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Abstract

Simulating long-range interacting systems is a challenging task due to its computational
complexity that the computational effort for each local update is of order O(N), where
N is the size of the system. In this work, we introduce the clock factorized quantum
Monte Carlo method, an efficient technique for simulating long-range interacting quan-
tum systems. The method is developed by generalizing the clock Monte Carlo method
for classical systems [Phys. Rev. E 99 010105 (2019)] to the path-integral representation
of long-range interacting quantum systems, with some specific treatments for quantum
cases and a few significant technical improvements in general. We first explain how
the clock factorized quantum Monte Carlo method is implemented to reduce the com-
putational overhead from O(N) to O(1). In particular, the core ingredients, including
the concepts of bound probabilities and bound rejection events, the recursive sampling
procedure, and the fast algorithms for sampling an extensive set of discrete and small
probabilities, are elaborated. Next, we show how the clock factorized quantum Monte
Carlo method can be flexibly implemented in various update strategies, like the Metropo-
lis and worm-type algorithms. Finally, we demonstrate the high efficiency of the clock
factorized quantum Monte Carlo algorithms using examples of three typical long-range
interacting quantum systems, including the transverse field Ising model with long-range
z-z interaction, the extended Bose-Hubbard model with long-range density-density in-
teractions, and the XXZ Heisenberg model with long-range spin interactions. We expect
that the clock factorized quantum Monte Carlo method would find broad applications in
statistical and condensed-matter physics.
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1 Introduction

Markov-chain Monte Carlo methods (MCMC) are highly valuable tools across numerous fields
of science and engineering [1–8], particularly for estimating high-dimensional integrals. These
methods rely on statistical sampling approaches that generate a large number of random con-
figurations of the system being studied. Each configuration has a stationary distribution or
weight, which is usually a Boltzmann distribution. The generation of subsequent configu-
rations depends on the resulting changes in energy. These configurations are then used to
estimate the properties of the system, such as its energy and other observables.

Despite a long history, the founding Metropolis algorithm remains the most successful and
influential MCMC method due to its generality and ease of use. It is a family of MCMC meth-
ods that adopt local update strategies and the so-called Metropolis acceptance filter. Quantum
Monte Carlo (QMC) methods using local updating schemes are a powerful tool for studying
quantum systems and have continued to evolve with the development of numerous algorithms,
such as path-integral Monte Carlo (PIMC) [9,10], stochastic series expansion (SSE) [11], vari-
ational Monte Carlo (VMC) [12–14], diffusion Monte Carlo (Diffusion MC) [15], determinant
Monte Carlo (detMC) [16,17], Diagrammatic Monte Carlo (DiagMC) [18–20] and so on. QMC
has been successfully applied to various systems, including the Hubbard model [21, 22], the
t − J model [14], the polaron model [19], Ising, X Y , and the Heisenberg model [23,24].

Despite the significant advancements made, there remain several challenges that are yet
to be overcome in computational simulations. The core challenging problem in computational
simulations is so-called the exponential wall. One example of this problem in classical systems
is to simulate spin-glass systems, where the free energy landscape of the systems is character-
ized by a large number of local minima, or energy valleys, separated by high energy barriers,
leading to exponentially increasing computational cost as the system size increases. As the
system is cooled to lower temperatures, it becomes increasingly difficult to escape from these
local minima and find the true ground state. In the quantum case, a similar problem is the
sign problem, which arises when QMC algorithms have to generate negative weights for certain
configurations, leading to inaccurate estimates of the expectation value of observables.
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The second challenge lies in simulations experiencing critical slowing-down as they ap-
proach phase transitions, where nearby samples can be highly correlated, and simulation ef-
ficiency decreases rapidly as the system size increases. Enormous effort has been devoted to
circumventing this limitation. Various efficient update strategies have been designed, includ-
ing the cluster [25,26], direct-loop [27], event-chain [28], and worm algorithms [29].

Another challenge is the computational complexity associated with simulating systems
with long-range interactions, which can require calculating the induced total energy change
for each attempted move and lead to expensive computational costs of up to O(N) per lo-
cal attempt, where N is the system size. Several techniques are also available to reduce the
computational complexity of specific algorithms and systems. In the worm algorithm with Di-
agMC [9], the attractive part of the pairwise potential energy is expanded into diagrammatic
contributions, which affords a complete microscopic account of the long-range part of the po-
tential energy while keeping the computational complexity of all updates independent of the
size of the simulated system. In the cluster-updates scheme [30], an efficient sampling pro-
cedure is to place occupied bonds rather than visiting each bond sequentially and throwing
a random number to decide its status. The event-chain Monte Carlo method combines the
factorized Metropolis filter and Walker’s alias and has primarily been successfully utilized in
the fields of physics and chemistry [28,31–33].

Recently, Ref [34] proposed a generic clock Monte Carlo method for classical systems, us-
ing the factorized Metropolis filter to reduce the computational complexity to O(1) and offers
significant benefits in terms of simulation efficiency. The basis of the clock Monte Carlo method
is the so-called factorized Metropolis filter proposed in Ref [35]. Unlike the Metropolis filter
where the acceptance probability PMet is determined by the total induced energy change, the
factorized Metropolis filter factorizes the acceptance probability as Pfac =

∏

Pj , where factor
Pj is given by the induced energy change for the associated interaction term j. Namely, all
interaction terms are treated independently, and each of them contributes a factor to the over-
all acceptance probability Pfac. As a consequence, in the stochastic determination of the fate
(acceptance or rejection) of the attempted move, any single rejection from one of the factors,
Pj , would be sufficient to reject the attempted move. Making use of the independence of these
factors, one can define a set of first-rejection events and design a random process for sampling
these first-rejection events. However, direct sampling of these events is computationally ex-
pensive because Pj depends on the local configuration associated with the interaction term j.
This obstacle is addressed by the clock technique which samples a set of bound first-rejection
events independent of configurations and utilizes a resampling procedure to recover the orig-
inal probability distribution for first-rejection events [34]. Note that there exist efficient algo-
rithms for sampling configuration-independent discrete probability distributions with O(1) or
O(log N) computational efficiency, e.g., Walker’s alias method or the thinning method. Thus,
unlike the standard Metropolis filter of O(N) computational complexity, the factorized filter
combined with the clock technique may lead to a sampling process of dramatically reduced
effort. In short, thanks to the factorized Metropolis filter, the fate of an attempted move can be
efficiently determined by a sampling process of first-rejection events, leading to a significant
increase in simulation efficiency. The clock Monte Carlo method demonstrates O(1) compu-
tational complexity on several classical long-range interacting systems [34].

In this work, inspired by the clock Monte Carlo method for classical systems, we adopt the
factorized Metropolis filter to the PIMC method and propose a generic Monte Carlo scheme
for simulating long-range interacting quantum systems, which we call the clock factorized
quantum Monte Carlo method.

First, we introduce the concept of the recursive clock sampling scheme, which can be con-
sidered as a generalization of the aforementioned clock technique. It can be interpreted as a
recursive sampling process on a tree structure. We further show that the factorized Metropolis
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filter and the recursive clock sampling technique can be properly applied to generic configura-
tion weights and non-symmetric proposal probability. Moreover, implementing the recursive
clock sampling scheme using the dynamic thinning method [36] is discussed in detail. We also
note that, with the dynamic thinning method, the Luijten-Blöte cluster method can be signifi-
cantly improved [37], of which the formulation becomes very simple and generic. In addition,
there is no need to build a lookup table or use discrete cumulative probability integration
approximations to sample bond generation events.

Second, we apply the recursive clock sampling method to the path-integral representa-
tion of quantum systems. Note that our method allows for the factorization of the non-
diagonal term and the proposal probability associated with the update. Hence, the recursive
clock sampling process can be integrated with various update strategies, including conven-
tional Metropolis-type local updates, cluster updates, worm-type updates, etc, and it can deal
with long-range interactions (diagonal terms) as well as long-range hopping amplitudes (non-
diagonal terms). For the diagonal term, the dynamic thinning method can be applied when
utilizing recursive clock sampling for the long-range interaction terms. For the non-diagonal
term, when the dynamic thinning method is not directly applicable, we can combine Walker’s
alias method to increase the overall acceptance rate. Particularly, we consider three typical
systems and apply the recursive clock sampling process in various update schemes: (i) the
transverse field Ising model with long-range z-z interactions using local Metropolis-type up-
date, (ii) the extended Bose-Hubbard model with long-range density-density interaction using
worm update, and (iii) the long-range XXZ Heisenberg model using worm update with long-
range hopping. We perform extensive benchmark simulations on systems of various sizes L in
both two dimensions (2D) and three dimensions (3D) and achieve the expected O(1) com-
putational efficiency. In particular, we demonstrate the overall efficiency improvement from
O(N) to O(1), which takes into account the enhancement of computational complexity and
the decrease of acceptance probability.

Finally, we mention that, in comparison with the standard Metropolis filter, the factorized
Metropolis filter has a smaller acceptance probability since the energy compensation between
different interaction terms is absent in the latter. This price is probably why the latter was
proposed about 60 years later than the former. For a system that satisfies the absolute en-
ergy extensively, both the acceptance probabilities, PMet and Pfac, are of O(1), thus the price
is minor [34]. However, for some frustrated systems with slowly-decaying interactions, the
factorized probability Pfac may decrease as system size increases. To (partially) overcome this
problem, one can group several interactions that are likely to have energy compensation into
a single factor such that their total induced energy change would benefit from energy compen-
sation and lead to a higher acceptance probability. This trick is called the box technique [34].
The standard Metropolis filter is recovered in the limiting case that all the interaction terms
are in a single box.

The clock factorized QMC method is expected to have wide-ranging applications in the
field of physics with long-range interactions. For example, the Coulomb interaction between
charged particles is a long-range interaction that plays a fundamental role in electrostatics.
This interaction is responsible for many phenomena in physics, including the behavior of
plasma and the formation of crystals [38,39]. Another essential interaction is the magnetic or
electronic dipolar interaction, which plays an important role in the behavior of ferromagnetic
materials [40–42]. In addition to these examples, long-range interactions can also have im-
portant effects on fluid dynamics. For instance, the van der Waals force between molecules is a
long-range interaction that can cause fluids to condense into a liquid or solid phase [43]. The
long-range Ising model with trapped-ion quantum simulators is another type of long-range in-
teraction, which has the potential to advance our understanding of fundamental physics and to
pave the way for new technologies such as quantum computing [44,45]. Understanding these
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interactions is essential for comprehending many physical phenomena and developing new
technologies. Our algorithm can be applied to various physical systems that involve long-range
interactions, enabling researchers to obtain accurate and reliable results within a reasonable
computational time in their simulations.

The rest of this paper is organized as follows. In Section 2, we introduce the basic idea
of the recursive clock sampling technique, a generalized version of clock Monte Carlo tech-
nique [34]. In Section 3, we present the implementation of a recursive clock sampling scheme.
Section 4 contains the clock factorized quantum Monte Carlo (clock factorized QMC) al-
gorithms. Section 5 discusses more possible implementations of the clock factorized QMC
method and concludes the paper.

2 Clock sampling for proposed updates

In this section, we first elaborate on the basic ingredients of the Clock Monte Carlo method [34]
using a general configuration weight and introduce the recursive clock sampling framework.
A key advancement is our integration of the factorized Metropolis filter into the Metropolis-
Hastings criterion, which enables updates with asymmetric a priori probabilities and finite
local fields. These improvements are crucial for incorporating off-diagonal terms and local
diagonal terms in PIMC and thereby extend the method’s applicability to a broader range of
quantum systems.

2.1 Metropolis filter and computational complexity

Markov Chain Monte Carlo (MCMC) methods are powerful computational tools for simulating
complex systems in diverse scientific fields [1–8]. They can efficiently sample complex, high-
dimensional probability distributions that are difficult to generate directly. In physical simula-
tions, MCMC generates a chain of configurations whose equilibrium distribution approximates
the thermodynamic ensemble of the physical model. New configurations are generated via a
Markov process in which the transition probability of the next configuration depends only on
the preceding one. In order for MCMC to reach equilibrium, two conditions must be met:
ergodicity and the global balance condition. Ergodicity demands that MCMC can eventually
explore all possible configurations of the system, while the global balance condition requires
the total flow into a configuration to equal the total flow out of it,

∑

S ′
π (S)P

�

S → S ′
�

=
∑

S ′
π
�

S ′
�

P
�

S ′→ S
�

, (1)

where π (S) (π
�

S ′
�

) is the probability weight of configuration S (S ′), and P
�

S → S ′
�

repre-
sents the transition probability from configuration S to S ′. In practice, instead of Eq. (1), the
detailed balance condition is much more often imposed, which requires the flows between any
two configurations to be equal,

π (S)P
�

S → S ′
�

= π
�

S ′
�

P
�

S ′→ S
�

. (2)

It is stronger than the global balance condition since it guarantees that the transitions between
states are reversible, ensuring proper convergence to the target distribution.

The Metropolis algorithm. Among various MCMC methods, the Metropolis algorithm is
probably the most successful and influential one. First introduced by Metropolis et al. in
1953 [46], this algorithm has significantly impacted numerous fields, including physics [1],
computational chemistry [47], and Bayesian inference [48]. In the Metropolis algorithm, each
elemental Markov step is executed in two sub-steps: proposal of a local update and stochastic
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determination of the fate (acceptance or rejection) of the proposed update. In a transition from
configuration S, the algorithm proposes a new state S ′ and then decides whether to accept or
reject the update based on an acceptance probability. The proposal sub-step exhibits both lo-
cality and symmetry. The locality implies that the new configuration S′ is selected from a finite
range of configurations in the proximity of the initial configuration S. Meanwhile, symmetry
means that the likelihood of choosing S ′ from S is identical to that of S from S ′. Consider a
physical system whose configurations obey Boltzmann distribution π (S) = exp (−βE), where
β denotes the inverse temperature and E is the total energy of the configuration. The accep-
tance probability for an update from S to S ′ is

PMet =min
�

1,
π(S ′)
π(S )

�

= exp
�

−β [∆Etot]
+� , (3)

with [x]+ ≡ max (0, x) and ∆E = E
�

S ′
�

− E (S) being the total energy difference between
the two configurations. This expression, known as the Metropolis filter, satisfies the detailed
balance condition in Eq. (2). In practice, the proposed update is accepted if a uniform random
number ran ∈ [0,1) satisfies ran< PMet. Otherwise, it is rejected.

The Metropolis-Hastings algorithm is a generalized Metropolis algorithm by introduc-
ing an a priori proposal distribution A(S → S ′) [49]. The new configuration S ′
is proposed from S according to A(S → S ′) and the transition probability becomes
P(S → S ′) =A(S → S ′)× P

�

S → S ′
�

. The acceptance probability is given by,

PM-H =min
�

1,
A(S ′→ S)
A(S → S ′)

π(S ′)
π(S )

�

. (4)

This algorithm allows more flexibility in proposal distribution, making it more efficient when
sampling complex systems. In some cases, minor modifications in the algorithm, arising from
a proper choice of A, may lead to O(1) but significant improvement of efficiency.

Computational complexity. Despite its success in various domains, the Metropolis algorithm
encounters a significant computational bottleneck when dealing with long-range interactions.
Consider a long-range interacting classical system with N sites, where each site interacts with
the remaining N − 1 sites, resulting in a total of N(N − 1)/2 interacting pairs. At each step
of the Metropolis algorithm, one randomly selects a site i and updates its state. The induced
total energy change is the sum of energy difference due to N−1 involved pairwise interactions
between site i and j, ∆Etot ≡

∑

j∆E j . The acceptance probability for the local update is,

PMet = exp



−β





∑

j

∆E j





+

 . (5)

Despite the simple form of Eq. (5), implementing the Metropolis filter requires calculating the
total energy change for N −1 interaction pairs, resulting in an expensive O(N) computational
overhead. Consequently, long-range interactions can lead to significant performance issues,
rendering the algorithm impractical for large-scale simulations.

This issue is even worse in the path-integral Monte Carlo (PIMC) methods when simulat-
ing long-range interacting quantum systems. PIMC methods involve mapping a d-dimensional
quantum model onto a (d + 1)-dimensional classical system upon a specific expansion basis.
The additional dimension is the imaginary-time (τ) direction, where continuous worldlines
represent the state of each lattice site. In the path-integral formulation, the partition func-
tion of the quantum model can be seen as the weighted sum over all possible configurations
in (d + 1)-dimensional space-time. By sampling these configurations, the PIMC method can
accurately determine the thermodynamic properties of the quantum model.
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Given an expansion basis, the Hamiltonian of a quantum model can be divided into a di-
agonal term and a non-diagonal term, H = K̂+ Û . Consider a long-range interacting quantum
model with N site and pairwise long-range interactions in the diagonal term, H = K̂+

∑

i, j Ûi j .
The probability weight of a configuration S can be expressed as:

W (S) = K (S)exp [−U (S)] . (6)

Here, K (S) is the weight factor due to off-diagonal terms, and U (S) is the total potential
energy of long-range diagonal interactions,

U (S) =
∑

i, j

∫ β

0

Ui j(τ)dτ . (7)

Ui j(τ) is interaction energy between site i and j at imaginary-time τ.
The Metropolis algorithm can be used in PIMC. Consider a local update S → S ′ that only

changes the potential energy of the configuration. The state on the i-th site within a certain
imaginary-time interval [τ1,τ2] is modified. The Metropolis filter of this update is,

PMet = exp



−





∑

j

∆U j





+

 , (8)

where ∆U j =
∫ τ2

τ1

�

Unew
i j (τ)− Uold

i j (τ)
�

dτ, is the energy change induced by the interaction
between worldline i and j within the time interval [τ1,τ2]. As in the classical case, imple-
menting Eq. (8) requires evaluating the total energy difference, which has a computational
complexity of O(N). One must search for the states between τ1 and τ2 on worldlines that
interact with the i-th site and perform N−1 integrations. However, the need for state searches
and integrations makes this process more computationally demanding than the classical case.
This computational complexity underscores the need for more efficient approaches to handling
long-range systems in PIMC simulations to advance further our understanding of the behavior
of many-body quantum systems.

2.2 Factorized Metropolis filter

Although using the Metropolis filter in various MCMC simulations has long been a conven-
tional practice, physicists developed acceptance probability of other forms, such as the heat-
bath algorithm [50]. A recent work by M. Manon et al. [51] introduces a new type of accep-
tance probability, named the factorized Metropolis filter, by factoring the Metropolis filter. It is
the foundation of the event-chain Monte Carlo (ECMC) method [51–53], an irreversible and
rejection-free MCMC algorithm. Instead of the detailed balance, the maximal global balance
is fulfilled in this algorithm, where the probability flow between two configurations is unidi-
rectional, and the flow back to the same configuration is forbidden. The factorized Metropolis
filter offers a more flexible interpretation of the sampling process and opens up new possibili-
ties for designing efficient MCMC algorithms.

In a long-range interacting classical system with N sites, a local update on the i-th site is
subject to the Metropolis filter described in Eq. (5). By factoring out the summation of pairwise
energy changes, one obtains the factorized Metropolis filter for this update,

Pfac =
∏

j

exp
�

−β
�

∆E j

�+�≡
∏

j

Pj . (9)

This acceptance probability, which is the product of independent factors Pj≡exp
�

−β
�

∆E j

�+�
,

also fulfills the detailed balance condition.
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To determine the fate of a proposed update using the factorized Metropolis filter, one can
straightforwardly compute the value of Pfac and decide whether to accept the update based on
it; however, this method requires exactly N−1 energy evaluations, which offers no advantages
over the original Metropolis filter. Furthermore, it might result in a lower overall acceptance
rate due to the lack of compensation between different ∆E j terms.

Instead of considering Eq. (9) as a single trial with only acceptance or rejection, one can
view the factorized filter as a series of N−1 independent trials with probability Pj . Factor Pj is
the probability of accepting the update by the energy change∆E j resulting from the interaction
between site i and j. A slightly cleverer method, as shown in algorithm 1, takes advantage of
the independence of factors: for a proposed update, one performs sequential tests on all Pj
and rejects the update if any of the tests fail. The proposed update is accepted if and only if all
the factors give permission, known as the consensus rule. This method requires more random
numbers but allows for on-the-fly energy calculation of ∆E j . Since the first rejected factor
will reject the entire update, the number of ∆E j evaluated for rejection is less than or equal
to N − 1. Nevertheless, one must still compute all ∆E j to accept an update, and the average
complexity of this implementation remains O(N).

Although the factorized Metropolis filter does not immediately solve the computational
complexity overhead, it provides a more flexible interpretation of the sampling process of
an update’s fate, which enables us to develop an efficient sampling scheme for long-range
interacting systems.

2.3 Recursive clock sampling

In this subsection, we extend the clock sampling [34] to long-range interacting quantum mod-
els. The term recursive clock sampling is adopted to better elaborate the sampling process.
This process is used to determine the fate of the attempted update, which substantially re-
duces the computational overhead arising from long-range interactions. Rather than employ-
ing the Metropolis filter with only binary outcomes (acceptance or rejection), the clock sam-
pling scheme determines an update’s fate using the factorized Metropolis filter by sampling
from a probability distribution of clocks. These clocks describe the possible outcomes of the
factorized Metropolis filter. They are efficiently sampled by formulating them into a tree-like
structure, enabling the sampling process to be largely configuration-independent and circum-
venting costly energy evaluations.

In the remainder of this section, we elucidate the recursive clock sampling scheme for pro-
posed updates within the PIMC framework. To simplify the explanation, let us consider a local
update on the i-th worldline in a long-range interacting quantum system that only changes
the configuration’s diagonal potential energy. The acceptance probability of the update is gov-
erned by the factorized Metropolis filter,

Pfac =
∏

j

exp
�

−
�

∆U j

�+�≡
∏

j

Pj , (10)

Algorithm 1: Factorized Metropolis filter

for j = 1 to N − 1 do
Evaluate Pj;
if ran> Pj then

return False; // Rejection
end

end
return True; // Acceptance
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(b)
𝐶0 1

𝐶0 2

𝐶0 𝑋1

𝐶0 𝑁 − 1

1 − 𝑝𝑋1,𝑟𝑒𝑙

𝑝𝑋1,𝑟𝑒𝑙

1 − 𝑝𝑛 ,𝑟𝑒𝑙

𝑝𝑛 ,𝑟𝑒𝑙
Recursive 

Clock
Sampling

Accept Reject

Not checked

(a)

Figure 1: (a) In the clock sampling process, one determines the fate of a proposed
update by sampling clocks from the probability distribution C(X ), X ∈ [0, N]. Each
clock represents a possible outcome of the factorized Metropolis filter. The first N−1
clocks are the first rejection events, and the clock hand points to the first rejecting fac-
tor. The last clock is the acceptance events, where all factors permit the update. (b)
Schematic illustration of the recursive sampling process of the first-bound-rejection
events on a tree structure.

where Pj ≡ exp
�

−
�

∆U j

�+�
is the j-th factor defined as the probability of the update being

accepted by the j-th energy difference ∆U j . Here, j = 1,2, . . . , N −1 represents the indices of
the neighboring worldlines that interact with the i-th worldline, and ∆U j denotes the corre-
sponding energy changes induced by the update.

The clock sampling scheme comprises two major components: firstly, the acceptance-
rejection of an update is identified as a set of first-rejection events, and then a recursive
sampling scheme is formulated to sample the probability distribution formed by these events
efficiently.

First-rejection events. In order to map the acceptance-rejection of a proposed update to a set
of events, we observe that Eq. (10) has a product form. Thus, Pj can be seen as the probability
of the successful outcome of an independent Bernoulli trial associated with the interaction
between i and j. In this context, a Bernoulli trial refers to a random experiment with two
possible results: “acceptance” and “rejection.” In other words, in the factorized Metropolis
filter, each interaction can independently determine whether to accept or reject the update
according to the corresponding Pj . Hence, instead of a single trial with probability Pfac, we
can perform a sequence of N −1 independent trials, each with acceptance probability Pj , with
in total 2N−1 possible outcomes. Pfac can be defined as the probability of the acceptance event
where all N − 1 experiments give “acceptance”. Meanwhile, the update is rejected if any of
the experiments fail. Since the trials are performed sequentially, we can then define the first-
rejection event, where the X -th factor in the factorized Metropolis filter is the first to reject
the update. Once a first-reject event is identified, the update is rejected, regardless of the
remaining trials. The probability of the first rejection event at the j-th factor is given by,

Prej( j) = h j

j−1
∏

k=1

(1− hk) . (11)
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Here, h j is the hazard rate of Prej( j) [54], and we identify the hazard rate h j ≡ 1 − Pj as
the probability of the update being rejected by the j-th factor. Within this formulation, the
probability of the acceptance event is,

Pacc =
N−1
∏

k=1

(1− hk) . (12)

The rejection and acceptance events can be clearly illustrated using the clocks in Fig. 1(a). The
j-th index on the clock dial symbolizes the j-th factor Pj . The hand of a clock points to the first-
rejecting factor, where all preceding factors permit the updates, and those following it are not
checked. When there is no clock hand, all factors accept the update, and the clock represents
the acceptance events. In this context, the term clock alludes to the potential outcomes of the
factorized Metropolis filter. Instead of sequentially checking each factor, the clock sampling
process aims to sample the probability distribution formed by these clocks directly:

C(X ) =
¨

Prej(X ) , if 1≤ X ≤ N − 1 ,

Pacc , if X = N .
(13)

If the sampled clock alarms a first-rejecting event, then the update is rejected immediately,
while if the acceptance clock is generated, the update will be directly accepted.

In conclusion, through the above mapping, we convert the sampling of factorized Metropo-
lis filter in Eq. (10) into the task of sampling the discrete probability distribution C(X ) of size
N with hazard rate h j .

The recursive clock sampling scheme. The straightforward sampling scheme of distribution
C(X ) involves sequential tests of each hazard rate h j . However, it is worth noting that the
rejection probabilities h j for long-distance interactions decay algebraically with the system
size, making rejections for long-range interactions very unlikely to occur. Additionally, as
the system size increases, the leading term of C(X ) also exhibits a power-law decay. This
implies that first-rejection events are most likely to occur for interactions in the proximity of
the updated worldline and there is no need to test for all factors in the tail. Instead, we can
sample the distribution of C(X ) directly.

Various methods exist for sampling a discrete probability distribution, such as the inver-
sion method and Walker’s alias method [55, 56]. However, these methods cannot be directly
applied because C(X ) is configuration-dependent, as the hazard rates h j are calculated from
the configurations S and S′, which vary during the MC simulation. Consequently, any method
that requires the knowledge of all N − 1 hazard rates will have at least O(N) complexity and
will not be more efficient than the original Metropolis method.

To address this limitation and circumvent expensive energy evaluations, we demonstrate
the recursive clock sampling process where configuration-independent distributions are sam-
pled recursively to sample the target distribution of the clock. First, let us introduce a con-
figuration-independent probability ĥ j ≥ h j for each factor, named bound hazard rate. This
probability is determined by considering the “worst possible” local configuration that can lead
to the largest energy change ∆Û j after applying the update. A two-step process is used to
determine whether a factor j accepts the update. The first step is a bound trial with a re-
jection probability of ĥ j . The outcome can be either bound acceptance or bound rejection.
A bound acceptance means that the update is accepted in this trial for the worst case, and
thus, it implies a true trial acceptance, with no need to examine the associated local config-
uration. In contrast, when a bound trial rejection occurs, one has to compute the actual and
configuration-dependent rejection probability h j and sample the true rejection with relative
probability,

p j,rel = h j/ĥ j . (14)
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There are three potential outcomes at each factor j:

1. Bound acceptance: the update is accepted with 1− ĥ j .

2. Relative acceptance: the update is first bound rejected with ĥ j and then accepted with
relative probability 1− p j,rel.

3. True rejection: the update is rejected with both ĥ j and p j,rel.

Both bound acceptance and relative acceptance contribute to the overall acceptance of factor
j, so the acceptance probability of factor j is still 1− ĥ j+ ĥ j(1−p j,rel) = 1−h j . Meanwhile, the
true-rejection event is equivalent to the original rejection event with probability, ĥ j×p j,rel = h j .
Since the individual acceptance-rejection probability of each factor remains unchanged, one
can conclude that introducing the bound hazard rate does not change the final fate of the
update.

A vital characteristic of this two-step sampling scheme is that the hazard rate h j is eval-
uated when the update is bound rejected at factor j. Therefore, we can define a non-
homogeneous Bernoulli process with hazard rate ĥ j to generate bound-rejection events and
determine whether these factors truly reject the update. For a bound-rejection event at factor
j, the corresponding relative probability is computed to test if this factor genuinely rejects the
update. If it is not a true rejection event, i.e., the update is accepted with relative probability
1− p j,rel, the process has to continue to sample the next bound-rejection events.

Let us define C̃X ′ (X ) as the probability of the next bound-rejection event occurring at factor
X provided that the current bound-rejection event occurs at factor X ′:

C̃X ′ (X ) = ĥX

X−1
∏

j=X ′+1

(1− ĥ j) . (15)

The corresponding bound-acceptance event is then,

C̃X ′,acc =
N−1
∏

j=X ′+1

(1− ĥ j) . (16)

Similar to the first-rejection event case, these events form a probability distribution of size
N −X ′. By recursively sampling these distributions and the corresponding relative probability,
one can efficiently sample the target distribution C(X ).

As demonstrated in Fig. 1 (b), the recursive clock sampling scheme can be viewed as a sam-
pling process on a tree structure. Starting at the first level, one generates a bound-rejection
event at factor X1 according to the configuration-independent distribution C̃0 (X1) and performs
the rejection test with probability pX1,rel. If factor X1 does not truly reject the update, one goes
to the next level and generates the next bound-rejection event relative to X1. This process is
recursively performed, generating a series of bound-rejection events at factor {X1, X2, X3, . . .},
and until the first actual rejection occurs at specific Xrej or the update is accepted by all Pj .
The bound rejection does not change the actual rejection probability at each factor; there-
fore, this sampling scheme yields the same probability distribution for the first-rejection event
C(X ). At each level, the energy evaluation is performed only once, making the computa-
tion complexity C the average number of levels during the sampling process. We define the
bound consensus probability PB =

∏

(1 − ĥ j) as in Ref. [34], and the complexity scales as
C ∼ O(ln PB/ ln Pfac). If the bound consensus probability PB scales with N as Pfac, the clock
sampling scheme has a computational complexity of O(1). This scaling depends on the en-
ergy profile of the updates and, for a local update between τ1 and τ2 can be expressed as:
C ∼ (

∑

i max |∆Ei(τ1 − τ2)|)/(
∑

i |∆Ei(τ1 − τ2)|). Thus, the average complexity scales as
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Algorithm 2: Recursive clock sampling scheme

j← 1;
while j ≤ N do

Generate the next bound-rejection event at j′ according to Eq. (15);
j← j′;
if ran< p j,rel then

return Reject; // Rejection
end

end
return Accept; // Acceptance

O(1) if both the numerator and the denominator scale similarly with N . For extensive system,
both

∑

i max |∆Ei| and
∑

i(|∆Ei|) converges to finite values, allowing for O(1) complexity per
update. For sub-extensive, we expect the complexity to scale as O(Nα) with 0< α < 1, similar
to classical cases [34]. Moreover, C̃X ′ (X ) is a configuration-independent distribution at each
level, and several techniques exist to sample it efficiently. Consequently, the clock sampling
scheme substantially reduces the computational complexity of long-range interactions.

Off-diagonal weights and general proposal probabilities. In the preceding discussion, we
focus on a simple scenario where the proposed update only changes the diagonal long-range
interaction term of the configuration weight, assuming a symmetrical proposal distribution.
However, in the path-integral representation, it is essential for an ergodic update scheme to
modify off-diagonal terms of the configuration as well. Furthermore, the proposal probabilities
of updates are typically asymmetrical and non-trivial. Therefore, it is crucial to generalize the
clock sampling to accommodate such cases.

Without loss of generality, let’s consider an update that changes the off-diagonal terms of
the configuration weight, K(S) → K(S ′) and has a proposal distribution A(S → S ′). The
acceptance probability of such an update is given by,

PM-H =min
�

1,
A(S ′→ S)K(S ′)
A(S → S ′)K(S)

exp (−∆U)
�

, (17)

with ∆U =
∑

j U j . Therefore, by further factoring out the proposal probabilities and the off-
diagonal weights, we obtain the factorized filter:

Pfac = PA

N−1
∏

j=1

Pj . (18)

In this factorization, an additional factor PA is introduced to account for the off-diagonal
weights and the proposal distribution of the update, which is given by,

PA =min
�

1,
A(S ′→ S)K(S ′)
A(S → S ′)K(S)

�

. (19)

Furthermore, the factor PA can be formulated with great flexibility. One can incorporate the
local diagonal terms of the Hamiltonian into PA, such as on-site potentials, so that PA re-
sembles the original acceptance probability excluding the energy changes due to long-range
interactions.

It can be challenging to determine a configuration-independent bound hazard rate ĥA for
PA since it relies on the specific details of the update scheme. One possible approach to address
this issue is to conduct an initial trial with acceptance probability PA at the beginning of the
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clock sampling. If this preliminary trial fails, the update is rejected immediately. Otherwise,
one proceeds to generate bound rejection events for Pj factors. This strategy effectively treats
PA as the first factor in the sampling process and sets ĥA = 1. By employing this strategy, the
clock sampling can be seamlessly integrated with different update schemes, thereby enhancing
the overall efficiency of the algorithm.

Box Technique. A side effect of using a factorized Metropolis filter is that the overall accep-
tance probability may decrease due to factorization. This can be observed from the following
inequality:





∑

j

∆U j





+

≤
∑

j

�

∆U j

�+
. (20)

As a result, the overall acceptance probability of the factorized Metropolis filter is always less
than that of the Metropolis filter. However, this is not a problem in most cases, except in glassy
systems where ∆U j can cancel each other dramatically. In such situations, the box technique
can help alleviate the problem. The boxing technique takes advantage of the fact that the
factorized Metropolis filter can be constructed with considerable flexibility: each factor Pj
may contain an arbitrary number of interactions. For instance, interactions can be grouped
into Nb boxes with tunable sizes Bb, and the filter becomes:

PBox
fac =

Nb
∏

b=1

exp



−





Bb
∑

j=1

∆U j





+

 . (21)

When Nb = 1, the factorized Metropolis filter reduces to the original Metropolis filter since
all interactions are in a single factor. The detailed balance condition will always be satisfied
regardless. This leads to new optimization possibilities, which can be particularly useful in the
case of glassy systems.

In summary, the recursive clock sampling process is an efficient sampling scheme to deter-
mine the fate of an attempted update in a long-range quantum system. It offers three major
benefits: (i) Reduced computational complexity: The clock sampling process dramatically re-
duces the computational complexity per update from O(N) to O(Nκ) (0 ≤ κ ≤ 1). In most
cases, O(1) update complexity can be achieved. (ii) Flexible update scheme: the clock sam-
pling process is not limited to any specific update scheme. It can be integrated with various
update strategies to enhance algorithm performance. (iii) Box technique: the clock sampling
process can be constructed in various ways, enabling further optimization for specific models.
The interactions in the Hamiltonian can be grouped into boxes of tunable sizes to increase
the overall acceptance rate. By reducing the computational complexity of the Metropolis fil-
ter’s long-range interaction terms, the proposed clock sampling scheme allows for the efficient
exploration of a diverse array of fascinating physical phenomena in long-range interacting
systems.

3 Efficient implementation of recursive clock sampling

This section delves into the implementation of the recursive clock sampling scheme. Specifi-
cally, we focus on efficiently generating the bound-rejection events from a probability theory
perspective. As discussed in the previous section, the recursive clock sampling process relies on
recursively sampling a tree structure of bound-rejection events, significantly reducing compu-
tational complexity. At each iteration, one generates the next bound-rejection event at factor
X according to the configuration-independent distribution given by Eq. (15). Hence, to obtain
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an optimized implementation of the clock sampling scheme, we seek an efficient and robust
method capable of generating these events.

In the context of probability theory, this is the famous problem of discrete random variate
generation, which has been studied for many years [54,57]. A discrete random variate X takes
only integer values in a finite set, such as k ∈ 1,2, . . . , n. Its distribution follows the probability
mass function (PMF) denoted as p(k) = P(X = k), where P(X = k) is the probability of X
taking the value k. In the subsequent discussion of this section, we define X as a discrete
random variable that describes the next bound-rejection events, with its value being indices
of the factor where the next bound-rejection occurs, and its corresponding PMF p(k) satisfies
Eq. (15).

Various algorithms exist to sample discrete random variates. However, p(k) exhibits two
special intrinsic features. First, p(k) changes during the simulation to ensure optimal perfor-
mance. Although p(k) is configuration-independent, the bound hazard rate should be chosen
based on the detail of the update, such as the update’s range in the τ-direction. In addition,
the distribution of bound rejection events is also different at each level of a clock sampling
process. Secondly, p(k) is a distribution whose probability is not known explicitly. For a given
update, ĥ j can be directly computed for any index j, while the probability of a particular
bound-rejection event is difficult to calculate. We identify ĥ j as the hazard rate function of
distribution p(k) from the definition. Thus, p(k) is a distribution with known hazard rates.
When sampling p(k), these two properties must be considered.

This section briefly introduces a class of algorithms suitable for sampling p(k), named the
thinning methods. Lastly, we thoroughly explain our implementation of the clock sampling
scheme using the thinning method and provide pseudocode for added clarity.

Thinning method. The bound rejection event is described by a distribution p(k)with known
hazard rate ĥk,

p(k) =

¨

ĥk
∏k−1

j

�

1− ĥ j

�

, if k ∈ [1, N − 1] ,
∏N−1

j=1

�

1− ĥ j

�

, if k = N .
(22)

A straightforward algorithm to sample the above distribution is the sequential test method [36,
54]. One starts from k = 0 and sequentially tests if the random variable can take the values
0, 1,2, . . . , N . It is equivalent to a series of non-homogeneous Bernoulli trials with failure prob-
ability ĥk. Similar to the inversion method by sequential search, this method has a time com-
plexity of O(N). However, the sequential test method requires one uniform random variable
per iteration.

In 1985, Shanthikumar observed that for discrete hazard rates ĥk with supremum ρ < 1,
the sequential test method can be accelerated by jumping ahead more than 1 in each iteration.
Based on this observation, the discrete thinning method is proposed [36]. The method’s basic
idea is to generate a sample from a distribution with a dominating rate gk ≥ ĥk and then thin
it down to the desired distribution by rejecting some of the events.

Consider a constant dominating rate gk = ρ, for all ĥk ≤ ρ. Such a dominating distribution
is simply a geometric distribution with parameter p = ρ, which can be easily generated using
the inversion method, described in A.1. The discrete thinning method works as follows: one
starts with X ← 0. At every iteration, one generates a geometric distributed random number
k, updating the value X ← X + k, and then rejects the event with probability ĥX/ρ. This
process repeats until a sample X is accepted. The resulting random number X follows the
target distribution. The expected number of iterations for the discrete thinning method is
ρE(X ) since the average jump size is 1/ρ. The method reduces to the sequential test method
in the ρ = 1 limit. Consequently, when sampling a given distribution, the smaller ρ, the more
dramatic the improvement. Therefore, the discrete thinning method can be advantageous in
clock sampling where only the hazard rate of the bound rejection events ĥ j is known.
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I

II

III

Figure 2: A schematic diagram of one level of the clock sampling. The blue box rep-
resents the hazard rate h j of factors, and the gray box represents the corresponding
bound hazard rate ĥ j . Starting from the j-th factor, the first step (I) generates a jump
to the j′-th factor using a geometric random number with parameter ρ. The second
step (II) is to accept j′ as a bound-rejection event with relative probability ĥ j′/ρ. If
j′ is rejected, then one goes back to (I). Otherwise, if j′ is indeed a bound-rejection
event, then one goes to the third step (III) to check if factor j′ truly rejects the update
with h j′/ĥ j′ .

In the clock sampling, we are interested in whether a given update is eventually accepted.
Thus, the order of factors in Eq. 9 is irrelevant. One can sort the factors by their bound haz-
ard rate, such that ĥ j is decreasing. Then, the new distribution has a decreasing hazard rate,
referred to as a DHR distribution, which can be initialized before the actual simulation. The
performance of the thinning method for a DHR distribution can be further improved by dynam-
ically lowering the constant dominating rate ρ. This method is formally named the dynamic
thinning method [36]. For the bound rejection events that follow a discrete distribution p(k)
with decreasing hazard rate, ĥ0 > ĥ1 > · · · ĥN−1, one starts with X ← 0. At every iteration,
one generates a geometrically distributed random number k and updates the value X ← X +k.
Then, one attempts to accept this value with probability ĥX/ρ. If so, a sample is successfully
generated. Otherwise, the upper bound ρ is lowered to equal the hazard rate value of the
subsequent factor ĥX+1. The process repeats until a sample X is accepted. Therefore, the
dynamical thinning method allows for larger jump sizes in the tail of the DHR distribution,
thereby improving the sampling process’s performance.

The bound hazard rates ĥ j are generally very small except for those corresponding to
short-range interactions because the value of ĥ j depends on the strength of the corresponding
long-range interaction, which decays algebraically with the distance. This property makes
the bound rejection event hardly occur for interactions in the tail of the distribution. More
importantly, it implies that the distribution has a long but small tail, where the dominating
rate ρ of the dynamic thinning method can also be very small, ensuring the high efficiency of
the algorithm.

Furthermore, the dynamic thinning method can compute ĥ j on the fly, provided that the
order of ĥ j is known in advance. Therefore, if one can select a sequence of ĥ j whose order
remains constant throughout the simulation, it is necessary to sort the ĥ j only once before the
actual simulation. This order can then be stored and used in the dynamic thinning method,
thereby eliminating the need for additional initialization procedures for different values of ĥ j .

In conclusion, given its high efficiency and streamlined operations, the dynamic thinning
method is an optimal choice for generating bound rejection events within the clock sampling
scheme.
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Algorithm 3: Clock sampling with dynamic thinning

Input: A proposed update S → S ′
Output: The update is accepted or rejected
Initialization: Identify and reorder the bound hazard rates of all factors
ĥ1 > ĥ2 > · · ·> ĥN−1.

j← 0;
while j < N do
ρ← ĥ j+1;
Generate random variate u ∈ [0,1);

j← j + ⌈ log(u)
log(1−ρ)⌉;

if j ≥ N then
break

end
Generate random variate v ∈ [0,1);

if v <
ĥ j
ρ then

Evaluate h j = 1− Pj;
Generate random variate w ∈ [0,1);
if w< p j,rel then

return False;
end

end
end
return True;

Implementation of recursive clock sampling. We demonstrate one possible implementation
of recursive clock sampling using the dynamic thinning technique to generate the bound-
rejection events. The pseudocode is given in Alg. 3, and the schematic diagram is shown
in Fig. 2. For a long-range interacting system of size N , one first identifies and reorders the
bound hazard rates ĥ j of all factors, denoted as ĥ1 > ĥ2 > · · ·> ĥN−1. The bound hazard rates
are selected based on the properties of the model to be studied. To determine the fate of a
proposed update S → S ′, one starts with j ← 0. One increments j via a geometric random
number with parameter ρ = ĥ j+1

j← j +

¢

log (ran)

log(1− ĥ j+1)

¥

, (23)

where u ≡ ran is a uniform random variable, and ⌈x⌉ is the ceiling function that returns
the smallest integer larger than or equal to x . One then tests if this new j is truly a bound
rejection event with probability ĥ j/ρ. One repeats this process until a bound rejection event
is successfully generated at j-th factor. The next step is to check whether the bound rejection
is an actual rejection with probability p j,rel = h j/ĥ j . In this step, the energy difference is
evaluated to obtain h j . The sampling terminates when a true rejection is found; otherwise,
one goes to the next level and generates new bound rejection events. The process continues
until the update is accepted, which occurs when j ≥ N .

The algorithm integrates the dynamic thinning method and the clock sampling scheme for
a proposed update. To initialize the algorithm, one needs to store the order of ĥ j , which can be
determined before the simulation begins. This approach is both straightforward and efficient,
making it ideal for large-scale simulations of long-range interacting systems.
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4 Clock factorized quantum Monte Carlo algorithms

In this section, we introduce a class of Monte Carlo algorithms that utilize clock sampling
to determine the fate of an attempted update, which we call the clock factorized quantum
Monte Carlo (clock factorized QMC) method. Specifically, we demonstrate three different
clock factorized QMC algorithms in the path-integral formulation to simulate typical quantum
systems with long-range interaction in condensed matter physics. Firstly, we designed a clock
factorized Metropolis algorithm that employs a local Metropolis-type update scheme to sim-
ulate the long-range transverse field Ising model (LRTFIM). Secondly, integrating the clock
sampling with the worm update, we develop a clock factorized worm algorithm to simulate
the extended Bose-Hubbard model (EBHM). Finally, we enhanced the clock factorized worm
algorithm using additional efficient long-range hopping updates. We utilized this improved
algorithm to simulate the long-range XXZ Heisenberg model (LRXXZ) by first mapping the
model to a hardcore Bose-Hubbard model with both long-range density-density interaction
and long-range hopping.

When constructing a clock factorized QMC algorithm, careful consideration must be given
to two crucial elements. The first element is the box technique introduced in the previous
section, where long-range interaction terms are grouped into boxes to increase the overall ac-
ceptance rate. This study does not cover systems with glassy long-range interactions where
the box technique can significantly affect the algorithm’s performance, so we set the box size
to 1 for simplicity, i.e., each factor contains only one pairwise interaction. The second element
is the proper choice of the bound hazard rate, denoted as ĥ j . As previously discussed, the
value of ĥ j governs the average step size of the clock sampling, thus significantly affecting
the algorithm’s performance. However, once these steps have been completed, the design and
implementation of the clock factorized QMC algorithm for a given model is typically straight-
forward. The approach involves selecting a state-of-the-art update scheme for the model and
integrating the clock sampling process with the updates. This implementation process requires
only minimal modifications of an existing code by replacing the Metropolis filter of the original
algorithm with a clock sampling step, while the proposal of updates and the actual update op-
erations remain unchanged. Therefore, in the following description of clock factorized QMC
algorithms, we shall focus on the vital ingredients of a clock factorized QMC algorithm, such
as deriving an expression for bound hazard rate ĥ j , while we only briefly describe the update
schemes without diving into the details.

To assess the efficiency of the clock factorized QMC algorithm in reducing computational
effort, we define the average computational complexity of the local update, C , as the number
of energy evaluations required for each local update:

C = #pairwise energy evaluations per local update. (24)

The expectation value of C provides a direct and quantitative measure of the computational
effort demanded by the algorithm, independent of the hardware configuration. Because pair-
wise energy evaluations typically represent the most computationally intensive step in simu-
lating long-range interacting systems, this definition offers a meaningful proxy for the runtime
per Monte Carlo step. This is verified in the performance benchmark presented later. For the
conventional Metropolis filter, C = N − 1, while the clock factorized QMC algorithms have
substantially lower C . In the following sections, we refer to the average computational com-
plexity of the local update as Complexity for brevity. Since the primary goal of this work is to
introduce and validate the clock factorized QMC methodology, and further optimizations of
both update strategies and implementations for specific physical systems and parameters are
available, we focus on the complexity of the algorithm in this study. A detailed benchmark of
physical observables is left for future work, which involves studying specific physical systems.
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Figure 3: Average complexity of Monte Carlo update of 2D models. (a) long-range
transverse field Ising model using Metropolis update, (b) extended Bose-Hubbard
model using worm update, (c) long-range XXZ model using worm update with long-
range hopping.

Simulations of these models are performed on both 2D square lattices and 3D cubic lattices
of various sizes, represented as L. The complexities of the new algorithm for each model are
shown in Fig. 3 and 4.

We also conduct several controlled performance benchmarks, to demonstrate the advan-
tages of the new algorithm. To ensure consistency and minimize variations in performance
measurements, these benchmarks are executed on a uniform hardware setup with an Intel
Core i7-12700K CPU and 16 GB of DDR4-3200 dual-channel RAM. The evaluation focused not
only on computational complexity but also entailed a direct comparison between the compu-
tation time per sweep, denoted as τ, and the acceptance ratio. These quantities are compared
for these models using the proposed clock factorized QMC algorithms and the algorithms with
the conventional Metropolis filter. The benchmark results are presented in Fig. 5, 6 and 7.
The results suggest that the new algorithms provide an efficient approach to large-scale sim-
ulation of long-range interacting systems. They allow accurate investigation of the physical
properties of 3D long-range quantum models, which was previously hindered by substantial
computational demands.

4.1 Clock factorized Metropolis algorithm

The transverse field Ising model (TFIM) is one of the most famous quantum spin models. The
competition between ferromagnetic spin exchange interaction and transverse field can lead to
rich physics [11,24]. It has been studied extensively using various numerical methods, such as
quantum Monte Carlo and density matrix renormalization group [58]. It serves as a simplified
model for many physical systems, including neutral atom array [59,60] and superconducting
qubits [61].

In contrast to the conventional TFIM, in the long-range transverse field Ising model, the
interactions between Ising spins are not restricted to nearest-neighbor pairs; instead, there is
a power-law decay of the coupling strength with distance. The Hamiltonian of the long-range
transverse field Ising model (LRTFIM) is given by,

H = −
∑

i, j

J
rαi j
σz

iσ
z
j − h

N
∑

i=1

σx
i . (25)

Here, J > 0 is the ferromagnetic coupling strength along the z-direction, and the power α
determines the range of interactions between spins. The summation

∑

i, j is over all pairs of
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spins i and j on the lattice. The symbols σz
i and σx

i are Pauli matrices acting the i-th Ising
spin, h is the transverse magnetic field strength, and N is the total number of spins in the
system. The model reduces to the nearest-neighbor model in the limit α→∞, while in the
limit α→ 0, all spins are coupled equally, and the model is a transverse field Ising model on a
complete graph.

For the path-integral formulation of LRTFIM, we choose the spin state in z-direction as the
basis, |σ1,σ2, . . .〉, where σi = ±1 represents the up/down spin state on the i-th site. The con-
figuration of the LRTFIM consists of N worldlines made of segments. Each segment represents
an imaginary time interval where the spin state remains unchanged, and the interface between
two different segments is called a cut. When there is only one segment on a worldline, the
segment can be considered as a ring without any cuts. In this expansion basis, the statistical
weight of a configuration S is given by,

WS =

� N
∏

k=1

dτk

�

hN exp

(

∑

i, j

∫ β

0

J
rαi j
σi (τ)σ j (τ) dτ

)

, (26)

where N is the number of cuts, and σi (τ) is the spin state at a space-time point (i;τ). The
state of a worldline flips at imaginary time τk with (k = 1, . . . ,N ).

We employ a standard Metropolis-type update scheme for LRTFIM. The term “Metropolis-
type” means that the update operations are local, i.e., modify only one segment at each MC
step. This update scheme consists of two pairs of operations. (a) Create/delete segment. The
first pair of operations manipulates the configuration by inserting a new segment or deleting
an existing segment. To create a new segment, one randomly picks an existing segment from
the configuration and then flips the spin state between the two uniformly chosen points in
the segment. Conversely, the “delete segment” update is the reverse process of the “create
segment” update. This procedure randomly chooses an existing segment and flips its spin
state to remove it from the configuration. These operations change the number of segments
in the configuration. (b) Move cut. The second operation moves the temporal location of an
existing cut without altering the number of segments. To do this, one randomly chooses a cut
and shifts it to a new position in the range bounded by its next and previous cuts. The move
segment operation is its own reverse process. Using these local update operations, we can
efficiently explore the configuration space of the long-range Ising model. These operations
are then combined with the clock sampling process to obtain the clock factorized Metropolis
algorithm. In this update scheme, both operations are local updates that modify the spin state
within an imaginary time interval during which the spin state remains constant. Hence, it is
possible to consider an update that flips a segment between τ1 and τ2 on the i-th site, and
the initial spin state in this interval is represented by σi . The factorized Metropolis filter of
this update is Pf ac = PA

∏

j Pj . Here, PA is a factor that depends on the detail of an update,
as discussed in Section 2. Here, we take the create segment operation as an example:

Pcrea
A =min

¨

1,
Nsegh2

N ′segu(τ1,τ2)

«

, (27)

where Nseg (N ′seg) is the number of segments before (after) the creation of a new seg-
ment. Imaginary time positions τ1, τ2 are chosen with the uniform probability density
u(τ1,τ2) = 2/ (τmax −τmin)

2, where τmax (τmin) is the starting (ending) time of the selected
segment. On the other hand, the factors Pj , which are the key components of clock sampling,
have a general form,

Pj = exp

¨

−

�

2Ji jσi

∫ τ2

τ1

σ j (τ) dτ

�+«

. (28)
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Figure 4: Average complexity of Monte Carlo update of 3D models. (a) long-range
transverse field Ising model using Metropolis update, (b) extended Bose-Hubbard
model using worm update, (c) long-range XXZ model using worm update with long-
range hopping.

Here, Ji j is the interaction strength between spins i and j given by Ji j = J/rαi j .
To derive the bound hazard rate of Pj , one should first identify the factor’s “worst back-

ground”. In this context, the term “background” refers to the portion of unchanged configura-
tion that interacts with the segment to be updated. In this example, the background is the spin
state between τ1 and τ2 on the j-th worldline, represented byσ j (τ)with τ ∈ [τ1,τ2]. Hence,
the “worst background” refers to a certain possible formation of background that can induce
the most significant energy change after the update. This worst possible background depends
solely on the characteristics of the model to be studied, thus making the bound hazard rate
ĥ j independent of the actual configuration. In the LRTFIM, σ take the value of ±1 and Ji j is
positive; thus, the worst background of Pj is that case where the state between τ1 and τ2 on
j is same to that on the i-th worldline: σ j(τ) = σi for τ ∈ [τ1,τ2]. Consequently, the largest
possible energy change is 2Ji j|τ2 −τ1|, and the bound hazard rate is given by,

ĥ j = 1− exp
�

−2Ji j|τ2 −τ1|
�

. (29)

It is evident that ĥ j has a configuration-independent expression and can be adopted in the
clock sampling process.

The clock sampling method also requires that the bound hazard rate for an update must
be arranged in decreasing order. This is achieved by computing all N −1 interaction strengths
Ji j for the i-th site at the beginning of the simulation, sorting them in decreasing order, and
then using this sorted list for all updates. For a given local update, the value of |τ2 − τ1| is
constant, resulting in ĥ j being a function of the interaction strength Ji j . By using the sorted
list of interaction strengths, the bound hazard rate is automatically ordered for any update,
eliminating the need to explicitly sort ĥ j for each update. This approach ensures that the bound
hazard rate is efficiently evaluated and arranged, meeting the requirement of clock sampling.

Simulations with various exponents of the long-range interaction and system sizes are con-
ducted to comprehensively test the efficiency and robustness of the clock factorized Metropolis
algorithm. The computational complexities of the long-range transverse field model for differ-
ent exponents are compared, and the complexities of the clock factorized Metropolis algorithm
of the LRTFIM on both 2D square and 3D cubic lattices are shown in Fig. 3(a) and Fig. 4(a),
respectively. The simulations are conducted near the critical point of the corresponding short-
range model, h = 3.04433 for the 2D square lattice [62, 63] and h = 5.158129 for the 3D
cubic lattice [63]. The inverse temperature is fixed at β = 10. The almost constant computa-
tional complexity observed for different system sizes demonstrates a significant improvement
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Figure 5: Performance benchmark of the clock factorized Metropolis algorithms
compared with the conventional algorithm with Metropolis filter for 2D LRTFIM at
α = 4.0, h = 5.2011 and β = 10. Panel (a) shows the average time per sweep τ in
milliseconds (ms) for both algorithms: τ of conventional algorithms scales approx-
imately as L4, while τ of clock factorized QMC algorithm scales as L2. Notably, the
CPU time per sweep for L = 128 by the clock factorized algorithm is comparable to
that for L = 16 by the conventional Metropolis scheme. The inset presents the av-
erage acceptance ratio. Compared with the Metropolis scheme, the acceptance ratio
of the new algorithm drops by a constant ratio γ ≈ 20%, from 0.51 to 0.37. Panel
(b) displays the computational complexity per update for each case. The clock fac-
torized Metropolis algorithm exhibits a O(1) computational complexity in contrast
to the O(N) complexity of the conventional QMC algorithm.

in simulation efficiency achieved by the clock sampling algorithm. In Fig. 5, we present the
result of performance benchmarks on the LRTFIM on a 2D square lattice. The model param-
eters are set at α = 4.0 and β = 10, with h = 5.2011, which is near the critical point of
the model [24]. The result demonstrates a near O(N) reduction of time per sweep for the
clock factorized QMC algorithm compared with the conventional Metropolis scheme, approx-
imately in the same order as the reduction of the computational complexity per update. In
addition, the acceptance ratios of both algorithms do not show noticeable size dependence.
Compared with the conventional scheme, the acceptance ratio of the new algorithm decreased
by a constant ratio γ ≈ 27%, from Pacc ≈ 0.51 to 0.37, thus the overall autocorrelation of the
new algorithm increases by 27% because the two algorithms have identical physical dynam-
ics [34]. Therefore, despite the slight increase of autocorrelation time for the clock factorized
Metropolis algorithm, the overall improvement of update efficiency is O(N).

4.2 Clock factorized worm algorithm

The extended Bose-Hubbard model provides a fundamental framework for understanding the
behavior of interacting bosonic particles in a lattice, making it highly relevant to AMO experi-
mental setups. The model considers a system of bosonic particles that are confined to a lattice
and interact with each other, where the interaction can be both short-range and long-range.
The extended Bose-Hubbard model has been extensively studied in both theoretical [64–72]
and experimental settings [73–79], with particular attention paid to the effects of long-range
interactions due to their relevance in ultracold experiments.
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The Hamiltonian of the EBHM is given by:

H = −t
∑

〈i, j〉

�

b†
i b j + h.c.

�

+ V
∑

i< j

1
rαi j

nin j +
U
2

∑

i

(ni − 1)ni +
∑

i

µni . (30)

Here, b†
i (bi) is the bosonic creation (annihilation) operator on i-th site, and ni ≡ b†

i bi is
the bosonic particle number operator. The Hamiltonian is a sum of several terms. The first
term describes the nearest-neighbor hopping of bosons, where t is the hopping strength. The
second term sums over all pairwise long-range density-density interactions, controlled by the
interaction strength V and an exponent α. ri j is the distance between i-th and j-th sites. The
third term is the on-site repulsion with strength U , and the fourth term controls the filling
fraction via the chemical potential µ.

One of the state-of-the-art methods for simulating the extended Bose-Hubbard model is the
worm algorithm, which is a highly successful PIMC algorithm for studying systems without the
sign problem [21,29,80]. It is based on the path-integral representation of the partition func-
tion, a weighted summation of all possible configurations where the trajectories of particles
are closed loops. These configurations form the Z configuration space. The worm algorithm
works in an enlarged G configuration space by introducing an open-ended worldline called a
“worm”. The worm’s “head” and “tail” correspond to b and b† operators, respectively. Conven-
tionally, the b-point is called ira, and the b†-point is called masha. Through local updates of ira
and masha, the algorithm efficiently samples the configuration of the partition function and
the Green’s function of the model. Although the worm algorithm uses a local update scheme,
it generally has a smaller dynamical critical exponent than the Metropolis-type updates; thus,
it can be more efficient near a phase transition. It is a versatile algorithm that can be applied
to various models, including the extended Bose-Hubbard model [29].

In this work, we integrated the clock sampling technique with the worm algorithm and
developed the clock factorized worm algorithm to simulate EBHM. The algorithm adopts the
standard path-integral representation of EBHM, where the basis of Fock states is used as the
computational basis. The Fock states are defined as the set of all occupation numbers on each
lattice site, |n1, n2, . . . , nN 〉, where the occupation number ni on the i-th site can take any
positive integer value ranging from 0 to∞. The trajectories of the bosons form closed loops
in the configuration, and the points in imaginary time where the system changes occupation
number are called kinks. We adopted a standard worm update scheme for EBHM consisting
of four types of updates: (a) create/delete worm, (b) move worm head, (c) insert/delete kink
before the worm head, (d) insert/delete kink after the worm head [80]. The first pair of
operations creates a worm or deletes the worm, switching configuration between the Z space
and G space. The move worm head operation works in the G space. It shifts one worm head in
the imaginary time direction. The insert/delete kink operation inserts/deletes one kink before
or after the worm head and changes the spatial position of the worm head. The worm creation
is the only possible update when the system is in Z space, while in the G space, updates are
chosen randomly according to an a priori probability distribution. The detailed description of
the worm update scheme can be found in Ref. [80].

Similar to the clock factorized Metropolis algorithm, these updates are local updates, and
we use the clock sampling process to handle the long-range interaction terms. The factorized
Metropolis filters of all these updates have the standard form Pf ac = PA

∏

j Pj , where PA
depends on specific details of the update and Pj is universal for all types of updates. Updates
(a) and (b) change the occupation number within a segment on a single site i. Since the long-
range interaction strength V is positive in this model, only updates that increase the occupation
number are relevant in the factorized Metropolis filter. On the other hand, in updates (c) and
(d), the worm head jumps to another site, thus changing the segments on both the starting
site and the destination. Although kink operations change two segments simultaneously, the
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factorized Metropolis filter can have the same form as updates (a) and (b). This is because,
after a kink operation, the occupation number of one segment increases while the occupation
number of the other segment decreases. The long-range interactions between the segment
with decreasing occupation number and the segment on other sites always lead to an energy
decrease, regardless of the configuration; thus, their corresponding factors will not affect the
sampling process with Pj = 1. Therefore, only the interaction terms related to the segment
with the increased occupation number should be considered in the factorized Metropolis filter.

Here, as a simple illustration, we present the PA for creating worm update and inserting
kink before worm head.

Create worm. To create a worm, one randomly selects an existing segment on the i-th
worldline. The selected segment spans from τmin to τmax and has an occupation of n. Then,
one uniformly draws two points τ1, τ2 within the segment as the positions for inserting ira and
masha. The worm deletion is the reverse process of worm creation, which is only possible when
ira and masha are on the same worldline, and there are no kinks between them. Therefore
the PA for worm creation update is given by,

Pcrea
A =min

�

1, NsegωG pdel (τmax −τmin)
2 × K(S → S ′)exp [−∆Uloc]

	

, (31)

where Nseg is the number of segments in the configuration, ωG is a free parameter to control
the relative weight between Z space and G space, pdel is the probability of choosing the delete
worm update. The K(S → S ′) is the off-diagonal weight ratio due to ira and masha and∆Uloc
is the local energy difference caused by on-site repulsion and chemical potential.

Insert kink before ira. Assuming ira is on the i-th worldline, we select one of its neighboring
worldline j and identify the first kink on the j that is before ira, with τmin < τira. One
randomly select a point τk between τmin and τira, and inserts a new kink cic

†
j at τk. I ra is

then shifted to the j-th worldline. The PA of this update is then given by,

PA =min
�

1, Nnn t i j (τira −τmin)× K(S → S ′)exp [−∆Uloc]
	

. (32)

Here, Nnn is the number of nearest neighbors, and t i j ≡ t is the hopping strength between
worldline i and j. The K(S → S ′) is the off-diagonal weight ratio due to the insertion of kink
and spatial-shift of ira, while ∆Uloc is the local energy difference caused by on-site repulsion
and chemical potential.

As stated above, while the PA depends on the update, Pj has a general form. Consider a
general transition that increases the occupation between τ1 and τ2 on the i-th site, the factors
Pj has the form,

Pj = exp

¨

−

�

Vi j∆ni

∫ τ2

τ1

n j (τ) dτ

�+«

. (33)

Here, Vi j is the interaction strength between spins i and j given by Vi j = V/rαi j and ∆ni = +1.
The bound hazard rate is then given by,

ĥ j = 1− exp
�

−Vi jnmax|τ2 −τ1|
	

. (34)

This corresponds to the situation that the segment on the j-th site is maximally occupied,
where nmax is the largest segment occupation in the current configuration. In theory, an ar-
bitrary number of bosons can occupy one site; thus, the value of nmax is not bounded. In
practice, one can impose an upper limit on the occupation number of a segment as long as this
upper limit covers the Hilbert space being studied. This allows one to determine the bound
hazard rate and perform clock sampling. However, using a constant nmax will decrease the
algorithm’s performance. In this implementation, we use a histogram to keep tracking the
maximal occupation number of the current configuration. At the beginning of the simulation,
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Figure 6: Performance benchmark of the clock factorized worm algorithm compared
with the conventional worm algorithm for 2D EBHM at α= 3.0, U/t = 10, V/t = 7,
µ/t = 0 and β = 10. Panel (a) plots the average time per sweep τ in milliseconds
for both algorithms, with an inset presenting the average acceptance ratio. Panel (b)
displays the computational complexity per update for both cases.

a histogram is created to record the frequency distribution of the segment occupation number
and keep it updated during the simulation. When a new segment is added to the configura-
tion, the histogram records its occupation number, while if a segment with occupation ni is
removed, the corresponding bin in the histogram decreases by one. Therefore, one can keep
track of the actual largest segment occupation of the current configuration and ensure the best
performance of the clock sampling.

Notably, applying the factorized Metropolis filter does not affect the measurement of
Green’s function in the worm algorithm. Green’s function can be obtained by recording a his-
togram of the space-time separations between the worm’s head and tail and then normalizing
this histogram using the ratio between ZG and Z . Since the clock factorized QMC method does
not modify the configuration weights in either the G-space or the Z-space, the measurement
of Green’s function remains unaffected.

Simulations are conducted using the clock factorized worm algorithm to test the efficiency
and robustness of the algorithm for the extended Bose-Hubbard Model. Various exponents of
the long-range interaction and system sizes are explored, and the computational complexities
are compared. The results are shown in Fig. 3(a) and Fig. 4(a) for 2D square and 3D cubic
lattices, respectively. The simulations are conducted U/t = 10, µ/t = 0, and V/t = 7 with
the inverse temperature fixed at β = 10. The observed computational complexity for different
system sizes increases much slower than Ld , demonstrating a significant improvement in the
simulation efficiency of the clock factorized worm algorithm. Fig. 6 illustrates the performance
benchmarks on the EBHM on a 2D square lattice with α = 3.0, U/t = 10, V/t = 7, µ/t = 0
and β = 10. Similar to the LRTFIM case, the result demonstrates a near O(N) reduction of
time per sweep τ for the clock factorized worm algorithm, approximately in the same order
as the reduction of the computational complexity. Moreover, the acceptance ratios of both
algorithms are almost independent of system sizes, dropping from Pacc ≈ 0.23 to 0.18. Hence,
for EBHM, the overall efficiency improvement of the new algorithm is O(N).

4.3 Clock factorized worm algorithm with long-range hopping

The long-range XXZ Heisenberg Model is a theoretical model used in condensed matter physics
to describe the behavior of interacting spins in a lattice structure. The model is an extension of
the XXZ Heisenberg model, which includes both nearest-neighbor and next-nearest-neighbor
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spin interactions. In the long-range XXZ Heisenberg model, the spin interactions can be long-
range and exhibit power-law decay with distance. This model has been widely studied in both
theoretical [23, 81–83] and experimental contexts [84] due to its relevance in describing the
properties of spin systems in a variety of physical systems, including magnetism, supercon-
ductivity, and quantum computing. The long-range XXZ Heisenberg Model has proven to be
a valuable tool for understanding the complex behavior of interacting spin systems in lattice
structures and has led to important insights into the nature of quantum phase transitions and
critical phenomena.

The Hamiltonian of the LRXXZ model is given by,

H = −
∑

i< j

1
rαi j

�

J x
�

S x
i S x

j + S y
i S y

j

�

− J zSz
i Sz

j

�

, (35)

where Sβi (β = x , y, z) is the quantum-spin operators attached to each site. J x is in-plane
ferromagnetic interactions leading to a sign-positive model, while J z is the amplitude for Sz

i Sz
j

interactions. The LRXZZ model can be mapped to a hard-core boson model by using the
transformation S x

i + iS y
i = b†

i and Sz
i = ni − 1/2. The Hamiltonian describes the mapped

model,

H = −t
∑

i< j

1
rαi j

�

b†
i b j + h.c.

�

+ V
∑

i< j

1
rαi j

nin j −
∑

i

µni , (36)

where t = −J x/2, V = J z and µ = J z/2
∑

j>0 1/rα0 j . A constant term is dropped after the
mapping. For the hard-core boson model, the occupation number is restricted to only 0 and 1.
The hard-core boson model can also be simulated using the clock factorized worm algorithm
by setting a hard limit on the max occupation number. Any updates that result in a segment
with an occupation number larger than 1 are rejected.

The update scheme and clock sampling process are identical to the previous algorithm,
except that now we allow additional long-range hopping terms, i.e., the destination of kink
operation is not limited to nearest-neighboring sites. For example, consider a spatial shift
of ira by inserting a new kink before ira. For long-range hopping cases, the destination j
of the hopping can be selected from all the rest of the worldlines according to a probability
distribution A(i→ j). The PA of this update is similar to Eq. (32):

PA =min
�

1,
t i j

A(i→ j)
(τira −τmin)× K(S → S ′)exp [−∆Uloc]

	

. (37)

Suppose the hopping destination is uniformly chosen from all possible sites, i.e., A(i → j) =
1/(N−1). For long-range hopping strength with the form t i j = t/rαi j with ri j being the distance
between site i and site j, the acceptance probability of a kink-insertion update will also decay
algebraically with the distance of hopping. In that case, the long-range hopping update will
hardly be accepted, significantly hindering the algorithm’s efficiency.

Our solution to this problem is to propose the hopping destinations j according to a prob-
ability distribution of the distance of the hopping,

A (i→ j) = c
t

rαi j
, (38)

where c is a normalization constant such that,

c
∑

j ̸=i

t
rαi j
= 1 , (39)

where the sum goes over all possible neighbors. The probability of proposing hopping with
longer displacement is algebraically suppressed. This distribution A (i→ j) can cancel the t i j
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Figure 7: Performance benchmark of the clock factorized QMC algorithm compared
with the conventional QMC algorithm for 2D LRXXZ model at α= 3.0 and Jz/Jx = 9.
Panel (a) shows the average time per sweep τ in milliseconds for both algorithms,
with an inset presenting the average acceptance ratio. Panel (b) displays the compu-
tational complexity per update for both cases.

term in the expression of PA up to a constant c; thus, this distribution increases the overall
acceptance ratio of long-range hopping updates in the worm algorithm. Since A (i→ j) only
depends on the lattice and the long-range hopping, one can compute all the elements of the
distribution before the simulation and sample it using Walker’s alias method, as described
in A.2. With this technique, the algorithm can efficiently handle diagonal and off-diagonal
long-range interactions.

Simulations are conducted for the long-range XXZ Model to test the efficiency of the clock
factorized worm algorithm with long-range hopping. Various exponents of the long-range in-
teraction and system sizes are explored, and the computational complexities are compared.
The results are shown in Fig. 3(a) and Fig. 4(a) for 2D square and 3D cubic lattices, respec-
tively. The simulations are conducted with J x/J z = 1 and the inverse temperature fixed at
β = 10. The observed computational complexity for different system sizes increases much
slower than Ld , demonstrating a significant improvement in simulation efficiency. Fig. 7 shows
the performance benchmarks on the LRXXZ on a 2D square lattice with α= 3.0, Jz/Jx = 9, and
β = 10 [85]. Similar to previous cases, the result demonstrates a near O(N) reduction of time
per sweep τ for the clock factorized worm algorithm with long-ranged hopping. The average
acceptance ratio of the new algorithm drops from PAcc ≈ 0.15 to 0.05, roughly by a constant
ratio. Despite the constant increase in autocorrelation time due to this drop, the computa-
tional complexity per update of the new algorithm remains O(1); thus, overall performance
improvement in this case should also scale as O(N).

Note that the low acceptance rate of the clock factorize QMC algorithm is parameter-
dependent and can be addressed through targeted optimizations, such as the box technique
mentioned in the paper, which helps compensate for a decrease in acceptance rate. In this
specific case, the long-range XXZ model is mapped to a hard-core Bose-Hubbard model with
long-range hopping terms. For Jz/J = 9, this mapping introduces a local chemical potential
term µ∼ 34. The rejection factor corresponding to this local field is then given by

∫

exp(µ∆ni)dτ , (40)
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which may heavily suppress the acceptance ratio of updates. To mitigate this, one can apply
the box technique by incorporating interaction between nearest neighbors into this factor:

∫

exp

 

µ∆ni −
∑

〈i, j〉

V
rαi j
∆nin j

!

dτ , (41)

where
∑

〈i, j〉 sums over nearest-neighbors of i. This trick can improve the acceptance rate
while retaining the O(1) computational complexity. Additionally, other strategies, such as
sampling the worm move distance or the head-tail separation from an exponentially decaying
distribution, can further improve the efficiency of the worm algorithm [86,87].

5 Discussion and outlook

In summary, we develop the clock factorized quantum Monte Carlo method, which is both
efficient and generic for simulating long-range interacting quantum systems. We formulate
three efficient clock factorized Monte Carlo algorithms with various update schemes tailored
specifically for the LRTFIM, EBHM, and LRXXZ. Extensive benchmarks show that, compared
with the conventional Metropolis algorithms, there is a significant efficiency improvement
for these novel algorithms. For non-frustrated systems, incorporating bound rejection and
introducing first-bound-rejection events on a tree structure can lead to significant accelera-
tion with computational complexity scaling as A ∼ O(N) for strictly extensive systems, A ∼
O(Nκ) (0< κ < 1) for sub-extensive systems, and O(N/(lnN2))< (A)margin <O(N/ln(N)) for
marginally extensive systems. Analysis and optimization of the algorithm performance for the
sub-extensive long-range quantum system could be an interesting future direction. For systems
with frustrated long-range interaction in their diagonal terms, combining the clock factorized
QMC technique with the box technique effectively reduces computational complexity while
incurring only a slight decrease in the acceptance ratio [34].

Our method is not only efficient but also flexible and independent of the update scheme.
Besides the local update and worm updates, the recursive clock sampling technique can be
applied to the cluster Monte Carlo method because the bond activation events are intrinsically
independent of each other. Notably, its recent application to the 2D classical O(n) spin model
with long-range coupling [88,89] demonstrates both the efficiency and versatility of the algo-
rithm. The extended cluster algorithms for long-range interacting spin systems [37, 90] can
be understood as specific cases of the recursive clock sampling method. Moreover, the recur-
sive clock sampling method is a more general technique than the Metropolis method, with the
latter being a limiting case of the former. This implies that the clock factorized QMC method
is at least as effective as the Metropolis method in terms of performance.

In the current study, we perform benchmarks at fixed temperatures to demonstrate the
power of the clock technique in reducing the computational complexity due to long-range in-
teractions. In path-integral QMC simulations, to extract the quantum critical properties, one
typically performs simulations at an inverse temperature β that scales as the system size L,
for instance, β ≈ Lz , where z is the dynamical critical exponent of the quantum phase transi-
tion. The computational effort for such simulations generally scales linearly with β due to the
strictly short-range nature of interactions in the imaginary time dimension. The clock tech-
nique, specifically designed to address the complexity of long-range interactions in the spatial
dimension, dramatically improves overall scaling performance. Thus, the overall scaling of
the computational effort per sweep for a long-range interacting system of size N at inverse
temperature β is: O(βN2) for conventional algorithms O(βN ×C) for the clock QMC method.
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It is worth clarifying that the efficiency of measuring observables is generally independent
of update strategies in QMC simulations. Therefore, improving update efficiency is always
worth the effort. Due to critical slowing down near the critical point, the autocorrelation
between consecutive measurements is generally large. To generate effectively independent
samples, one needs to perform multiple sweeps between two measurements. Therefore, im-
proving the efficiency of updates in long-range interacting systems is crucial. While measuring
certain quantities in the long-range interacting system has an O(N2) algorithmic complexity,
regardless of the update strategies, not all required physical quantities necessitate this level
of measurement. For example, in the study of magnetism, the order parameter and related
quantities are only at an O(N) level, thus do not introduce additional computational cost.
Moreover, introducing long-range interactions does not necessarily increase the measurement
complexity for many observables, such as the correlation functions, which can still be mea-
sured within a O(N) algorithmic complexity. Furthermore, certain update schemes allow for
the definition of improved estimators, enabling the efficient measurement of these quantities.
In cases where energy-like physical quantities are essential, one can measure quantities such
as nearest-neighbor energy and specific heat, which should exhibit similar scaling behavior
near the critical points. For comprehensive energy measurements, optimized methods utiliz-
ing fast Fourier transformation (FFT) can be employed to reduce the computational cost [91].
These methods are generally independent of update strategies, emphasizing the importance
of developing efficient algorithms for Monte Carlo updates.

We also note that, for the LRTFIM, stochastic series expansion methods have been success-
fully used to achieve efficient simulations with an overall complexity of O(N log N) [11, 92].
While SSE is a well-established approach for studying quantum spin systems [24,93] and can
be applied to quantum systems with long-range interactions (see Ref [92] for detailed dis-
cussion), our work takes an alternative route by developing an efficient algorithm within the
PIMC framework. In fact, this study marks the first step toward efficient PIMC algorithms for
long-range systems. Our method is designed to handle long-range interactions and incorporate
off-diagonal contributions within the path-integral formalism, making it applicable to a broad
range of quantum systems, such as the extended Bose-Hubbard model. The two approaches
address different challenges and offer complementary advantages [92], and a detailed com-
parison between SSE and PIMC is beyond the scope of this work and remains an interesting
direction for future research.

Considering the recent active studies on long-range interacting systems that heavily rely
on Monte Carlo simulations and recent focus on the development of efficient classical Monte
Carlo methods [94], the clock factorized QMC method, due to its simplicity and ease of use, can
provide a readily available tool to explore the rich physics of these systems and is a promising
candidate for studying long-range interacting systems in various fields of physics. The Rydberg
atom array is a crucial platform for studying quantum computation [95] and exploring exotic
phases like quantum spin liquids [96]. Despite recent advancements in both theory and exper-
iments [96–99], numerical simulations of these systems remain challenging due to long-range
interactions [60, 100]. The clock factorized QMC method enables large-scale simulations of
Rydberg atom arrays without truncating van der Waals interactions or other approximations,
allowing for an unbiased investigation of the system. This could offer valuable insights and
guide future theoretical and experimental developments of the Rydberg system [101]. Another
potential application is to combine the recursive clock sampling technique with the worm al-
gorithm of the continuous-space path-integral Monte Carlo method [10], the state-of-the-art
method for studying long-range interacting bosonic gases, such as dipolar bosonic gas system,
which is closely related to AMO experiments. The worm head update in this algorithm can be
sampled using the recursive clock sampling technique to efficiently account for the long-range
interactions, allowing for simulations of the system with larger particle numbers.

28

https://scipost.org
https://scipost.org/SciPostPhysCore.8.2.036


SciPost Phys. Core 8, 036 (2025)

Acknowledgments

Funding information This work has been supported by the National Natural Science Foun-
dation of China (under Grant No. 12275263 and 12204173), the Innovation Program for
Quantum Science and Technology (under Grant No. 2021ZD0301900), and the Natural Sci-
ence Foundation of Fujian Province of China (under Grant No. 2023J02032).

A Related algorithm

A.1 Inversion method

Inverse transform sampling, or inversion method, is one of the most simple and universal
techniques for generating random numbers from a discrete probability distribution given its
cumulative distribution function. For a discrete random variable X with PMF p(k), the cumu-
lative distribution function (CDF) quantifies the likelihood that a random variable does not
exceed the k: F(k) =

∑k
i=1 p(i). The inversion method generates the random number X via

the corresponding inverse of CDF:

X = F−1(u) =min{k : F(k)≥ u} , (A.1)

where u≡ ran is a uniform random variable and min is the minimum function that returns the
smallest k that satisfies the condition. Hence, once the inverse CDF of the target distribution is
known, one can generate X using one uniform random number. However, obtaining a simple
closed form of F−1(u) is difficult except for a few classes of discrete distributions. One of the
most useful discrete distributions that can be easily generated via inverse CDF is the geometric
distribution, which is also relevant to clock sampling.

Consider a long-range interaction model on a complete graph, where every site interacts
with all other sites with identical strength J . One can define a constant bound hazard rate ĥ for
all factors; thus, the distribution of the bound rejection events follows a geometric distribution
P(X = k) = p(1 − p)k−1, with parameter p ≡ ĥ. The CDF of the geometric distribution is
F(k) = 1− (1− p)k. The inverse CDF function is then given by,

F−1(u) =min{k : 1− (1− p)k ≥ u} (A.2)

=min{k : k ≥ log(1− u)/ log(1− p)}

=
¡

log (u)
log(1− p)

¤

,

where ⌈x⌉ is the ceiling function that returns the smallest integer larger than or equal to x .
Therefore, the random variable X = F−1(ran) is geometrically distributed.

This method is particularly important because, at each level of clock sampling, geometric
distribution can be used to sample the bound rejection events by setting a constant bound
hazard rate ĥ for all Pj factors of the current tree level. The original clock technique for long-
range interacting classical systems can be viewed as a clock sampling process using geometric
random numbers to sample bound rejection events at each level of the tree [34].

Although the analytical form of F−1(u) is generally inaccessible for an arbitrary discrete
distribution, the inversion method allows one to evaluate F−1(u) by solving the inversion in-
equality:

F(X − 1)< u≤ F(X ) . (A.3)

Generating a random variable using the inverse CDF is equivalent to solving X for the above
inequality, with u being a uniform random number. An exact solution of the inversion in-
equality always exists and can be found in finite time [54]. This property of the inversion
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method makes it universally applicable for generating random numbers from a wide range of
distributions, even if their inverse CDF cannot be expressed in a closed analytical form.

Various algorithms exist to solve the inversion inequality. One of the simplest methods
is the sequential search, where the solution of inversion inequality is searched sequentially
starting from 0. In this method, one generates a uniform random number u and evaluates
the CDF function on the fly until the first k value satisfies F(k) >= u. The expected number
of iterations is E(X ) + 1, where E(X ) is the expectation of random number X . Thus, the
performance of the sequential search algorithm depends on the tail of the target distribution
p(k). The performance of the sequential search algorithm can be improved using several
techniques, such as a binary search or a table-aided search method [54, 57]. However, these
algorithms usually have a slow setup process and, therefore, are not optimal for generating
bound rejections whose distribution varies during the simulation.

A.2 Walker’s alias method

Besides the inversion method, another commonly employed algorithm for efficient sampling
from discrete probability distributions is Walker’s alias method, which was originally devised
by A. J. Walker in 1974 [55, 56]. Like the inversion method through sequential search, the
alias method requires a slow setup, rendering it suboptimal for generating the bound rejection
events. Nevertheless, we include it for the sake of completeness, and more importantly, it
proves to be valuable when handling long-range off-diagonal interactions, as will be discussed
in section 4.

Algorithm 4: Alias table setup
Input: Discrete probability pk, k ∈ 0,1, 2, . . . , N
Output: Alias array a(k) and probability array q(k)
for k = 1, 2, . . . , N do

q(k)← N ∗ p(k) and a(k)← k;
end
Initialize Rich= {q (k)≥ 1} and Poor = {q (k)< 1};
while Poor and Rich are not empty do

Randomly pick ℓ ∈ Poor and h ∈ Rich;
Set alias a(ℓ)←h;
Remove element ℓ from the Poor array;
Set q(h)← q(h)− (1− q(ℓ));
if q(h)< 1 then

Move h from Rich to Poor.
end

end
for any remaining element k in Poor or Rich do

Set q(k)← 1
end

Given a discrete probability distribution p(k) with k ∈ {1,2, . . . , N}, let probabilities be
amplified by a factor of N so that the averaged probability is now 1, instead of 1/N . Then,
one splits the elements of the probability distribution into three classes: for each element k,
label it as “poor” if pk < 1, as “rich” if pk > 1, or as “average” if pk = 1. The basic idea of
setting up Walker’s alias method is the “Robin Hood Rule”: taking from the “rich” to bring the
“poor” up to average [102]. Specifically, one takes the probability of a “rich” element, h, and
gives it to some “poor” element, say ℓ to bring it up to the averaged value 1, i.e., the amount
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Alias Table
Target Distribution

Figure 8: An example of the alias method for a discrete distribution of 4 elements.
For a target distribution p(k), a possible alias table is shown.

of probability taken is δℓ = 1− pℓ. For the “poor” to record its donor, its corresponding alias
index is set to aℓ ← h. In addition, the remaining probability of element h is recorded as
q(h) ← q(h) − δℓ. After the donation, the “poor” element ℓ is labeled as “average,” while
the “rich” element, with a remaining amount ph − δℓ, might become below the average and,
if so, it is re-labeled as “poor”. This process is repeated until no “rich” or “poor” element is
left. If either the “rich” or “poor” category empties before the other, q(k) of the remaining
entries are set to 1 with negligible error [103]. Notice that in each step, the size of “average”
elements increases at least by one; thus, the setup process has a time complexity of O(n). The
pseudocode code for setting up the alias table is described in Alg. 4.

After building up the alias table, one can easily sample the target distribution p(k) in
two steps: firstly, one uniformly draws an entry i from the alias table. Then one generate
an uniform random number ran, if ran < q(i), return i; otherwise, return its alias a (i).
The resulting random number conforms to the target distribution p(k). Sampling a discrete
distribution via the alias method has a time complexity of O(1) because it only involves a
single comparison and less than two table accesses.

In conclusion, Walker’s alias method provides an efficient algorithm for sampling from dis-
crete probability distributions. By employing an alias table, random numbers can be generated
with O(1) time complexity. The setup of the alias table can be accomplished using the Robin
Hood Rule, redistributing probabilities from “rich” to “poor” elements. Overall, Walker’s alias
method offers a valuable approach for efficient sampling and has been widely used in Monte
Carlo simulations and other probabilistic algorithms.
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