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Abstract

We study decoherence, diffusion, friction, and how they thermalize a planar rotor in the
presence of an external potential. Representing the quantum master equation in terms of
auxiliary Wigner functions in periodic phase space not only illustrates the thermalization
process in a concise way, but also allows for an efficient numerical evaluation of the open
quantum dynamics and its approximate analytical description. In particular, we analyti-
cally and numerically verify the existence of a steady state that, in the high-temperature
regime, closely approximates a Gibbs state. We also derive the proper classical limit of
the planar rotor time evolution and present exemplary numerical studies to verify our
results.
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Figure 1: We study the time evolution of an arbitrary planar rotor revolving around
e, with the usual cylindrical coordinate vectors e.(a) and e,(a) as function of the
single degree of freedom a. The quantum weathercock is coupled to a bath of tem-
perature T, for example a gaseous environment. In addition, an external potential is
applied. This potential may be induced, e.g., by a homogeneous electric field E and
if the weathercock is dielectric with an additional permanent electric charge placed
somewhere else than on the axis e, the external potential (26) is achieved.

1 Introduction

In the last couple of years there has been enormous progress in the field of levitated optome-
chanics [1, 2] that now allows for mesoscopic massive particles to enter the center-of-mass
quantum regime down to several quanta and even the motional ground state [3-7]. Simul-
taneously, the improved manipulation of orientational degrees of freedom [8-15] promises
to soon reach the angular momentum ground states of nano-scale rotors [16-22]. For the
latter, the correct description of decohering system-bath interactions are most important for
ambitious proposals to test quantum-classical boundaries [23, 24] but are also relevant for
nano-technological applications [2,25-28]. While models describing decoherence, diffusion,
and thermalization of the center-of-mass degrees of freedom with an environment have been
well established [29, 30], open quantum systems involving orientational degrees of freedom
have only recently been tackled successfully [31]. Still, up to this date, studies on diffusion
of orientational degrees of freedom, even for the simplest case of a planar rotor, are often
restricted to linear, i.e. Cartesian, asymptotic solutions around equilibrium positions, which
entails a large numerical overhead and further approximations [32-34]. We will address this
problem of orientational thermalization in one dimension in its most general manifestation, as
depicted in Fig. 1, including an external potential induced by, e.g. , an electric field. Apart from
the aforementioned field of levitated optomechanics, our results will also be useful to describe
the environmental influence on rotational based nanomachines and heat engines [35-39].
The model discussed in this article is based on a recently found thermalization master
equation for asymmetric rotors [31], derived from the Caldeira-Leggett master equation for
the constituent point particles [29,40], and will be implemented in a general kinematic model.
To introduce this model as instructively as possible, we present the equations of motion in
terms of the well-known Wigner function in phase space [41-43]. This quasi probability dis-
tribution is mostly used for linear motion and harmonic oscillators in Cartesian phase space
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and enjoys great popularity due to the close connection to its classical pendant while depict-
ing quantum signatures elegantly. For example, the Wigner functions associated to spatial
superposition states or Fock states exhibit areas with negative sign that would be classically
forbidden [44]. The similarities to the classical phase space distribution are also reflected in
the kinematic equations, which resemble the classical ones for linear dynamics (i.e., at most
harmonic potentials) and otherwise add higher-order quantum corrections that allow for an
easy identification of the classical limit [45].

This simple intuitive picture does not translate to the periodic phase space of a quantum
rotor when using the proper periodic Wigner function first derived by Mukunda [46,47]: Al-
ready in the most elementary case of planar rotation with a single angular degree of freedom,
the periodicity of the angle leads to complications in the kinematic description [48,49]. As a
remedy, one can decompose the proper Wigner function into auxiliary functions [48] which
on their own no longer fulfill the desired properties of a phase space function; however, their
time evolution is straightforward and resembles the classical intuition just as in the case of
the Cartesian Wigner function. Hence these auxiliary functions are most suited to discuss the
thermalization process as a result of the combined diffusion and friction in presence of an
external potential.

In this article we expand the results of Ref. [31] for planar rotations to the more general
case including external potentials. We further express the thermalization process in terms of
the auxiliary Wigner functions to also describe rotors that are not symmetric under inversion.
The formulas presented throughout the article are meant to provide a complete mathematical
toolbox to implement decoherence, diffusion, and friction for the general planar rotor.

The remainder of this article is structured as follows: In Sec. 2 we will re-visit the one-
dimensional and periodic Wigner phase space distribution together with the auxiliary Wigner
functions as introduced by Bizarro [48]. This will be the basis of the thermalization kinematics
presented in Sec. 3. We will show analytical results for the model in Sec. 4 and numerical
simulations for exemplary scenarios in Sec. 5, followed by a concluding Sec. 6.

2 Wigner-Weyl formalism for periodic phase space

This section, together with a majority of Sec. 3, serves as an introduction to the theoretical
framework and is based on previous work. Readers familiar with the topic of periodic phase
space may continue with Eq. (18).

2.1 Cartesian case

Since quantum mechanics is inherently a probabilistic theory, it is natural to compare it to
classical mechanics on the level of probability distributions in phase space [43]. The most
prominent and widely used approach was introduced by Weyl [41] and Wigner [42]. In the
case of one-dimensional motion, for example, the Wigner-Weyl formalism maps the quantum
mechanical state operator p to a quasi phase-space distribution

W(x,p) = % f ds e 2P/ (x +s|p|x —s)

1 .
=—qu62”q/h(p+q|plp—q), ¢))
nh

at position x and momentum p and the eigenstates |x) and |p) of the respective operators. Even
though the Wigner function can become negative, a feature widely recognized to show the
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quantum nature of a state [44], it fulfills the desired marginalization rules and normalization
of a phase space distribution,

fdx W(x,p) =(plplp),
fdp W(x,p) =(x|plx),
f dxdpW(x,p)=1. (2)

A given time evolution of the quantum state, J,p = Lp, described by a physical superoperator
L, can be converted to a partial differential equation for the Wigner function via

o W(x,p)= %st e 2/ (x +5|Lplx —s). 3)

For a closed system evolving unitarily under an external potential, one arrives at the quantum
Liouville equation [50].

2.2 Periodic boundary conditions

Let us now consider a planar rotor in phase space, as described by a periodic angular coordi-
nate a and its associated canonical angular momentum p,. When quantizing these canonical
variables, the easiest way to enforce the periodic boundary conditions, a € [—r, 7t), is to in-
troduce and always use the orientation operator e!% instead of & itself, thus avoiding issues
regarding the fundamental uncertainty principle between & and = p,/h = —iJ, [48,51].

The finite configuration space can be represented by the basis of improper eigenvectors |a)
of the orientation operator, e!¢|a) = e!*|a) or, alternatively, by the proper orthonormal basis
of discrete angular momentum eigenstates |m) with m € Z. The two bases are related by a
periodic Fourier transformation, through (a|m) = e!*™/+/27. Note that the |a) are strictly only
defined for a € [—m, ), and we shall implicitly assume throughout this article that a ¢ [—, 1)
be replaced by mod(a + 7,271) — 7 for periodic continuity.

The quantum state of a planar rotor can be represented in phase space by the periodic
Wigner function

1 n/2
W(a,m)=— J da’e ™2 (g + o |pla—a’), (@)
—1/2

which was already proposed in the pioneering work of Mukunda [47] and relates to the Carte-
sian case (1) in a seemingly straightforward manner. Indeed, the periodic Wigner function (4)
yields the correct angle and momentum marginals

f daW(a,m) =(m|p|m),

—T

> W(a,m)=(alpla),

ZJ daW(a,m)=1, (5)

analogous to the Cartesian case (2). However, if we Fourier-transform the density matrix on
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the right hand side of (4) to momentum representation, we find

1 + .
W(a,m) =5 Z sinc[(m— %) 77:} x elM=m2)o (1 |0m,) (6)
my,my
1 -
#o = 2,  mtmylplm—nt), %)
m/

which does not resemble the discrete version of the momentum integral in the Cartesian case
shown in the second line of (1). As a significant consequence, the quantum time evolution of a
free planar rotor no longer matches the classical evolution in phase space: a shearing transfor-
mation periodically wrapped to a € [—m, ). As we will show in Sec. 3, this mismatch can be
alleviated by expanding the Wigner function into auxiliary Wigner functions [48] associated
to integer and half-integer values of (m; + m,)/2 in the double sum of (6),

W(a,m)=W,(a)+ Z sinc [(m —m’'— %) n] Wiy s1/2(@). (8)

The integer and the half-integer auxiliary terms are given, respectively, by 7-periodic and 27-
periodic phase-space functions, defined as [48]
1 i 1 —2i(m+u/2)a’ / /
W@ = 5= | da/e™ 0099 (a1 o/ jpla—a), ©
—T
for u € {0, 1}. Crucially, the marginals and normalization of these auxiliary functions (9) now
read

J da Wy, (a) =(m|p|m),

—TT

D 2 W) + Wy o(@)] =(alpla),

ZJ daw,(a)=1, (10)

rendering them unsuitable as a quasi probability distribution, but they will allow us to calcu-
late the time evolution of the quantum rotor state in phase space in a concise manner. For
convenience, we shall abbreviate the half-integer index v = m + u/2 from this point onward.

3 Kinematic equations

We want to describe the open quantum dynamics of a planar rotor with moment of inertia I
under the influence of an external potential and environmental friction and diffusion leading
to thermalization. In the Schrodinger picture, the time evolution of the quantum planar rotor

state is 1

i
where T = ﬁi/Z[ is the kinetic energy, V = V(&) a periodic potential energy, and Lp a
Lindblad term describing thermalization, all specified further below. Switching to the phase
space representation and expanding the Wigner function according to (9), we identify the

respective contributions to the time evolution of each auxiliary Wigner function as
oW, ()= +3Y +3 W, (a). (12)

In the following subsections, we will discuss the terms individually.
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3.1 Unitary time evolution

The term atT W, (a) stems from the kinetic energy part T = f)i /2I of the free Hamiltonian and
reads [48]

W, (a) = —vThaan(a). (13)

This now matches the free time evolution generator for a classical planar rotor or parti-
cle on a line in phase space. It yields the (periodically wrapped) shearing transformation,
W,(a,t) =W, (a— vit/I,0), for each auxiliary Wigner function (9), facilitating an analytical
treatment of quantum rotations in phase space. The actual Wigner function (8) is a sum of
different auxiliary terms and its free time evolution is therefore not a simple shearing trans-
formation.

Physically, the more complex behavior of the free quantum time evolution in orientational
phase space, as opposed to a mere shearing in the Cartesian (or classical) case, is closely re-
lated to interference effects in periodic phase space, which also lead to quantum state revivals
at multiples of the revival time ¢, = 47I/h. We illustrate this by exemplary snapshots of the
Wigner function in Fig. 2. The combination of Egs. (13) and (8) lead to the emergence of neg-
ativities in the phase space distribution (indicating the quantum nature of the state), which
result in interference patterns in the marginals and (partial) revivals of the initial quantum
state.! The (partial) revivals of massive quantum rotors are a promising new avenue for ap-
plications and tests of mesoscopic quantum phenomena [24, 28], and for this their correct
description in presence of time-dependent potentials and dissipative channels is imperative.

Now let the rotor be subject to a time-independent external potential. Adhering to the rota-
tional symmetry, the potential is a generic 27t-periodic function that can be Fourier-expanded
as

oo
14 :Z[ak coska + by sinka] . (14

k=1
Note that even though we do not consider a;(t), bi(t) here, because they would prohibit
thermalization, the model could just as well be implemented in more elaborate interference

schemes based on time dependent potentials [28]. The associated contribution to the time
evolution of the auxiliary Wigner functions in phase space reads

atV Wv(a) =

St

oo
Z [a, sinka + by coska] x [Wv_k/z(a) — Wv+k/2(a):| , (15)
k=1

and a similar form is obtained for the contribution to the time evolution of the proper Wigner
function (4) in this case.

3.2 Thermalization Lindbladian

With the unitary time evolution in phase space at hand, we now consider the phase space rep-
resentation of the Lindbladian that generates thermalization. For a planar rotor, the generator
can be written as [31]

£p =316 (@) pe (@) —p]+ Jile, (@) pupe (4) —e,(@)- phye, (4]
D

e e 1o,
+ SI2T21 [ew(a)pa “pbaey(d)— E{pa,p}] , (16)

!Note that one would obtain a simple shearing transformation as well as revivals of the proper Wigner function,
albeit with the wrong periodicity, if one wrongfully imposed the momentum representation (7).
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Figure 2: (a)-(d) Exemplary snapshots of the Wigner function and (e) their marginal
angular distributions for a freely rotating planar rotor. The initial state in (a) and its
marginal (dashed curve) correspond to an approximately Gaussian wave packet of
width o = 0.1 centered at a = 0, as defined in (27). The later snapshots (b), (c), and
(d), and their marginals represented by the solid, dash-dotted, and dotted curves in
(e), are evaluated at the fractions t = t,/64, t,/32, and t,/16 of the revival time
t. = 4nl/h, respectively. For better visibility, each color scale in (a)-(d) is normalized
to the maximum (red) and the negative minimum (blue) of the Wigner function. The
visible negativities in (c) coincide with the appearance of interference fringes in the
marginal (dash-dotted).

with the Boltzmann constant kg, the bath temperature T, the moment of inertia I of the rotor,
the friction rate I', and the diffusion coefficient D = Tkz TI. We also introduce the orientation
vector e,(a) = (cosa,sina)’ in the rotation plane and its associated velocity direction vector
e (a) = d,e.(a).2 Thus, by construction, the angle operator & only ever appears inside well-
defined periodic functions.

The first line in Eq. (16) describes momentum diffusion, the second line friction, and the
third line angular diffusion. The latter, while needed to ensure the complete positivity of the
time evolution, is strongly suppressed by A2 and can therefore be neglected in the classical
limit where the thermal energy greatly exceeds kinetic energy quanta, Ikz T /A% >> 1. The first
and the second moment of angular momentum evolve under the dissipator as

(LTpy)=-T(ps) , (£7p2) =2D—2r(p?), (17)

which describes a constant increase of the kinetic energy due to diffusion and a state-
dependent linear friction. Together, they lead to approximate thermalization, i.e., equilibration
into a state very close to the Gibbs state pg ~ exp[—T /kz T] if no potential is present [31].

2The reader my have noticed that the generator (16) lacks the Hamiltonian-like term known from the Caldeira-
Leggett dissipator in Cartesian phase space [40]. A similar term does show up in the derivation of (16), see
Ref. [31], but it ultimately drops out due to e,(&) - e,(&) = 0.
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Table 1: Moment of inertia, collisional diffusion rate and final thermal occupation
number for typical proposed and realized nano-rotors.

I[kgm?] 2D, /h*[s7'] My,

Stickler et al. [24]
silicon rod
Stickler et al. [24]
carbon nanotubes
Pontin et al. [21]
silica ellipsoid
Bang et al. [18]
nanodumbbells

4.84-107%7 24.8 6.0-10°
6.57-10738 7.0 2.2-10°
6.78-10732 5.9-10° 2.2-108

3.37-10732 3.9-10° 1.6-108

In phase space, the dissipator (16) acts on the auxiliary Wigner functions like

OEW, (@) = 3 [Woa @)+ Wy1(@) = 2W, (@)]+ 5 [0+ Dy (@) = (r= D, (@)]

e [(3, 2 a2,
+ 16k, TT [(Z +(v+1) )Wvﬂ(a) + (T +(v—1) )Wvl(a)—z (T +v )Wv(a):| , (18)
kicking off the original results of this work. Here, the two terms in the first line describe
second- and first-order discrete momentum derivatives representing quantized momentum
diffusion and friction, respectively. The second line represents the minor correction due to
angular diffusion, suppressed by %#%/ksTI classical high-temperature limit, but needed for
complete positivity.

In Tab. 1 we list the relevant experimental parameters for proposals in the quantum regime
[24] and selected realizations of trapped nano-rotors [18,21], calculating the most relevant
gas diffusion constant [24,52] Dy =~ +/ 7r/2ﬁ2pgd€(1 +d/t)/ 4/ mgkgT with the rotor length
¢, diameter d, gas pressure p, and gas particle mass m, (assuming nitrogen in each case at
room temperature T = 300K and p, = 5- 10~ mbar). In all cases the thermal occupation

number my, = py,/H = 4/ 2k TI/h? is deep in the high temperature regime. To thermalize
on few-digits m,, one would require a moment of inertia as small as exhibited by molecules
and/or sub-Kelvin temperatures. In this case other thermalization sources like background
radiation would be required for the Caldeira-Leggett approximation to remain valid.

4 Analytical results

In general, the time evolution of the quantum rotor state described by the von Neumann
equation (11) or its counterpart in the Wigner representation can only be solved numerically.
However, thanks to the representation in terms of the auxiliary Wigner functions in (9), we
can obtain approximate analytical results for the classical high-temperature limit.

First, we show that the Gibbs state pg o< e H/ksT with ff = T+ is the steady state of the
time evolution up to leading order in €; = h*/kzTI and e, = h* max,{V"(a)}/k2T?I. That
is, the dissipator (16) thermalizes the rotor state in the presence of a potential at sufficiently
high temperatures such that €; , < 1. To this end, we follow the same path as we did for
the free rotor in Ref. [31] and rewrite the dissipator (16) such that its Lindblad form becomes
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explicit. Applied to the Gibbs state, and with D =Tk TI inserted, we get

2D [ A P
Lpg =z [A pcA' — > {A A,PG}]
2F - 1o o 1 a0 &
ZA-pdn - AT A= JFAT-A)] oo, (19)
61 2 2
with the Lindblad operator
A=e @)+ (@), = e,(8)+ —ew(a)pa (20)

4k 1Y

ﬁ/kBTe—H/kBT

The second line in Eq. (19) follows by multiplying from the right with e and

expanding e H/ksT AN H/ksT yig
(—k T)_ A
F(B)—Z £ [A,B];, 21)

where [H,B], =[H,[H,...,[H,B]...]] denotes the k-fold commutator.®> The unitary part of
the time evolution is generated by H and thus leaves the Gibbs state invariant by construction.
Hence we are left with showing that Lp¢ vanishes when €, ; — 0.

At first sight, (19) seems to diverge in the high-temperature limit. However, evaluating the
kinetic energy terms and the leading contributions of V in the expression (21), we find that
all critical terms in (19) proportional to 6;1 and 6(1) cancel, and the remaining leading-order
corrections are of the orders €; and €,, see the appendix for details. In order to understand
the physical meaning of €,, it is instructive to consider a strong trapping potential that could
align the rotor, say, at around a = 0. A second-order expansion of the potential yields the
characteristic trapping frequency Q = +/V”(0)/I, and so e, ~ (HQ2/kzT)?. Hence we see
that €; , — O corresponds to the limit in which thermal excitations reach far beyond the deep
quantum regime.

We can also verify that the continuous Fokker-Planck equation is re-obtained in the classical
limit. To this end, we apply the continuum limit to the discrete angular momentum numbers,
P, = im with i — 0, which effectively removes all half-integer auxiliary functions terms the
Wigner function expansion in the second line of (8),

1T Pa—Py 1 1
%I_I}})Ef dp, %smc|: (aﬁ _Eﬂwp;/hﬂ/z(a) 5 Wy, n(a). (22)

Here we used the sinc-function representation of the delta distribution. Thus, with the half-
integer terms absent, we can employ the same techniques as in Ref. [52] to obtain the approx-
imate Fokker-Planck equation

OW(p,,a,t) ~ ——8 W (pg,a,t)+V (a)&’ W(pa, a,t)
+ Faa[paW(pa,a, )]+ D3y W(py, a,t). (23)

It no longer contains the angular diffusion term (of order €;), and it replaces discrete momen-
tum differences from Eq. (18) by first- and second-order derivatives. Naturally, one can also

3Note that this Baker-Campbell-Hausdorff decomposition is not rigorous: the sum does not converge due to un-
bound operators. We can simply truncate the Hilbert space at a suitable p, qu. > max{/2kzTI, +/2V(a)I}
which renders Eq.(21) correct and only introduces a minor error that is exponentially suppressed with
exp(—pitrunC /2kg T) when eventually applying the Gibbs state.
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show that the Wigner representation of the continuous version of the Gibbs state p; is a steady
state of the Fokker-Planck equation (23).

Finally, we can give a simple analytic expression for the time-evolved phase-space state of
a free quantum rotor (V = 0) when only frictionless diffusion is present (I' — 0, but D > 0),
as asymptotically realized by an infinite-temperature bath. Given any initial state specified
by the auxiliary functions W,(a, 0), the auxiliary functions at later times are obtained by a
combination of shearing and convolution,

T
Wy(a,t)=>" J da’ W,_,(a—a’ —htv/I,0)K, (. t), (24)
leZ vy —T
with the kernels
1 ol 2Dt hkt
Kg(a’, t) = 2_6—2Dt/h % Zelk(a —htl/ZI)IE I:—zsinc(—)] ] (25)
n kez h 21

Here, I,(+) is a modified Bessel function of the first kind. The solution preserves the norm
of each auxiliary function and the Wigner function because of ), f da’K,(a/,t) = 1, and it
generalizes our earlier results for inversion-symmetric rotors reported in Refs. [23,52].

5 Numerical simulations

Apart from the specific analytical results presented in the previous section, the time evolution
(12) for a general quantum state of the planar rotor has to be calculated numerically. In this
section we will demonstrate the thermalization process for an exemplary potential and initial
state and show deviations between the here developed quantum mechanical model and its
classical counterpart. All our numerical results can be expressed in terms of the dimensionless
parameters = t+/Vy/I, T = kgT/V,, and 1 = i/ /V,I, where V, denotes the characteristic
strength of the external potential and i — 0 effectively marks the classical limit.

First proof-of-principle experiments are exclusively focused on inversion symmetric parti-
cles trapped in potentials with two identical global minima and I/V,; — 0. Instead, to demon-
strate the full capacity of Eq. (18), we will now show the time evolution of much harder to
prepare (superposition) states in slightly more elaborate potentials and T, f close to unity. Let
us assume a 27-periodic potential of the form

V(a) = Vy(cosa —cos2a), (26)

which has a local minimum at a = 0 and a global minimum at a = £7. Note that the potential
is not m-periodic, and therefore the rotor is not inversion-symmetric. This means that both
the integer and the half-integer auxiliary Wigner functions must be taken into account in the
expansion (8).

Let us further assume a pure initial state that resembles the periodic equivalent of a Gaus-

sian wave packet,
1, ( a—ag )]
_ , 27
exp [ o2 sin 5 27)

with the normalization factor N = \/ 21y (1/02)e~1/9%, We will work with small variances
02 < 1 so that the state is practically a Gaussian function in a, as one would obtain for a rotor
that is deeply trapped in an approximately harmonic potential. The specific form of the wave
packet allows us to give explicit expressions for the corresponding initial Wigner function (4),

] k I [cos(a—ao)/oz]
W(a,m)zzk:smc[(erE)n] rlo[1/0?] , (28)

(alp) = =

10
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Figure 3: Density plots of Wigner function snapshots for the time evolution of two
different initial rotor states subjected to the potential (26) and to thermalization. We
juxtapose the high-temperature regime at T = 6, shown in (a) and (b), to the low-
temperature regime at T =0.2in (¢) and (d). In (a) and (c), the initial rotor state
is a Gaussian-like wave packet (27) with o = 0.4 and a, = 0, whereas in (b) and
(d), we consider an equal superposition of two such wavepackets centered around
ay = *7m/2 with 0 = 0.3. In each diagram, the color scale is normalized to the
maximum (red) and the minimum (blue) value of the Wigner function. The blue
line shows the shape of the potential (26) for reference. The potential strength and
the moment of inertia are chosen such that i = 0.5 and T’ = /V,/I.

and identify the auxiliary Wigner functions as

_ Lyy[cos(a—ay)/0?]

W) = = /o] 29

In order to compute the time-evolved state, we now simply propagate the W, (a) according to
(12).

In Fig. 3, we illustrate the thermalization process for two different temperatures in the
classical regime and in the deep quantum regime, and for two different initial states: a quasi-
Gaussian wave packet at the local minimum (o, = 0), and a superposition of such wave packets
at ay = £71/2, i.e., close to the potential maxima. As a first observation, the decoherence
induced by the dissipator (18), which destroys the oscillating phase-space negativities of the
superposition state in (b) and (d), takes place on much shorter time scales than the actual
dissipation leading to the equilibrium state. Note that, because we have chosen an appreciable
friction rate I' = 4/V,,/I here, the Wigner function barely shears under the unitary evolution
before it is decohered. In the opposite regime of small I', one could observe the shearing of
the distribution, and possibly also interference fringes as in Fig. 2.

In the high-temperature case (T = 6) shown in (a) and (b), the final phase space distri-
bution at £ > 1 (¢t > 4/I/V,) will be indistinguishable from the Gibbs state p;. Even though
this temperature is large enough for the state to be unbounded by the potential, leading to a
smeared out Wigner function over the whole orientation space, the modulation due to the po-
tential’s shape is still visible in the right-most panels at = 5. At even higher temperatures, the
influence of the potential becomes negligible and the asymptotic steady state would converge
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to the one of a free planar rotor [31],

1 4T /R
D ; , 30
Peq ; T /i (27”"/712 + m) m) ml (30)

where the (Z) denote binomial coefficients and T/ 7= kgT1/H2.

For the low temperature T =0.2in (¢) and (d), the equilibrium state will be eventually
localized in the global minimum of the potential. However, if the initial state is trapped in the
local minimum as in (c), it may take a longer time to reach the equilibrium, because thermal
excitations are suppressed and the state thus needs to tunnel through the potential barriers to
reach the global minimum. The slow-down of the equilibration can be seen by observing the
panels in (c) and (d) at intermediate times. In a classical rotor model without tunneling, the
initial state in (c) would be meta-stable and thermalization inhibited.

The asymptotic steady state always deviates from the Gibbs state p, especially in the low-
temperature regime where only few angular momenta m are populated. We illustrate this in
Fig. 4 for the potential (26) by plotting as a function of T the trace distance between the actual
equilibrium state p, that we obtain numerically and the Gibbs state pg,

d1(Pegs PG) = %tr[\/(peq —P6) (Peq— pG)J €[0,1]. (31)

The deviations from the Gibbs state decrease once like T2 at medium temperatures where
the equilibrium state is still affected by the potential and once like T~ for large temperatures
where the potential becomes negligible and the rotor behaves quasi free. This is in accordance
with our analysis in Sec. 4, as dy(peq> P) = O(€1,€5) and €, < €; for T — oco. At small
temperatures, however, the deviation from the Gibbs state can be significant; indeed, the trace
distance almost reaches its maximum for the exemplary case of fi = 1, far from the classical
limit i< 1 (Vo> R2/1).

Finally, we would like to comment on the role of the angular diffusion term proportional
to K2 in the dissipator (18). This term has no classical equivalent and comes from an ad-hoc
correction of the Caldeira-Leggett master equation to ensure complete positivity. For a free
rotor, it would make a relevant contribution to the dynamics only at very low temperatures
close to the quantum ground state—a regime in which the approximations underlying the
Caldeira-Leggett master equation would break down anyway. In the presence of a potential,
however, the interplay between the potential’s contribution to the evolution and the angular
diffusion can affect the asymptotic behavior also at higher temperatures. Specifically, the pre-
cise equilibrium state may then depend on the friction rate I', whereas classically and for a free
rotor, the rate determines merely how fast the rotor relaxes. An experimental investigation of
the possible I'-dependence at equilibrium could shed light on the angular diffusion term and
clarify whether it is of physical origin.

6 Conclusion

We presented the general model of one-dimensional thermalization in presence of an exter-
nal potential for periodic degrees of freedom. We demonstrated analytical results to verify
important key features of the thermalization process: as more and more quanta of angular
momentum are occupied with growing temperature, the Gibbs state becomes a good approx-
imation for the equilibrium state of the quantum rotor, and this coincides with the classical
limit in which the phase space representation of the thermalization master equation is well
described by a continuous Fokker-Planck equation. These results are supported by our numer-
ical studies for different scenarios, demonstrating not only decoherence and thermalization,
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Figure 4: Trace distance between the exact equilibrium state of the quantum rotor
and the Gibbs state (31) as a function of the dimensionless temperature Tfori=1
(Vo = h2/I). To guide the eye, we also mark the slope T2 o< €, at intermediate tem-
peratures, where the state is still affected by the potential, and the slope T~} o< €,
at high temperatures in the quasi-free rotor regime. The exact equilibrium states are
obtained by numerically evolving the Gibbs state for long times.

but also genuine quantum features such as tunneling out of a local potential minimum. This
suggests a straight forward implementation for quantum tests and technological applications
on mesoscopic scales. The relevance of our model is not restricted to experiments explicitly
exploiting orientational degrees of freedom, but can also be used to estimate any rotational
corrections in experiments addressing the center-of-mass degree of freedom.

The problem can be expanded to linear, symmetric or even asymmetric rotors, each for
which the thermalization Lindbladian is formulated [31] and an external potential may be
added via (trigonometric functions of) Euler angle operators to the Hamiltonian. While the
analytical results shown here may very well be achieved in analogous fashion with existing
phase space representations [53-55], each additional Euler angle adds a significant layer of
complexity.
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A Steady state

In the classical high-temperature limit, the Gibbs state pg ~ e H/ksT s up to first-order cor-

rections in the small parameters €, 5, the steady state of the dissipator (16). To show this
explicitly, we start from the expression (19) for the dissipator acting on the Gibbs state, Lp.
If we omit the potential energy for the moment, the series of commutator terms in (21) be-
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comes a power series in €; = h2/kzTI — 0,

(—e1)* [ Pa 5
FB), o= Z T [hz, ] (A1)

Combined with the 1/e; prefactor in (19), we see that the summands with k > 2 contribute
to the first-order correction in €; to the steady state condition. The lower-order terms in the
remaining part cancel,

1 kT a2
_ 2I' | & (_61) Pa A
ﬁpG V=0 " 6_1 {A ];:0: 2kl [??AT ] AT Pct+ 0(61)

1

=£[(1+i+i——)|e (a)|2—1]pG+0(el)_0(el) (A.2)
€1 4 4
Here we have used that |e,|? = 1, whereas e, e, =0.

If we now re-insert the potential energy term V into the Hamiltonian H, we must take into
account mixed commutator terms up to k = 3 with one occurrence of V in (21), contributing
in leading order H2V"(a)/ kﬁ T2] < e,, to show that the steady state is also shaped by an
appreciably strong potential. It turns out that all terms o< #2V’(a)/ k]% T2I with contributions
of the potential V(a) vanish after operator re-ordering. For better readability we will only
explicitly show terms including V/(&) leading to

2Tk TI ( 1 A . 1 . (=kgTY* . . .
Lpg = hﬁ (A-(——[V,A’H [H,A']z)—B—[V,A'-A] pe+O(er,€3)
_ihT
16k3T2I

[ —2p, V(&) +12p,V'(&) + 4V (@)p,
—3 (28DaV'(@) +20V/(@)Pa) + puV (&) + V’(a)pa]pc +0(e1,€2). (A3)

Higher order derivatives of V(a) are also included in (’)(eﬁ). In the second line, a systematic
momentum operator ordering is not yet applied; doing this cancels almost all terms in the
square bracket, except for the commutator

ihT
ﬁpG szZI[pa’V (a)]pG+O(61>62)
h2
= k2 T2] V//(&)pG + 0(61’ 6%) = 0(61) 62) . (A4)
B

The relation €, o< €;V,,/kgT highlights the fact that, even if the free rotor would thermalize
very close to the Gibbs state, the potential could still be large enough so that e, 2 1 despite
€, < 1. This would correspond to a deep quantum regime in which the level spacing of H is
dominated by the potential energy, and it would no longer be justified to omit higher-order
€,-terms in (A.3).
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