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Abstract

We compute tidal signatures in the gravitational waves (GWs) from neutron star binary
inspirals in scalar-tensor gravity, where the dominant adiabatic even-parity tidal inter-
actions involve three types of Love numbers that depend on the matter equation of state
and parameters of the gravitational theory. We calculate the modes of the GW amplitudes
and the phase evolution in the time and frequency domain, working up to first order in
the post-Newtonian and small finite-size approximations. We also perform several case
studies to quantify the dipolar and quadrupolar tidal effects and their parameter de-
pendencies specialized to Gaussian couplings. We show that various tidal contributions
enter with different signs and scalings with frequency, which generally leads to smaller
net tidal GW imprints than for the same binary system in General Relativity.
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1 Introduction

Gravitational waves (GWs) are copiously produced by coalescing compact binary systems,
with more than ninety confirmed detections to date [1–3] that have already yielded valuable
insights into these sources and dynamical spacetime itself. Systems involving neutron stars
(NSs) [4–7] are particularly rich in information because they involve strong-field gravity cou-
pled to subatomic matter at supranuclear densities, which remains a longstanding frontier in
nuclear physics [8–10]. Extracting this information from GW signals relies on template mod-
els used for the detection and parameter estimation analysis. Shortcomings of the templates
can thus jeopardize the interpretation of our measurements. This has motivated significant
research efforts to improve the accuracy and physical realism of theoretical models. While
theory-agnostic tests of gravity are most commonly used in data analysis, and have already
provided constraints on parameterized deviations of the measured waveforms from those in
General Relativity (GR) [11–13], complementary theory-specific calculations are needed to
connect between empirical measurements and fundamental theory, and to potentially reveal
new phenomena to search for.

In this paper, we study GW signatures from tidal effects in NS binary inspirals in scalar-
tensor (ST) theories of gravity [14–17]. Such theories involve a scalar field coupled to the
metric, which can give rise to scalarized NS solutions whose internal structure depends on the
scalar field [15, 18–24]. We consider here ST theories in which scalarization of isolated NSs
occurs only when their compactness is above a parameter-dependent critical value [15,19,20],
while black holes and less compact stars are unaltered compared to GR. Thus, ST theories avoid
the stringent constraints on deviations from GR imposed by Solar-system experiments [25],
but are constrained by observations of binary pulsar, where scalar radiation would lead to
accelerated orbital decay relative to GR [19, 26–30]. Complementary constraints come from
GW measurements, where scalar radiation and other modifications of the inspiral as well as
phenomena such as dynamical scalarization [31], whereby an unscalarized star can become
scalarized when reaching a certain separation from the companion, could also play a role [32–
39].

The effects of scalarization on a NS’s internal structure are encoded in the GW signals, for
example, through tidal deformability coefficients that characterize the ratio of the star’s in-
duced multipole moments to tidal fields due to the binary companion [40–44]. In ST theories,
this induced response for each multipolar order and even parity comprises three different tidal
deformabilities [45] in contrast to only one parameter for NSs in GR. This arises because mass
and scalar quadrupoles are induced by the gravitational and scalar tidal fields respectively, and
moreover, the nonlinear interplay between gravity and matter also results in an induced scalar
multipole in response to a tensor tidal field and vice versa. These tidal deformabilities are
sensitive to the still poorly constrained equation of state (EoS) of NS matter as well as proper-
ties of the scalar field and spacetime [5,46–50]. While we consider here a specific class of ST
theories, our methods have broader applicability to other theories of gravity where scalarized
NSs can arise.

There has been much previous work on understanding and modeling the effects of ST
gravity on GW signals from binary inspirals. A number of numerical studies of NS binaries in
ST theories have analyzed or revealed features due to scalarization, such as the black-hole NS
simulations of [51] and those of binary NS mergers in [24, 31, 52, 53]. Analytical waveforms
have been computed in ST theories up to 1.5PN order [18, 32, 48, 54–67]. The leading order
dipolar tidal effects in the scalar sector have also been modeled [48,68].

In this paper, we complement existing work by assessing the importance of tidal effects up
to quadrupolar order. We compute the different tidal contributions to the Fourier and time-
domain waveform, working to linear order in finite-size effects and to 1PN order in relativistic

3

https://scipost.org
https://scipost.org/SciPostPhysCore.8.2.042


SciPost Phys. Core 8, 042 (2025)

effects on the orbital scale. We survey the parameter space of the effects and select several
fiducial binary systems that maximize some of these effects as well as intermediate cases whose
GW signals we analyze in detail, with particular focus on the GW phasing due to the different
kinds of tidal effects.

The paper is organized as follows. In Section 2, we start by discussing GWs in ST theories,
their transformations between different computational frames often used in literature, and the
effective action description of a compact binary system. In Section 3, we derive the leading
tidal effects to 1PN results and compute the waveforms. In Sec. 5, we apply our results to
scalarized NS considering three EoS ranging from stiff to soft and discuss our findings. We
finish with the conclusion and outlook in Sec. 6. We leave the details concerning the PN
calculations and our parameter space study to Appendix B and E, respectively.

The notation and conventions we use are the following. Greek letters α,β , . . . denote
spacetime indices, while Latin indices i, j, . . . correspond to spatial components. We use ∇µ
to denote the covariant derivative and ∂µ for the partial derivative. Capital-letter super and
subscripts, with the exception of the labels T, S and ST, correspond to a string of indices on
a tensor (see e.g. [69] for details), and angular brackets on tensor indices denote the sym-
metric and trace-free (STF) part. For instance, for a unit three-vector ni , the STF tensor
n<L=2> = nin j − 1/3δi j , with δi j the Kronecker delta. We adopt the Einstein summation
convention on all types of indices, i.e., any repeated indices are summed over. In this work we
set the speed of light equal to unity; c = 1.

2 Setup and approximation scheme for neutron star binary inspi-
rals in ST theories

2.1 Scalar-tensor theories of gravity

Scalar-tensor theories are a class of theories beyond GR that include a scalar field coupled with
the metric. The action for such theories can be formulated in two frames. Historically, it was
first formulated in the so-called Jordan frame,

S(J)ST =

∫

M
d4 x

p

−g∗
16πG

�

F(φ)R∗ −
ω(φ)
φ

∂ µφ∂µφ − V (φ)
�

+ Smatter

�

ψm, g∗µν
�

, (1)

with R∗ the Ricci scalar, F(φ) an arbitrary function of the scalar fieldφ,ω(φ) a self-interaction
coupling, and V (φ) its potential. The asterisk is only a notational adornment to distinguish
quantities from those associated to a conformal metric introduced below. In this work, we will
focus on massless scalar fields, so that V (φ) = 0. We note that in (1), the scalar couples only
to the curvature while the matter part is the same as in GR; in particular, there are no effects on
the particle physics of the standard model. However, the scalar coupling to the curvature leads
to complicated equations of motion for the metric fields. Thus, it is convenient to transform to
a different frame where the field equations simplify. Specifically, by performing a conformal
transformation

g∗µν = A(ϕ)2 gµν , (2)

with a field-dependent conformal factor that is related to the coupling function by

A(ϕ) = exp

�

−
∫

dϕ
F ′

2F
p
∆

�

, (3)
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where ϕ is defined by the field redefinition,

dϕ
dφ
=
p
∆ , (4a)

∂αφ =
1
p
∆
∂αϕ , (4b)

with

∆≡
3
4

�

F ′

F

�2

+
1
2
ω(φ)
φF

, (5)

and a prime denoting a derivative with respect to the argument, F ′ = dF/dφ, we obtain the
action in the Einstein frame,

S(E)ST =

∫

M
d4 x
p
−g

16πG

�

R− 2gµν∂µϕ∂νϕ
�

+ Smatter

�

ψm, A2(ϕ)gµν
�

. (6)

In the Einstein frame, the gravitational sector of the action is the Ricci scalar R associated to
the metric gµν with a free scalar field ϕ. However, the matter action contains A(ϕ) which
couples the metric and scalar field through the matter action. In principle, as the two frames
differ only by a conformal transformation, any measurable quantities should be independent
of the choice of frame, provided that they are calculated consistently within each frame.

2.2 Relevant scales for binary neutron star systems in ST theories

We first consider relevant scales involved in the problem to gain insight into the basic physics
dominating different aspects of the binary dynamics and GWs and to define appropriate ap-
proximation schemes to model them. Specifically, we consider two non-spinning NSs or a
black hole-NS system at large separation r during their early inspiral. Due to the presence of
the scalar field in the gravitational theory, depending on the parameters, a scalar configura-
tion inside and around NSs can arise [18]. We assume the binary to move in a quasi-circular
motion, slowly descreasing in radius due to the loss of GWs and scalar radiation. Fig. 1 shows
a schematic illustration of the systems we consider. The smallest scale that is relevant for
modeling the GWs is the size of the bodies in the binary. For a black hole, this is of the order
of its Schwarzschild radius rS ∼ 2GM , with M its mass, while for NSs, depending on its mass
and EoS, it is generally of order RNS ∼ O(10km) equivalent to a few times rS . During the
early inspiral, the orbital separation r is much larger than the size of the bodies, r ≫ Rbody.
The next larger scale in this setup is the reduced wavelength of the GWs, which is of order
ω−1

GW ∼ O(ω−1) with ω the orbital angular frequency. The largest scale is the distance from
the source to the observer denoted by d. The above scales are commonly discussed in the
literature on PN theory and finite size effects in binary systems in GR, as reviewed e.g. in [70].

In beyond-GR gravity theories, it is often the case that the presence of extra fields introduce
new scales into the problem. However, in the massless ST theories we consider here, the scalar
configuration (in cases where it exists) is given by a monotonically decreasing function outside
the star, in principle extending to infinity. To be able to still assign a characteristic length scale
to the scalar configuration we look at the ADM energy of the field

Eϕ =

∫

S

p
γd3 x nαTαβ tβ , (7)

where tβ is the timelike Killing vector ∂⃗ /∂ t, S the spatial hypersurface with induced metric
γαβ and nα is the timelike unit normal. The neutron star background metric is obtained by
solving the ST field equations with a matter action corresponding to the perfect fluid energy
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Figure 1: Schematic illustration of the binary systems of NS A and B and their re-
spective masses and velocities. The relevant length scales of the system are labelled.

momentum tensor. For details we refer to Sec. 5.1.2 and [45]. The energy momentum tensor of
the scalar field will be introduced at the end of this section in (20). Fig. 2 shows the percentage
of the scalar field ADM energy as function of the radial distance for an example case NS of
1.4M⊙, assuming EoS SLy and ST parameter β0 = −4.5. We give a more detailed discussion
on the possible parameter choices in Sec. 5. In this case, we find that the ADM energy around
the scale of ∼ 5.5RNS is around 90% of the total ADM energy at spatial infinity. We repeated
this analysis for a range of NS masses and respectively softer to stiffer EoS WFF1, SLy, H4 and
for different values of the ST parameter β0. For this sweep of the parameter space we found
very similar profiles for the ADM energy percentage as shown in Fig. 2 for which 90% of the
total ADM energy is always captured in a region smaller than O(10)Rbody. Hence despite of
the slow falloff of the scalar field itself, its energy is concentrated in a region close to the body.
There are no strict criteria for defining the scale of the scalar configuration. However in the
overall hierarchy of scales we discuss in this section based on Fig. 2 we can say it is of the
order of magnitude of Rbody. We define therefore the characteristic length scale of the scalar
cloud to be

Lϕ ∼ 6Rbody . (8)

Even though the ADM energy related to the scalar field is concentrated close to the compact
object, the energy density at the relevant scales during the inspiral can still be significant. To
get some insight we did an order of magnitude estimate regarding the density of the field. At
a GW frequency around 200Hz during the inspiral part of a coalescing event of a NS binary,
their relative distance can be found via r ∼ f π/GαM , with α a ST parameter related to the
scalar charges of the NSs, defined in (31), and M the total mass of the binary system. We
derive this explicitly in (B.6). At this radial distance we find the energy density of the scalar
field corresponding to the 00 component of the scalar energy momentum tensor (20) to be
O(1011)kg/m3. This is computed for an equal mass NS system of 1.4M⊙ with EoS SLy and
β0 = −4.5. This density surpasses white dwarf like energy densities. For fields with large
energy densities, environmental effects like dynamical friction (DF) can leave a significant
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Figure 2: Ratio of the ADM energy as function of the radial distance over the to-
tal ADM energy at large distances for a NS of 1.4M⊙, considering the SLy EoS and
β0 = −4.5. The dashed line corresponds to a ratio of 0.9.

imprint on the GW signature. The energy loss due to dynamical friction during the inspiral is
given by [71,72]

FDF ∼ 4πρη2 G2M2

v
lnΛ , (9)

with ρ the scalar field energy density, η = m1m2/M2 the symmetric mass ratio, v ∼
p

GM/r
the velocity of the body moving through the field, which we approximate by the Kelperian
velocity. lnΛ denotes the Coulomb algorithm characterized by the impact parameters of the
two body encounters. As our order of magnitude is not sensitive to the estimate of Λ and it
is usually O(1) [72] we will set it to unity for this estimate. Comparing the DF energy loss to
the GW leading order energy flux FGW ∼ 32/5G4η2(M/r)5 we find the ratio of the fluxes at
GW frequency 200Hz to be

FDF

FGW
∼O(10−1) . (10)

Hence the effect of DF on the GWs due to the presence of the scalar field can become quite sig-
nificant during the inspiral, moving towards higher energy densities when the radial distance
shrinks. We highlight therefore the importance of incorporating environmental effects due to
the additional scalar field in future work.

To come back to our discussion on the hierarchy of the length scales in the system as
shown in Fig. 1, we divide the problem into different zones. The near zone is defined by
rN Z ≪ ω−1

GW [73] which captures physics on the orbital scale. The far zone encompasses the
region outside the near-zone. In the two zones we use different approximation schemes and
match them in the intermediate region. The approximation methods adapted to the differ-
ent zones are based on expansions in small dimensionless parameters. Finite size effects are
characterized by the ratio between the body scale and the orbital separation

εt id ∼
Rbody

r
≪ 1 . (11)

As discussed above, for the scalar tidal effects we also work in the approximation that
(Lϕ/r)≪ 1. Furthermore the PN weak field and slow motion parameter is

εPN ∼
GM

r
∼ v2≪ 1 . (12)

We use these parameters to define perturbative expansions that enable us to compute explicit
results for the dynamics and GWs of NS binaries in ST theories including tidal effects.
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2.3 Overview of the approach to compute tidal GW signatures in ST theories

Our calculation in the sections below is structured as follows. We start with a computation
of the orbital dynamics on the scale of the relative separation of the two bodies. Because of
this large separation relative to their size, the objects can be described by point particles with
small corrections due to their finite size and the scalar condensate. These are described by the
introduction of a scalar dependent mass and tidally induced multipole moments. We expand
the field equations from action (6) perturbatively to first order in εPN and εt id which are small
in the near zone. This is followed by a computation of the waveforms at the detector, here one
can expand in the large distance to the source d, resulting in a multipolar decomposition of
the fields. We obtain the waveforms and GW phase in terms of the global characteristics of the
objects. We can relate these parameters to the fundamental properties of the bodies by using
the results on the tidal properties for NSs in scalar-tensor theories of [45].

2.4 Skeletonized action including tidal effects

When studying the relativistic two-body problem during the early inspiral, we can take ad-
vantage of the hierarchy of scales to formulate an effective description valid at the scale of
interest. Here, we are interested in the early inspiral where the separation between the bodies
r is larger than their characteristic size R, R/r ≪ 1 . To describe the binary system on the large
scales of the orbital dynamics and the radiation we make the approximation that the world-
tubes of each of the bodies reduce to a fiducial worldline, corresponding to a point-particle at
their center of mass, augmented by an infinite sum of multipole moments describing finite-size
effects.1 In this approximation, the total matter action has the form

Smatter[gµν,ϕ, xµA] = Spp + Stid , (13)

with

Spp = −
∫

dτ z m(ϕ) , (14)

the point-particle action with a field-dependent mass m(ϕ), which accounts for the fact that
free falling bodies acquire scalar-field dependent terms, therefore violating the strong equiv-
alence principle [56], and z =

p

−uµuµ the redshift factor. For the finite-size effects, we
consider here only static tidally-induced scalar and tensor multipole moments of the form

QS
L =−λ

ℓ
S ES

L −λ
ℓ
ST ET

L , (15a)

QT
L =−λ

ℓ
T ET

L −λ
ℓ
ST ES

L , (15b)

where ES/T
L are scalar and tensor tidal fields given by

ES
L = −∇Lϕ ,

ET
L =

1
z2
∇L−2Ca1αa2β

uαuβ ,
(16)

where Cµανβ is the Weyl tensor, uα the four-velocity tangent to the worldline, and the indices
L are taken to run over a1, a2, . . . , aℓ, with ℓ the multipolar order. The tidal deformability or
Love number coefficients λℓS/T/ST characterize the various tidal responses of the star. They
contain information from the strong-field regime inside the stars. For the class of ST theories
considered in [45], the scalar-tensor Love numbers λℓST were found to be negative, while λS
and λT were positive. From (15), this implies that the deformation of the star characterized
by λST is of the opposite sign compared to the pure scalar or tensor response.

1Recall that a multipolar series expands in powers of R/r.
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Using the above definitions, the action for linear, static, even-parity tidal effects is given
by [45]

St id =
∑

ℓ

∫

dτ z g LP

�

λℓS
2ℓ!

ES
L ES

P +
λℓT
2ℓ!

ET
L ET

P +
λℓST

ℓ!
ET

L ES
P

�

, (17)

where we used the definition

g LP =
ℓ
∏

n=1

g lnpn , (18)

such that the capital super and subscripts L,P contract as string of indices with the tidal fields.

2.5 Field equations derived from the action

The total action for the system consists of the gravitational action, for which we use the
Einstein-frame action (6), together with the skeletonized description of the two bodies (14).
We only consider here the matter contribution from the point-particle action. The contribution
from the tidal action is separately added to the Lagrangian in Sec. 3.2. As shown in [68] this
equivalent to incorporating the tidal contribution at the level of the field equations at the order
of the approximations we are considering. Varying with respect to the dynamical fields results
in the following field equations

Gµν = 2Tϕµν − 8πGT pp
µν , (19)

with

Gµν = Rµν −
1
2

Rgµν , (20)

Tϕµν =∇µϕ∇νϕ −
1
2

gµν∇ρϕ∇ρϕ , (21)

the Einstein tensor and scalar field energy momentum tensor respectively. Furthermore we
define

Tpp
µν =

−2
p
−g

δSpp

δgµν
, (22)

as the energy momentum tensors associated to the point-particle action. It is useful to work
with the trace-reversed form of the field equations

Rµν − 2∇µϕ∇νϕ + 8πG
�

T pp
µν −

1
2

gµνT pp
�

= 0 , (23)

where the trace of the energy momentum tensor is given by Tpp = gαβTpp
αβ

and similarly for
the tidal part. The field equation for the scalar field results in

1
4πG
□ϕ = −

1
p
−g

δSpp

δϕ
, (24)

where □≡ gαβ∇α∇β denotes the d’Alembertian operator.

3 Binary dynamics in the PN and tidal approximations

To solve the equations of motion we work perturbatively in the post-Newtonian (PN) approx-
imation for relativistic effects to relative 1PN order throughout. The point-particle effects are
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already known to 1.5 Post-Newtonian (PN) order [18,63,65,67]. In Sec. 3.2 the tidal contri-
butions to the dynamics are considered. We work to linear order in tidal effects and therefore
specify the tidal fields (16) to the leading order corrections in a Newtionian background in
Sec. 3.1. Tidal corrections from dipolar scalar effects have also been computed [68]. As we
work in the Einstein frame, our results also resemble those in scalar-Gauss-Bonnet gravity in
the zero coupling limit [49, 74, 75]. We do not discuss the known results in detail here and
instead focus on the new kinds of tidal contributions at higher multipolar order. We collect the
total 1PN and tidal corrections of the dynamics, waveforms and phase evolution in Appendix B.

3.1 Near zone and tidal fields

As mentioned in Sec. 2.5 at the level of the field equations we only consider the point-particle
contribution and the tidal contributions to the dynamics are directly recovered from the tidal
action in Sec. 3.2. For solving the field equations we thus only consider the perturbative
expansion in the PN approximation characterized by the small parameter (12).

In the PN approximation, the metric is expanded around flat spacetime and the scalar
field around its background value. For convenience, we henceforth use εPN → v2 as the PN
expansion parameter. To 1PN order, the metric and scalar have the expansion

g00 = −e−2U +O
�

v6
�

, (25a)

g0i = −4gi +O
�

v5
�

, (25b)

gi j = δi je
2U +O
�

v4
�

, (25c)

ϕ = ϕ0 +δϕ
(1) +O
�

v4
�

. (25d)

From (25d) it also follows that the scalar-dependent mass of body A has the expansion

mA(ϕ) = MA

§

1+ qAδϕ
(1)
A +
�

qAδϕ
(2)
A +

1
2

�

(qA)
2 + βA

�

δϕ
(1)
A

2
�ª

+O(v6) , (26a)

with MA the ADM mass, qA the scalar charge, and βA its derivative

qA =
d log mA(ϕ)

dϕ

�

�

�

�

ϕ=ϕ0

, βA =
d qA(ϕ)

dϕ

�

�

�

�

ϕ=ϕ0

. (26b)

The identification of the expansion coefficients in (26a) with the properties of a potentially
scalarized NS comes from matching the skeletonized description to the full theory, as discussed
in [74]. We adopt the convention from [18] to write the corrections to the mass in terms of the
scalar charge instead of the sensitivity parameter sA = (d log mA(ϕ)/d logϕ)|ϕ=ϕ0

that is also
often used in the literature [63,64,67]. For the conversion between the charge and sensitivity
and other constituent parameters, we refer to Appendix A of [65].

After substituting the expanded metric (25) and mass (26a) in the field equations (23),
(24), and solving the equations for the fields order by order in the PN expansion, we recover
the lowest order contributions of the near zone fields [49,63,75]

U =
GMA

r
+ (A↔ B) +O

�

v4
�

,

δϕ(1) = −
GMAqA

r
+ (A↔ B) +O

�

v4
�

,
(27)

where r is the relative separation between the bodies. As these field solutions are obtained in
the PN approximation they are only valid in the near zone region introduced in Sec. 2.2.

To construct the tidal contributions to the dynamics of a two body system, we rely on a
double perturbative expansion in the PN approximation and in the tidal corrections charac-
terized by (11) and the scalar analogue. We assume each of these corrections to be small and
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treat them as independent. We focus on the contributions to linear order in the tidal expansion
and in the PN approximation. Cross terms of O(εPNεtid) are discarded as being of higher order
in smallness.

For the tidal corrections we focus on the leading order corrections in a Newtonian order
gravitational background, where (16) reduces to

ES
L ,A = −∂Lϕ = GMAqA∂L

�

1
r

�

= GMAqA
(−1)ℓrA

<L>(2ℓ− 1)!!

r(2ℓ+1)
,

(28a)

here r<L> denotes the symmetric trace free (STF) product of L radial terms. For the tensor
tidal fields we have

ET
L ,A = −∂LU = −GMA∂L

�

1
r

�

= −GMA
(−1)ℓrA

<L>(2ℓ− 1)!!

r(2ℓ+1)
.

(28b)

We note that the scalar charge qA is negative [45], which makes both kinds of fields in (28)
of the same sign for a fixed multipolar order ℓ. To derive (28), we substituted the near zone
fields (27) into the general expressions (16), used the identity (A.1) for ℓ derivatives of 1/r
and defined r<L>

A = (xA− xB)<L>, with x i
A and x i

B the components of the position vectors of
body A and B, respectively.

3.2 Tidal contributions to the reduced two-body Lagrangian and relative accel-
eration

To construct the tidal contributions to the binary dynamics, we start by substituting the PN
expansions for the mass (26a) and tidal fields (28) in (14) and (17) and obtain the following
tidal contributions to the Lagrangian

dSA
tid

d t
= G2M2

A

∑

ℓ

(2ℓ− 1)!!
2r2(ℓ+1)

�

λℓT,A+λ
ℓ
S,Aq2

B − 2λℓST,AqB

�

, (29)

where we used the identity (A.2) for the contraction of STF unit vectors. Adding the contri-
butions from both bodies yields

Lt id = G2µMα2
∑

ℓ

(2ℓ− 1)!!
2r2(ℓ+1)

ζℓ , (30)

with
α≡ 1+ qAqB , (31)

M = MA + MB the total mass, µ = MAMB/M the reduced mass and a combination of tidal
parameters

ζℓ ≡
MA

MBα2

�

λℓT,B +λ
ℓ
S,Bq2

A − 2λℓST,BqA

�

+ (A↔ B) . (32)

This tidal contribution adds linearly to the point-mass Lagrangian. The total two-body La-
grangian up to 1PN is given by (B.1). The expressions for the tidal Lagrangian and accelera-
tion are structurally the same as in GR, where only a tensor deformability appears. Hence, all
three Love numbers in ST theories can be taken into account substituting ζGR

ℓ
→ ζST

ℓ
.
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From the two-body Lagrangian we compute the relative acceleration from the Euler-
Lagrange equations in relative form

1
MA

∂ L
∂ xA
−

1
MB

∂ L
∂ xB

=
1

MA

d
d t
∂ L
∂ vA
−

1
MB

d
d t
∂ L
∂ vB

. (33)

After transforming to the center-of-mass (CM) frame using the relations in [64] and the iden-
tities (A.3) and (A.4) for derivatives of (∂L r−1)2 and contractions of STF multilinears of unit
vectors, we obtain

ai
rel,t id = −G2α2M

∑

ℓ

(2ℓ− 1)!!(ℓ+ 1)
r2ℓ+3

niζℓ , (34)

in agreement with the known results in the limit λℓS ,λℓST → 0. The nontidal part of the relative
acceleration that adds to (34) to yield the total acceleration can be found in (B.4).

3.3 Tidal contributions to the binding energy

Next, we compute the binding energy of the system from the Lagrangian (B.1). Assuming a
quasi-circular orbit ṙ = r̈ = 0, we can express the binding energy in terms of the orbital fre-
quency by using ω2 = −a · r/r2 instead of the coordinate dependent orbital radius parameter.
The tidal contribution to this radius-frequency relationship is

ω2
t id =

GαM
r3

�

αM
r

�

∑

ℓ

(ℓ+ 1)(2ℓ− 1)!!
r2ℓM

ζℓ

��

. (35)

The full expression including also the point-mass terms is given in (B.5). Inverting this expres-
sion results in (B.6) with tidal contribution

r(x)t id =
GαM

x

�

−
1
3

x

�

∑

ℓ

(2ℓ− 1)!!(ℓ+ 1)
G2ℓα2ℓM1+2ℓ

x2ℓζℓ

��

, (36)

where we introduce the frequency parameter

x = (GαMω)2/3 . (37)

Analogously to [49], we then obtain the tidal contribution to the binding energy

Et id(x) = −
µx
2

�

−
1
3

∑

ℓ

(2ℓ− 1)!!(4ℓ+ 1)
G−2ℓζℓ

M2ℓ+1α2ℓ
x2ℓ+1

�

, (38)

in agreement with the dipolar expression in [49], and the generic multipolar order result
in [76]. The complete result for the binding energy including also the point-mass terms is
given in (B.7).

4 Tidal effects in the scalar and gravitational radiation

The gravitational waveforms generated by the dynamics of the binary computed in the previous
section can be constructed from the radiative solution of the field equations (19), (24) in the
far zone. The field equations can be written as wave equations when introducing the gothic
metric gab =

p
−g gab [75] and expanding this metric and the scalar field around Minkowski
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spacetime and the scalar field background respectively. In the harmonic gauge ∂νg
µν = 0 this

results in

□ηhαβ =
1

16πG
µαβ ,

µαβ = (−g)Tαβm + 16πG
�

Λαβ
�

,

Λαβ = 16πG(−g)tαβLL + hαν,µ hβµ,ν − hµνhαβ,µν ,

(39)

where tαβLL is the Landau-Lifshitz energy momentum pseudo tensor [77], and the commas in
the subscript denote partial derivatives. The scalar field equation of motion, with ϕ = ϕ0+δϕ
and δϕ capturing the scalar waveform, is given by

□ηδϕ = 4πGµs ,

µs = −
1
p
−g
δSm

δϕ
.

(40)

We can write these fields as integrals over the past lightcone by using the retarded Green’s
function

hαβ(t, x) = −4G

∫

d4 x ′
µαβ
�

t ′, x′
�

δ
�

t ′ − t +
�

�x− x′
�

�

�

|x− x′|
,

δϕ(x) = −G

∫

d4 x ′
µs

�

t ′, x′
�

δ
�

t ′ − t +
�

�x− x′
�

�

�

|x− x′|
.

(41)

For the solutions to 1PN order we are considering, the direct integration approach of [73,78,
79] applies. We split the integration domain of (41) over the past lightcone into the part that
lies in the near zone and the part in the far zone. As shown in [63, 73, 75, 78], the far zone
contributions are higher than 1PN order. As in the far zone contribution to the integral there
are no matter sources, the contribution needs to come from back reaction effects which are
generally higher order. For the details on performing these integrals we refer to [63–65,67,75].
Below, we discuss the tidal contributions to the waveforms.

4.1 Tidal contributions to the scalar waveform

In the near zone we expand (41) in the following multipole expansion based on the fact that
far from the source x′/|x− x′|= x′/d ≪ 1 to obtain

δϕ(x) =
∞
∑

l=0

δϕℓ(x)

= −G
∞
∑

l=0

(−1)ℓ

ℓ!
∂L

�

1
d

I L
s (τ)
�

,

(42)

where the scalar radiative multipole moments are given by

I L
s = I L

s |pp +QL
S , (43)

where the point-particle (pp) contribution is

I L
s (τ) |pp=

∫

M
d3x′µs(τ, x′)x′L . (44)

Here, we introduced the retarded time τ = t − d and the hypersurface M cut out by the
intersection of the near zone with the constant time hypersurface tM = τ. As the region M is
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bounded, the integral is convergent. For the tidal contribution we use (15a) and (28a), (28b)
and convert to the center-of-mass frame using the expressions from [64] to obtain

QS
L = G

(−1)ℓr<L>(2ℓ− 1)!!
r2ℓ+1

ζ̄ℓ , (45)

here we redefined r<L> = rA
<L> and the two body dependencies are captured in the tidal

coefficient
ζ̄ℓ = −MAqAλ

ℓ
S,B −MBqB(−1)ℓλℓS,A+MAλ

ℓ
ST,B +MB(−1)ℓλℓST,A , (46)

the factor (−1)ℓ arises from rB
<L> = (−1)ℓrA

<L>. We are interested in radiation near future
null infinity, where d is very large. Thus, when derivatives in (42) act on 1/d they will give
strongly suppressed contributions which we neglect. To compute derivatives of the multipole
moments we use that

∂i Is(τ) =
∂ τ

∂ xi

dIs

dτ
= −N i dIs

dτ
= −N i dIs

d t
, (47)

where N = (x − x′)/d is a unit vector pointing from the source to the field point. Thus, the
multipolar scalar waves near null infinity are given by

δϕℓ(x) =
G
d

NL

ℓ!

�

∂

∂ t

�ℓ

I L
s +O
�

d−2
�

. (48)

From (43) it follows that the scalar waveform consist of the point-particle and linear tidal
contributions. We express the latter more explicitly by rewriting time derivatives of the tidal
multipoles (45) using the generalized Leibniz rule

�

∂

∂ t

�ℓ

r−(2ℓ+1)r<L> =
ℓ
∑

k=0

�

ℓ

k

�

∂ ℓ−k
t r<L>∂

k
t r−(2ℓ+1) . (49)

This can be further manipulated using Faà di Bruno’s formula [80]

�

∂

∂ t

�ℓ

r−(2ℓ+1)r<L> =
ℓ
∑

k=0

ℓ!
k!(ℓ− k)!

∂ ℓ−k
t r<L>

k
∑

p=1

(2ℓ+ p)!(−1)p

(2ℓ)!r2ℓ+p+1
Bk,p(ṙ, r̈, . . . , rk−p+1) , (50)

with Bk,p the incomplete Bell polynomials. Using this, the total tidal contribution to the scalar
waveform can be written as

δϕt id =
∑

ℓ

ℓ
∑

k=0

k
∑

p=1

G2N Lζ̄ℓ
d

(2ℓ+ p)!(−1)p+ℓ

k!(ℓ− k)!2ℓ
∂ ℓ−k

t r<L>

r2ℓ+p+1
Bk,p(ṙ, r̈, . . . , rk−p+1) . (51)

For the total 1PN scalar waveform with tidal corrections see (B.7).

4.2 Tidal contributions to the tensor waveform

Similar to the scalar waveform, the near-zone contributions to the tensor radiation fields can
be expressed as a multipole expansion, though some differences arise because the source term
of the field equation is a tensor, as explained in Sec. C of [78]. This leads to the radiative fields

hi j(t,x) =
2G
d

∞
∑

ℓ=0

1
ℓ!

NL−2

�

∂

∂ t

�ℓ

I i j L−2 +O
�

d−2
�

, (52)

where I i j L−2 are the tensor radiative multipole moments given by

I i j L−2 = I i j L−2 |EW +Qi j L−2
T . (53)

14

https://scipost.org
https://scipost.org/SciPostPhysCore.8.2.042


SciPost Phys. Core 8, 042 (2025)

Here, the first term are related to the Epstein-Wagoner multipole moments for point
masses [81] and the second one the tidal multipoles (15b). From (15b) and (28a), (28b)
we obtain, after converting to the center-of-mass frame using the expressions from [64] and
proceeding as in (51),

QT
L = G

(−1)ℓr<L>(2ℓ− 1)!!
r2ℓ+1

ζ̃ℓ , (54)

with
ζ̃ℓ = −MAqAλ

ℓ
ST,B −MBqB(−1)ℓλℓST,A+MAλ

ℓ
T,B +MB(−1)ℓλℓT,A . (55)

Using (49), (50) we obtain for the direct tidal contribution to the tensor waveform

hi j
QT =
∑

ℓ=2

ℓ
∑

k=0

k
∑

p=1

4G2N L−2ζ̃ℓ
d

(2ℓ+ p)!(−1)p+ℓ

k!(ℓ− k)!2ℓ
∂ ℓ−k

t r<L>

r2ℓ+p+1
Bk,p(ṙ, r̈, . . . , rk−p+1) . (56)

Additionally, the time derivatives in (52) acting on the point mass multipoles in (53) introduce
tidal contributions coming from the relative acceleration (34).2 These involve terms propor-
tional to the parameter ζℓ defined in (32). Together with this contribution, the tidal terms in
the tensor waveform read

hi j
t id = −
∑

ℓ

4G3µα2M2(1+ ℓ)(2ℓ− 1)!!ζℓ
d r2(2+ℓ)

r i r j +
∑

ℓ=2

ℓ
∑

k=0

k
∑

p=1

4G2N L−2ζ̃ℓ
d

×
(2ℓ+ p)!(−1)p+ℓ

k!(ℓ− k)!2ℓ
∂ ℓ−k

t r<L>

r2ℓ+p+1
Bk,p(ṙ, r̈, . . . , rk−p+1) . (57)

For the full 1PN tensor waveform see (B.9).
Using the standard convention [78] of an orthonormal triad composed of the vectors N in

the radial direction of the observer, p̂ along the intersection of the orbital plane with the sky
and q̂= N× p̂, the plus and cross polarizations of the waveform are given by

h+ =
1
2

�

p̂i p̂ j − q̂i q̂ j

�

hi j ,

h× =
1
2

�

p̂i q̂ j + q̂i p̂ j

�

hi j .
(58)

For contracting the vectors, we use the identities given in [78] but do not write out the explicit
results here.

4.3 Gravitational waves in the Jordan frame

The scalar and gravitational radiation computed in Sec. 4 were based on the Einstein-frame
formulation of the ST theory, as discussed in Sec. 2.5. Here, we review the transformation
of these results to the Jordan frame. The fact that the matter sector of the Jordan-frame
formulation of ST theories is the standard model of particle physics implies that one can use
existing results for how a GW detector measures signals in that frame. In Appendix D we
provide the derivation of the results for the transformations and further discussion based on
geodesic deviation and the frame transformation (2) and (4), generalizing the results of [63,
82, 83] to generic coupling functions. We obtain that the Jordan-frame waveform is given in
terms of Einstein-frame quantities by

hJordan
i j ≃ hi j +

2A′(ϕ∞)
A(ϕ∞)

δϕδi j , (59)

2This type of tidal contribution entering via the relative acceleration due to derivatives to the point particle
multipoles did not contribute in our discussion of the scalar waveform in the previous section 4.1 as they are
higher PN order in that case.
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where hi j is the waveform computed in Sec. 4.2 and given explicitly by (B.9), and δϕ the
scalar waveform computed in Sec. 4.1 and given explicitly in (B.7). The approximation is that
we work in a region of spacetime asymptotically far from the binary source, where the scalar
field is dominated by its constant asymptotic value ϕ∞, and to linear order in small pertur-
bations around an asymptotic background, both for the metric and scalar fields. Applying the
decomposition into the tensorial plus and cross polarizations (58) to (59) and using the or-
thonormality of the spatial triad shows that the tensor polarization amplitudes in the Jordan
frame hJordan

+/× = h+/× coincide with those in the Einstein frame given in (58). In addition, the
scalar contribution to the GWs in (59) gives rise to an extra scalar polarization component of
the GWs. Depending on the coupling function and cosmological value of the scalar field, this
contribution may, however, be suppressed by many orders of magnitude.

4.4 Energy fluxes

The gravitational and scalar radiation cause an energy flux out of the binary system propor-
tional to the angular integral over the square of the time derivative of the waveforms. Similar
to Sec. 3.3 we are interested in the fluxes and phase evolution in terms of the coordinate in-
dependent orbital frequency for quasi circular orbits. We substitute (B.6) in the waveforms
(B.7), (B.9) and expand perturbatively to linear order in the tidal contributions. This requires
explicitly evaluating r<L> in (51), (57). Hence from this section onward we consider only
multipole moments up to ℓ= 2, where all three different tidal contributions (S/T/ST) appear.
Below we discuss these tidal contributions to the scalar and tensor energy fluxes.

4.4.1 Tidal contributions to the scalar energy flux

The scalar energy flux can be obtained from the scalar waveform via the surface integral

FS =
d2

4πG

∮

δϕ̇2 d2Ω . (60)

We perform the angular integral over the products of unit vectors Ni using the identities from
[69] and substitute (B.7) to obtain

FS,t id =
4G3MS−α

3/2µ

3r6

�

9ṙ − 3v2 +
2GMα

r

�

ζ̄1 +
8G4M2S2

−α
4µ2

3r7

�

2ζ1 + 9
ζ2

r2

�

, (61)

with
S± ≡

qA± qB

2
p
α

, (62)

and α, ζℓ and ζ̄ℓ defined in (31), (32) and (46) respectively. Assuming quasi-circular orbits,
substituting (B.6), and expressing the flux in terms of the frequency parameter x defined
in (37), we obtain

FS,t id = x7

�

−
4S−µζ̄1

3α9/2G3M5
+

16S2
−µ

2ζ1

9α3G3M5

�

+ x9 S2
−µ

2ζ2

α5G5M7
. (63)

In the expressions above two types of tidal contributions arise. The ζ̄1 term results from (51)
due to the induced tidal moments. We find that only the odd ℓ give a nontrivial contribution
to the integral. The ζℓ=1,2 terms come in via the relative acceleration contributions (34) which
arise from the time derivative to the waveform. The full 1PN scalar flux for the point-mass
part is given by (B.11) and (B.12).
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4.4.2 Tidal contribution to the tensor energy flux

The tensor energy flux is constructed via

FT =
d2

32πG

∮

ḣi j
TTḣi j

TTd2Ω , (64)

where TT denotes the transverse-traceless piece obtained with the aid of the projection oper-
ator

P i j = δi j − N iN j , (65)

to reduce to the transverse part and removing all traces. Note that the derivatives to the tensor
waveforms are taken in the T T gauge.3 The angular integral is again computed using the
identities in [69]. Substituting the explicit expression for the tensor waveform (B.9) into (64)
we find the following expression for the tidal contributions to the tensor flux

FT,t id =
48G3Mαµ

5r8

�

100ṙ4 − 105ṙ2v2 + 15v4 + 18
GMα

r
ṙ2 − 11

GMα
r

v2
�

ζ̃2

−
64G4M2α3µ2

15r7
(7ṙ2 − 6v2)ζ1 −

192G4M2α3µ2

5r9
(4ṙ2 − 3v2)ζ2 , (66)

with ζℓ and ζ̃ℓ defined in (32) and (55). Again assuming quasi-circular orbits and expressing
the flux in terms of the frequency, we obtain

FT,t id = x8 256µ2ζ1

15α4G3M5
+ x10

�

192µζ̃2

5α7G5M7
+

384µ2ζ2

5α6G5M7

�

. (67)

Similar to the scalar flux we find again two types of tidal contributions. The ζ̃2 term results
from (57) due to the induced tidal moments. Now only the even ℓ contribute to the integral.
The ζℓ=1,2 terms come in via the relative acceleration. For the 1PN tensor flux see (B.14) and
(B.15). Together with the scalar flux in (B.11) the total flux is the sum of the two contributions
F = FS +FT .

4.5 GW phase evolution

Generally, the tidal corrections compared to the GR contributions in the radiation are small.
However, during the many GW cycles in the inspiral these corrections accumulate in the phase
evolution. In this regime, the motion is approximately adiabatic, with ω̇/ω2 ≪ 1 and there
is an energy balance between the binding energy of the system and the radiative energy flux
Ė(ω) = −F(ω). Together with the change in orbital phase φ̇ = ω this gives the system of
differential equations

dφ
d t
−ω= 0 ,

dω
d t
+

F(ω)
E′(ω)

= 0 . (68)

As the results for E(x) and F(x) are only available perturbatively, there are different choices
for how to solve (68), as reviewed e.g. in [84]. With regard to data analysis it is useful to
obtain the expressions for the phase evolution in the Fourier domain. The Fourier transform

3Using the definition of the projector operator one can use the identity
�

P ik P jl − 1
2 P i j Pkl
� �

P imP jn − 1
2 P i j Pmn
�

= PkmP ln − 1
2 Pkl Pmn to simplify the integral (64) to

FT =
µ2

32πG

∮ �

4Q̇i jQ̇i j − 8N lnQ̇klQ̇kn + 2N klmnQ̇klQ̇mn
�

d2Ω. Here Q is defined as Q i j = Q̃ i j −
1
3δi jQ̃

k
k with

Q̃ i j =
d

2Gµhi j .
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of the gravitational strain measured by a detector and denoted by h̃ can be obtained using the
stationary phase approximation (SPA) [85]

h̃SPA( f ) =A
√

√ 2π
Mω̇

e−i[ψ( f )+π/4] , (69)

with A the amplitude and ψ ≡ 2φ(t( f ))− 2π f t( f ) the Fourier phase. One can rewrite (68)
as a second order differential equation in terms of the Fourier phase

d2ψ(ω)
dω2

= −2
E′(ω)
F(ω)

. (70)

Using (37) this leads to

ψ= −
∫ �∫

E′(x)
F(x)

d x

�

3
p

x
GαM

d x +φc − 2π f tc , (71)

where φc , tc are integration constants determined by the choice of reference point in the
evolution. To solve (71) we use the Taylor F2 approximant [84], where the integrand is
expanded perturbatively in x and in tidal corrections using the explicit expressions for the
fluxes (B.12), (B.15) and binding energy (B.7). The presence of both scalar and gravitational
radiation in the system leads to different behaviors depending on the frequency regime: for
small frequencies, the scalar dipole terms in the total flux (proportional to x4 in (B.12)) are
dominant, while for larger frequencies the tensor quadrupole terms (proportional to x5 in
(B.15)) become the dominant contributions. These regimes are commonly referred to as the
dipolar driven (DD) and quadrupolar driven (QD) regimes respectively. Specifically, based on
the leading order contributions to the flux, the regime for which the scalar dipole dominates
is

xDD≪
5S2
−α

24
or f DD≪
�

5
24

�3/2 S3
−
p
α

πGM
, (72)

see [49] for a study of the validity of this approximation to the transition frequency between
the two regimes.

4.5.1 Phase evolution in the dipolar-driven domain

For frequencies in the regime denoted by (72) the dipolar term in the total flux is leading. We
factor out this term and expand the ratio up to 1PN, which gives the following form

E′(x)
FDD(x)

=
−3αGM
8ηS2
−x4

�

1+
�

E′0 − f DD
2

�

x
�

, (73)

with the symmetric mass ratio

η=
µ

M
, (74)

and the coefficient f DD
2 given by (B.17). Substituting (73) in (71) gives the following result for

the Fourier phase angle in the DD domain (B.18), where we show only the tidal contributions
here

ψDD
tid =

1

4ηS2
−x3/2

§

x3
�

ρDD
tid log (x)−

2
3
ρDD

tid

�

−
270ζ2

7α4G4M5
x5
ª

+φc − 2π f tc , (75)

with

ρDD
tid =

3
G2α2M3η

�

−
ζ̄1

α3/2MS−
+ 16ηζ1

�

. (76)
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The total phase including also the point-mass terms is given in (B.18). Looking at the prefactor
of (75) we see that the phase angle diverges for S− → 0, where S− was defined in (62). This
parameter vanishes for an equal mass system where both bodies have the same scalar charge q.
However, as the scalar flux terms are proportional to S− the scalar radiation, and therefore the
DD regime, vanishes for these systems and the expansion used to obtain ψDD which assumed
the scalar flux is leading is invalid and would need to be modified.

4.5.2 Phase evolution in the quadrupolar-driven domain

For frequencies above (72) the quadrupolar contribution in the total flux is leading. We split
the total flux in its scalar and tensor contributions and factor the dipolar and quadrupolar term
labelling them non-dipolar and dipolar respectively. This leads to F = Fnon-dip +Fdip with

Fnon-dip =
32η2ξ

5Gα2
x5
�

1+ f nd
2 x
�

,

Fdip =
4S2
−η

2

3Gα
x4
�

1+ f d
2 x
�

,

(77)

where
ξ= 1+S2

+α/6 , (78)

and f nd
2 and f d

2 are given in (B.21). We then expand the ratio in (71) as

E′(x)
F(x)

≃
E′(x)

Fnon-dip (x)

�

1−
Fdip (x)

Fnon-dip (x)

�

, (79)

which results in

E′(x)
F(x)

≃ −
5GMα2

64ηξx5

�

1+
�

E′0 − f nd
2

�

x
�

+
25GMα3S2

−

1536ξ2ηx5

�

1+
�

E′0 − 2 f nd
2 + f d

2

�

x
�

. (80)

Substituting (80) in (71) gives the Fourier phase in the QD domain (B.22), with the tidal
contributions

ψQD =ψnon-dip +ψdip +φc + 2π f tc , (81)

with

ψnon-dip,tid =
3α

128ηξx5/2

�

ρ
nd,1
tid x3 +ρnd,2

tid x5
�

, (82a)

ψdip,tid =−
5S2
−α

2

1792ηξ2 x7/2

�

ρ
d,1
tid x3 +ρd,2

tid x5 log(x)−
2
3
ρ

d,2
tid x5
�

. (82b)

The non-dipolar tidal coefficients are given by

ρ
nd,1
tid =

400ζ1

3α2G2M3
+

160ζ1

3α2G2M3ξ
, (82c)

ρ
nd,2
tid = −

24ζ̃2

α5G4M6ξη
−

216ζ2

α4G4M5
−

48ζ2

α4G4M5ξ
, (82d)

and the dipolar parts are

ρ
d,1
tid = −

35ζ̄1

2α7/2G2M4S−η
−

280ζ1

3α2G2M3
−

280ζ1

3α2G2M3ξ
, (82e)

ρ
d,2
tid = −

140ζ̃2

α5G4M6ηξ
−

560ζ2

α4G4M5
−

280ζ2

α4G4M5ξ
. (82f)
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4.5.3 Expressions for the tidal phasing in ready-to-use form

The tidal phase contributions (82) can be expressed as

ψ
QD
tid =

3
128ηx5/2

�

c2S−x2 + c3 x3 + c4S2
−

�

log x −
2
3

�

x4 +
�

39
2α5ξ2

Λ̃+ c5

�

x5
�

, (83)

where the various coefficients ci for i = 2, 3,4, 5 are given explicitly in terms of masses, scalar
charges, and tidal deformabilities of the bodies in (C.1)– (C.4) in appendix C.1 and α and ξ
were defined in (31) and (78), with S± given in (62) and x defined in (37), which includes a
dependence on α. We have also introduced the parameter Λ̃ having the same functional form
as in GR and involving the quadrupolar tensor deformabilities [42,86]

Λ̃=
16

13M5G4

�

(11MB +M)
λT

A

MA
+ (11MA+M)

λT
B

MB

�

, (84)

however, as λT are computed within ST gravity, Λ̃ may differ from its value in GR.
The coefficients c2 and c3 in (83) depend only on scalar dipolar tidal effects, while c4 and

c5 involve all quadrupolar tidal parameters. Moreover, for the case of identical NSs, S− defined
in (62) vanishes and hence the effects encapsulated in c2 and c4 do not contribute in that case.
The remaining coefficients for identical masses m, scalar charges q, and tidal deformabilities
λℓ are given by

c3 |A=B =
1680q2(1+ 5

42q2)

(1+ q2)5(6+ q2)2
ΛS

1 , (85)

c5 |A=B =
702

(1+ q2)5(6+ q2)2

�

7
26

q2ΛT
2 +

q
�

26+ 5q2
�

26
ΛST

2 −
q(22+ 3q2)

26
ΛS

2

�

. (86)

Here, we have defined the dimensionless deformabilities

Λℓ =
λℓ

G2ℓm2ℓ+1
. (87)

We also note that for the case of identical NSs, Λ̃ = ΛT
2 and α5ξ2 = (1 + q2)5(6 + q2)2/36.

Finally, we see that in the case of GR, where S− = c3 = c5 = 0 and α = ξ = 1 we recover the
standard result for the leading-order quadrupolar tidal effects [42,86].

5 Case study of neutron star binaries

5.1 Set-up and properties of single neutron stars

We next apply the general results of the previous section to NS binary and BH-NS systems in
specific classes of ST theories.

5.1.1 Choice of coupling

We consider ST theories characterized by the Damour-Esposito-Farèse coupling [20],

A(ϕ) = e
1
2β0ϕ

2
. (88)

These theories contain two arbitrary parameters; the above entered β0 and ϕ∞, the value
of the scalar field at spatial infinity. One can rewrite these free quantities by the following
parameters

α0 = α(ϕ∞) = ∂ ln A(ϕ∞)/∂ ϕ∞ = β0ϕ∞ , (89)
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capturing the strength of the coupling between the scalar field to matter in the asymptotic
limit and it’s derivative

β0 = ∂ α(ϕ∞))/∂ ϕ∞ , (90)

as solar system test probe directly α0 or combined parameters of α0 and β0 [19,20,28]. When
β0 is sufficiently negative, β0 ≲ −4.3 [22], NS solutions become scalarized. That is, in these
cases NSs are not only described by the mass and EoS relating the pressure and density, but
also by the properties of the scalar field. This threshold value of β0 is largely insensitive to the
choice of α0, which for increasing |α0|mostly smooths the sudden scalarization effect [15,24],
leading to scalarized NSs over the whole mass range. For our case studies we adopt the choice
of a cosmological background scalar field ϕ∞ = 10−3 and β0 = (−4.5,−6) corresponding to
scalarized NS solutions, hence |α0| is of order 10−3. This corresponds to the upperbound value
on this parameter from solar system tests of the Cassini spacecraft [28, 87, 88]. We do note
that this |α0| and β0 = −4.5 are on the lower bound of being consistent with recent binary
pulsar tests [24, 27–29]. This does depend on the choice of EoS, where softer EoS allow for
a more negative lower bound on β0 [28], however β0 = −6 can be stated to be ruled out
by current observations, regardless of the EoS [29]. Our main goal with these choices for
β0 is to show the effect and dependencies of this parameter on the tidal contributions to the
waveforms for scalarized NSs. For more negative choices of β0 the scalarization effects are
enhanced and our choices for this parameter are therefore useful for a qualitative study of the
parametric dependence. However we highlight that the case studies for β0 = −4.5 show the
more realistic results.

5.1.2 Properties of isolated and tidally perturbed NSs

For the numerical implementation to compute properties of NSs, we use the results from [45],
which we briefly summarize.

The properties of NSs are obtained from the field equations derived from (1) with the
matter action corresponding to a perfect-fluid energy-momentum tensor for a NS, together
with stress-energy conservation. To solve the system requires specifying an EoS, for which we
use a parameterized piecewise polytropic approximation to tabulated models [89] known as
WFF1, SLy and H4. These EoS cover a range of possibilities from softer to stiffer EoSs that,
for a given NS mass, lead a corrresponding range of more or less compact stars respectively.
To compute these properties we solve the equations of motion numerically using a shooting
method, as described in [45]. Specializing the computations to an equilibrium configuration
yields the mass, radius, and scalar charge of the NS. The upper panels of Fig. 3 show the re-
sults for the scalar charge for β0 = −4.5 in the left panel and β0 = −6 in the right panel.
Each point corresponds to a different central density of the NS that increases from left to right
along each curve. The steep rise in charge seen above a certain mass indicates the formation
of a significant scalar condensate, i.e. the scalarization of the NS which occurs above a critical
compactness, which is reached for lower masses in the case of softer EoSs. We further consider
linear, static perturbations to this equilibrium configuration, which enables us to solve for the
various tidal deformability parameters shown in the lower panels of Fig. 3 for a fixed interme-
diate SLy EoS. Here, the ℓ= 2 scalar (S) and scalar-tensor (ST) values are rescaled by an order
of magnitude as they would otherwise be too small to be visible on the plot, and in addition,
the sign of the ST results is reversed. We see that in the case of β0 = −4.5 (lower left panel),
the tensor deformability (blue curves) is identical to its value in GR (dashed lines) for most
of the mass range and only differs slightly for masses corresponding to a large scalarization.
All other deformability parameters are much smaller than the tensor one throughout the mass
range and also exhibit a significant enhancement for large scalarization. For larger values of
β0 (lower right panel), all effects of scalarization and scalar tides are larger, with all Love num-
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Figure 3: Charge-mass curves (top row), and tidal deformabilties (bottom row) in
the Einstein frame for three equations of state (WFF1, SLy, and H4). Quantities
are shown for β0 = −4.5 (left column) and β0 = −6 (right column). Dashed lines
represent the GR configurations β0 = 0. In the bottom panels we fix the SLy EoS and
show the different tidal deformabilities. We note the rescalings of some of the curves
in the lower left panel and the different units of the dipolar scalar deformabilities
(purple curves and right axes) and the quadrupolar ones (all other curves and left
axes). Circles represent the maximum charge configuration, Mq, and crosses indicate
the maximum mass.

bers attaining the same order of magnitude, however, the quadrupole tensor deformability also
dominates over the others in most of the mass range.

5.2 Computation of β(ϕ)

To compute the skeletonized mass (26) requires not only information on the scalar charge,
but also how it varies with the cosmological value of the scalar field, as parameterized by β
in (26). This quantity was not computed in [45]. For objects with negligible self-gravity one
can use that [18] β = (d2 log A/dϕ2)∞, where the evaluation is at the value of the scalar field
at infinity. However, compact objects such as NSs have strong self-gravity and this formula does
not apply. Thus, we compute β numerically by calculating the scalar charge q for a wide range
of asymptotic scalar field values, interpolating the results to obtain an approximate functional
dependence on the field, and computing the numerical derivative of this interpolating function.
Our implementation is based on an extension of the publicly available Mathematica code
of [45,90], which we use to generate data around the value of the desired cosmological scalar
field ϕ∞ = 10−3. We compute results for ϕ∞ = [0.9, 1.1]×10−3 in increments of 0.01×10−3.
We then interpolate the datapoints and differentiate the interpolation function to obtain β
from (26b) with ϕ0 = ϕ∞. We also compare this to results obtained directly approximating
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Figure 4: Results for the parameter β characterizing the variation of the scalar charge
with the field at its cosmological value as a function of mass. The results are com-
puted in the Einstein frame for three EoSs (WFF1, SLy, and H4) and for β0 = −4.5
(left column) and β0 = −6 (right column) for cosmological scalar field values of
ϕ∞ = 10−3. Dashed lines represent the values of the coupling coefficient β0, circles
indicate the maximum-charge configuration Mq, and crosses the maximum mass.

the numerical derivative by

β(ϕ∞)≈
q(ϕ∞ +∆ϕ∞)− q(ϕ∞)

∆ϕ∞
, (91)

with∆ϕ∞ an infinitesimal increment. We found that taking∆ϕ∞ = 0.01×10−3 is sufficiently
small to resolve the derivative, while larger increments of 0.05× 10−3 led to inconsistencies.
With this setting, we obtain excellent agreement between the methods, with a maximum frac-
tional difference between the approximation to the numerical derivative and the interpolation
of 0.37%. This is expected as the dependence of q on the scalar field is smooth. Fig. 4 shows
the results for β using the approximation to the numerical derivative (91). As a check on
our calculations, we also verified that for M → 0 we recover the analytical results for neg-
ligible self-gravity. We see that as a function of the NS mass, the maximum |β | occurs for
relatively low masses and takes a low value for the maximum scalar charge configuration Mq.
For β0 = −4.5 shown in the left panel of Fig. 4, the value of |β | for the Mq configuration is a
local minimum, and rises to larger values for higher masses before rapidly decreasing and for
softer EoSs (WFF1, SLy shown as the red and blue curves respectively) even dropping below
|β0| near the maximum mass. By contrast, for the stiffer H4 EoS (green curve), |β | peaks
abruptly around the maximum mass and remains well above |β0|. Such a behavior was also
noticed in [91], p. 530, and in Figure 3 of [15]. The behavior of |β | is different for β0 = −6
shown in the right panel of Fig. 4. In that case, all EoSs lead to a maximum value at low
masses, fall off below |β0| near the maximum mass, and attain a secondary local maximum for
NSs with central densities just above the maximum mass configuration. We note that while for
NSs in GR, the maximum mass usually correlates with the onset of a gravitational instability,
this is a priori not necessarily the case for the ST configurations considered here. We leave the
stability analysis and hence the question if the behavior of β beyond the maximum mass is of
physical significance to future work.

5.3 Waveform and frequency evolution of example binary systems

To gain intuition on the impact of tidal effects on the waveforms, we first consider in Fig. 5 the
plus polarization of the time-domain waveforms (B.9) and (58) with the phase evolution com-
puted from (68) for a BH-NS binary system with masses (5,1.7)M⊙ (top panel) and a NS-NS
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Figure 5: The plus polarization of the time-domain waveform for a BH-NS system
(top), NS-NS system (middle) and frequency evolution for the respective NS-NS sys-
tem (bottom), assuming β0 = −4.5 and the SLy EoS. The benchmark time tbenchm
corresponds to the a frequency of fbenchm = 100Hz for the top two panels and
fbenchm = 500Hz for the bottom panel. The inset in the bottom panel shows a zoom
in of the curves near the benchmark time.

system with masses (1, 1.7)M⊙ (middle panel). In addition, the bottom panel shows the corre-
sponding frequency evolution for the NS-NS system. The scalar charge and tidal deformability
parameters are taken from the results shown in Fig. 3 for the SLy EoS and β0 = −4.5 for NSs
and set to zero for BHs. As the PN approximation is not valid for frequencies close to merger
we cut off the functions at a benchmark GW frequency of 500Hz4 and show a snapshot of the
waveforms in the top two panels of Fig. 5 around 100Hz. The curves in Fig. 5 correspond
to the evolutions of only the point-particle contributions and for point-particle plus tidal con-
tributions, both in ST theories. We see that tidal effects are more pronounced for the NS-NS
than for the BH-NS system. The two curves for the NS-NS systems for low frequencies overlap.
When the frequency starts to rapidly increase as shown in the bottom panel of Fig. 5, the tidal

4Merger frequencies for NS-NS systems are usually around order 103Hz.
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Figure 6: Estimated transition frequency (72) for a NS-NS system between dipole-
and quadrupole-driven regimes of the inspiral in the MA − MB parameter space for
β0 = −4.5 and the SLy EoS. The color scale indicates the value of the estimated
transition frequency in Hz.

effects become more noticeable as can be seen in the phase difference between the curves in
the middle panel for a NS-NS system. In principle, one might expect the scalar tidal effects
to be larger for a BH-NS system, since a large difference between scalar charges maximises
the dipolar flux (63). However, when one of the scalar charges vanishes, so do some of the
tidal contributions to the phase, as a consequence of ζ1 = ζ̄1 = ζ̃1 = 0 in this case, where the
coefficients were defined in (32), (55), and (46). Furthermore we see from Fig. 5 that the
effect of the tidal contributions mostly enters in the phase accumulation, while their effect on
the amplitude is very small. The more irregular shape of the oscillations for the BH-NS case
is due to more power being carried in modes besides the (2, 2) mode for more asymmetric
masses.

5.4 Identifying interesting parameter regimes

To gain insight into the importance of different tidal GW signatures we now focus on the
Fourier phase evolution (82). We first survey a large part of the parameter space of NS-NS
and BH-NS systems to analyse what systems are particularly interesting with respect to tidal
effects on GWs in ST theory. Henceforth in the analysis we mainly focus on the intermediate
SLy EoS and β0 = −4.5 and comment on the dependency of the results on the EoS and β
throughout the discussion.

For these parameter space studies we restrict to NS masses between 1 − 2M⊙, that is,
roughly around the lightest and heavier observed NSs [92], and BH masses between 5−15M⊙,
with the lower limit representing roughly the lowest mass of ‘unambiguous BH candidates’
from GW observations discussed in [3].

5.4.1 Estimated transition between DD and QD domains

We next consider the transition frequency between the regimes dominated by the dipole- and
quadrupole losses discussed in Sec. 4.5. Figure 6 shows the estimated transition frequency (72)
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Figure 7: Contour plots of two of the coefficients S−c2 and c3 defined in (83), in the
MA−MB parameter space for β0 = −4.5 and the SLy EoS for a BH-NS system (top)
and NS-NS system (bottom). The plots for the coefficients of other powers of x in
the phase can be found in Appendix E.

for a wide parameter space of NS-NS systems. The dependence of (72) on S− indicates that the
transition frequency is highest when the difference between the two scalar charges is largest,
as is also confirmed by the numerical sweep of the parameter space shown in Figure 6. The
largest charge difference occurs in NS-NS systems when one NS has the maximum charge for
which the corresponding mass Mq is identified from Fig. 3 and the companion NS is near the
minimum mass within the range considered. Notably, we find that even for NS-NS systems
with the largest S−, the frequency where the dipole dominates is f DD

boundary ≲ 3Hz, while for
BH-NS binaries it is even lower due to their larger total mass. This implies that the DD regime
lies below the lower end of the sensitive frequency band flow ∼ 10Hz of current detectors [93]
and even that of next-generation ground based GW detectors [94,95]. Although (72) provides
only a rough estimate of an extended range of frequencies where the transition occurs [49],
these considerations motivate us to focus on the QD domain in the main part of this paper
and delegate results for the DD regime to Appendix F. We also note that the DD regime has
potential direct relevance for future deci-Hertz GW detectors, e.g. [96].

5.4.2 Tidal contributions to the QD Fourier phase

Next, we analyze the tidal contributions to the phase by computing the parameter dependen-
cies of the various coefficients in (83). The results are summarized in Table 1. We find that
most of the coefficients, specifically S−c2, c3, and S2

−c4, are strongly correlated with the scalar
charge, while by contrast, the ℓ= 2 non-dipolar coefficient involving the combination of Λ̃ and
c5 depends most strongly on the total mass. Depending on the system, the latter contribution
also has the largest values of all tidal coefficients in the GW phase considered here.

Figure 7 shows examples of the dipolar contributions to tidal coefficients in (83). The
upper panel is the dipolar piece of the ℓ = 2 tidal terms for BH-NS systems characterized
by c4S2

−, while the bottom panel shows the dipolar piece of the ℓ = 1 coefficient, i.e. c2S−,
for NS-NS systems. We re-iterate that as discussed above, in BH-NS systems, all ℓ = 1 tidal
effects vanish because they are purely scalar interactions and as the BH has no scalar charge,
there is no scalar tidal field felt by the NS. However, we note that even for BH-NS, there is a
nonvanishing dipolar contribution to the ℓ = 2 tidal effects in the phase that arises from the
energy fluxes.
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Table 1: Properties of the various tidal coefficients that appear with different powers
of the frequency in the Fourier GW phasing (83) for binaries involving at least one
NS. The notation A = B refers to the case of two identical NSs. A dependence on
S− signals a contribution that arises through dipolar effects in the GW phase. The
parentheses in the first column indicate the kinds of tidal interactions that contribute.

contribution to largest zero
sign

magnitude for
phase coefficients for for NS-NS (log10)

c2S− (Mq, 1)
A= B,

– [-1, -2]
(scalar ℓ= 1) BH-NS

c3 (Mq, 1),
BH-NS + [1, 2]

(scalar ℓ= 1) (Mq, Mq)
c4S2
− (Mq, Mmin) A= B + [1, 2]

(all ℓ= 2)
c5 + 39Λ̃/(2α5ξ2)

low Mtot N/A + [4, 5]
(all ℓ= 2)

For both types of binary systems, a comparison to Fig. 3 shows that the dipolar coefficients
c2S− and c4S2

− are largest when (one of) the NS(s) has a mass Mq corresponding to the config-
uration with the maximum scalar charge and the companion has the lowest mass Mmin within
the range considered. As the dipolar contributions to (81) are directly proportional to S−,
the strong dependence on the scalar charge makes sense, maximizing S− when the difference
between scalar charges is largest. We also see from Fig. 7 that the sign of the dipolar tidal
coefficient is negative for ℓ= 1 (i.e. S−c2) but positive for ℓ= 2 (i.e. S2

−c4). The analysis of all
contributions to (83) in Appendix E further shows that for NS-NS systems, the magnitude of
the ℓ= 2 dipolar coefficient is about three orders of magnitude larger than for the ℓ= 1 case.

In addition, in Appendix E we find that similarly to the dipolar contributions discussed
above, the non-dipolar coefficient c3 is dominated by the dependence on the scalar charge
and maximized for (Mq, Mmin) systems, however, it also has large values for systems around
(Mq, Mq). This is because although c3 has no explicit dependence on S−, it still involves
ζ1 ∝ q2

Aλ
ℓ=1
S,B + (A↔ B), which becomes large for maximized scalar charge systems around

(Mq, Mq). Overall, the values of c3 for the considered parameter space are positive and of
order 101 − 102.

By contrast, the non-dipolar quadrupolar coefficient characterizing the relative O(x5) con-
tributions to the phase (83) shows little correlations with the scalar charge but instead de-
pends most strongly on the mass, with the maximum value occurring for the lowest total mass.
This tidal coefficient is negative and of order 104 − 105 for the parameter space considered
here. For BH-NS systems, the qualitative behavior is similar but the overall magnitude is lower
∼ 102 − 103 because of the larger total mass of these systems. These results indicate that the
tensor tidal contributions (that enter as terms of the form MBλ

ℓ=2
T,A +(A↔ B) in the parameter

ζ̃2 and the phase (81)) to the phase dominate, as also expected from the tidal deformability
curves of Fig. 3. This too is reflected in the overall dominant magnitude of the O(x5) coefficient
compared to the other tidal terms in (83), which is also the only nonvanishing contribution in
the limit of GR.

Based on the above analysis of the parameter space of tidal coefficients, we choose three
representative cases for each type of binary system for further analysis: one each that max-
imizes the ℓ = 1, 2 tidal effects respectively, and another where all tidal coefficients take in-
termediate values (though note that as explained above, some of them are always zero for
NS-BH). These choices are listed in Table 2.
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Table 2: Properties of binary systems considered for the case studies. We consider
three scenarios to cover two extremes and an intermediate case within the parameter
space described in the text and with Mq ∼ 1.7M⊙ here.

scenario tidal terms binary MA(M⊙) MB(M⊙)

S1
no dipole & NS-NS 1 1

max ℓ= 2 BH-NS 5 1

S2 max dipole
NS-NS 1 Mq

BH-NS 5 Mq

S3 intermediate
NS-NS 1.1 1.2

BH-NS 8.9 1.2

Scenario S1 maximizes the contribution of the quadrupolar contributions involving Λ̃ and
c5 and is free from dipolar contributions, since they vanish for an equal NS case as S− = 0.
Scenario S2 maximizes the effects of the dipolar contributions proportional to S− together with
the non-dipolar scalar tidal effects encapsulated in c3, and Scenario S3 is an intermediate case,
close but not equal to the identical-NS limit, in order to avoid cancellations of terms scaling
as (qA− qB).

5.5 Tidal effects on the GW phase evolution

To analyze the effects of different tidal contributions on the GWs, we focus on the Fourier
domain phase evolution in the QD domain.

5.5.1 Difference in net tidal effects between ST and GR

The left panel of Figure 8 shows the difference between the GR Fourier phase and the ST
phase in the quadrupolar driven domain (81) including corrections up to relative 1PN order.
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Figure 8: Left panel: Difference between GR and ST Fourier phase as a function of
frequency for NS-NS binaries. The blue lines correspond to the point particle (pp)
contributions and the red ones to the tidal contributions. The solid, dashed and
dotted lines indicate the different scenarios S1, S2 and S3 respectively. Note that
the point-particle curves are rescaled by many orders of magnitude to show them on
the same plot. The pp phase evolutions were aligned in the window of 9 − 10Hz.
Right panel: the tidal contribution of the ST Fourier phase for NS-NS binary of S2 for
different EoS and β0. The tidal phase functions in both panels were set to zero at
10Hz with the freedom in initial phase angle (81).
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The evolutions of the point particle phase in ST and GR, denoted by the blue curves, are
matched using the freedom in initial conditions for (81) to find the initial orbital phase and
time that minimize the integral of the absolute value of the difference squared over the fre-
quency domain 9− 10Hz. For the tidal contributions (red curves) we only used the freedom
in initial phase angle to set the phase contributions equal to zero at the starting frequency of
10Hz. We chose this approach for the tidal contributions as the dependency on the frequency
for the ST tidal contributions is qualitatively different from the GR tidal terms, hence their
evolutions as function of the frequency are hard to align over a frequency range. Do note that
in the case of the tidal phase difference shown in the left panel of Fig. 8 there is an additional
free initial condition t0 which we now set to zero. We find that, as expected, the difference in
point particle contributions is many orders of magnitude larger than the tidal contributions,
with the largest point-particle differences for Scenario S2, where the dipolar scalar radiation
is maximized.

For the tidal contributions, the phase difference between GR and ST is negative, indicating
that the net tidal effects in ST theory are smaller than in GR. This is because in GR, only
the quadrupolar tensor tidal effects appear and lead to a negative contribution to the phase,
indicating that the inspiral is faster and hence accumulates less phase per frequency interval
than the point-particle scenario. By contrast, in ST theories, tidal effects in the GW phase
include dipolar and quadrupolar scalar, tensor and scalar-tensor contributions having different
signs. These combine to yield a total tidal phase correction that is smaller in magnitude than
that in GR.

In particular, the main sources of the differences between tidal effects in GR and ST theories
are the scalar and scalar-tensor tidal contributions. Scenario S2 maximizes these contributions
and we see from the dashed red curve in Fig 8 that it indeed leads to the largest differences. The
different shape of the S2 curve in the left panel can be explained together with the blue curve
in the right panel. The right panel of Fig. 8 shows the ST tidal fourier phase contributions for
different EoS and choices of β0 in S2. The blue curve corresponds to the choices of parameters
adopted in the left panel. We find that in this scenario, not only do the additional scalar and
scalar tensor tidal contributions make the total tidal contributions smaller than in GR, also
the sign becomes positive in the frequency window from 0− 200Hz. This positive evolution
sharply increases the difference with the negative GR tidal phase evolution shown with the
dashed curve in the left panel. Beyond 200Hz the ST tidal phase contribution also becomes
negative again and starts to decrease its difference with GR. In the other scenarios the ST tidal
contributions with a positive sign are less prominent and the total ST tidal phase stays negative
over the whole frequency domain, showing a small offset with the GR tidal phase contribution
in the left panel. In Scenario S1 (solid red curve) the quadrupolar tensor tidal contributions
are maximized, however this contribution differs only slightly from the GR contribution via
the small change in the quadrupolar tensor tidal deformability. In this Scenario the other tidal
contributions are minimal and therefore also the difference with GR is smallest for this system.

In the right panel of Fig. 8 we show the effect of a stiffer (H4) respectively softer EoS
(WFF1) and a larger value for −β0 on the ST tidal contributions to the Fourier phase in S2. We
find that for a stiffer EoS, the magnitude of the tidal contributions increases, which corresponds
to the tidal deformabilities being larger for a stiffer EoS [45]. For a larger value of −β0 the
positive sign tidal contributions to the total phase are severely amplified leading to a positive
tidal phase contribution over the whole frequency range. It is interesting to note that while
one might in general expect ST effects for larger |β0| to be larger, we see here that the net
tidal effects are of the same order of magnitude, except for the sign difference. This is because
the comparison here is done at fixed NS masses, which correspond to the configurations that
maximize the dipole effects for |β0|= 4.5 while the maximum dipole configuration for |β0|= 6
occurs for different masses.
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Figure 9: Different contributions of the tidal deformabilities to the Fourier phase
(82). In each panel the solid, dashed and dotted curve correspond to the systems of
Scenario S1, S2 and S3 respectively for the NS-NS systems. The bottom left plot also
shows these scenarios for BH-NS systems in black.

5.5.2 Effect of scalar, tensor, and mixed tidal deformabilities

It is further interesting to consider the effect of the different scalar, tensor, and mixed scalar-
tensor tidal interactions on the net tidal phase. Fig. 9 shows the different contributions of
the corresponding tidal deformabilities that make up the c parameters of (83) for different
scenarios of NS-NS and BH-NS systems for the quadrupolar driven phase tidal effects. To
generate these plots, we isolate the terms proportional to the different tidal deformabilities in
(81) and (82). We terminate the phase evolution at a chosen benchmark frequency of 1kHz
for illustration, although the approximations made to derive our results become invalid before
then.

Comparing the panels of Fig. 9 we find that in all studied cases the dipolar (ℓ = 1) scalar
tidal contributions and the quadrupolar (ℓ = 2) scalar-tensor contributions come with a posi-
tive sign and the quadrupolar scalar and quadrupolar tensor with negative sign, meaning that
they slow down and speed up the inspiral respectively.

Furthermore, we find for all NS-NS scenarios that the quadrupolar tensor tidal contribu-
tions dominate over the others, as was already predicted from the analysis in Sec. 5.4.2. Also,
comparing the quadrupolar tensor contributions for the NS-NS and BH-NS cases, we find that
the phase contribution in the BH-NS case is around an order of magnitude smaller because of
the larger total mass of these systems. Generally, the qualitative behaviour of the tidal contri-
butions is the same for the other EoSs, only the magnitude of the accumulated Fourier phase is
slightly shifted, with slightly larger effects for H4 and slightly smaller effects for WFF1 related
to the shift in order of magnitude of the tidal deformability which is bigger for the stiffer EoM
H4 and smaller for the softer EoS WFF1. For β0 = −6 the same conclusion holds however the
effects are more prominent as the accumulated phase increases around one order of magni-
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tude. We also see from Fig. 9 that the choices of scenarios summarized in Table 2 have the
expected effects, with the largest the tensor quadrupole effects for S1 and the largest dipolar
scalar and quadrupolar scalar and scalar-tensor contributions for S2, while S3 described an
intermediate case. Hence, we conclude that for studying the tidal effects specifically present
in scalar tensor theory (scalar dipolar and quadrupolar scalar and scalar-tensor tidal effects)
a system that maximizes the difference between the two scalar charges of the two bodies is
preferred. This also corresponds to what we found for the added contribution in Fig. 8.

5.5.3 Discussion

The fact that the tidal phase difference with GR in Fig. 8 is negative means that there could
be degeneracies between the ST accumulated tidal effects to the phase and the GR tidal con-
tributions for the same system but with a softer EoS also giving smaller tidal contributions.
However, the large difference for the point particle contributions would still resolve two situ-
ations. Additionally, as the difference in tidal contributions stays below a magnitude of 1 rad
they are unlikely to be resolvable with the current GWs detectors. Still the degeneracy with GR
might be a problem for other beyond-GR theories with scalarized NSs for which omitting the
scalar and scalar-tensor tidal effects could potentially lead to biases in the inferred properties
of the compact objects from GW observations, especially for systems with large differences be-
tween the scalar charges of the bodies. Furthermore, from comparing the top left and bottom
right panels of Fig. 9 the magnitude of the dipolar scalar tidal contributions for S1 and S3 are
of the same order as the quadrupolar scalar-tensor contributions, hence when including the
scalar tidal contributions the interaction with the tensor field cannot be neglected.

Lastly, we highlight that the expansion order of the different tidal contributions to the
fourier phase (83) due to the dubble PN and tidal expansions leads to a different hierarcy of
the terms than one would expect based purely on looking at the effective PN order. In other
words, if the coefficients of (83) were of same order of magnitude, one expects the dipolar
scalar tidal effects, scaling with PN parameter x2, to dominate. However, we find in Fig. 9 the
quadrupolar tensor contributions, scaling with x5, dominate in the QD frequency regime for
the systems studied. The coefficients of the other tidal contributions to the QD phase are of
similar order of magnitude, see Tabel 1. Their hierarcy depends, next to their scaling with x ,
on the complex dependencies of the coefficients on the total mass, induvidual body masses,
tidal deformabilities and scalar charges for which the latter two have implicit non-monotinic
dependencies on the compactness of the bodies. These complex dependencies we analysed
in Sec. 5.4.2. For lower frequencies in the DD regime, the dependence on PN parameter x
becomes more important and we find the dipolar scalar contributions become dominant, see
Fig.11.

6 Summary and conclusion

In this paper, we studied tidal signatures in GWs from NS binary systems in scalar-tensor
theories of gravity where sufficiently compact NSs can give rise to a scalar condensate. Building
on [45], which showed that in ST theories, tidal effects are characterized by three different
kinds of tidal deformability coefficients for the scalar, tensor, and mixed sector arising from
the nonlinear coupling between gravity, scalar field, and baryonic matter, we used analytical
approximations in finite-size and PN corrections in the early inspiral to compute tidal effects
in the GWs.

We showed that in addition to a tidal term similar to GR, there are also terms that scale
with lower powers of the frequency and involve different combinations of tidal coefficients.
Specifically, we showed that the Fourier GW phase in the regime of greatest interest for current
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and next-generation ground-based GW detectors can be written as

ψtid =
3

128ηx5/2

�

c2S−x2 + c3 x3 + c4S2
−

�

log x −
2
3

�

x4 +
�

39
2α5ξ2

Λ̃+ c5

�

x5
�

,

where the various coefficients ci for i = 2, 3,4, 5 are given explicitly in terms of masses, scalar
charges, and tidal deformabilities of the bodies in (C.1)– (C.4), and α and ξ were defined
in (31) and (78), with S± given in (62) and Λ̃ having the same functional form (84) in terms
of mass-weighted combinations of quadrupolar tensor tidal deformabilities as in GR. We also
recall that in ST theories, the frequency-parameter x defined in (37) differs from its GR coun-
terpart by a factor of α2/3 corresponding to a renormalization of the gravitational interaction.

We then specialized to a Gaussian coupling function for the ST theory and surveyed binary
systems over a range of parameter space to identify interesting scenarios that maximize the
different tidal contributions. In general we found that due to different signs associated with
the different types of tidal effects in the GW phase (c.f. Table 1), the net tidal signatures in
ST gravity are smaller than in GR. This could in principle lead to degeneracies with changes
in the EoS of the NSs to a softer one but conclusions about this issue will require further
work. We also showed that the difference with GR tidal effects is largest for systems with
the largest asymmetry in scalar charges and analyzed the effects of changing the EoS and the
theory-parameter β0 for a binary system of fixed masses.

By systematically studying each tidal contribution to the Fourier phase, we further demon-
strated that, at quadrupolar order, the scalar-tensor tidal deformability has a larger effect on
GWs than the scalar tidal deformability and therefore should be accounted for when also con-
sidering the scalar tidal deformability. Furthermore, depending on the parameters, the differ-
ent contributions that come with different powers of frequency can lead to a non-monotonic
behavior of the tidal phase evolution as a function of frequency. Quantitatively, the difference
in tidal effects on the phase between ST and GR stays of order 10−1 rad and is therefore dif-
ficult to resolve with current detectors. It is also many orders of magnitude smaller than the
differences in point-particle inspirals, which would directly indicate modifications to GR and
hence reduce potential degeneracies with EoS effects in the small tidal corrections.

While our case studies led to quantitative insights into the impact of the dominant adiabatic
tidal phenomena in particular ST theories, our main aim was to develop the methodology for
understanding and modeling tidal GW signatures from scalarized compact objects in theories
of gravity beyond GR, which lead to richer features. Our methods have broad applications to a
wider range of proposed classes of theories, though the details of the GW phase contributions
will be theory-dependent. This work opens several avenues for further studies. For instance,
our results could be used for data analysis to put constraints on the parameter space covered
by ST theories. It would also be interesting to compare our results, combined with higher PN
order point-particle terms from [68] to the numerical calculations of BH-NS binaries in ST
theories [51] or others for NS-NS systems, to include a mass of the scalar field as the lowest
order self-interaction, to consider dynamical tides, and tidal signatures in GWs in other classes
of beyond-GR theories.
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A Useful identities involving symmetric trace-free tensors

Here, we summarize several identities used in the derivations discussed in the main text. In
this appendix we set r = |x| with x a separation vector. The result of taking ℓ derivatives of
1/r can be written as

∂L
1
r
= (−1)ℓ(2ℓ− 1)!!

n<L>

rℓ+1
, (A.1)

where n= x/r is a unit vector. This was used to obtain explicit expressions for the tidal fields
in (28). In the tidal Lagragian (17) we needed the contraction of two tidal tensors and hence
STF unit vectors, which simplifies via the identity

n〈L〉n
〈L〉 =

ℓ!
(2ℓ− 1)!!

. (A.2)

To derive the tidal contributions to the acceleration required the additional identities

∂i

�

∂L
1
r

�2

= −2
(2ℓ− 1)!!(ℓ+ 1)!

r2ℓ+3
ni , (A.3)

and

n<L>n<i L> =
(ℓ+ 1)!
(2ℓ+ 1)!!

ni . (A.4)

B Full expressions for the binary dynamics, waveforms and GW
phase

In this appendix, we provide the complete expressions for various quantities to 1PN order in
the point-mass sector and leading order in tidal effects.

B.0.1 Binary dynamics

In Sec. 3.1 we discussed how to obtain the leading-order tidal corrections to the binary dy-
namics. Together with the point particle 1PN contributions, the two-body Lagrangian is given
by

LAB = −MA+
1
2

MAv2
A+

GαMAMB

2r

+
�

1
8

MAv4
A+

GαMAMB

r

�

−
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�
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�

+
3
2

�

v2
A

�

−
7
4
(vA · vB)−

1
4
(n · vA) (n · vB) +

γ̄

2
(vA− vB)

2
��

+
1
2

G2µMα2
∑

ℓ

(2ℓ− 1)!!
2r2(ℓ+1)

ζl + (A↔ B) , (B.1)

where we use boldface to indicate spatial vectors and define

γ̄≡ −2
qAqB

α
, β̄A/B ≡

1
2

βA/B q2
B/A

α2
, (B.2)

β± ≡
β̄A± β̄B

2
. (B.3)

The relative acceleration obtained from (B.1) is

a= −
GαM

r2
n+

GαM
r2

§

n
�

3
2
ηṙ2 − (1+ 3η+ γ̄)v2
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(B.4)
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.
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The radial component of the equations of motion (B.4) for circular orbits with ṙ = r̈ = 0
lead to the angular frequency

ω2 =
GαM

r3

�

1−
αM

r

�

3−η−
2β−∆M

M
+ 2β+ + γ̄−
∑

ℓ

(ℓ+ 1)(2ℓ− 1)!!
r2ℓM

ζℓ

��

, (B.5)

with ∆M ≡ MA − MB. Inverting this expression perturbatively and expressing ω in terms of
the PN parameter x defined in (37) yields

r(x) =
GαM

x

�
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1
3

x
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M
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. (B.6)

Using this result and the energetics from the Lagrangian (B.1) we obtain for the binding energy
to the orders of approximation we are considering

E(x) = −
µx
2
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x
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�

.

B.0.2 Scalar and tensor waves

In Sec. 4 we discuss how one obtains the Newtonian tidal corrections to the scalar and tensor
waveform. Together with the 1PN point particle terms the scalar waveform is given by

δϕ =
Gµ
p
α

d

�

P−1/2Φ̃+ Φ̃+ P1/2Φ̃+ P1/2Φ̃t id

	

, (B.7)

here the superscript of P denotes the PN order of the coefficients. The coefficients are given
by
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(B.8)

The tensor waveform has the form

hi j
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with {. . .}T T denoting the TT projection and
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ṙ r i j

r

�

− (n̂ · v)
�

2v i j −
GMαr i j

r3

��

,

PQ̃i j = 1− 3η
3

�

(r · n̂)2
GαM

r3

�

�
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(B.10)

with Ē = v2/2− Gmα/r the leading order binding energy in CM coordinates [64, 75]. In
Sec. 4.4 we take the angular integral of the square of the time derivative to the waveforms to
obtain the scalar and tensor energy flux. The scalar flux up to 1PN is given by

FS =
η2

Gα

�

GαM
r

�4 �4
3
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+
4S−
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�
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2GMα

r

�
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−α
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�
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(B.11)

Assuming circular orbits we can write the scalar flux in terms of PN parameter x defined
in (37) as

FS(x) = x4
�

S4+ x
�

S5+ S5tid,1 x2 + S5tid,2 x4
��

, (B.12)

with

S4=
4η2S2

−

3αG
,

S5=

�

8η2S−
45αG

�

�

15
4α3/2M
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∆M
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,

S5tid,1 =

�
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+
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−µ
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9α3G3M5

�

,

S5tid,2 =
S2
−µ

2ζ2

α5G5M7
.

(B.13)

Note that our notation here differs from [64, 65, 67] as we have the expressed several terms
in S5 explicitly in terms of the scalar charge q, while [64, 65, 67] rewrite them as a term
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proportional to 1/γ̄. This has the drawback that for a BH-NS system, with the black hole
having zero scalar charge, the parameter γ̄ vanishes and causes an apparent divergence in the
expressions from [64,65,67]. Here, we have explicitly expanded the dependencies on 1/γ̄ in
terms of the constituent parameters such as the scalar charge and β , which leads to manifestly
finite expressions in the limit of vanishing scalar charge.

For the tensor flux we obtain

FT =
8
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ṙ2 − 11

GMα
r

v2
�

ζ̃2

−
64G4M2α3µ2

15r7
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(B.14)

Specializing to circular orbits and expressing the results in terms of x leads to

FT (x) = x5
�

T5+ x
�

T6+ T6tid,1 x2 + T6tid,2 x4
��

, (B.15)

with the coefficients given by

T5=
32η2
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(B.16)

B.0.3 GW phase evolution

In Sec. 4.5 we discuss the derivation of the DD and QD Fourier phase as a function of frequency.
In the DD domain the ratio obtained from energy balance in (71) is expanded as (73) with
coefficients

E′0 = −
3
2
−
η

6
−

4γ̄
3
+

4
3

�

β+ −
∆M
M
β−

�

− x2 20ζ1

3G2α2M3
− x4 54ζ2

G4α4M5
,

f DD
2 =

24

5αS2
−
+

4S2
+

5S2
−
−

4β+
3
+

4β−∆M
3M

−
14
5
−

4η
3
−

2γ̄
3
+

4β−S+
γ̄S−

−
4β+∆MS+
γ̄MS−

+
4β+
γ̄
−

4β−∆M
γ̄M

+ x2

�

−
ζ̄1

G2M3α7/2S−µ
+

4ζ1

3G2α2M3

�

+ x4 6ζ2

G4α4M5
.

(B.17)

The total DD phase within our approximations is given by

ψDD =
1

4ηS2
−x3/2

¦

1+ρDD x+x3
�

ρDD
tid log (x)−

2
3
ρDD

tid

�

−
270ζ2

7α4G4M5
x5
©

+φc−2π f tc , (B.18)
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with

ρDD= −
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5αS2
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∆M
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ρDD
tid =

3
G2α2M3η
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ζ̄1

α3/2MS−
+ 16ηζ1

�

. (B.20)

In the QD domain, the energy balance ratio is expanded as (80) with coefficients given by
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. (B.21)

The quadrupolar driven phase evolution is given by

ψQD =ψnon-dip +ψdip +φc + 2π f tc , (B.22)

with

ψnon-dip =
3α

128ηξx5/2

�

1+ρnd x +ρnd,1
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, (B.23a)
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, (B.23b)

and ξ= 1+ S2
+α/6 . The non-dipolar coefficients are
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ρ
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and the dipolar parts are
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ρ
d,1
tid = −

35ζ̄1

2α7/2G2M4S−η
−

280ζ1

3α2G2M3
−

280ζ1

3α2G2M3ξ
, (B.25b)

ρ
d,2
tid = −

140ζ̃2

α5G4M6ηξ
−

560ζ2

α4G4M5
−

280ζ2

α4G4M5ξ
. (B.25c)

C Ready-to-use expressions for the tidal coefficients in the phase

For practical purposes, it is useful to study the combinations of tidal deformabilities and masses
that appear in the GW phase with different powers of x . Here, we give explicit expressions for
these terms.
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C.1 Quadrupolar-driven regime

The general structure of the tidal contribution to the phase in the QD regime was given in (83).
Here, we provide the coefficients explicitly in terms of the NS properties.

The coefficient c2 arising from dipolar tidal terms contributing to the dipolar piece of the
phase read

c2 =
25

3α2G2M3ξ3

¨

�

4
3
(ξ+ 1)MBqBS− +
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4

p
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3
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1
4

p
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�

qA
λ

S,ℓ=1
B

MB

«

, (C.1)

where the parameters α, and ξ were defined in (31), and (78) with (62), respectively. As this
parameter (C.1) is multiplied by S− in the phase (83), in case of identical NSs where S− = 0
it does not contribute.

Next, the parameter c3 arising from the contribution of scalar dipolar tidal effects to the
non-dipolar part of the Fourier phase is given by

c3 =
140

3α3ξ2






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(C.2)
and its value for identical NSs was given in (85).

Effects that involve all three Love numbers first appear in the quadrupolar tidal contribu-
tions to the dipolar piece of the phase, through the coefficient

c4 =
50

3α4G4M5ξ3

�

[2(2ξ+ 1)MB +αM]
λT

A

MA
+ [2(2ξ+ 1)MA+αM]

λT
B

MB

�

−
50

3α4G4M5ξ3

�

[4(2ξ+ 1)MB +αM]
λST

A

MA
+ [4(2ξ+ 1)MA+αM]

λST
B

MB

�

+
100(2ξ+ 1)
3α4G4M5ξ3

�

MBq2
B

λ
S,ℓ=2
A

MA
+MAq2

A

λ
S,ℓ=2
B
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, (C.3)

where λT and λST are understood to be the quadrupolar ℓ = 2 results, which is their lowest
nontrivial multipolar order. Similarly to c2, the coefficient (C.3) also appears multiplied by S−
in the phase (83) and thus does not contribute in the equal-mass limit.

The coefficient of x5 in (83) likewise has contributions from all three kinds of tidal de-
formabilities and is given by

c5 =
39
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, (C.4)
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where again λT , λST and λS are understood to be quadrupolar ℓ = 2. We have defined the
symmetric charge ratio

ηq =
qAqB

(qA+ qB)2
. (C.5)

For two identical bodies, the result (C.4) reduces to (86).

C.2 Dipolar-driven regime

Similarly to the quadrupolar-driven phase, the dipolar-driven phase can be rewritten as

ψDD =
1

4ηx3/2

§

(pp)+ cDD
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�
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2
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�
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ª

, (C.6)

with cDD
3 and cDD

5 given by
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cDD
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. (C.8)

For a system of two identical NSs, the scalar flux vanishes and there is no dipolar-driven phase.

D Gravitational waves in Jordan frame from Einstein frame results

In this appendix, we provide details on the relation of GWs in the Jordan frame to those in the
Einstein frame that was briefly stated in Sec. 4.3. While this topic has already been discussed
in the literature, e.g. [63,82,83], we generalize the results to arbitrary coupling functions and,
in Sec. D.2 a result valid beyond the short-wave limit for describing GWs.

D.1 Derivation based on the short-wave approximation

D.1.1 Geodesic deviation and linearized frame transformations

In analyzing the basic physics of GW detection, it is useful to consider the deviation between
geodesics of nearby test masses due to curvature induced by GWs. Our aim is to use this
together with the frame transformations (2) to relate the Einstein-frame metric perturbations
to physical effects on test masses in the Jordan frame.

In brief (see e.g. the review [97] for more details and [82] for the application to ST
theories), we assume that one geodesic is at zα(τ), where τ is proper time, and a nearby one
is at zα(τ)+ Lα(τ), where Lα is small. The geodesic deviation in the Jordan frame is given by

D2
∗

dτ2
Lµ = Rµ

ανβ ∗u
αuβ Lν , (D.1)

where D∗/dτ denotes the total derivative along the worldine. In the local proper detector
frame, this reduces to

L̈ i = −Ri
∗0 j0 L j =

1
2

ḧ∗i j L
j , (D.2)

with h∗i j the spatial parts of a small metric perturbation around a background metric η∗µν

g∗µν = η
∗
µν + h∗µν , gµν = ηµν + hµν , (D.3a)
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where we have also written down the expansion of the metric in the Einstein frame. We recall
that in the Einstein frame, vacuum gravity behaves as in GR and the spacetime of a compact
binary source is asymptotically Minkowski, with ηµν the standard Minkowski metric. Similarly
to (D.3), we expand the scalar fields for small fluctuations around their asymptotic background
values

φ = φ0 +δφ , |δφ| ≪ φ0 , (D.3b)

and likewise for the Einstein-frame field ϕ. Next, substituting (D.3) into the conformal trans-
formation (2) and expanding to first order in the small quantities yields the relation [98]

h∗µν = A2
0

�

hµν + 2
A′0
A0
δϕηµν

�

, (D.4)

where the subscript 0 denotes evaluation of the function at ϕ0. Using (D.4) to compute the
Riemann tensor yields

Rk
∗0 j0 = −

1

A2
0

ηki 1
2

ḧi j . (D.5)

Taking two time derivatives of (D.4) leads to

ḧ∗i j ≃ A2
0

�

ḧi j +
2A′0
A0
δ̈ϕ ηi j

�

, (D.6)

at first order in the perturbations and at leading order in the distance to the source, i.e. we
neglect terms such as ϕ̇0δϕ. Substituting this into (D.5) yields

Ri
∗0 j0 ≃ −

1
2

�

ḧi j +
2A′0
A0
δ̈ϕ ηi j

�

. (D.7)

Comparing with (D.2), we can redefine the Jordan frame metric perturbation as

ḧJ
i j ≡

ḧ∗i j

A2
0

= ḧi j +
2A′0
A0
δ̈ϕ ηi j . (D.8)

At first glance, one might think that there is a clash between (D.6) and (D.8) due to the factor of
A2

0. This is because (D.2) does not contain any information about the frame transformations. In
particular, the quantity (D.8) is the relevant one for geodesic deviation in our approximations.

D.1.2 Reduction to physical degrees of freedom

The next step is to fix a gauge in which only the physical degrees of freedom remain, such as
the TT gauge in GR. We start by applying the transverse projector (65) on both sides of (D.8),

ḧJ
i j

T ≃ ḧT
i j +

2A′0
A0
δ̈ϕ(δi j − NiN j) , (D.9)

where T stands for transverse, we have used that η∗Ti j = Pk
i η
∗
kmPM

j = Pi j and substituted (65).
Taking the trace-less part yields

ḧJ
i j

T T ≃ ḧT T
i j . (D.10)

This shows explicitly that the tensor plus and cross GW polarizations are the same in both
frames. This also follows from expanding δµν = gµν = g∗µν with (D.3) to linear order in the
perturbations, which likewise yields hi

j = h∗ ij . As shown in [82], we can replace the term

ḧ∗i j
T in (D.9) by ḧ∗i j

T T . For the coupling A(ϕ) = ϕ1/2 in (D.9), this reproduces the result
in [63,83,99] with the redefinition Ψ = δϕ/ϕ0.
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In summary, the Jordan-frame gravitational radiation can be computed from the Einstein-
frame quantities via

hJ
i j

T ≃ hT T
i j +

2A′0
A0
δϕ(δi j − NiN j) , (D.11)

where for the setting considered here, hT T
i j is the waveform computed in Sec. 4.2 and given

explicitly by (B.9), and δϕ the scalar waveform computed in Sec. 4.1 and given explicitly
in (B.7).

D.1.3 Polarization components

We next use the expansion (D.3) together with (4) to express the contribution of the Einstein
frame scalar field in terms of the Jordan frame one,

−
2A′0
A0
δ̈ϕ =

F ′

F
p
∆

�

�

�

�

0
δ̈ϕ ≃

F ′(φ0)
F(φ0)

δ̈φ . (D.12)

Using this in the result for the metric perturbation (D.11), the decomposition into the funda-
mental polarization components discussed in [82] applies. This shows that in addition to the
plus and cross tensorial polarizations, there is also a scalar mode. As discussed in [82], for
theories with a coupling to the Ricci scalar of the form F(φ) = φ in (1) and wave propagation
in the z-direction

hJ
i j |F(φ)=φ= h+e(+)i j + h×e(×)i j −

δφ

φ0
eS

i j , (D.13)

with the amplitude of the scalar polarization obtained by using (D.12) together with the iden-
tification of δϕ as the scalar radiation field in the Einstein frame computed in Sec. 4.1.

D.1.4 Asymptotic flatness and size of the scalar GWs in the Jordan frame

From the expressions derived above, we can draw several interesting conclusions. The first
is regarding the asymptotic background metric η∗µν that appears in (D.3). From the frame

transformation (2), it follows that that η∗µν = A(ϕ0)2ηµν, with ηµν the Minkowski metric. The
transformation indicates that in general, the Jordan frame metric is not asymptotically flat.
There are two ways to avoid this difficulty: one is to rescale the coordinates to absorb the
factor A2

0, such that the line element ds2
∗ in the Jordan frame is indeed the correct flat-space

one [16,45]; another way is to rescale the conformal factor such that A(ϕ)→ A(ϕ)/A(ϕ0), or
equivalently imposing A(ϕ0) = 1, for which no redefinition is necessary.

A second interesting point is that due to the scalar-field contribution, the metric pertur-
bation in the Jordan frame is only transverse but not traceless. However, depending on the
coupling function, the scalar contribution to the waveform (D.8) can be strongly suppressed,
due to the factor of A′(ϕ0)/A(ϕ0). For instance, for theories with generic power law couplings
A(ϕ) = ϕκ, dilatonic couplings A(ϕ) = eγϕ, or Gaussian couplings [20]A(ϕ) = e

1
2β0ϕ

2
, de-

pending on the coupling constants and values of ϕ0 = ϕ∞, the scalar field contribution to the
Jordan-frame waveform may be suppressed by many orders of magnitude.

D.2 Derivation beyond the short-wave approximation

The results in Sec. D.1 above can be applied to ground-based detectors as long as the size of
the arms L is shorter than the reduced GW wavelength λ̃, L ≪ λ̃. To study GWs beyond this
approximation requires analyzing the scattering of light between mirrors as we now discuss.
Similarly to (D.1), the time it takes for the light of the interferometer to scatter from the mirror
and come back, is given by the same expression as in GR, with their corresponding metrics.
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We will proceed as above and start from the physical Jordan frame, and at the end rewrite
the expressions in terms of Einstein frame quantities. Similarly to [100], we consider the plus
polarization of a gravitational wave moving along the z-axis. We will focus on two different
kinds of orientations for the interferometer arms, when they lie along the x − y or the x − z
plane.

In this set-up, we have

ds2 = −d t2 + [1+ h+ +Φ]d x2 + [1− h+ +Φ]d y2 + dz2 , (D.14)

with Φ defined in (D.13). For null rays, ds2 = 0 and, at first order in h+ and Φ, for the x−arm,

d x = ±
§

1−
1
2
[h+ +Φ]
ª

d t . (D.15)

For a photon travelling from the origin (x , t) = (0, t0) to the mirror at (x , t) = (Lx , t1), we
integrate (D.15) with the plus sign. For the return trip, from (x , t) = (Lx , t1) to (x , t) = (0, t2),
we use the minus sign.

The time it takes for a photon to complete N round trips along the x-arm is given, at first
order in the perturbations, by

∆t(x) = N(t2 − t0)

= 2N Lx +
N
2

∫ t0+2LZ

t0

�

h+(t
′) +Φ(t ′)
�

d t ′ , (D.16)

where we have substituted t2 = t0+2Lx +O(h+,Φ) in the upper limit of the integral. Consid-
ering a plane wave as a simple example,

h+ = A+ cos(ωgw t) , Φ= Φ0 cos(ωs t) , (D.17)

with ωgw and ωs the frequency of the GW and the scalar field, respectively, and using
∫ t0+2Lx

t0

cos(ωt) =
sin(ωLx)
(ωLx)

cos[ω(t0 + Lx)] , (D.18)

yields

∆t(x) = 2N Lx

�

1+
1
2

�

h+(t0 + Lx) +Φ(t0 + Lx)
ωgw

ωs

sin(ωs Lx)
sin(ωgw Lx)

�

sin(ωgw Lx)

(ωgw Lx)

�

, (D.19)

or, considering that we observe the wave at some given time t ≡ t2 = t0 + 2Lx , yields

∆t(x) = 2N Lx

�

1+
scgw,x

2

�

h+(t − Lx) +Φ(t − Lx)
scs,x

scgw,x

��

, (D.20)

where we define

scp,q ≡ sinc(ωp Lq) =
sin(ωp Lq)

(ωp Lq)
. (D.21)

For the y-arm the result is similar but with h+ → −h+. The phase-shift ∆Θ produced in the
interferometer is given by

∆Θ(x−y) =ωL

�

∆t(x) −∆t(y)
�

= 2NωL∆L

�

1+
L+

2∆L

�

h+(t+)scgw,+ +Φ(t+)scs,+
�

+
L−

2∆L

�

h+(t−)scgw,− −Φ(t−)scs,−
�

�

, (D.22)

42

https://scipost.org
https://scipost.org/SciPostPhysCore.8.2.042


SciPost Phys. Core 8, 042 (2025)

with ωL the laser frequency, and the definitions

L ≡
Lx + L y

2
, ∆L ≡ Lx − L y ,

L+/− ≡ L ±
∆L
2

, t+/− = t − L± .
(D.23)

For an interferometer with equal-length arms, ∆L = 0, L+ = L− = L and

∆Θ(x−y) = h+(t − L)Θarm

sin(ωgw L)

(ωgw L)
, (D.24)

with Θarm = 2LNωL . This is the same result as in GR. This is because the scalar field con-
tributes equally in the x and y directions, and therefore its oscillations will cancel out.

We now focus on the case where the arms are in the x-z axis. In this case, the expression
for the x-arm is the same as above, and for the z-axis we have

∆t(z) = 2N Lz , (D.25)

since the wave is propagating along the z axis and is transverse. In this case, there is no
contribution of the scalar field along the z-axis and the phase yields

∆Θ(x−z) =ωL

�

∆t(x) −∆t(z)
�

= 2NωL∆L

�

1+
L+

2∆L

�

h+(t+)scgw,+ +Φ(t+)scs,+
�

�

, (D.26)

with the change of label y → z in the definitions (D.23). For the case that the arms have equal
length, we obtain

∆Θ(x−z) =
Θarm

2

�

h+(t − L)scgw,+ +Φ(t − L)scs,+
�

. (D.27)

Using (D.11), in terms of the Einstein frame waveforms we have

∆Θ(x−y) = Θarmh∗+(t − L)scgw,+ , (D.28)

∆Θ(x−z) =
Θarm

2

�

h∗+(t − L)scgw,+ − 2α∞δϕ(t − L)scs,+
�

. (D.29)

Note that the lengths and frequencies will be the same as long as we are far from the scalar
field. In the short-wave approximation, sc→ 1 and we recover the result in [82] for the scalar
field contribution.

E Elaboration on the parameter space study

In Sec. 5.4.2 we did a phase space analysis of the tidal contributions to the QD Fourier phase
captured by the ci coefficients in (83). Based on these parameter space studies we selected
three types of systems that maximize the different types of tidal contributions and an interme-
diate scenario both for NS-NS and BH-NS systems. In this section in the main text we showed
two of these parameter space plot explicitly in Fig. 7 for the sake of readability. In this ap-
pendix we elaborate on this analysis of Sec. 5.4.2, showing the parameter space results for the
other coefficients in (83) in Fig. 10. In Fig 10 we show the contour plots for the different ci
coefficients defined in (83), in the (MA, MB) parameter space. We fix the SLy EoS, although
the discussion is qualitatively similar for the WFF1 and H4 EoS.
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Figure 10: Contour plots of the ci coefficients defined in (83), in the MA − MB pa-
rameter space for β0 = −4.5 and the SLy EoS for a BH-NS system (top) and NS-NS
system (middle and bottom). The plots for the other equations of state are qualita-
tively similar.
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The contour plots for the quadrupolar tensor tidal contributions captured in ( 39
2α5ξ2 Λ̃+ c5)

are for NS-NS and BH-NS systems qualitatively similar, in that the maximum absolute value is
reached for the lowest masses. This is because the coefficients depend on the inverse of the
total mass, which is maximum towards the limit of the lower NS mass of 1M⊙. Hence, our
first choice of types of systems that would be interesting to study with respect to maximizing
the quadrupolar tensor tidal contributions is that of the lowest possible mass for both NS-NS
and BH-NS systems

(MA, MB)
NS−NS
1 = (1M⊙, 1M⊙) , (E.1a)

(MA, MB)
BH−NS
1 = (5M⊙, 1M⊙) . (E.1b)

The absolute value of the other contributions in (83) for both systems is peaked when one of
the masses corresponds to that of the maximum charge Mq ≡ M(qmax), and the other mass cor-
responds to the lowest possible configuration. This can be interpreted as scalar-tensor effects
being more noticeable as the charge is maximum, which indeed characterises the strength of
the scalar field. Therefore, our second choice of systems will be

(MA, MB)
NS−NS
2 = (1M⊙, Mq) , (E.2a)

(MA, MB)
BH−NS
2 = (5M⊙, Mq) . (E.2b)

Additionally, for a NS-NS system, the c3 contribution reaches moderate values when
MA = MB = Mq. This can be explained with that this contribution contains the dipolar
scalar tidal contribution in ζ1, which is maximum for and equal-mass system at the maximum
charge(see Fig. 3). Additionally, the prefactors in front of the tidal deformabilities in the ci
contributions in (83) also depend on the scalar charges and are maximised for the equal-mass,
maximum-charge configurations, contributing to an overall lower effect than when consider-
ing one of the companions with the lowest mass, for which q ∼ 0. Finally, we will also choose
an intermediate case where effects are moderate,

(MA, MB)
NS−NS
3 = (1.1M⊙, 1.2M⊙) , (E.3a)

(MA, MB)
BH−NS
3 = (8.9M⊙, 1.2M⊙) , (E.3b)

where we choose slightly different masses for the NS-NS system to avoid the vanishing of the
term S− in the phase.

In the main body of the paper we refer to (E.1a), (E.2a) and (E.3a) as scenarios 1, 2 and
3 respectively.

F Dipolar driven phase evolution

As discussed in Sec. 5.4.1 the DD domain for the parameter space of NS-NS and BH-NS systems
we studied lies below the lower bound frequency of the groundbased detectors. However it
might still be relevant to study the DD domain as the boundary frequency is an approximation
and the transfer frequency regime might be a broader range extending to higher frequen-
cies [49]. In this appendix we show the results of the tidal contributions to the DD fourier
phase (B.18) in Fig. 11. The dipolar driven regime is not present for equal mass systems for
which S− = 0, so only Scenario 2 and 3 are non-trivial. The contributions are shown for
frequencies 10−5Hz to the boundary frequency (72). We choose to show here the different
tidal contributions per Scenario instead of the contribution for the different systems; as in the
DD regime the boundary frequency changes for different systems hence it is clearer to show
the results per system. We find that the quadrupolar contributions are for both scenario’s
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Figure 11: Different contributions of the tidal deformabilities to the Fourier phase
for a NS-NS system in the DD regime for the scenario 2 and 3 in Sec. 2. Note that
some of the contributions divided by orders of 10 to show the curves properly in one
figure. The frequency domain is cut of at the boundary frequency of te DD domain
(72).

much smaller than in the QD regime. The dipolar scalar tidal contributions are clearly dom-
inating which is expected in the DD domain where the dipolar radiation dominates over the
quadrupole terms. The largerst dipolar tidal contribution is found in Scenario 2, becoming of
order 1 near the boundary frequency.
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