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Abstract

A diagrammatic formalism for lattices of spin-'% is developed. It is based on an uncon-
strained mapping between spin and Majorana operators. This allows the use of stan-
dard tools of diagrammatic quantum many-body theory without requiring projections.
We derive, in particular, the Feynman rules for the expansion around a color-preserving
mean-field theory. We then present the numerical results obtained by computing the
corrections up to second order for the Heisenberg model in one and two dimensions,
showing that perturbative corrections are not only numerically important, but also qual-
itatively improve the results of mean-field theory. These results pave the way for the use
of Majorana diagrammatic tools in theoretical and numerical studies of quantum spin
systems.
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1 Introduction

Systems of spin-Y2 on a lattice have given rise to a rich variety of phases and phenomena. In
particular, frustration can prevent conventional magnetic order, resulting in Quantum Spin
Liquids (QSLs) [1-3], without any spontaneous symmetry breaking at T = 0. The Kitaev
model [4] is an emblematic model presenting both gapped and ungapped QSL phases, with
the remarquable specificity to have a known exact solution. However, many frustrated spin
models lack such exact solutions and require approximate analytical or numerical approaches.
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A common theoretical strategy to investigate QSLs is to employ parton representations,
where each spin operator is expressed in terms of more tractable fermionic [5-7] or bosonic [ 8-
10] degrees of freedom. However, a major drawback of standard parton approaches is that
they enlarge the Hilbert space, introducing unphysical states that do not correspond to any
real spin configuration. While it is possible to deal with this constraint with Variational Monte
Carlo [11-13], it is challenging to impose the restriction to the physical part of the Hilbert
space in a field-theory framework, impeding the systematic calculation of corrections to the
mean-field theory.

The Popov-Fedotov trick (PFT) [14, 15] allows to exactly perform the projection in the
fermionic parton representation by introducing a complex chemical potential that, at finite
temperature, eliminates the contribution of unphysical states. The PFT allows the use of field-
theory techniques to quantum spin systems and to compute physical quantities in a systematic
way with Diagrammatic Monte Carlo [16-22]. However, the PFT requires the use of a non-
Hermitian Hamiltonian, it works only at finite temperature, and unphysical states still appear
in intermediate calculations at all expansion orders, as they are eliminated only after the whole
perturbative series is summed.

The SO(3) Majorana fermion representation of spin-' operators [23-30], closely related
to the drone-fermion [31-33] and Grassmann-variable [34-36] approaches, offers an elegant
route to avoid these complications by providing a constraint-free mapping. It expresses each
spin operator in terms of three Majorana fermions and exactly reproduces the SU(2) spin
algebra without requiring any constraint, in contrast with the four-Majorana representation
introduced to solve the Kitaev honeycomb model [4,30]. The mapping creates copies of the
original spin Hilbert space, which manifests itself in a Z, gauge redundancy, and no unphysical
state is introduced. We note that this representation is used in the recently-proposed Pseudo-
Majorana Functional Renormalization Group method [37-41].

In this paper, we introduce a general diagrammatic formalism for quantum spin-“2 mod-
els using the SO(3) Majorana representation. Specifically, we consider a Majorana mean-field
Ansatz as a perturbative starting point, and we systematically compute the corrections due to
the interaction. After having discussed the properties of the representation and its gauge re-
dundancy, we derive the Feynman diagram rules for a color-preserving mean-field expansion,
which are used to write down explicitly the correction to the spin susceptibility up to second
order. We benchmark our approach on the antiferromagnetic Heisenberg model in one and
two dimensions. The diagrammatic corrections are found to be both quantitatively and quali-
tatively important as they restore key features that the mean-field theory misses. Our results
show that the Majorana diagrammatic approach we develop can systematically correct even
a qualitatively-wrong mean-field theory result, and it could provide an additional theoretical
and numerical tool for the study of quantum spin systems.

2 Formalism

The main goal of this work is to develop a systematic diagrammatic formalism for quantum
spin-'2 models. To achieve this, as mentioned, we use a constraint-free Majorana-fermion rep-
resentation of the spin-% degrees of freedom, the SO(3) Majorana representation, as detailed
in Sec. 2.1. In Sec. 2.2 we show how to retrieve physical spin observables from the Majorana-
fermion representation without projections, and we discuss the gauge choice at the interacting
level. In Sec. 2.3, in the context of the XY Z model, we introduce the color-preserving Majo-
rana mean-field theory that we use as perturbative starting point. Finally, Sec. 2.4 is dedicated
to the derivation of the Feynman rules of the expansion around the color-preserving mean-
field theory, and we give explicit expressions for spin-susceptibility Feynman diagrams up to
second order.
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2.1 SO(3) Majorana representation for spin-'- particles

This section is dedicated to the discussion of the properties of the SO(3) Majorana represen-
tation for spin-'2, used in this work. As already mentioned, its advantage over other repre-
sentations such as the Kitaev’s, which uses four Majorana fermions per spin, or the Abrikosov-
fermion one, which uses two fermions per spin, is that no constraint needs to be imposed, as
the Hilbert space consists in multiple copies of the physical spin-'4 Hilbert space, which pro-
duce a Z, gauge redundancy. Note that the Jordan-Wigner transformation is another example
of constraint-less mapping for spin-'2, but with the disadvantage of being non-local.

2.1.1 Definition

The SO(3) Majorana representation for spin-“- particles [23,30] is defined as:

§==7 D cush)P], JEL, acixysl, M
1.0€{x,y,2}
where Latin letters such as j € £ denote a site-index on a lattice £, Greek letters such as
a € {x,y,z} are used for three-dimensional components, cSA'Ja is a Majorana spin-%2 operator,
€qy5 is the Levi-Civita tensor, and ;5;." is a Majorana-fermion operator, which is Hermitian and
satisfies the following anticommutation relations

P, 0R}=2656y5. 2)
We remark that if we introduce the vectors of operators $j = (S"F,S‘]?' ,‘SA‘;.‘)T and
pj= (p;,ﬁj’,ﬁjz,)T, Eq. (1) simply writes as

A i, . .

One can verify that the Majorana spin-'2 operators S‘J‘" defined in Eq. (1) are Hermitian
and satisfy all the properties of spin-2 operators:

A 1 A A . .
(M2 = B =8,k Y €ays 7 4
9]
We emphasize that the SO(3) representation employed here differs from Kitaev’s construction
[4,30] in two key aspects: (i) it requires only three Majorana fermions per site, and (ii) it
imposes the spin-Y2 algebra without any Hilbert-space constraint.

2.1.2 Spin-'2, Majorana, and copy Hilbert spaces

In the following, we denote by S;" a spin-'2 operator acting on the physical spin Hilbert space

Hspin, and by S’Ja the Majorana spin-% operator defined in Eq. (1), acting on the Majorana
Hilbert space Hy,;. We consider an even number of lattice sites, [£| = 2N, with a spin-%2
physical degree of freedom per lattice site. The dimension of H, is then 22N Two Majorana
fegvmion operators can be paired to form a complex fermion, giving a dimension of Hy,; of
277,
As the Majorana spin-/ operators satisfy the spin- algebraic properties, H,; consists of
copies of Hpin
HMaj = 7'[spin ® Hcopy; (5)

where Hp,y is a “copy” Hilbert space, of dimension 2N The Majorana spin operators 3}“ write
a_ da o f
S =57 ®lLegpy, (6)

where ﬁcopy is the identity operator acting on Hpy-

4
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2.1.3 Spin rotation

The vector of Majorana spin operators éj = (& :Sf/ ,S}Z )T and the vector of Majorana oper-
ators p; = (,6}‘ . ﬁj.' , p“]Z. )T both transform as vectors under a local spin rotation. Indeed, for
ReSO(3),

2.1.4 Z, gauge invariance

We have seen that the Majorana representation is redundant: the dimension of H,y,; is expo-
nentially higher than the dimension of H;,. This manifests itself in a Z, gauge redundancy
of the fermion-to-spin mapping, as we make explicit in this section.

For o € {—1,1}, we define a Z, gauge transformation G by

. G A

pj—0;p;. (8)
From Eq. (1), we get that the Majorana spin operators are invariant under this Z, gauge
transformation G
2.1.5 Majorana triple operators

Following Refs. [30,42,43], we introduce the Majorana triple operators

i

6

%j=_iﬁ;{ﬁ]}'/ﬁ§= Pj-Pj*xPj, (10)
for j € L. The Majorana triple operators are Hermitian, commute with the Majorana spin
operators,

[£;,871=0, 1D

but do not commute with each other. Thus, the Majorana triple operators act trivially on H
and, accordingly, we can define £ i+ Heopy = Heopy Such that

Spin ’

’%] :ﬁspm®£] (12)

2.1.6 Copy-pair operators and complete basis for the Majorana Hilbert space

We introduce the copy-pair operators j} 5 [30]

AZ o i A A

1= —E Tj T, (13)
which are Hermitian operators with eigenvalues :I:%. The copy-pair operators act non-trivially
only on H,py, see Eq. (12). Under a gauge transformation G, they transform as

725050075 (14)
Two copy-pair operators on four different sites j, k, [ and m commute, [j] z, Al";n ]1=0.

As the lattice £ has an even number of sites equal to 2N, we can consider a pairing of lattice
sites D = {(j1,11),.--,Un, Iy)}, such that {jq,...,jn,L,---, Iy} = L. The copy-pair operators
built on these pairs commute with each other and, from Eq. (11), they also commute with the
Majorana spin operators SJ"‘ Therefore, as Hpy, has dimension 2N, Ajzk for (j,k) € D and S‘f
for [ € £ provide a complete set of commuting observables for Hyy;.

5
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2.2 Mapping a spin-2 Hamiltonian to a Majorana Hamiltonian

In this section, we show how the expectation value of physical observables at thermal equi-
librium are obtained from Majorana-fermion expectation values without any projection. We
also discuss what we refer to as interacting-level gauge choice: we are free to add an arbitrary
function of the Majorana triple operators to the Majorana-mapped spin Hamiltonian without
affecting physical results.

2.2.1 Mapping of spin-'% terms to Majorana spin operators

We start with a Hamiltonian H : Hspin = Hspin
H=H(S), (15)

where H is a function of the § = (3;.") ieL, acfx,y,z) OPerators. We associate to H the Hamiltonian
H Haj = Hwmaj Obtained by directly substituting the spin-Y2 operators §J°‘ with the Majorana
spin operators 3’1“

H=H(S), (16)
where 8 = (Sf‘) iel, ae{x,y,z}- Following the discussion of Sec. 2.1.2,

A

H=Hel,,. (17)

2.2.2 Copy Hamiltonian

We could also consider the more general Majorana Hamiltonian
P =H+K, K=K(%), (18)

where 4 = (1;);c. are the Majorana triple operators of Eq. (10), and K(%) is a function of

the £ defining the copy Hamiltonian K. As the Majorana triple operators commute with the

Majorana spin operators, they act non-trivially only on Hqpy

A

/& :ﬁspin®K) (19)

where K is an operator acting on Hqp, -

2.2.3 Thermal density matrix and expectation values

In this work, we focus on thermal properties at inverse temperature 3, which is a dummy vari-
able in most of the following equations. The partition function with the Majorana Hamiltonian
Hoaj> defined in Eq. (18), is

Ztaj = Truviaj e PHms = Trivy e Pl +insk) — 7 7 (20)

copy »

where we have used Eq. (16) and Eq. (19), and where we have introduced the physical spin-Y2

partition function Z and the partition function of the copy system Z,,,

Trcopy e PK 2n

2

Z= Trspin e_ﬁH Zcopy =

The thermal density matrix ) is the product of a spin and a copy density matrix

= ﬁﬁ;spin ® TA’/S;copy . (22)
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Let O = f(8) be a general operator acting on Hspin- We associate to O the Majorana
operator O = f (&), acting on Hiaj- We write, using Eq. (20) and Eq. (22)

X Try (O € PPy Tryy (0 e PH)

(O = =(0)q » (23)

Ty € 7 Trypin € P11

which shows that the thermal expectation values of spin-“2 operators can be computed with
the Majorana Hamiltonian Hyy;.

2.2.4 Interacting-level gauge choice in the Majorana Hamiltonian

Any non-constant choice for the copy Hamiltonian X makes the Majorana Hamiltonian ﬁMaj

not Z, gauge invariant in the sense of Sec. 2.1.4. Nevertheless, any choice of K is as good as
any other for the purpose of computing physical observables, i.e. quantities that only depend
on the original spin-% operators, as shown in Sec. 2.2.3. This means that using a non-constant
K is equivalent to choosing a preferred gauge for our calculations, and we refer to this as the
interacting-level gauge choice. If no interacting-level gauge choice is made, a gauge choice
must be made in the non-interacting Hamiltonian, which we refer to as non-interacting-level
gauge choice. See Sec. 2.3.2 for a further discussion of the two levels at which a gauge choice
must be made.

The Majorana Hamiltonian gauge invariance is equivalent to the “copy symmetry” of
the Hamiltonian with respect to the various copies of the physical spin Hilbert space. An
interacting-level gauge choice therefore removes the exponential energy degeneracy between
the different copies.

2.3 XYZ model and mean-field theory

In this section, we introduce the standard Hartree-Fock mean-field theory for the Majorana-
mapped spin-¥2 XY Z Hamiltonian. As our main goal is to study systems in which the symme-
tries of the Hamiltonian are not broken, we focus on the so-called “color-preserving” mean-field
theory. For a non-interacting-level gauge choice, which is the case we typically consider in this
work, there is a gauge-redundancy of mean-field solutions.

2.3.1 XYZ Hamiltonian and Majorana mapping

From this point on, we focus our attention on the XY Z spin-'2 Hamiltonian

H=

N =

D88, (24)
jLa

where J]?‘; = 0. According to Egs. (1) and (16), the Hamiltonian H acting on the Majorana
Hilbert space Hyy,; is

N 1 R A
H=—— > leays| I8 pY 52 5T 7 (25)
j.La,y,0

2.3.2 Gauge choice at the interacting or non-interacting level

In this work, we fix the copy Hamiltonian K = 0. Using the notation of Sec. 2.2.2, we get
Hmaj = H, which preserves the Z, gauge invariance of H. With this non-interacting-level
gauge choice, the ground state of 7:[Maj has a degeneracy of 2V, the dimension of Hspin-
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An alternative non-zero choice for K would be

K=> K Jz, (26)
.l

for Kj; € R, which lifts the gauge degeneracy of the 7L ground states. In Appendix A we solve
the two-site Heisenberg model with the addition of this term. In the two-site model this type
of interacting-level gauge choice for K can open a gap between the two copies of the physical
system, and this could have advantages for the convergence of the perturbative expansion. An
investigation along this direction in a more systematic framework is left for future work.

2.3.3 Hartree-Fock decomposition

The XY Z Hamiltonian # of Eq. (25) is a fully interacting Majorana Hamiltonian, and it is
therefore difficult to treat analytically. For this reason, we consider, as a starting point for our
study, the quadratic Hamiltonian obtained with the Hartree-Fock mean-field theory. For a # y
and j # [, we write

PIBTOEB] MBI (PP ), + PTPT (BEB]), + BB B]BF), +PTBE (B1A])
= BEEBIP]), — BB BEBE), —BIAIBIAY),, @7)
where
Ho :é lZ i P} AY+11—6 D leasl I3 B50180] ) - (28)

j.Lo,y,6

and A is real and obtained self-consistently. Different self-consistent solutions exist. The solu-
tions can be sought in sets of A(JIZY (called ansitze) with some constraints. Two examples are
given in the following subsections.

This mean-field decoupling typically breaks the gauge invariance of %, which implies that
several sets of A;ZIY are equivalent up to gauge transformations. This is discussed in Sec. 2.3.6.

While our discussion of the Hartree-Fock decomposition of 7:[Maj focuses on the case K = 0,
it is straightforward to generalize it by applying the mean-field decomposition to K as well.

The non-interacting Hamiltonian 7:[0 is solved by a numerical diagonalization of the matrix
A, which is of size 6N x 6N. For the translation invariant mean-field ansidtze we consider in
this work, the 6N x 6N matrix is Fourier transformed into N /m matrices of size 6m x 6m,
with m the number of sites in the mean-field unit cell. We give some further details about the
diagonalization in Appendix B.

2.3.4 Curie-Weiss mean-field theory
The choice

(Bl D)y, 70, (b7 D)y =(B] Py =0, (29)
is equivalent to the standard Curie-Weiss mean-ﬁeld theory, Wthh, written in a more familiar
form, is just §;’ .§la A ﬁ;’ (ﬁla) + (§Ja) §l°‘ — (ﬁ;‘) (ﬁla) This mean-field theory can be applied only
if the magnetization is not zero.
2.3.5 Color-preserving mean-field theory

In this work, we are interested in studying states that do not break the Hamiltonian symmetries,
like spin liquids or systems at high-enough temperature. For the XY Z model, the global spin
rotations of 7t around axes x, y and z are symmetries. States that respect these symmetries
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cannot have a non-zero magnetization. Since the expectation value (ﬁ;"ﬁ;)ﬁ for a # y is
0

related to the local magnetization on site j, we impose it to be zero. In the same way, for
a#yandj#l (ﬁf‘pAl ). # 0 is not compatible with the global spin-rotation symmetries.
Accordingly, we also set it too zero.

We can then write the Hartree-Fock Hamiltonian, Eq. (28), as

A i . 1 N S AT A
o= AT A5+ 3 lewl 5 10500, i, O
It JLay,

with the self-consistent equations
1 A
A?Ia:ZZkayélJ;’l (= lpéplg) (31
5

Inspired by the Feynman-diagram language of Sec. 2.4, we call this symmetric mean-field
theory “color-preserving”.

2.3.6 Z, gauge transformation and non-interacting-level gauge choice

Under a gauge transformation, p — 0 p] , the mean field Hamiltonian #,, defined in
Eq. (30), transforms as

aaaa, 1 o
Hors £ 30 A PP+ D el I (—IIA0), (—BTAT), - (32)
Jla j.La,y,6

As we have made a non-interacting-level gauge choice by setting K = 0, the interacting Hamil-
tonian A is gauge-invariant. In addition, the physical spin observables are also gauge invari-
ant. This means that a choice of an ansatz A is equivalent to any other gauge-related ansatz:
AJ =0 O'IA] -

In a basis diagonalizing the complete set of commuting observables j} o and S’Jz given in
Sec. 2.1.6, each basis state has a copy index consisting of the 2V possibilities for the eigenvalues
of the .7AJ " operators, and it is shared by 22N basis states. A gauge transformation permutes
the copy indices of these basis states, but does not modify the physical observables. Thus, we
can group gauge-related ansitze into equivalence classes, distinguishable by some physical
(gauge-invariant) observable. For any couple of sites (j,I), two equivalent anséitze A and A’
verify A‘J’.‘la = :I:A‘]’.‘l‘". But two anséitze verifying this condition can as well belong to different
equivalence classes.

We illustrate this on the example of a linear chain with Jfl‘ = 0 on non-neighboring sites.
Let A and A’ verifying A‘]?‘l“ = :I:A‘J?‘la’. On an open chain with sites indexed by j = 0 to 2N —1,
we can successively change the gauge on sites with increasing indices to get A from A’. Note
that only 2N —1 signs have to be chosen, as there are only 2N —1 links. But on a closed chain
where sites 0 and 2N are identified, there are 2N links but we cannot use the same procedure,
as each local gauge change on a site changes the sign of A‘J).‘l“ on two links: the sign of the

aa . . . .
product l_[ =0 ' A0 i is gauge invariant. On a more complex lattice, this is true for any closed

loop of sites. These signs are called fluxes and allow to classify the ansitze with the same
modulus of A into equivalence classes.

2.3.7 Lattice symmetries

We already have imposed some spin-rotational symmetry on the ansatz and now want to im-
pose the lattice symmetries, which are useful, for instance, when we look for spin liquid states.

9
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This means that the physical observables have to be invariant under the action of the lattice
symmetry group G,.. As (A‘]?‘l‘")2 is gauge invariant, it has to be conserved by G, implying that
all symmetry-related links have the same |A?la|. Once the moduli chosen under this constraint,
it remains to choose the signs, or equivalently up to gauge transformations, the fluxes. To
determine all the flux patterns compatible with a lattice or in other words, all the equivalence
classes, we use the projective symmetry groups (PSG). This formalism was first developed in
the context of Schwinger boson and Abrikosov fermion mean-field theories [44—47], but it has

also been applied to mean-field Majorana Hamiltonians [48-50].

2.3.8 Shifted-action formalism

With the goal of calculating corrections to mean-field theory, we use the formalism of Ref. [51]
to build a shifted Majorana Hamiltonian H,,;(£) depending on a complex parameter £ that

interpolates between ?-A[O and 7:[Maj

Flnai(§) = (1 — &) Ho + & Flny; (33)

When evaluated at zero coupling constant £ = 0, this £-dependent Hamiltonian is the non-
interacting Hamiltonian, while it gives back Hyy,; for £ = 1:

ﬁMaj(g =0)=H,, ?:[Maj(g =1)= 7'AlMaj . (34)

The perturbative expansion corresponds to expanding physical observables in powers of £. To
this end, we define
Hint = HMaj - HO ’ (35)

such that
%Maj(‘z) =Ho+ 3 Hin - (36)

The physical value for the coupling constant is £ = 1, and all other values of £ are not
related to the physical system described by the original spin-Y XY Z Hamiltonian H. However,
for the purposes of understanding the analytic behavior of the perturbative expansion, it is
important to study the properties of the relevant quantities for & # 1.

2.3.9 Non-perturbative expectation value of color-preserving mean-field parameters

We consider here the non-interacting-level gauge choice K = 0. As the operator —i ﬁ;?‘ p; is not
gauge invariant for j # [, its thermal expectation value with the Z,-gauge-invariant interacting
Majorana Hamiltonian 7 is zero. Reciprocally, as the mean-field Hamiltonian #,, is not gauge
invariant, the mean-field parameters are typically non-zero

(—ip% B, =0, (PP, #0. (37)

Using the shifted-action formalism of Sec. 2.3.8, this shows that the average value of i ;5;." o

is zero at £ = 1, and not necessarily zero otherwise. This is due to the fact that 7—A[Maj(£ ) is
gauge-invariant only for £ = 1. This means that the non-perturbative values for the color-
preserving mean-field parameters are zero.

It is possible to avoid this rather counterintuitive situation using ?:lMaj(é' ) with an inter-
acting gauge choice K # 0, see Sec. 2.2.4. While we leave the exploration of this possibility
as future work, as already mentioned we detail the solution of the two-site Heisenberg model
with an interacting-level gauge choice in App. A.

10
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2.4 Feynman diagrams for the expansion around the color-preserving mean-
field theory

The present discussion pertains to the systematic calculation of corrections to the color-
preserving mean-field theory. The Feynman rules for diagram construction and the fermionic
sign are derived. In this section, we present the Feynman diagrams up to second order for the
spin susceptibility as an application. The numerical evaluation of these diagrams can be found
in the subsequent Results section, see Sec. 3.

2.4.1 Matsubara spin susceptibility

The Matsubara (or imaginary-time) spin susceptibility is expressed as follows
75 (@) = (L1810 8 0]), = (TS @ 8 1), (38)
aj

where we have applied Eq. (23) and used the time-ordering operation T,. The imaginary-time
operators in the Heisenberg picture are defined as

§]‘?‘(T) =™ §Ja e~ s Sf‘(r) = "l 5‘1“ e THhiej (39)
From the imaginary-time susceptibility it is possible to obtain, for instance, the static struc-
ture factor and, by analytic continuation, the dynamic structure factor as well.
2.4.2 Perturbative expansion in the shifted-action formalism

The shifted-action formalism of Sec. 2.3.8 is used to systematically build the perturbative ex-
pansion around the mean-field theory. We define a £-dependent susceptibility as

AY (e £ o Sa( .. 57 (-
17 (58 = (TSmO :01),, - (40)
where we have used the £-dependent Heisenberg picture
3]{1(7; g) — eTHMaj(g) S’Ja e_THMaj(‘:) . (41)
By definition, we obtain the physical value )(].O;Y(T) of the susceptibility for £ = 1.
We write ay
X (7;8)
ay Tl ’
1 (18)=—Z——, (42)
g Zei(8)
with

ay Ty (Tf[éja(r; 5)5‘2’(0; g)]e—ﬂﬁmj(i))
Xy (8= A , 43)
! TrMaj e_ﬂ’Ho

TrMaj e_/j ,’L’\[Maj (‘g)

Zng(E) = , (44)

TrMaj e_ﬁ Ho

and we rewrite these two quantities as the thermal average of two observables under the
Hamiltonian #, [52, 53]

X (738) = UETLSF () 8] (0;8)]), (45)
Zyai(8) = {U(E)) g, » (46)
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where

U(E) = ePTo e Pwa(®) = 7_¢~¢ Jg @7 Finea (7). 47)
where @I(T) is the operator O at imaginary time 7 in the interaction picture:
Oy(r)=eo O e o, (48)

We can now formally expand the susceptibility )(;;Y(T; &) in powers of &, as well as X;Y (T;8)
and Zy,;(&):

2y (5:6) = Z X (e (49)

Xi(1;8)=) Xj ()&, (50)
n=0

ZMaj(g) = Z ZMaj;n gn . (51)
n=0

The coefficient of £", XO;Y (7), provides the n-th correction to the Majorana mean-field theory.

In this section, we only focus on the calculation of the coefficients y lY (7) of Eq. (49), while
convergence properties are discussed on an example in Sec. 3.2.
In this way, we can write

~ 1"
ZMaJn ( ) dTl"'dTn<T [ mtI(Tl) mtI(Tn)]) (52)
e Jro

="

n!

Xjin(F) = f[ ]drl...drn@[ et (71) - Fine 1 (1) $5(9) S1,0)]),, - (53)
0,8 0

In conclusion, the perturbative expansion for the spin susceptibility y is obtained from a con-
nected Majorana correlation function with the non-interacting Hamiltonian #,,

1" A c
]1 n( ) nl dTl"'dTn<T I: 1ntI(T1) 1ntI(Tn) I(T) SZ)ZI(O)]>7_A[0 > (54)
©oJopm
where <>;_A[ means a connected non-interacting average.
0

2.4.3 Wick’s theorem for Majorana fermions

We use the time-ordered version of the Wick’s theorem for Majorana fermions presented in
Refs. [54-57]

(T [ (71) - B3 (man)])., =PfG,, (55)

where we have introduced the Pfaffian Pf G, of the 2n x 2n Green’s function matrix G, whose
components are

[Goly, = Goup (7 =) = =i (T[54, (7) 51 (7) ]),, - (56)

In our case, thanks to the restriction to a color-preserving mean-field theory (see Eq. (30)),
the non-interacting Green’s function is diagonal in the coordinate index

Oﬂ(f 7)) =86% Goy(T — 7). (57)

12


https://scipost.org
https://scipost.org/SciPostPhysCore.9.1.002

e SciPost Phys. Core 9, 002 (2026)

Figure 1: Building blocks for the Majorana Feynman diagrams. We associate a color to
each of the coordinates a € {x, y,z}. (a) the three non-interacting Majorana Green’s

functions G (7 — 7’) present in the color-preserving mean-field theory, represented

il
by a colored edge; (b) a Majorana spin operator SJ‘? ;(7), represented by a vertex
of the z-color, and two half-edges of the two other colors; (c) a spin-spin interaction

vertex associated to J ﬁ’ represented by a colored wavy line connecting two Majorana-

spin-operator vertices of this color; (d) an interaction vertex coming from #,: such
vertices eliminate diagrams with Fock insertions in the expansion.

2.4.4 Feynman rules

Feynman diagrams for the color-preserving mean-field expansion can be constructed through
a graphical interpretation of Wick’s theorem. A direct consequence of Eq. (57) is that we only
have “unicolor” propagators, meaning that it is possible to factorize the whole correlator into
a product of three smaller correlators, one for each color. The sign of the Feynman diagram is
then just the product of the sign for each color, obtained by a procedure detailed below.

Fig. 1 gives the graphical representation of the three quartic interaction vertices of 7-A£int, (7)
and of the quadratic counterterms corresponding to 73[0’ 1(7), which eliminate all Fock-diagram
insertions as a consequence of the self-consistency Eq. (31). With the purpose of clarifying the
discussion, we have added a time dependence to the spin interaction JJF" ; one just needs to
set JJF’Z‘(T) = J]f’l‘ at the end of the derivation. We assign three colors to denote the {x,y,z}
coordinates.

We state here the Feynman rules to draw all diagrams and to determine their weights for
the spin susceptibility in the space-time representation. Let n be the order of the expansion
for xﬁy(r). Let J;‘z(rl) .. .JJZ'ZH(TH) be a set of interaction vertices. The Feynman rules are
summarized here:

* Draw the two external vertices SJ‘."I(T) and SIY ;(0) and the interaction vertices in’zk(r )
(see Fig. 1).

* Connect the half-edges of the same color in all the possible ways. Avoid self-interactions
(Fock diagrams), since they are eliminated by the contractions with H, ; vertices (see Ap-
pendix C). Each edge connecting two vertices corresponds to a non-interacting Green’s
function Gg;‘;.‘l (ty—71,)-

* Assign an overall factor of (2;122 to these diagrams. This prefactor comes from the defini-
tion of the expansion in Eq. (54). The former denominator n! is compensated by permu-
tations of the #;,, ;(7) that lead to the same diagram, and replaced by 8" x 4 = 23n+2 a5
each 7—Alim, ;(7) brings a 1/8 prefactor and the spin operators are expressed in Majorana
fermions with a prefactor 1/4.
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= m = sign= +
(@]

© ©
O

= = sign= —

/ f \ #.—@/\ = sign= +
Figure 2: Examples of the sign determination for Majorana Feynman diagrams. We
first flatten the graph by drawing all the wavy lines on a single line and put edges of
the same color either above or below. The final sign is (—1)Nmntersee, where Nijersec 1S
the total number of intersection of same-color edges (highlighted with an open black
circle). Note that the diagrams depicted in the second and the third row correspond

to the same “uncolored” Feynman diagram, yet they have opposite signs due to their
colors.

AN Y D

Figure 3: Mean-field and first-order contributions to the spin susceptibility ijlx (t)in
the color-preserving mean-field-theory expansion.

* Rewrite the diagram in the flatten form as in Fig. 2. Count N, .. the number of
intersections of Green’s function lines of the same color. The additional prefactor is
(_]_ )Nintersec .

2.4.5 First and second-order corrections to the mean-field spin susceptibility

Zeroth and first order Feynman diagrams for the xx spin susceptibility )(j"lx(f) are given in
Fig. 3, while the second-order diagrams are presented in Fig. 4. The zeroth order contribution
corresponds to the color-preserving mean-field theory, and the first and second order expres-
sions are corrections to it. We have verified the Feynman diagrams up to second order both
symbolically, with Mathematica, and numerically, for small system sizes. In the framework of
the color-preserving mean-field expansion, the non-diagonal part of the spin susceptibility is
identically zero at all orders.

3 Results

In this section, we present numerical results obtained by a direct evaluation of Feynman dia-
grams up to second order for the Heisenberg model. In this case, the color-preserving mean-
field theory introduced in Sec. 2.3.5 becomes color-symmetric, which means that the non-
interacting Hamiltonian does not break the spin-rotation symmetry, as we discuss in Sec. 3.1.
As a first benchmark of the diagrammatic formalism, in Sec. 3.2 we discuss the properties of
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+ < é & + 4 Q
exchange
of colors )

Figure 4: Second-order contribution to the spin susceptibility )(J.Xlx(’r) for the color-
preserving expansion. A factor of two is added to some diagrams to take into account
mirror symmetry. Diagrams in parentheses are symmetrized with respect to y and z
by color exchange. Note that in the “color-symmetric” case discussed in Sec. 3, the
diagrams of the third row cancel exactly.

+

the perturbative expansion and evaluate it numerically to high-order in the case of the four-
site Heisenberg model, showing that the radius of convergence is finite at all temperatures and
that the diagrammatic series is convergent. In Sec. 3.3 we move on to study the Heisenberg
chain, evaluating the first two corrections to the mean-field theory introduced in Ref. [26].
Finally, in Sec. 3.4, we present our second-order results for the square lattice, for the two
translation-invariant mean-field theories with zero and « flux in the smallest plaquette.

3.1 Spin-rotation-symmetric mean-field theory

The numerical results of this work are obtained for the isotropic Heisenberg model on various
lattices, defined by the Hamiltonian

A 1 A oA

We consider J;; = 1 for nearest neighbors, and J;; = 0 otherwise. Our perturbative starting
point is the color-preserving mean-field theory of Sec. 2, which, in the case of an isotropic
Heisenberg model, becomes color-symmetric 26,48, 50]

(57 Py, =167 B, =1 (675, (59)

where 7, is defined in Eq. (30). Performing a global spin rotation is equivalent, thanks to
the discussion of Sec. 2.1.3, to a global rotation of the Majorana vector p; = (px Ay AZ)T
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which leaves invariant the non-interacting Hamiltonian 7%0 in the case of a color-symmetric
mean-field theory. This means that all expectation values with the #, Hamiltonian are also
global-spin-rotation symmetric.

3.2 Four-site Heisenberg model: Test of the convergence properties of the per-
turbative expansion

In order to understand the convergence properties of the perturbative expansion developed
in Sec. 2, we study the Heisenberg model on a single square of sites. The two-site Majorana-
mapped Heisenberg model is analytically solvable, and it is treated in Appendix A. We apply
exact diagonalization to the Majorana Hamiltonian 7—ALMaj(€ ) (see Sec. 2.3.8), where we chose
self-consistent mean-field parameters with a 7t-flux in #,, and we study the complex & depen-
dence of the partition function

Zyiaf(8) = Tr e PP (), (60)
and of the average energy
4 oo
EE@)=(>,5" 8 = E,&", (61)
j:1 ’;:tMaj(E) n=0

where we identify site 5 with 1. We also define the partial sums E.,(&) as

Eco(8)= > EgEX. (62)

k=0

In Fig. 5 we show the analytic structure of the partition function and the convergence
properties of the perturbative series for the average energy. As the partition function of a
finite-size system is entire, i.e. it has no singularity in the complex plane, its zeros are discrete.
They are also away from the real axis for any finite temperature for a finite system, and, at
zero temperature, they converge to a branch cut that reaches the real axis, signaling a “phase
transition” associated to the restoration of the gauge invariance for £ = 1. The position of
the zeros determines the radius of convergence of the perturbative expansion as the partition
function appears in the denominator in the observable. The fact that the zeros of the partition
function stay at finite distance from the origin even in the zero temperature limit implies then
a non-zero convergence radius, a fact that is supported by the convergence of the partial sums.
This shows that, at least for the four-site Heisenberg model, the expansion is well-defined at
all temperatures, and it has a finite radius of convergence.

The singularity observed at £ = 1 when T — O finds its origin in an energy-level crossing
in ﬁMaj(i ) for £ = 1, which inevitably occurs due to the restauration of the gauge invariance
at this point and its associated four-fold ground-state degeneracy. This shows that the zero-
temperature convergence radius for a non-interacting-level gauge choice is upper bounded
by 1. However, this level-crossing could be avoided by an interacting-level gauge choice, i.e.
choosing a non-zero K, hence breaking the Z, redundancy and the degeneracy (see Appendix A
for a demonstration of this idea on the two-site model). This should increase further the radius
of convergence of the series.

Contrarily to the 7-flux, the zero-flux ansatz leads to ill-defined series in the limit T — O,
with a zero-temperature zero convergence radius due to a degeneracy of the ground state even
at £ =0.
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1.0

Zeros of Zy(&)
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Figure 5: Partition function zeros and convergence of the perturbative expansion for the
four-site Heisenberg model with m-flux. We consider here a temperature T = 0.05.
(a) Argument of the complex Majorana partition function Zy,;(&) as function of the
complex coupling constant £. The zeros of Zy,;(§) correspond to poles in physical ob-
servables, and they determine the convergence radius of the perturbative expansion.
(b) Convergence of the average-energy partial sums E,(&) as function of truncation
order n and expansion parameter &.

3.3 Heisenberg chain

We consider 2N = 64 sites with periodic boundary conditions for the spins

H=>"8,8., (63)

where we have used periodic boundary conditions. We use here a 7-flux ansatz that avoids the
non-interacting ground-state degeneracy of the zero-flux ansatz. In the thermodynamic limit,
both zero-flux and 7t-flux anséitze are equivalent, as they correspond to periodic or antiperiodic
boundary conditions for the Majorana fermions. The color-symmetric Majorana mean-field
solution of this model was introduced in Ref. [26]. The first order was already published in
Ref. [27], although in an incorrect form. In this work, we compute corrections up to second
order for the spin correlation function

C)=D 1% (1 =0)=(3,-30). (64)

In Fig. 6 we show the spin correlation function as function of expansion order for & = 1.
The mean-field result is incorrect even at the qualitative level, as the spin correlation function
between sites at even distance from each other is zero. The perturbative corrections bring the
antiferromagnetic correlations, and they are in good agreement with the exact Bethe-ansatz
solution. However, the correlations at large distance are not easy to capture even at second
order; the mean-field level exhibits a decay in 1/x? and even if the exponent is reduced by the
corrections, the expected decay in 1/x is not reached at second order. This could be improved
by considering resummed diagrammatic schemes for the spin susceptibility in the spin channel.
At zero order, this is related to the Majorana-SO(3) version of the RPA work of Ref. [61].
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0.8
(a) MF —— T=0.25 (b) Order 1 (c) Order 2
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Figure 6: Spin correlation function for the Heisenberg chain as function of perturba-
tive order. Results for 2N = 64 sites with antiperiodic boundary conditions for the
Majorana particles (r-flux). We show the spin correlation function for the color-
symmetric mean-field theory (a), at first order (b), and at second order (c). The
results are compared with the exact Bethe-ansatz solution for the infinite system at
zero temperature [ 58-60].

3.4 Square-lattice model

We consider here the square-lattice Heisenberg model

A= Z (Bey Sciry + 84y Seyi1) (65)
X,y

with periodic boundary conditions. We consider the non-interacting Hamiltonian 7:[0 obtained
from a color-symmetric mean-field theory with translational invariance of the physical vari-
ables )

Ho=iA D [ 8, b2, Py + 82y B2, Yy ] (66)

X,y,a

where we set the constant term to zero, and where { ff,y, C,ecy , are 4N variables in {—1,1}, of
which 2N — 1 of them can be fixed by a gauge choice, while the remaining 2N — 1 others
determine the fluxes of the elemental squares (not 2N as the sum of all fluxes is 0 modulo
2m), and the remaining 2 variables determine the fluxes of a non contractible loop in the x
and y directions. The only two choices that lead to a translation-invariant non-interacting spin
system on an infinite lattice are the uniform zero flux or the uniform 7 flux, see Fig. 7, and we
discuss both choices in the following. Unlike the chain, these two local-flux choices are distinct
in the thermodynamic limit as they correspond to different local physical quantities (the flux on
a square is such a quantity). On a finite-size lattice, each local-flux choice subdivides into four
global gauge-inequivalent { patterns, depending on the boundary conditions for the Majorana
fermions: the flux of a non contractible loop in the x or y directions is zero (7) for (anti-
)periodic boundary conditions of the Majorana fermions.

3.4.1 Zero-flux expansion

We first consider the zero-flux case, for which a realization in terms of the { variables of
Eq. (66) is (see Fig. 7)
e
fcfy = Cx},/y =1. (67)
We show in Fig. 8 the results of the numerical evaluation of the zero-flux perturbation
theory up to second order for & = 1 at finite temperature T = 0.25 and for an 8 x 8 lattice.
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Figure 7: Uniform zero-flux and m-flux mean-field ansdtze on the square lattice. The
first (second) row is about the zero (7) flux ansatz. (a)(d) Unit cell and choice of
¢ , (b)(e) fluxes on elementary plaquettes, (c)(f) dispersion relation of the unique
(zero-flux) or lowest (7-flux) energy band.
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Figure 8: Spin structure factor and correlation function for the zero-flux perturbative
expansion. We consider an 8 x 8 square lattice at T = 0.25. We show in the first row
the spin structure factor at mean-field level (a), first order (b), and second order (c).
In the second row we plot the spin correlation function at mean-field level (d), and
up to first (e) and second (f) correction.
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Figure 9: Spin structure factor and spin correlation function for the m-flux perturbative
expansion. We consider an 8 x 8 square-lattice Heisenberg model at T = 0.01. See
the caption of Fig. 8 for a description of the inset.

The zero-flux mean-field theory has a degenerate ground-state, both for periodic and antiperi-
odic boundary conditions for the Majorana. This creates a formal divergence of the magnetic
susceptibility, and, while the effect becomes smaller for increasing lattice size, it forces us to
consider an artificially-high finite temperature to avoid it. As noticed for the Heisenberg chain,
the perturbative corrections build the missing antiferromagnetic correlations of the mean-field
solution, as we can see from both the real space correlation function and the spin structure
factor.

3.4.2 r-flux expansion

We now discuss the uniform n-flux color-symmetric mean-field theory, which can be obtained
from the following choice of { in Eq. (66) (see Fig. 7)

G =1 Gy =1 (68)

The spin structure factor and the spin correlation function are presented up to second order
for £ =1 in Fig. 9. The calculations are performed at T = 0.01 for a finite 8 x 8 system size. As
the mean-field ground-state is non-degenerate in the case of uniform 7-flux with antiperiodic
boundary conditions, we are able to simulate any value of temperature without unphysical
finite-size divergences. Similarly to the zero-flux case, perturbative corrections qualitatively
correct the mean-field theory by constructing the antiferromagnetic correlations that were
missing at the mean-field level. In Fig. 10 we show that the spin structure factor at the K point
increases both as function of inverse temperature and perturbation order, suggesting that the
perturbative expansion we introduce in this work is able to progressively retrieve the strong
antiferromagnetic correlations of the square-lattice Heisenberg model when pushed to higher
orders. This is non trivial as our perturbative starting point, the color-symmetric mean-field
theory, is disordered in the thermodynamic limit even at T = 0, whereas the & = 1 point breaks
the spin-rotational symmetry.
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Figure 10: Spin structure factor along a Brillouin-zone path for the m-flux expansion.
We show the mean-field (a), first order (b) and second order (c) results for the spin
structure factor of the square-lattice Heisenberg model.

4 Conclusion

In this work we have introduced a systematic diagrammatic formalism for spin-Y2 systems
based on an unconstrained Majorana fermion mapping. We have first studied the properties
of the mapping, with particular attention to the gauge redundancy of the representation. A dis-
cussion on how to derive physical spin observables, and the gauge choice at the interacting or
non-interacting level, followed. We have then applied the formalism to the XY Z model, where
we have introduced a color-preserving mean-field theory that respects the w-spin-rotation sym-
metry of the Hamiltonian. We have then derived the Feynman rules to compute corrections to
physical spin-'2 observables beyond the color-preserving mean-field theory, and we have ex-
plicitly drawn the Feynman diagrams for the spin susceptibility up to second order. Concerning
numerical results, we have benchmarked the formalism on the isotropic Heisenberg model.
We first analyzed the convergence properties of the diagrammatic expansion for the four-site
Heisenberg model, and found a finite radius of convergence at all temperature. We have then
extended the mean-field calculation of Ref. [26] up to second order for the Heisenberg chain,
showing that perturbative corrections allow to obtain good agreement with the exact Bethe
ansatz solution. We have then shown numerical results for the square-lattice model, for both
the uniform zero and 7-flux color-symmetric mean-field theories, and computed the spin cor-
relation function and the spin structure factor. We note that perturbative corrections are able
to qualitatively improve the mean-field theory by retrieving antiferromagnetic correlations that
are missed at the non-interacting level, which is non-obvious a priori since we expand around
a spin-liquid state. These results show that the Majorana diagrammatic formalism for spin-
models we present here is a potentially useful theoretical and numerical tool for both ordered
and disordered quantum spin systems.

A natural extension of this work consists in computing diagrams to high order in an au-
tomatic way with Diagrammatic Monte Carlo algorithm [62-75]. In particular, real-time di-
agrammatic Monte Carlo techniques [76-82] could be used to calculate the dynamical spin
susceptibility, which is a key experimental quantity. As mentioned, we expect an interacting-
level gauge choice to further improve the convergence properties of the expansion, and this
exploration is left for future work. Finally, in analogy to what is done for standard many-
electron theory, it would be important to understand the effect of diagram resummation for
different channels and quantities in the Majorana diagrammatic formalism we introduce here.
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Besides technical extensions, further investigations should be led on frustrated spin models
with potential SL ground-states, that were the motivation of this study. In this article, only
unfrustrated lattices have been studied, but the expansion is applicable to any model. However,
mean-field Majorana ansétze systematically break the time-reversal symmetry when odd loops
are present (due to the real nature of the link parameter A, implying a non-zero value for odd
products of spin operators). Similarly to the gauge symmetry, the time-reversal symmetry
could still be restored at the £ =1 point.

Acknowledgments

We thank N. Caci, G. Carleo, A. Grabsch, A. Ralko and A. Tsvelik for insightful discussions.

Funding information RR acknowledges financial support from SEFRI through Grant No.
MB22.00051 (NEQS - Neural Quantum Simulation).

A Two-site Heisenberg model and interacting-level gauge choice

A.1 The Hamiltonian

We consider the Majorana-mapped two-site Heisenberg Hamiltonian #, a color-symmetric
quadratic Majorana Hamiltonian #, and a copy Hamiltonian

A J v ae A n . o . .
H=—§Zp?pip‘;p§, Hoz—mng‘pg+c, K=KJ%, (A.1)
a#y a
where C,K € R are constants. This allows to define the £-dependent shifted Hamiltonian
7:[Maj(€) =7'Afo+§(7:[—7:io+/€)- (A.2)

ﬁMaj(i = 0) is quadratic, while 7-A[Maj(§ = 1) is a Hamiltonian that can be used to reproduce
all the physical spin observables of the two-site Heisenberg model, for every value of K € R.

A.2 Energy eigenstates and eigenvalues

We define the operators
d*=—ip?pg, d=>.de, (A3)
a

which commute with each other, [d%,d"] = 0. Using

d?=3+>d%d", d*=7d+6d*d*d* =7d—1275,, (A4)
aFy
we can write
¥ 3 ¥ J 52 ¢ K . 52
Ho=Ad+C, Hz—g(d -3), Kzﬁd(7—d), (A.5)

which shows that the three Hamiltonians are a function of d. We remark a special feature of
the two-site model: the non-interacting eigenstates of 7, coincide with the interacting ones
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for all £. The possible eigenvalues of d are +3 (with multiplicity 1) and £1 (with multiplicity
3), and they correspond to the following Hamiltonian eigenvalues

3J A J A K N
Ed=23)=—"7, &U=+)=7, &U=#)=F =&A=7), A6

where £y is the eigenvalue of O. We classify eigenvalues with the physical spin index, deter-
mined by the eigenvalues of the physical total spin § and $%, and a copy index, corresponding
to the eigenvalue of the copy-pair operator J7,. Therefore, we see that the eigenvalue d = %3

corresponds to the physical spin singlet S = 0 with copy index equal to q:%, while the eigen-
value d = +1 corresponds to the triplet S = 1 with copy index :l:%. We now write down the
&-dependent eigenvalues of ?%Maj

A 3J K

K
HM (g)(d :|:1)_:|:A+C+€( FA—- Ciz) (A.8)

A.3 Color-symmetric mean-field-shifted Hamiltonian: Ground state and gap

The color-symmetric mean-field equations are

a=-2@y - X a2 L+ Ky (A.9)

6 18 T 12 27

We now consider the low-temperature limit. We are looking for a singlet solution for J > 0,

and we choose, without loss of generality, a solution such that (d) — 3 in the zero-temperature
limit, which implies

J+K 3J
Am———, C—->—+K, (A.10)
2 4
and therefore
3J 151
i (6)(d = £3) > 7= (J+K)+:+K——3F £ (37 +2K), (A11)
J+K 3J 151
Eig@d =ED > F ==+ T+ K= — =& (J +2K) . (A.12)

Assuming J + K > 0, for £ = 0 the ground state has d = 3. We remark that the d = 3 and
d=1 energies are § independent. With the choice K = 0 (non-interacting-level gauge choice),
the ground state is degenerate for £ = 1, which is due to the copy symmetry. For K < 0, we
have a ground-state level crossing (for the equivalent ansatz choice (3) — —3, this would have
happened for K > 0). For K > 0, the minimal gap for & € [0, 1] is min(K,J), which implies
that the interacting-level gauge choice K > J makes the minimal gap equal to J. This means
that an interacting-level gauge choice can make the ground-state analytically connected to the
physical ground state with a £ € [0, 1] path that has a finite gap.

B Diagonalization of quadratic Majorana Hamiltonians

We consider a generic quadratic Hamiltonian 7:[0 constructed with a set of Majorana operators
{0}, indexed by u € {1,...,N}, such that

HopN =D iAububy» (B.1)

u,v
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Figure 11: Elimination of Fock diagrams at first order for the susceptibility. (a) All
Feynman diagrams obtained by the contractions of the #{ vertices. (b) All Feynman
diagrams obtained by the contractions of the _7_20 vertices. Disconnected diagrams
are canceled by the connected average.

where A is a real skew-symmetric matrix of size N x N. We introduce a new set of N Majorana
operators {),} and a new quadratic “doubled” Hamiltonian #,

o = FoUpN + Ho(nD = D iAu(uby + Nuy). (B.2)
u,v

The Hamiltonian 7, is the sum of the two commuting terms H,({$}) and Ho({/}}). We can
now define a set of N complex fermions for each index u such that

s 1o S DU
fu = E(P‘U'Flnu)a fur = E(pu_ln,u): (B.3)

which allows to express the doubled Hamiltonian as a quadratic Hamiltonian of complex
fermions which can be easily diagonalized.
For any observable O that is a function of only the § operators, we can write

A Tr e_/”:‘0 O Tr e_/”:‘D ) A
Oy, = e A _Te 29 _ o),

- - . (B.4)
0 Tr{e—A*o} Tr{e—FHp}

D

which shows that we can compute expectation values with the 7{;, Hamiltonian.

C Elimination of Fock diagrams: An example at first order

As mentioned in the Feynman rules, see Sec. 2.4.4, “self-contracted” Fock diagrams do not
contribute to the perturbative expansion around the mean-field theory. This is a consequence
of the construction of mean-field counterterms under the self-consistency condition Eq. (31),
5

: aa _ 1 Y A6 + : :
stating that Aﬂ =3 ZY’ 5 €aysl sz Go;jz(o ). As an example showing this fact, we present here

the computation of the first-order correction for the spin susceptibility in the direction z
/5 A A A C
ijlz,l(T) = _J‘ dTl <T’1’ [Hint,l(fl) S;’[(T) SZZ’I(O)]>7_A[O . (Cl)
0
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The integrand in the expectation value can be written, without the prefactors, as

A R A O THOTHORHOY €2

Only diagrams obtained by contractions with vertices weighted by coupling constant JZ, i.e.
which have x and y external legs, are contributing. All resulting connected diagrams are
presented on Fig. 11, showing diagrammatically that the self-contracted diagrams cancel each
other out. This cancellation property remains true for the expansion around the mean-field
theory at every perturbative order.
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