cloud nature of the jet, and Ref. [24] proves that
it is IRC-safe. Connected multigraphs with more edges have a higher degree of the angu-
lar monomial, and roughly speaking, probe smaller angular scales. A reasonable truncation
scheme for the EFPs therefore restricts to multigraphs with at most d edges (and consequently
at most degree d in the angular factor): there are 313 nontrivial EFPs for d ≤ 6 and 999
EFPs for d ≤ 7.2 Computing the EFPs of d ≤ 6 on a jet consisting of M 4-vectors is thus a
nonlinear map from R4M to R313, for example, which can be viewed as a physically-motivated
preprocessing of the data into a useful feature space.

3.3 Energy mover’s distance (EMD)

Rather than preprocessing the jets by mapping to Euclidean space, we can define an IRC-safe
distance measure directly on the space of jets. This is known as the energy mover’s distance
(EMD) [22, 25], which is a modification of the earth mover’s distance used in computer vi-
sion [26]. Unlike the dimensionless EFPs, it has a natural dimensionful scale (with units of
energy) and is defined using the energies Ei of the particles in the jet rather than just the en-
ergy fractions. For events E and E ′, the EMD is defined as the solution to an optimal transport
problem for coefficients fi j ,

EMD(E ,E ′) =min
{ fi j}

∑

i j

fi j

�

θi j

R

�β

+

�

�

�

�

�

∑

i

Ei −
∑

j

E′j

�

�

�

�

�

, (3)

subject to the constraints

fi j ≥ 0 ,
∑

j

fi j ≤ Ei ,
∑

i

fi j ≤ E′j ,
∑

i j

fi j =min(E, E′) , (4)

where E and E′ are the total energies of E and E ′, respectively. The angular distance θi j is
identical to that used in the EFP definition; the angular scale R and the angular exponent β
are hyperparameters of the EMD. The EMD is a proper metric satisfying the triangle inequality
for β = 1, and we will restrict to this value from now on. Ref. [22] proves that two events
are separated by zero EMD iff they differ by the addition of zero-energy particles or exactly
collinear splittings, thus providing a direct connection to IRC safety.

3.4 Linearized optimal transport (LOT)

The EMD has a very clean physical and mathematical interpretation, but as a nonlinear opti-
mal transport problem, it is quite expensive to compute: even with modern optimal transport
libraries, computing the

�T
2

�

entries of the EMD matrix for T > 105 takes weeks of multi-core
CPU or GPU walltime.3 The EMD with β = 1 is an example of a p-Wasserstein distance with
p = 1, which (like the ℓ1 norm) does not have a pseudo-Riemannian structure, but modifying
the EMD to a 2-Wasserstein distance, which is defined in terms of an ℓ2 norm, admits a lin-
earization which embeds the events E into Euclidean space [28]. Using this linearized optimal
transport (LOT) approximation, which projects onto the tangent plane of the 2-Wasserstein
pseudo-Riemannian manifold at a given point, the distance between events is approximated
by the ℓ2 Euclidean distance on the tangent plane. The total computational cost of LOT is then
O(T ) for the expensive 2-Wasserstein distances, and O(T2) only for the vastly more efficient
Euclidean distances.

2Note that the first EFP with d = 0 is trivial, since it is just
∑

i zi = 1, so we will exclude this from our analysis.
3Though, see Ref. [27] for a much faster approximation.
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The specific LOT algorithm defined in Ref. [28] is as follows. First, define a reference jet
R containing MR particles of energies Ri and angular positions X i (i.e. (θi ,φi) in spherical
coordinates). For another event E with energies E j and angular positions x j , let fi j denote the
optimal transport plan for the 2-Wasserstein distance

W2(R,E) =min
{ fi j}

√

√

√

√

MR
∑

i=1

M
∑

j=1

fi j||X i − x j||2 , (5)

subject to the constraints in Eq. (4). For simplicity we have assumed that the energy of all
events E (as well as R) is normalized to 1, so the energy cost factor in Eq. (3) vanishes. The
average locations of the energy transport for the particles in R,

zi :=
1
Ri

M
∑

j=1

fi j x j , (6)

define a map from E to RMR . While for any finite MR, LOT does not define a metric on the
space of events, in the continuum limit MR→∞, Ref. [28] proves that the LOT does converge
to a true metric, which is not isomorphic to the EMD metric. The ideas behind LOT can be

generalized to events with different energy, where the energy cost factor
�

�

�

∑

i Ei −
∑

j E′j

�

�

� is

important for classification, using a linearization of the Hellinger-Kantorovich distance [29].
However, since the top/QCD classification task is mostly a question of differing angular distri-
butions rather than total energy, we will focus on the behavior of classifiers based on LOT as
defined above.

4 Architecture and hyperparameter details

We now define several classifiers, both parametric and non-parametric, whose inputs are top
and QCD jet events processed using the EFPs, EMD, and/or LOT. We briefly motivate each
choice of classifier, and describe which aspects of the geometry of the data we expect it to
measure, as well as how it relates to the other classifiers. For all classifiers, we define the loss
as the binary cross-entropy,

L = −
1

Ttest

Ttest
∑

i=1

�

yi log pi + (1− yi) log(1− pi)
�

, (7)

where yi = 0 (1) for QCD jets (top jets), pi is the classifier’s probability that event i in the
test set is a top jet, and Ttest is the size of the test set. For all classifiers except the one using
the EMD, we use Ttest = 4 × 104; due to computational limitations with the EMD, we use
Ttest = 104. We train each classifier on training sets of various size T , obtained by selecting a
random sample from the full training set of size 1.2× 106.

1. kNN EMD. Since the EMD directly measures distances between events in an IRC-safe
manner, we define a k-nearest neighbors (kNN) classifier with respect to the EMD dis-
tance matrix using the KNeighborsClassifier method in scikit-learn [30]. Be-
fore computing the EMDs, we preprocess the jets by centering them in the angular co-
ordinates such that the transverse-momentum-weighted centroid lies at the origin; this
reduces the effective dimensionality of the dataset by removing translations in angular
space, such that the dimensions which remain are those which differentiate the jets from
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one another based on the relative positions and energies of their constituents. As men-
tioned earlier, computing the EMD matrix for large T is intractable, so we only consider
T up to 3.5× 104 which can be computed within a 24-hour walltime on a cluster. We
treat the number of nearest neighbors k as a hyperparameter, which we optimize over
using a validation set of size 5000. Ref. [25] used k = 32 for fixed T , but we find that
for T > 100, the optimal value of k is O(50) (see Fig. 7 in Appendix A below). We take
R = 0.8 which is the jet radius for the jet algorithm used in the training and test sets,
and discuss the result of changing the value of R in Appendix A.

2. kNN LOT. Alternatively, we can perform kNN classification using the Euclidean metric
on RMR provided by the LOT embedding. One might expect that this classifier will per-
form similarly, if not identically, to EMD for sufficiently large MR, in the sense that if
the classifier is based purely on distances, the Euclidean distance on the tangent space
is very close to the true metric distance on the manifold so long as events are close to-
gether. Furthermore, the computational efficiency of LOT permits us to compute the LOT
distance matrix on the full training set with T = 1.2× 106. Indeed, this classifier was
compared to EMD-based classifiers in Ref. [28] for fixed T . We optimize over k using a
validation set of size 104, and find, consistent with Ref. [28], that optimal k values for
sufficiently large T are O(50). The size MR of the reference jet is also a hyperparam-
eter for this classifier, but we will not optimize over it; rather, we show in Appendix A
that different choices (taking the particles in the reference jet to be equally spaced in
rapidity-azimuth space with equal energies, as in [28]) yield identical losses.

3. kNN EFP. The LOT embedding does not necessarily preserve the IRC-safe properties of
the EMD. However, we can also treat the EFP coefficients as (an infinite set of) coor-
dinates on the jet manifold which do respect IRC safety. Choosing a finite set of EFPs
amounts to mapping the jet manifold into a finite-dimensional Euclidean space, where
we can perform kNN classification using the standard Euclidean distance matrix. The
number of EFPs is a hyperparameter for this classifier: as a starting point for our study,
we will take the first 313 nontrivial EFPs in the ordering of Ref. [24], corresponding to
angular polynomials with degree 6 or less. We optimize over k using the same validation
set as for kNN LOT.

4. Logistic regression (LR) on EFPs. Since the EFPs form a linear basis for IRC-safe observ-
ables, a linear classifier, such as logistic regression, should suffice to determine a fairly
good decision boundary. Such an LR classifier was also studied in Ref. [24], though not
as a function of dataset size. Despite the fact that the EFP basis is infinite, Ref. [24]
showed that linear classifiers based on the first 1000 EFPs achieved comparable per-
formance to jet image-based convolutional neural networks (CNNs) despite the vastly
smaller number of model parameters. We use the scikit-learn logistic regression
method with the liblinear solver on the first 313 nontrivial EFPs, but since linear
methods without regularization exhibit catastrophic overfitting for T smaller than the
number of features, we restrict to T ≥ 400. We illustrate the result of varying the number
of EFPs in the regression in Fig. 3.

5. DNN on EFPs. The EFPs span the space of functions on the IRC-safe event manifold
with metric given by the EMD, so one might expect a nonlinear combination of a finite
number of EFPs to have sufficient expressivity to define an optimal decision boundary
directly on the event manifold. To that end, we train a deep neural network (DNN)
classifier on the same 313 EFP features used in the kNN and LR classifiers described
above. We do not attempt a full hyperparameter scan, but rather choose hyperparame-
ters and architectures similar to Ref. [24] in order to make contact with previous results
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Figure 2: Comparison of classifier loss (left) and power law fits (right) for various
classifiers, assuming zero irreducible loss (C = 0). Most of the classifiers exhibit noise
and/or broken power laws with a different slope at small T , so in the left panel we
show the same data as in Fig. 1 restricted to T ≥ 500 to study the large-T behavior.
Likewise, a saturation of the loss for the DNN classifiers may begin at sufficiently
large T , so we only show the losses before the approach to the loss floor; see Fig. 5
below for the fit including the loss floor. In the right panel we show the power law
fits over the same range of T .

in the literature: 3 fully-connected hidden layers of width 128, ReLU activations with
critical weight and bias initializations [31], softmax output, Adam [32] optimizer with a
learning rate of 5× 10−4, batch sizes of 16 for T ≤ 300 and 128 for T > 300, and 200
epochs of training with early stopping on a validation set of size 104 using a patience
of 20. We verified that all networks achieved early stopping within the 200 epochs of
training. Based on the robustness of scaling laws to hyperparameter choices observed
in language models, we do not expect our results to change significantly with different
DNN hyperparameters; as a preliminary check, we verified that tripling both the width
and depth of the network does not improve the loss for the largest values of T , even
though such scaled-up models overparameterize the data.

6. DNN on LOT. Finally, we consider training a DNN on the Euclidean embedding of the
events given by LOT. This classifier does not have a particularly transparent geometric
interpretation, but intuitively, one might expect that a DNN could learn to “undo” the
linearization of the 2-Wasserstein metric and thereby improve performance compared
to the kNN LOT classifier as the size of the training set increases. We use the same
hyperparameters and architecture as for the EFP DNN.

For small T , we average the results of each classifier multiple times over different random
training sets in order to reduce noise: for logistic regression we average 10 times for T ≤ 105,
for the kNN classifiers we average 10 times for T ≤ 5000, and for the DNN classifiers we
average 5 times for T ≤ 300.

5 Results

Fig. 1 summarizes the results of the trained classifiers described in Sec. 4 above. While the
behavior of all classifiers at small T is still noisy despite averaging, clear power laws are visible
over several decades of T . We note that the rank ordering of the classifiers changes as the
training set size increases. While DNN on EFP remains the leader throughout, at T = 103,
kNN on EFPs is a close second, LR on EFPs ties DNN on LOT, and kNN using EMD is in last
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Table 1: Power-law slopes and 1σ error bars from the fits in Fig. 2.

αT Classifier
0.105± 0.003 kNN EMD
0.101± 0.004 DNN on LOT
0.078± 0.002 kNN LOT
0.063± 0.001 LR on EFP
0.064± 0.004 DNN on EFP
0.037± 0.001 kNN EFP

place. By T = 3× 104, DNN on LOT pulls into second place, kNN using EMD has beat both
kNN on LOT and LR on EFP and is on track to beat kNN on EFP, and LR on EFPs is in last place.
Depending on how one extrapolates the two DNN models (as we discuss further below), it
seems possible that at T = 107, either DNN on LOT or kNN on EMD would have the lowest
loss of all.

The performance of a classifier depends on its performance at small T , the slope of the
scaling law, and its leveling off due to the irreducible loss (if present). To study the slope in
more detail, we restrict to T ≥ 500 and perform a linear least-squares fit of the losses to the
logarithm of Eq. (1) with C = 0.4 Since the slopes of the DNN classifiers appear to soften at
large T , we also exclude T > 2× 105 from the fit for those classifiers, though we investigate
below whether this behavior may result from approaching a nonzero irreducible loss floor.

The results of the power law fits are shown in Fig. 2, with the classifiers sorted by power
law slope in Table 1, including 1σ error bars on the fit. Of course, there are other sources of
error (including the random sampling of training sets, and initialization variance in the DNNs),
so these errors are only a lower bound. Nonetheless, the range of slopes which are not within
each others’ error bars is remarkable, implying (as noted above) that the relative ordering of
the classifier losses changes multiple times as the size of the training set is scaled up. The shal-
lowest slopes are obtained by the three EFP classifiers, meaning they exhibit smaller marginal
returns to additional data in spite of starting with the lowest losses at T = 500. The slopes of
the DNN and LR EFP classifiers are equal to within error bars, though the overall loss of the
DNN is much smaller. A possible interpretation, motivated by Ref. [4], is as follows: since non-
linear combinations of EFPs can be expressed as linear combinations of EFPs of higher degree,
the DNN achieves a better loss by learning the optimal nonlinear combinations to effectively
incorporate these additional features. However, the marginal returns on data from the set of
EFPs are the same, resulting in an identical loss slope. On the other hand, the kNN EMD slope
is largest among all classifiers, and distinct from the kNN LOT slope, confirming the fact that
these two classifiers are in fact accessing different distance metrics on the space of events. The
similarity of the slopes of kNN EMD and the DNN on LOT is remarkable, though it defies a
simple geometric explanation and merits further consideration in future work. Finally, it is
worth noting that the DNN classifiers have consistently steeper slopes than the kNN classifiers
using the same inputs. This may follow from the fact that a marginal datapoint can update the
weights of a DNN in way that benefits all test datapoints (or any sharing the same “learned
features”), while in a kNN classifier, a new datapoint only benefits test datapoints in a small
neighborhood around it.

While we do not optimize over model size for all of our classifiers, in Fig. 3 we consider
the effect of varying the number of EFP features used in the logistic regression classifier. In
the left panel, we see similar broken power laws for every such choice, with similar slopes

4The broken power law in the kNN EFP classifier around T = 50 is not a result of noise; similar broken power
laws can be seen in the LR classifier using various numbers of EFP features in Fig. 3. We do not have a convincing
explanation for this behavior and intend to return to it in future work.
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Figure 3: Effect of varying the number of EFP features. As a function of dataset size
T (left), different number of EFPs exhibit broken power laws of different slopes. For
fixed dataset size (right), breaks in the power law roughly correspond to the inclusion
of EFPs of higher degree, which probe smaller angular scales.

before the break but with smaller numbers of features exhibiting shallower power laws after
the break. In the right panel, we fix T by using the full training set of 1.2× 106 events, and
plot the test loss as a function of the number of EFPs. We again see broken power laws, with
breaks roughly corresponding to adding EFPs of higher degree. This behavior is reminiscent of
the data-feature duality noted in Ref. [4]. Because EFPs of different degrees measure structure
in the jet at different physical scales, EFPs are interchangeable only within degree; thus while
standard scaling laws predict a single power law as model size or feature number is increased,
here power laws only seem to hold within each degree.

However, other aspects of our analysis seem to confound simple interpretations of the
scaling laws we observe. Ref. [4] proposed that the scaling exponent of the loss observed
in natural data such as large language models or image classification is directly related to a
power-law scaling of the empirical data-data covariance matrix,

σI J ≡
1
T

T
∑

A=1

x I ,AxJ ,A , (8)

where A indexes the training set and I , J index the features. Since random Gaussian data has
a covariance matrix described by the Marchenko-Pastur distribution, which does not have a
power-law spectrum, the authors of Ref. [4] hypothesize that neural networks are optimal for
processing the power laws of “structured” data (which reflect the correlations among input
data at all resolution scales) into power laws in the loss. In particular, they predict that for
eigenvalues of σI J distributed as λk ∼ λ0k−(1+α), the power-law index for the loss should be
L(T )∝ T−α.

To test this hypothesis in the context of physics data, Fig. 4 (left) shows the spectrum
of the data-data covariance matrix, namely the eigenvalues of σI J in Eq. (8), for T = 100.
As anticipated in Ref. [4], the eigenvalues λi follow a power law spectrum until the small-
λ tail. However, it is notable that the EFP eigenvalue spectrum for both classes is essentially
identical, while the LOT spectrum has the same slope for both classes but differs by a constant.
This suggests that power laws in the classifier loss cannot be directly related to power laws in
the data spectrum, at least for EFPs. Furthermore, the model of Ref. [4] predicts that steeper
slopes for the eigenvalue spectrum correspond to steeper slopes for the loss, while we observe
the opposite behavior: LOT has a much shallower eigenvalue spectrum but a steeper classifier
slope than all EFP classifiers.
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Figure 4: (Left) Spectrum of the data-data covariance matrix for the Euclidean em-
beddings given by LOT and EFPs, for T = 100, where the label i on the x-axis in-
dexes the T numerically-ordered eigenvalues from largest to smallest. Power laws
are evident in both cases, but the two classes only differ in the tails of the very small
eigenvalues for the EFPs, while the power law slopes for LOT are similar but the
overall magnitude differs consistently across classes. (Right) correlation dimension
as measured by the EMD. Of particular note is the non-monotonic behavior of the
cross-class correlation dimension.

Ref. [2] postulates a relation between the loss scaling law and the dimension of the data
manifold. However, in our classification problem, the two classes have different intrinsic di-
mension, which can be traced back the fact that top jets have at least three subjets while QCD
jets typically have none. Since the manifold of Lorentz-invariant phase space on which rela-
tivistic particles live depends on the number of particles, and the number of observed particles
depends in part on the angular resolution scale, the dimension of a jet is not constant but
in fact depends on scale. A useful way to measure this is by using the EMD to construct a
correlation dimension [25],

dim(Q) =Q
∂

∂Q
ln





∑

i< j

Θ(Q− EMD(Ei ,E j))



 , (9)

where Ei and E j are jets. This definition computes the logarithmic derivative of the number of
events which are within an EMD of Q from each other, and is motivated by the fact that the
number of points in a uniformly-sampled ball of radius Q in Rd grows as Qd . Fig. 4 (right)
shows the correlation dimension for QCD jets and top jets from a sample of 2000 events of
each class from the test set. The x-axis is normalized to the transverse momentum pT of the
jet such that the no events are more than a distance Q = pT/2 away as measured by EMD,
so the correlation dimension vanishes at Q/pT = 0.5. As expected, the QCD jet has strictly
lower dimension than the top jet, and the dimensions of both classes increase at smaller EMD
(corresponding to smaller energy and angular scales, where more jet constituents may be
resolved). However, Eq. (9) also permits us to compute a cross-class correlation dimension (as
was suggested in Ref. [33] for quark-gluon classification), where we take Ei from the sample of
QCD jets and E j from the sample of top jets. As shown in Fig. 4 (right), this dimension is non-
monotonic, tracking the top jet dimension at large Q but achieving a local minimum at smaller
Q before diverging. It is tempting to interpret this behavior as giving rise to some of the broken
power laws we observe, but there appears to be no such break in the kNN EMD classifier,
which is the only one that directly uses the EMD. We note that the cross-class correlation
dimension measures the extrinsic geometry which is essential for classification problems; the
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Figure 5: Fitting the DNN classifiers to a power law with floor (C ̸= 0) yields different
values of the irreducible loss C . Extrapolating out to T = 108, this suggests that the
LOT classifier may outperform the EFP classifier for sufficiently large T , as it has a
lower loss floor.

way that the manifolds corresponding to each class are linked or twisted around each other in
the embedding space is more important than the dimension of each separately.

Finally, motivated by the softening of the power law slope in the DNN classifiers, we con-
sider a power-law fit which includes a nonzero irreducible loss C , using a nonlinear least-
squares fit from optimize.curve_fit in the scipy package. The results of the fit (including
the full range of T , down to T = 20) are shown in Fig. 5, with the fitting functions extrap-
olated out to T = 108. Both classifiers appear to be well-fit by such a function, though with
much larger slopes αT . Curiously, the ordering of the power law slopes is inverted, with the
EFP classifier having a steeper slope, which is obscured somewhat by the EFP classifier’s larger
irreducible loss. We note that including an irreducible loss C ̸= 0 for the other four classifiers
results in a much poorer fit compared to the case with C = 0, with order-1 errors on C for all
cases except kNN LOT. We speculate that the poorer fit may be due to the larger overall loss
for the non-DNN classifiers, which makes it difficult to identify the approach to the loss floor
without a much larger training set to see the continuation of the power law. For the kNN LOT
classifier with T ≥ 500, we obtain αT = 0.133± 0.007 and C = 0.12± 0.01. The fact that the
irreducible loss is the same to within errors as the DNN classifier trained on LOT suggests that
C may be an intrinsic property of the LOT embedding, independent of the classifier.

Taking the scaling laws at face value (both with and without the irreducible loss floor), our
results suggest that the DNN LOT classifier may outperform the DNN EFP classifier for datasets
larger than the one available from Ref. [11]. In practice, due to the additional uncertainty in
these fits, if one wanted to select a classifier for use in online jet tagging, it would certainly be
worth extending the training set size an additional decade or more for the two DNN models.
In spite of having worse loss at all T measured, the LOT DNN classifier might pull ahead as
extrapolated, and it would be interesting and worthwhile to check this prediction on larger
datasets.
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6 Discussion and outlook

In this paper, we have demonstrated the appearance of scaling laws in simulated collider
physics data. Across several physically-motivated classifiers, the loss decays as a power law
over 3–4 decades of training set size. This behavior is qualitatively similar to scaling laws
observed in natural language and image data, but physics data has the advantage of being
generated from distributions which are in principle calculable using QFT, and thus one might
hope to be able to predict the power law slopes, or at least relationships among them. In this
sense, physics could provide a “natural” dataset which could serve as a testbed for theories of
manifold learning. The framework of Refs. [20,34–36] for determining a theoretically-optimal
classifier in terms of ratios of QFT matrix elements seems suitable for this task, though the chal-
lenge will be relating training set size (which is not an observable in QFT) to density of events
on the data manifold. Furthermore, such a framework could provide a theoretical prediction
for the irreducible loss (see also Ref. [37]), which can be compared with the power law fits
including the loss floor. We leave these very interesting aspects of the problem to future work.

For models trained on natural data, neural scaling laws are also observed as a function of
compute, which depends both on training data size and model size. The situation we consider
here is slightly different, because the compute costs of all of our classifiers (even the neural
networks) are dominated by the costs for the EFP, LOT, and EMD preprocessing, which are
O(T ), O(T ), and O(T2), respectively. We did find that our DNN classifiers were in the data-
limited, not parameter-limited, regime, as tripling the model width and depth did not yield any
performance gains. Given that collider experiments are effectively in the infinite-data limit,
the decision of which classifier to use will be determined in part by compute budget, which
suggests a diminishing benefit for using the EMD classifier despite the steeper loss slope. It is
important to point out that the inference speed of the classifier is actually the limiting factor
for online event selection (see e.g. [38]), in which case DNN classifiers (once trained) have
an obvious advantage over kNN classifiers since they require only a single forward pass rather
than the computation of a T × Ttest distance matrix. From that perspective, even though the
kNN classifiers are more directly related to the data geometry, a further systematic analysis of
the relationship between model size, training set size, and loss in the DNNs may yield steeper
slopes and improved classifier behavior. We leave such a study to future work as well.

Finally, we emphasize that in light of the ubiquity of scaling laws, we would also expect
to see them emerge in other jet classification problems such as quark-gluon discrimination, as
well as with other classifier architectures. In particular, it would be extremely interesting to see
Lorentz-equivariant DNN jet classifier performance, as in Ref. [39], presented as a log-log plot
as a function of training set size.5 While the receiver operating characteristic (ROC) curve is a
traditional way of comparing classifier performance, restricting to fixed T does not accurately
reflect the abundance of high-energy physics data, and we hope that our work motivates the
continued inclusion of scaling law plots in ML applications for physics analyses. Given that
collider physics is a quintessential “big data” problem, scaling laws provide an organizing
principle to structure investigations into model performance and guide investments in the
models which are deployed on real experimental data.
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A Hyperparameter checks

Here we very briefly illustrate the robustness of our scaling law results to changes in hyperpa-
rameters. Fig. 6 (left) shows the result of varying the angular hyperparameter R of the EMD.
While R = 0.8 matches the optimal transport problem to the jet clustering algorithm, this
choice has a larger loss coefficient A than a smaller value of R= 0.4, which emphasizes subjet
structure more useful for the classification problem at hand. Reducing R too much past this
value results in a mismatched angular scale and increases A again.6 Regardless, the scaling
law is identical in all cases, with power law slopes equal to within error bars. Fig. 6 (right)
shows the result of changing the size MR of the reference jet on the kNN LOT classifier. The
two loss curves are effectively identical over the entire range of T , strongly suggesting that the
distinct slope compared to EMD is not an artifact of discretization, but an intrinsic property of
the classifier and its distance metric in the continuum limit. Fig. 7 shows the results of cross-
validation for selecting the best number of nearest neighbors for the three kNN classifiers, for
two different values of T . Both EMD and LOT prefer similar numbers of nearest neighbors, as
expected from their similar distance metrics, while EFP prefers a larger value.
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Figure 6: (Left) Varying the angular parameter in the EMD only affects the loss co-
efficient A but has no effect on the power law slope αT . (Right) Varying the number
of particles in the LOT reference jet has no effect on either A or αT .

6We thank Jesse Thaler for suggesting this interpretation to us.
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kNN classifiers we consider, for T = 5000 (left) and T = 30000 (right).

References

[1] J. Kaplan et al., Scaling laws for neural language models, (arXiv preprint)
doi:10.48550/arXiv.2001.08361.

[2] U. Sharma and J. Kaplan, A neural scaling law from the dimension of the data manifold,
(arXiv preprint) doi:10.48550/arXiv.2004.10802.

[3] Y. Bahri, E. Dyer, J. Kaplan, J. Lee and U. Sharma, Explaining neural scaling laws, Proc.
Natl. Acad. Sci. 121, e2311878121 (2024), doi:10.1073/pnas.2311878121.

[4] A. Maloney, D. A. Roberts and J. Sully, A solvable model of neural scaling laws, (arXiv
preprint) doi:10.48550/arXiv.2210.16859.

[5] J. Hoffmann et al., Training compute-optimal large language models, in The thirty-sixth
annual conference on neural information processing systems, Curran Associates, Red Hook,
USA, ISBN 9781713871088 (2023).

[6] G. Yang et al., Tensor programs V: Tuning large neural networks via zero-shot hyperparam-
eter transfer, in Advances in neural information processing systems 34, Curran Associates,
Red Hook, USA, ISBN 9781713845393 (2022).

[7] M. Feickert and B. Nachman, A living review of machine learning for particle physics
(2021), https://github.com/iml-wg/HEPML-LivingReview.

[8] L. Clissa, M. Lassnig and L. Rinaldi, How big is big data? A comprehensive survey of data
production, storage, and streaming in science and industry, Front. Big Data 6, 1271639
(2023), doi:10.3389/fdata.2023.1271639.

[9] M. Valente, The ATLAS trigger and data acquisition upgrades for the high-luminosity LHC
(HL-LHC), Proc. Sci. 364, 184 (2020), doi:10.22323/1.364.0184.

[10] T. R. F. P. Tomei, The CMS trigger upgrade for the HL-LHC, Europhys. J. Web Conf. 245,
01031 (2020), doi:10.1051/epjconf/202024501031.

[11] G. Kasieczka et al., The machine learning landscape of top taggers, SciPost Phys. 7, 014
(2019), doi:10.21468/SciPostPhys.7.1.014.

15

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.034
https://doi.org/10.48550/arXiv.2001.08361
https://doi.org/10.48550/arXiv.2004.10802
https://doi.org/10.1073/pnas.2311878121
https://doi.org/10.48550/arXiv.2210.16859
https://github.com/iml-wg/HEPML-LivingReview
https://doi.org/10.3389/fdata.2023.1271639
https://doi.org/10.22323/1.364.0184
https://doi.org/10.1051/epjconf/202024501031
https://doi.org/10.21468/SciPostPhys.7.1.014


SciPost Phys. Core 8, 034 (2025)

[12] J. Spinner, V. Bresó, P. de Haan, T. Plehn, J. Thaler and J. Brehmer, Lorentz-equivariant
geometric algebra transformers for high-energy physics, in Advances in neural information
processing systems 37, Curran Associates, Red Hook, USA, ISBN 9798331314385 (2025).

[13] J. Brehmer, V. Bresó, P. de Haan, T. Plehn, H. Qu, J. Spinner and J.
Thaler, A Lorentz-equivariant transformer for all of the LHC, (arXiv preprint)
doi:10.48550/arXiv.2411.00446.

[14] J. Shelton, Jet substructure, in Searching for new physics at small and
large scales, World Scientific, Singapore, ISBN 9789814525213 (2013),
doi:10.1142/9789814525220_0007.

[15] J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-images: Computer vi-
sion inspired techniques for jet tagging, J. High Energy Phys. 02, 118 (2015),
doi:10.1007/JHEP02(2015)118.
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