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Abstract

Highly-symmetric molecules often exhibit degenerate tight-binding states at the Fermi
edge. This typically results in a magnetic ground state if small interactions are intro-
duced in accordance with Hund’s rule. In some cases, Hund’s rule may be broken,
which signals pair binding and goes hand-in-hand with an attractive pair-binding en-
ergy. We investigate pair binding and Hund’s rule breaking for the Hubbard model on
high-symmetry fullerenes C20, C20, C40, and C60 by using large-scale density-matrix renor-
malization group calculations. We exploit the SU(2) spin symmetry, the U(1) charge
symmetry, and optionally the ZN spatial rotation symmetry of the problem. For C20, our
results agree well with available exact-diagonalization data, but our approach is numer-
ically much cheaper. We find a Mott transition at Uc ∼ 2.2t , which is much smaller than
the previously reported value of Uc ∼ 4.1t that was extrapolated from a few datapoints.
We compute the pair-binding energy for arbitrary values of U and observe that it remains
overall repulsive. For larger fullerenes, we are not able to evaluate the pair binding en-
ergy with sufficient precision, but we can still investigate Hund’s rule breaking. For C28,
we find that Hund’s rule is fulfilled with a magnetic spin-2 ground state that transitions
to a spin-1 state at Uc,1 ∼ 5.4t before the eventual Mott transition to a spin singlet takes
place at Uc,2 ∼ 11.6t . For C40, Hund’s rule is broken in the singlet ground state at half
filling, but is restored if the system is doped with one electron. Hund’s rule is also bro-
ken for C60, and the doping with two or three electrons results in a minimum-spin state.
Our results are consistent with an electronic mechanism of superconductivity for C60 lat-
tices. We speculate that the high geometric frustration of small fullerenes is detrimental
to pair binding.
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1 Introduction

Hund’s rule is a well-known effect from atomic physics: An electronic shell that is degen-
erate in the one-particle picture will in fact split up upon introducing interactions, and the
lowest-energy state features a maximum spin [1], which reduces interelectronic repulsion [2].
Intuitively, same-spin electrons avoid getting close to each other by virtue of the Pauli prin-
ciple, while opposite-spin electrons can occupy the same space. In nuclei, the interfermionic
interactions are attractive as a result of the strong force and the opposite situation occurs: An
even number of nucleons in a degenerate shell will always form a singlet state [3,4].

Hund’s rule is mostly valid in molecules as well: If a free-electron model on some molec-
ular geometry produces degenerate shells, the inclusion of weak interactions will typically
lead to a maximum-spin ground state. For some molecules, however, Hund’s rule may be bro-
ken, which signals effective attraction similar to nuclei [5]. This is a case of interest because
molecules with attractive pair binding may serve as building blocks for molecular lattices with
global superconductivity, with a purely electronic mechanism that can be understood from the
individual molecules alone.

Pair binding can be quantified by evaluating the pair binding energy

Eb = E0(Ntot) + E0(Ntot + 2)− 2E0(Ntot + 1) , (1)

where E0(Ntot) is the state with the lowest overall energy of an isolated molecule in the sector
with Ntot electrons. If Eb < 0, then an ensemble of uncoupled molecules will prefer a state
with doped electrons paired up on the same molecule, rather than being split on separate ones.
Weak intermolecular hopping is then expected to render a molecular lattice superconducting.

It is known that a large shell degeneracy, which is generally related to a non-Abelian molec-
ular symmetry, is a key ingredient for pair binding [5]. High-symmetry molecules can also
more easily crystallize into lattices. The most interesting molecules are thus the highly sym-
metric ones, e.g., those forming Platonic or Archimedean solids. Of particular importance is
the C60 fullerene, which is an Archimedean solid (truncated icosahedron, symmetry group Ih).
It is insulating at half filling (i.e., it features a full shell, and thus a singlet ground state) and has
a threefold degenerate lowest unoccupied molecular orbital (LUMO), which can be chemically
doped (see Tab. 1). Experimentally, a face-centered cubic (fcc) lattice of electron-doped C60
molecules shows superconductivity with a critical temperature of Tc ≈ 30− 40K [6, 7]. This
is relatively high for a phononic mechanism, so that an electronic mechanism is also being
debated [8].
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Since there is one active p orbital per carbon atom, the minimal model that incorporates
correlations and allows for the breaking of spin degeneracy is the single-band Hubbard model.
It has been widely studied for fullerenes [8–16] and was shown to reproduce the single-particle
spectra reasonably well [17]. A more realistic model would involve long-ranged Coulomb
interactions as well as additional effects like Jahn-Teller distortion or a coupling to phonons.
However, before one ascends the hierarchy of ever more sophisticated approaches, one should
gain clarity with respect to the predictions of the basic Hubbard model.

The Hubbard Hamiltonian is given by

H = −
∑

i jσ

t i jc
†
iσc jσ + h.c. + U

∑

i

ni↑ni↓ . (2)

Here, t i j is the hopping matrix, c†
iσ (ciσ) is the creation (annihilation) operator for an elec-

tron with spin σ =↑,↓ at atom i of the molecule, U is the onsite Coulomb interaction, and
niσ = c†

iσciσ is the electron density. One typically employs the tight-binding approximation
where t i j takes the value t between nearest neighbors. We set it to be the unit of energy t = 1
from now on.

An interesting high-symmetry Hubbard cluster is the truncated tetrahedron (L = 12 sites),
since it can be regarded as a coarse-grained simplified version of C60 (see Fig. 1). Using ex-
act diagonalization (ED), White et al. demonstrated attractive pair binding with a peak of
Eb ∼ −0.02 for C12 around U ∼ 2 within the Hubbard model [5]. Similar attractive be-
haviour was found for the cube (L = 8). The smallest proper fullerene is C20, which is solv-
able by exact diagonalization, but the effort is substantial. Surprisingly, no attractive pair
binding was observed [16,18]. For C60, which is very difficult to tackle theoretically, conflict-
ing results were obtained: Extrapolations from perturbation theory predicted a minimum-spin
doped state [9, 10], while QMC calculations yielded a maximum-spin state [14]. Density-
matrix renormalization group (DMRG) calculations for the related simpler t− J model predict
a minimum-spin state [19]. Finally, there is a gap in the literature when it comes to the inter-
mediate fullerenes Cn with 20< n≤ 60 (or, indeed, larger ones with n> 60).

This situation motivates us to address the following questions: i) Is Hund’s rule fulfilled for
the intermediate fullerenes between C20 and C60? Because of the high-symmetry requirement,
this reduces the candidates to just C28 and C40 (both of Td symmetry, see Fig. 1). ii) What can
we learn about the full Hubbard model on C60? For this problem, we give our best possible
estimate using large-scale DMRG computations. iii) What is the reason that some molecules
exhibit Hund’s rule breaking, while others do not?

This paper is organized as follows: In Sec. 2 we outline the technical details of our DMRG
calculations. Then we discuss results for C20, C28, C40, and C60 in Sec. 3, 4, 5, 6, respectively,
before concluding in Sec. 7. The sections on C20 and C60 also contain discussions of previously
published results. In App. A, we present the strong-coupling (Heisenberg) limit for reasons
of completeness. The explanation of how to exploit the ZN rotational symmetry is presented
in App. B. Finally, App. C documents our raw data (ground-state energies as a function of the
spin and particle number) as a reference and for potential benchmarks with other methods.

2 Technical details

We investigate finite molecular geometries within the pure Hubbard model (2) by using the
DMRG method, which approximates the wavefunction variationally within the class of matrix-
product states (MPS) [20]. The DMRG exploits the property that physical ground states are
only entangled locally (area law) and can thus be accurately represented by MPS. The key con-
trol parameter is the so-called bond dimension χ, which is related to the number of variational
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Table 1: Symmetry and bandstructure properties (U = 0; tight-binding or Hückel
limit) of high-symmetry molecules, obtained by diagonalizing the hopping matrix t i j .
W denotes the bandwidth, i.e., the difference between highest and lowest eigenen-
ergy. The shell filling is the number of electrons in the highest occupied molecular
orbital (HOMO) for open shells, and ∆ is the HOMO-LUMO gap closed shells. The
degeneracy and irrep label refer to the LUMO (HOMO) for closed (open) shells. The
hopping range r is the graph bandwidth of t i j after applying the reverse Cuthill Mc-
Kee algorithm, which influences the complexity of the problem for the real-space
DMRG.

molecule sym. W shell filling irrep degeneracy orbital r
cube Oh 6.0 closed, ∆= 2.0 T2g 3 LUMO 4
C12 Td 5.0 closed, ∆= 1.0 T2 3 LUMO 5
C20 Ih 5.236 2 Gu 4 HOMO 6
C28 Td 5.414 4 T2+A1 4 HOMO 7
C40 Td 5.596 2 T2 3 HOMO 9
C60 Ih 5.618 closed, ∆= 0.757 T1u 3 LUMO 10

parameters. The area law renders the application to one-dimensional systems particularly ef-
ficient, but all finite systems necessarily only have finite entanglement which can be captured
by a sufficiently large χ. Hence, the method can also yield very accurate results for molecules
that are not too large [19, 21–24]. For this reason, it is widely employed in quantum chem-
istry [25].

To gauge the accuracy of our DMRG calculations, we use the energy variance per site:

var(E)/L =
�

�




H2
�

− 〈H〉2
�

�/L , (3)

which should vanish for an exact eigenstate and thus serves as a measure of how far one is
from the exact solution. In cases where the exact energy is known, one typically finds that the
variance is linearly related to the true error [26], and we will therefore use this as an extrapo-
lation scheme for the energy. Error bars are defined as the standard error of the extrapolated
energy (more precisely, as the square root of the corresponding element of the covariance ma-
trix resulting from the least-squares fit). We employ the two-site DMRG algorithm to grow
the bond dimension on the first iterations before switching to the cheaper one-site algorithm
with fluctuations [27]. The DMRG requires a mapping of the sites to a one-dimensional chain,
and the molecular geometry generates long-range hopping terms whose range we minimize
by applying the reverse Cuthill-McKee algorithm to the graph t i j [28]. The maximum hopping
range for our systems is shown in Tab. 1. The higher the value, the more complex the problem
becomes for the DMRG. The most difficult case considered here is C60 with a range of 10,
which is roughly equivalent in complexity to a 10-leg ladder. Finally, one must find a compact
matrix-product operator representation [29].

The binding energy in Eq. (1) is small compared to the hopping t, typically O(10−2 t),
but is itself a result of the difference of large numbers.1 Thus, it is crucial that the computed
energies should be as accurate as possible, preferably to at least 4 digits. In order to boost
the performance of the DMRG, we exploit the U(1) charge symmetry as well as the SU(2)
spin symmetry [30]. This approach also allows us to directly compute the ground state energy
E0 (Ntot, Stot) in the different charge and spin sectors labelled by Ntot and Stot, respectively. Half
filling corresponds to Ntot = L. We optionally exploit the ZN rotational symmetry (more com-

1We note that t ∼ 2.8 eV for carbon, which places a pair-binding energy of Eb ∼ 10−2 t on the scale of room
temperature (0.025 eV), which is quite large in terms of absolute numbers.
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C12
C20 C28

C40 

(Td)
C60

Figure 1: Schlegel diagrams (nearest-neighbor graphs) of the high-symmetry
fullerenes studied in this work. The hexagon faces are shaded grey for clarity, il-
lustrating the full separation of the frustrated pentagon faces for C12 and C60.

monly denoted Cn in the realm of chemistry), which is analogous to the case of the transverse
momentum for cylinders [31–33] and is explained in App. B in detail.

We note that the exploitation of the SU(2) spin symmetry has the effect that the bond
dimension χSU(2) used in the numerics corresponds to a larger effective bond dimension if
only spin-U(1) is exploited, i.e., χ = gχSU(2), with a gain factor of g = 3 ± 0.2 in our case.
It also allows us to directly target the total spin quantum number Stot instead of merely its
projection Sz

tot.
The advantage of exploiting the ZN symmetry is that the quantum number blocks in the

MPS representation shrink roughly by a factor of N , so that one can work with larger bond
dimensions. A downside is the need to perform the calculations for all possible values of
J (which is at least parallelizable). Another disadvantage is the need to switch from real to
complex numerics. The fundamental question, however, is whether the entanglement increase
due to the additional nonlocal terms will be fully compensated by the increased bond dimen-
sion. For this reason, the benefit of using ZN symmetry is a priori not clear and depends on
the geometry of the system. For the fullerenes, we find that exploiting ZN is advantageous for
C20, C28, and C40 but not for the most interesting case of C60.

3 Molecule C20

The properties of the (extended) Hubbard model on C20 were investigated in detail using large-
scale ED both for the undistorted geometry (Ih symmetry) and including Jahn-Teller distortion
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Figure 2: Energy levels of the tight-binding (Hückel) model for the high-symmetry
fullerenes studied in this work (see Fig. 1) along with their irreducible representa-
tions. The red dotted line marks the Fermi energy at half filling.

(reduction to D3d symmetry) [16]. Despite the exploitation of both the spin-U(1) and some
spatial symmetries, the computational requirements are still quite heavy, with the Hilbert-
space size reaching 3.4 ·109 in the undistorted case. Thus, only ED values for U = 2 and U = 5
are reported, and the missing values were filled in by QMC. The result was a repulsive Eb > 0
in the whole U-range, and this was unchanged within the extended Hubbard model [18]. This
was surprising in light of the previously demonstrated attractive pair binding for the smaller
C12 and the cube [5].

The shell structure of C20 is metallic, as the HOMO is only partially occupied by two elec-
trons (see Tab. 1). This allows one to study Hund’s rule in the half-filled ground state, with
the central question being whether the two shell electrons pair to a singlet or triplet. If U
is increased, local-moment formation will eventually set in, which results in a singlet ground
state that is not due to Hund’s rule breaking, but is rather attributed to a Mott transition. For
the critical value, Uc ∼ 4.1 was estimated based on a linear extrapolation of energies between
U = 2 and U = 5 [16].

In Fig. 3, we benchmark our DMRG results for the ground state energy E0 at U = 2 in
various sectors of the particle number Ntot and the total spin Stot against ED data. Hund’s rule
is fulfilled at the considered fillings, i.e., the overall ground state features a maximum Stot.
We find that the DMRG is precise, with a typical absolute deviation in energy of the order of
10−4 (see the data tables in App. C). The DMRG result is accurate enough to clearly resolve
the energy gaps between the sectors. For example, for the triplet gap

∆1 = E0 (Ntot, Stot = 1)− E0 (Ntot, Stot = 0) , (4)

at half filling Ntot = 20, ED yields ∆1 = −0.00636, while the DMRG (extrapolated) value is
given by ∆1 = −0.00644. This needs to be compared to the QMC data where the deviations
seem to be at best of order 10−3. Furthermore, QMC suffers from the artifact that the energy
depends on the magnetic quantum number for a given Stot, which is strictly not the case within
our SU(2)-invariant DMRG approach.
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Figure 3: DMRG data for the ground-state energy per site for C20 at U = 2 in
various sectors of the particle number Ntot and the total spin Stot. Small circles:
SU(2)×U(1)-symmetric calculation, bond dimensions χSU(2) ≤ 10 000. Triangles:
SU(2)×U(1)×Z5-symmetric calculation, χSU(2) = 15000 (one datapoint in selected
sectors). The DMRG values are linearly extrapolated in the variance per site (which
decreases with increasing bond dimension); the error bars associated with the fit are
also shown but are barely visible here. The crosses show the reference values from
exact diagonalization. The pictures below the plots schematically visualize the filling
of the HOMO (arrows: electrons, black circles: empty levels). Hund’s rule holds true
at the given fillings.

Since the DMRG approach is computationally cheap in comparision to ED, we can read-
ily study arbitrary interactions. Our results are not consistent with the published QMC data
in the intermediate-U range. In Figure 4, we plot the triplet gap as a function of U . Using
spline interpolation, we place the transition from a metallic Hund magnet to a Mott insula-
tor at Uc ≈ 2.2, which is significantly smaller than the previously-reported Uc ∼ 4.1. The
smallness of this value entails that one needs to exercise caution when extrapolating pertur-
bation theory results to intermediate couplings. We also find that the pair binding energy Eb
increases sharply in the region of U = 3−4 and in fact reaches a local maximum. Nevertheless,
we always find Eb > 0, i.e., repulsive pair binding in the whole U-region. Note that Eq. (1)
at Ntot = 20 describes pair binding of a system doped with one electron, which is the most
relevant case for superconductivity.

4 Molecule C28

C28 has tetrahedral symmetry and is metallic like C20. It features a fourfold degenerate HOMO,
which is partially occupied by four electrons in the ground state [34–38]. The fourfold degen-
eracy is a result of an accidental degeneracy of the T2 and A1 levels [35]. Due to its protruding
tetrahedral bonds, it has been predicted that C28 will form a diamond lattice [39–41], but this
has not yet been realized chemically.

Figure 5 shows raw DMRG data as well as extrapolated values for the ground-state energy
at U = 2 in different sectors of Ntot and Stot. We clearly see that Hund’s rule holds true for
all fillings, and the half-filled ground state (Ntot = 28) is a quintet with Stot = 2. Tackling the
Hubbard model on C28 is considerably more costly than in the case of C20, and the smallest
energy variance per site Eq. (3) that can be accessed numerically is larger by one order of
magnitude. Consequently, we are unable to precisely evaluate the pair binding energy Eb. A
tentative estimate yields Eb = +0.02± 0.005 at U = 2.
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Figure 4: Triplet gap Eq. (4) and pair-binding energy Eq. (1) for C20 as a function of
U at Ntot = 20. Uc ≈ 2.2 marks the metal-insulator (Mott) transition. Bullets indicate
the raw data, lines are a result of Akima spline interpolation (for the triplet gap) or
linear interpolation (for Eb).

Figure 6 (a) follows the triplet gap Eq. (4) as well as the quintet gap

∆2 = E0(Ntot, Stot = 2)− E0(Ntot, Stot = 0) , (5)

as a function of U at half filling. We see that magnetism is more robust than in the case of
C20, and a ground state with Stot = 2 persists up to Uc,1 ≈ 5.4, after which it becomes a triplet
with Stot = 1. A transition to a Mott insulator eventually occurs at Uc,2 ≈ 11.6. Figure 6 (b)
compares the gaps in the Mott insulating phase with those obtained from a strong-coupling
Heisenberg model calculation, which allows for an ED solution [42]. We see that the DMRG
treatment of the full fermionic problem is in full agreement with the effective Heisenberg
model data.

5 Molecule C40 (Td)

C40 has several isomers. The most stable isomer exhibits only a D5d symmetry [43–45] and
at most twofold degenerate irreducible representations. For pair binding, we are interested in
the more symmetric Td isomer (see Fig. 1) whose geometry is similar to C28; it is also metallic
but has a threefold degenerate HOMO without an accidental degeneracy.

Since tackling C40 is numerically costly, we restrict ourselves to U = 2, which is a realistic
value for carbon and also the point where the pair binding energy peaks for C12 [5]. Figure 7
shows raw DMRG data as well as the extrapolated value for the ground-state energy at various
Ntot and Stot. The smallest site variance that can be accessed in our calculation is a factor of
two larger than in the case of C28 due to the increased system size and hopping range.

We find that C40 exhibits a singlet ground state at half filling with a small gap to the triplet
state, indicating Hund’s rule breaking. When doped with one electron, however, we find that
the maximum-spin sector Stot = 3/2 has a slightly lower energy than the one with Stot = 1/2.
For a doping with two electrons, we are unable to resolve the energies between the sectors
Stot = 0 and Stot = 1. This indicates that there is a tighter competition between the spin sectors
for this geometry.
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Figure 5: Ground-state energy per site and HOMO filling for C28 at U = 2. The bond
dimensions are χSU(2) ≤ 10000 for the SU(2)×U(1)-symmetric calculation (small
circles) and χSU(2) = 10 000,15 000 for the SU(2)×U(1)×Z3-symmetric calculation
(triangles).
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Figure 6: (a) The quintet gap Eq. (5) as well as the triplet gap Eq. (4) for C28 as a
function of U at half filling Ntot = 28 (bullets: data, lines: Akima spline interpola-
tion). (b) Zoom-in on the Mott-insulator region. The dashed lines show the Heisen-
berg limit (U ≫ 1) result: ∆i = ci/U with c2 = 0.15159 and c1 = 0.01508 [42].

6 Molecule C60

The half-filled ground state of C60 is insulating with a completely filled shell, which is analogu-
ous to C12 (see Tab. 1). There are thus two relevant energy scales, the band gap ∆ = 0.757
and the bandwidth W = 5.618. We can discern the following regimes: (i) ultraweak coupling
U < ∆, (ii) weak coupling ∆ < U < W , (iii) intermediate coupling U ∼ W , and (iv) strong
coupling U ≫ W . The half-filled ground state is without question a total singlet Stot = 0
because of the insulating shell structure, and therefore not of particular interest. In alkali ful-
lerides such as K3C60 [6], there are three doped electrons per C60, which renders the ground
state with Ntot = 63 electrons the most interesting case.

Soon after the advent of the density-matrix renormalization group, the method was ap-
plied to C60 in momentum space (i.e., using a basis where t i j is diagonal), but only small
bond dimensions were employed, and the results are only reliable for ultraweak coupling
U ∼ 0.001−0.01 [46]. The ground state energy with doping was computed, but the total spin
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Figure 7: Ground-state energy per site and HOMO filling for C40 (Td) at U = 2. Only
data for a SU(2)×U(1)×Z3-symmetric calculation is shown (triangles), and bond
dimensions of up to χSU(2) ≤ 20000 are employed.

and the pair binding energy were not investigated. In the strong-coupling limit, the undoped
Hubbard model simplifies to the Heisenberg model and has been solved with high accuracy
using the DMRG [22] as well as via an approach based on neural networks [47]. The undoped
strong-coupling limit is useful in understanding the effects of frustration due to the pentagon
faces (see App. A), but it is distinct from the doped weak-coupling regime investigated here.

There has been a number of studies in the doped weak-coupling regime. Using QMC, a
maximum-spin ground state was found [14]. A minimum-spin ground state was predicted
from extrapolating perturbation theory in U [9,10] and also for the t − J model with a large
J = 0.2− 1 [19] using the DMRG with U(1) symmetry. The case J → 1 is assumed to mimic
the intermediate-coupling regime with J = 4t2/U and hence U/t ∼ 4. However, correction
terms such as three-site terms [48] or O(t4/U3) contributions [49] have not been considered
in this work. Without these corrections, the t − J model should be viewed as similar to, but
distinct from the Hubbard model.

C60 poses a very tough problem: Since the system size grows by another 50% com-
pared to C40 and the hopping range increases further, we find that the best achievable
variance per site within the DMRG deteriorates further by one order of magnitude. Fur-
thermore, we observe that the energy variance is larger if the Z5 symmetry is exploited,
so that we restrict ourselves to SU(2)×U(1)-symmetric calculations. The increased hop-
ping range also heightens the risk of getting stuck in a local minimum. We therefore use
the following protocol: First, we perform 12 half-sweeps using the two-site algorithm with
a bond dimension of χSU(2) = 2500. We then increase the bond dimension as follows:
2500 → 5000 → 6000 → 7000 → 8000 → 9000 → 10000 → 12000 → 14 000 → 16000
and perform 4 half-sweeps at each bond dimension using the one-site algorithm with
perturbations. We carry out additional calculations where the bond dimension increases
more aggressively, namely 3000 → 6000 → 9000 → 12000 → 15000 as well as
4000 → 8000 → 12 000 → 16 000, and finally 5000 → 10000 → 15000. This yields five
data points with χSU(2) ≥ 14000, which use to extrapolate the energy. The result is shown in
Fig. 8 for the half-filled ground state and in Fig. 9 for finite doping.

Figure 9 illustrates that the energy of a minimum-spin state is below the one of a maximum-
spin state for the 2-electron and 3-electron doped case. This is not only true for the extrapo-
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Figure 8: Ground-state energy per site for C60 at half filling Ntot = 60 and a total
spin Stot = 0 at U = 2. Only data for a SU(2)×U(1)-symmetric calculation is shown
(small circles). The bond dimensions are in the range 14000≤ χSU(2) ≤ 16000.

lated values, but also at each bond dimension χSU(2). For a doping with 4 electrons, we were
not able to resolve the energies (similar to the case of C40, see Fig. 7). Overall, our result is
in line with both the perturbation theory prediction and the data obtained within the t − J
model and is consistent with an electronic mechanism for superconductivity in C60 lattices.
However, the extrapolated energies have overlapping error bounds, so that the confidence of
the results for C60 is lower than for the smaller molecules. Clearly, more work is needed to
improve many-body methods in order to achieve energy variances per site smaller than 10−1

for this problem.

7 Discussion

We have investigated Hund’s rule breaking in high-symmetry fullerenes C20, C28, C40 (Td), and
C60 using large-scale DMRG calculations for the Hubbard model.

For C20, we find good agreement with previously-published ED data for U = 2 and U = 5,
but the DMRG approach is numerically cheap and allows us to compute the pair-binding energy
as a function of arbitrary U . We find that C20 remains repulsive and adheres to Hund’s rule in
the weak-coupling limit, and we estimate a critical value of Uc ∼ 2.2 for the metal-insulator
transition, that improves the previously published value. The binding energy is repulsive in
the whole U-range.

We observe that C28 is also adhering to Hund’s rule at weak coupling. The half-filled ground
state is magnetic with a quintet-triplet transition taking place at Uc,1 ∼ 5.4 before a transition
to a Mott singlet takes place at Uc,2 ∼ 11.6. The typical U-values for carbon U ∼ 2 − 5 [9,
50,51] place C28 into the quintet Hund magnet phase. A lattice of C28 molecules is therefore
expected to feature spin-2 sites as the low-energy building blocks. An open question is about
the robustness of the spin-2 state towards Jahn-Teller deformations or stabilizer atoms [52].

For C40, the DMRG computation is more expensive and less accurate, and we have only con-
sidered U = 2. Our result is somewhat ambiguous: we find a singlet for the undoped ground
state that breakes Hund’s rule but a maximum-spin state when doped with one electron. We
were unable to resolve the energies in the different sectors with two doped electrons.
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Figure 9: Ground-state energy per site for C60 at U = 2. Symbols and bond dimen-
sions are as in Fig. 8.

For C60, we document our state-of-the art DMRG results, which we believe to be the best
current estimates for the given problem. Our estimate shows Hund’s rule breaking at U = 2
for the doping with two and three electrons. We were unable to resolve the energies in the
sectors with four doped electrons.

Finally, we address the question whether Hund’s rule breaking can be connected with a
feature in the fullerene geometry. We observe that this breaking becomes more likely with in-
creased fullerene size. The salient geometric feature that also changes with fullerene size is the
increase of the number of hexagon faces. Since all fullerenes have exactly 12 pentagon faces,
this goes hand-in-hand with a spatial separation of the pentagons (see Fig. 1). Only the pen-
tagons are geometrically frustrated, so that geometric frustration is reduced with the fullerene
size, and Cn approaches the unfrustrated hexagonal lattice for large n. The reduced frustration
also becomes apparent when studying the spin-only Heisenberg model on the same geome-
tries, which we discuss in App. A. We hence speculate that geometric frustration in fullerenes
is detrimental to pair binding and may be the reason why smaller fullerenes are repulsive.
In this picture, C40 is positioned at the crossover point between repulsive and attractive pair
binding, whereas C60 is on the attractive side. This is also consistent with the fact that the
bipartite and unfrustrated cube shows attractive pair binding [5].

We hope that these results can help guide the selection of molecular building blocks in
engineered electron systems, such as metal-organic frameworks [53,54].

The difficulty of solving the Hubbard model on the C60 geometry leads us to propose this
system as a benchmark for quantum computing. Previous benchmark systems for quantum
simulation were amenable to highly efficient classical tensor-network treatments [55,56]. But
if one flips the perspective and looks at the situation from the tensor-network (MPS) point
of view, then C60 presents an interesting and hard problem for the classical MPS algorithm,
despite being a finite and moderately-sized system. Our paper gives benchmark values us-
ing the best possible traditional MPS approach with symmetry exploitation. It would also be
interesting if this classical result can be further improved using methods like fermionic or-
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bital optimization [57], adaptive tensor-network geometries [58] or novel techniques based
on neural networks [47].

Finally, the computational bottleneck in our approach shifts from ground-state determina-
tion to variance evaluation via Eq. (3), which involves calculating H2 for a long-range Hamil-
tonian. Our systems can thus also serve as a testing ground for algorithms that aim to provide
cheaper variance estimates [59].
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A Strong-coupling limit

For reasons of completeness, we summarize the properties of the fullerenes in the strong-
coupling limit U ≫ 1. Except for C40, this is a compilation of results known from existing
literature.

The low-energy behaviour in the strong-coupling limit is governed by the Heisenberg model

H =
∑

i j

Ji jSi · S j , (A.1)

where Ji j is the matrix of exchange interactions that has the same structure as t i j , and
Si =
�

S x
i , S y

i , Sz
i

�

is the vector of spin operators. We set Ji j = 1 between nearest neighbours.
In the Heisenberg model, the effect of strong frustration manifests itself in low-lying sin-

glet states below the first triplet, and sometimes also in a degenerate ground state. The former
effect entails that low-lying excitations are unconventional and different from magnons (spin-
flips), while the latter implies symmetry breaking in the form of a valence-bond-solid-like state.

Table 2 shows a summary of the strong-coupling results. For C40, which was not studied
before, we calculate the low-lying states of Eq. (A.1) using an SU(2)-invariant DMRG algorithm
with a bond dimension of χSU(2) = 2000, which translates into an energy variance per site of
∼ 10−5, which is sufficient to estimate the gaps.

C12 and C60 are characterized by spinflip excitations, i.e., the smallest gap is the triplet
gap; the gaps are rather large and the ground states are unique. C12 and C60 can be viewed as
weakly frustrated: Their lattices are non-bipartite, but the triangle and pentagon plaquettes
are not able to induce the abovementioned prototypical features of frustrated spin systems.

The lowest excitations for C20 and C40 are singlets. For C28, they are a triplet, but the
ground state for both C28 and C40 is twofold degenerate. In fact, the ordinary tetrahedron has
a twofold degenerate ground state which features singlet coverings, and this property seems
to be transferred to tetrahedral C20 and C40. We categorize C20, C28, and C40 as strongly
frustrated.

B ZN symmetry

In this section, we explain how to exploit the ZN molecular symmetry in the DMRG code.

1. We start from a Schlegel diagram of the molecule and identify the sites that belong to the
same cycle of length N , i.e., those that transform into each other under the ZN symmetry
operation of the graph (see Fig. 10, left).
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Table 2: Properties of the molecules at strong coupling U ≫ 1, Eq. (A.1):
ground-state degeneracy, singlet gap ∆0 = E1 (Stot = 0) − E0 (Stot = 0), triplet gap
∆1 = E0 (Stot = 1)− E0 (Stot = 0). The smaller gap is shown in bold.

molecule g.s. deg. singlet gap triplet gap reference frustration
C12 1 0.896 0.688 [60] weak
C20 1 0.316 0.514 [61] strong
C28 2 0.0702 0.015 [42] strong

C40 (Td) 2 0.04(2) 0.13(3) this work strong
C60 1 0.691 0.356 [22,47] weak
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Figure 10: Left: Schlegel diagram of the C20 hopping matrix with the points con-
nected by Z5 rotations shaded in the same color. Middle: The same graph, but de-
formed to a ladder-like structure with the points connected by rotations placed on
the rungs. The depicted enumeration of the sites leads to a maximal hopping range
of 6 (see Tab. 2). Right: The unitary transformation that rotates the molecule is
block-diagonal.

2. We enumerate the sites such that the sites within each cycle are enumerated in consec-
utive order (see Fig. 10, center).

3. Each cycle is an N × N matrix (often circulant), which we interpret as the one-particle
kinetic Hamiltonian Hcycle. We construct the full L × L hopping matrix t, where the
cycles are diagonal blocks that are further connected by inter-cycle hopping terms.

4. An operator that permutes two fermions on the sites i and j is given by
Pi j = 1− ni − n j + c†

i c j + c†
j ci [62]. On the single-particle level, this can be constructed

explicitly as P i j = IN − ni j + hi j , where IN is the N × N identity matrix, ni j has entries
equal to +1 at (i, i), ( j, j); hi j has entries equal to +1 at (i, j), ( j, i); and both are 0
otherwise. A product of the corresponding P i j over a cycle defines the unitary operation
Ucycle that permutes the fermions according to this symmetry.

5. Since Ucycle is a symmetry, the matrices Hcycle and Ucycle = exp
�2πi

N A
�

(with hermitian
A) commute and therefore have common eigenvectors, which can be found by simul-
taneous diagonalization. We furthermore permute the result so that the eigenvectors
correspond to increasing eigenvalues J = 0,1, . . . N −1 (pseudo-angular momenta) of A.
This permutation is an additional unitary transformation that can be grouped together
with Ucycle.

6. The unitary transformation U for the full L × L system is assembled as a block matrix
from the individual blocks of the cycles Ucycle (see Fig. 10, right).
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7. U can be carried over to the many-body regime by letting it act on the creation and anni-
hilation operators, c†

kσ =
∑

i Uikc†
iσ and c†

iσ =
∑

k U∗ikc†
kσ, where we use the bold letters

to indicate the transformed orbitals. The single-particle hopping matrix t is transformed
according to

t 7→ U† t U .

This defines a list of new hopping terms c†
kσclσ (k ̸= l) and on-site terms nk = c†

kσckσ
with the corresponding coefficients for the transformed Hamiltonian. Each site can now
be labeled by the quantum number J . Each term is a product of operators and can be
trivially encoded by an MPO of bond dimension 1.

8. Next, we apply the unitary transformation U to interaction term of Eq. (2) and similarly
get a list of 4-fermion terms

U
∑

i

∑

klmn

U∗ikUilU
∗
imUinc†

k↑cl↑c
†
m↓cn↓ = Vklmnc†

k↑cl↑c
†
m↓cn↓ , (B.1)

whereby some of the coefficients Vklmn vanish by angular momentum conservation. We
would like the individual terms to be encoded by MPOs of bond dimension 1 again,
but this is somewhat more difficult when exploiting spin-SU(2), since intermediate spin
exchange is involved. We thus have to go through the additional step of grouping the
terms by the SU(2)-invariant processes (assuming k, l, m, n are all distinct):

• double occupancy: nk↑nk↓

• correlated hopping: c†
lσnkckσ

• doublon hopping: c†
k↑c

†
k↓cl↓cl↑

• spin exchange: Sk · Sl =
1
2

∑

σ,σ′ c
†
kσclσ c†

lσ′ ckσ′ −
1
4 nknl

• 3-site correlated hopping: nkc†
lσcmσ

• 3-site spin exchange: c†
k↑ck↓c

†
l↓cm↑ and the corresponding density terms like

nkσc†
lσcmσ

• doublon creation/decay: c†
k↑c

†
k↓cl↑cm↓

• generic 4-site terms: c†
i↑c

†
j↓ck↑cl↓

For each process, a sum over a dangling spin index yields an operator that can be rep-
resented by reduced matrix elements that are used in the spin-SU(2) DMRG code (see
Ref. [63] for more details), and we finally arrive at a list of operators, where we know
how to encode every single one as an MPO.

9. Finally, we need to sum up all the resulting contributions to the Hamiltonian and rep-
resent the result as a large MPO. To reduce the bond dimension of the resulting sum,
we employ the lossless compression algorithm from Ref. [29]. We also compute and
compress H2, which is needed to evaluate the energy variance.
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C Data

Table 3: Data for C20, Ntot = 20, S = 0.

bond dim. symmetry variance per site E E/L
4000 SU(2)×U(1) 2.565129e-03 -20.5872319308 -1.0293615965
6000 SU(2)×U(1) 8.677940e-04 -20.5905735288 -1.0295286764
8000 SU(2)×U(1) 4.137779e-04 -20.5913712010 -1.0295685600

10000 SU(2)×U(1) 1.841385e-04 -20.5917551483 -1.0295877574
15000 SU(2)×U(1)×Z5 1.949971e-05 -20.5919949945 -1.0295997497

extrap. -20.5921159527 -1.0296057976
extrap. error ± 2.40e-06
ED -20.5920234655 -1.0296011733

Table 4: Data for C20, Ntot = 20, S = 1.

bond dim. symmetry variance per site E E/L
4000 SU(2)×U(1) 4.424098e-03 -20.5892218077 -1.0294610904
6000 SU(2)×U(1) 1.692830e-03 -20.5952048339 -1.0297602417
8000 SU(2)×U(1) 8.590140e-04 -20.5968201969 -1.0298410098

10000 SU(2)×U(1) 5.062640e-04 -20.5974541920 -1.0298727096
15000 SU(2)×U(1)×Z5 7.491663e-05 -20.5982741549 -1.0299137077

extrap. -20.5985585526 -1.0299279276
extrap. error ± 4.55e-06
ED -20.5983834340 -1.0299191717

Table 5: Data for C20, Ntot = 21, S = 1/2.

bond dim. symmetry variance E E/L
4000 SU(2)×U(1) 3.201929e-03 -19.6152315449 -0.9807615772
6000 SU(2)×U(1) 1.137871e-03 -19.6195522755 -0.9809776138
8000 SU(2)×U(1) 5.003695e-04 -19.6207223803 -0.9810361190

10000 SU(2)×U(1) 2.753801e-04 -19.6211024980 -0.9810551249
extrap. -19.6217371459 -0.9810868573
extrap. error ± 3.77e-06

Table 6: Data for C20, Ntot = 21, S = 3/2.

bond dim. symmetry variance per site E E/L
4000 SU(2)×U(1) 3.972304e-03 -19.6250885367 -0.9812544268
6000 SU(2)×U(1) 1.319480e-03 -19.6308550666 -0.9815427533
8000 SU(2)×U(1) 6.407885e-04 -19.6321219916 -0.9816060996

10000 SU(2)×U(1) 5.515291e-04 -19.6322537303 -0.9816126865
extrap. -19.6334998929 -0.9816749946
extrap. error ± 4.52e-06
ED -19.6331786587 -0.9816589329
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Table 7: Data for C20, Ntot = 22, S = 0.

bond dim. symmetry variance per site E E/L
4000 SU(2)×U(1) 3.990221e-03 -18.4926020619 -0.9246301031
6000 SU(2)×U(1) 1.659147e-03 -18.4982504217 -0.9249125211
8000 SU(2)×U(1) 7.934607e-04 -18.4999343862 -0.9249967193

10000 SU(2)×U(1) 4.152969e-04 -18.5006117934 -0.9250305897
extrap. -18.5017311225 -0.9250865561
extrap. error ± 9.61e-06

Table 8: Data for C20, Ntot = 22, S = 1.

bond dim. symmetry variance per site E E/L
4000 SU(2)×U(1) 9.982944e-03 -18.5316139161 -0.9265806958
6000 SU(2)×U(1) 4.060265e-03 -18.5492792649 -0.9274639632
8000 SU(2)×U(1) 2.016879e-03 -18.5536790937 -0.9276839547

10000 SU(2)×U(1) 1.150801e-03 -18.5553590813 -0.9277679541
extrap. -18.5592232767 -0.9279611638
extrap. error ± 3.95e-05

Table 9: Data for C20, Ntot = 22, S = 2.

bond dim. symmetry variance per site E E/L
4000 SU(2)×U(1) 7.393416e-03 -18.6123479933 -0.9306173997
6000 SU(2)×U(1) 2.299429e-03 -18.6247204396 -0.9312360220
8000 SU(2)×U(1) 1.093284e-03 -18.6270716327 -0.9313535816

10000 SU(2)×U(1) 5.856133e-04 -18.6279847528 -0.9313992376
extrap. -18.6296398753 -0.9314819938
extrap. error ± 1.36e-05
ED -18.6289129089 -0.9314456454

Table 10: Data for C28, Ntot = 28, S = 0.

bond dim. symmetry variance per site E E/L
4000 SU(2)×U(1) 3.309751e-02 -29.0040627605 -1.0358593843
6000 SU(2)×U(1) 2.392813e-02 -29.0597492572 -1.0378481878
8000 SU(2)×U(1) 1.858130e-02 -29.0886396069 -1.0388799860

10000 SU(2)×U(1) 1.557305e-02 -29.1041762882 -1.0394348674
10000 SU(2)×U(1)×Z3 1.705322e-02 -29.0945838181 -1.0394583818
15000 SU(2)×U(1)×Z3 1.067015e-02 -29.1254247543 -1.0416949836

extrap. -29.1876642696 -1.0424165811
extrap. error ± 1.36e-04

Table 11: Data for C28, Ntot = 28, S = 1.

bond dim. symmetry variance per site E E/L
6000 SU(2)×U(1) 2.435410e-02 -29.0902358560 -1.0389369949
8000 SU(2)×U(1) 1.910066e-02 -29.1229364748 -1.0401048741

10000 SU(2)×U(1) 1.618168e-02 -29.1390964008 -1.0406820143
15000 SU(2)×U(1)×Z3 1.163410e-02 -29.1549763442 -1.0435705219

extrap. -29.2183821028 -1.0435136465
extrap. error ± 3.35e-04
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Table 12: Data for C28, Ntot = 28, S = 2.

bond dim. symmetry variance per site E E/L
4000 SU(2)×U(1) 3.988430e-02 -29.1466539737 -1.0409519276
6000 SU(2)×U(1) 2.755306e-02 -29.2214757364 -1.0436241334
8000 SU(2)×U(1) 2.126947e-02 -29.2548318766 -1.0448154242

10000 SU(2)×U(1) 1.798120e-02 -29.2719640371 -1.0454272870
15000 SU(2)×U(1)×Z3 7.816843e-03 -29.3143776753 -1.0472852883

extrap. -29.3625532877 -1.0486626174
extrap. error ± 2.54e-04

Table 13: Data for C28, Ntot = 29, S = 1/2.

bond dim. symmetry variance per site E E/L
4000 SU(2)×U(1) 2.234914e-02 -28.3649459528 -1.0130337840
6000 SU(2)×U(1) 1.560330e-02 -28.3999200061 -1.0142828574
8000 SU(2)×U(1) 1.201980e-02 -28.4180663036 -1.0149309394

10000 SU(2)×U(1) 1.013856e-02 -28.4281043806 -1.0152894422
extrap. -28.4803208909 -1.0171543175
extrap. error ± 1.19e-05

Table 14: Data for C28, Ntot = 29, S = 3/2.

bond dim. symmetry variance per site E E/L
4000 SU(2)×U(1) 3.014672e-02 -28.4214379836 -1.0150513566
6000 SU(2)×U(1) 2.130527e-02 -28.4701504827 -1.0167910887
8000 SU(2)×U(1) 1.637474e-02 -28.4948253567 -1.0176723342

10000 SU(2)×U(1) 1.381529e-02 -28.5080689822 -1.0181453208
extrap. -28.5818529420 -1.0207804622
extrap. error ± 6.48e-05

Table 15: Data for C28, Ntot = 30, S = 0.

bond dim. symmetry variance per site E E/L
4000 SU(2)×U(1) 1.880715e-02 -27.6280266150 -0.9867152362
6000 SU(2)×U(1) 1.285464e-02 -27.6572331402 -0.9877583264
8000 SU(2)×U(1) 1.083324e-02 -27.6763647794 -0.9884415993

extrap. -27.7360290388 -0.9905724657
extrap. error ± 4.79e-04

Table 16: Data for C28, Ntot = 30, S = 1.

bond dim. symmetry variance per site E E/L
4000 SU(2)×U(1) 2.804127e-02 -27.6461636143 -0.9873629862
6000 SU(2)×U(1) 1.934873e-02 -27.6900722315 -0.9889311511
8000 SU(2)×U(1) 1.451294e-02 -27.7124380716 -0.9897299311

10000 SU(2)×U(1) 1.207910e-02 -27.7241404241 -0.9901478723
extrap. -27.7834955238 -0.9922676973
extrap. error ± 4.86e-05
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Table 17: Data for C40 (Td), U = 2, Ntot = 40, S = 0.

bond dim. symmetry variance per site E E/L
10000 SU(2)×U(1)×Z3 5.236308e-02 -42.5267938821 -1.0631698471
15000 SU(2)×U(1)×Z3 3.919015e-02 -42.6321080424 -1.0658027011
20000 SU(2)×U(1)×Z3 3.240451e-02 -42.6856841714 -1.0671421043

extrap. -42.9439945371 -1.0735998634
extrap. error ± 2.62e-05

Table 18: Data for C40 (Td), U = 2, Ntot = 40, S = 1.

bond dim. symmetry variance per site E E/L
10000 SU(2)×U(1)×Z3 5.790364e-02 -42.4558585233 -1.0613964631
15000 SU(2)×U(1)×Z3 4.401479e-02 -42.5671663123 -1.0641791578
20000 SU(2)×U(1)×Z3 3.632150e-02 -42.6261792769 -1.0656544820

extrap. -42.9140624943 -1.0728515624
extrap. error ± 1.04e-04

Table 19: Data for C40 (Td), U = 2, Ntot = 41, S = 1/2.

bond dim. symmetry variance per site E E/L
10000 SU(2)×U(1)×Z3 6.358959e-02 -41.6794911022 -1.0160827086
15000 SU(2)×U(1)×Z3 4.585133e-02 -41.8286384995 -1.0202097195
20000 SU(2)×U(1)×Z3 3.733541e-02 -41.8937502589 -1.0217999600

extrap. -42.2017435255 -1.0550435881
extrap. error ± 2.32e-04

Table 20: Data for C40 (Td), U = 2, Ntot = 41, S = 3/2.

bond dim. symmetry variance per site E E/L
10000 SU(2)×U(1)×Z3 7.296366e-02 -41.6114621999 -1.0149141039
15000 SU(2)×U(1)×Z3 5.487482e-02 -41.7740646212 -1.0198574251
20000 SU(2)×U(1)×Z3 4.382172e-02 -41.8622101077 -1.0222492477

extrap. -42.2437454703 -1.0560936368
extrap. error ± 3.95e-04

Table 21: Data for C40 (Td), U = 2, Ntot = 42, S = 0.

bond dim. symmetry variance per site E E/L
10000 SU(2)×U(1)×Z3 6.166042e-02 -40.8982491011 -0.9737687881
15000 SU(2)×U(1)×Z3 4.627591e-02 -41.0163720665 -0.9765802873
20000 SU(2)×U(1)×Z3 3.826717e-02 -41.0779820901 -0.9770948120

extrap. -41.3719340340 -1.0342983508
extrap. error ± 4.63e-06

Table 22: Data for C40 (Td), U = 2, Ntot = 42, S = 1.

bond dim. symmetry variance per site E E/L
10000 SU(2)×U(1)×Z3 7.654455e-02 -40.7824406642 -0.9719633482
15000 SU(2)×U(1)×Z3 5.568845e-02 -40.9462019109 -0.9749095693
17500 SU(2)×U(1)×Z3 4.981659e-02 -40.9866775903 -0.9758732760

extrap. -41.3721808204 -1.0343045205
extrap. error ± 2.65e-04
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Table 23: Data for C60, Ntot = 60, S = 0. See Sec. 6 for details on the bond dimension
incrementation protocol.

bond dim. increment symmetry variance per site E E/L

14000 slow (1000∼2000) SU(2)×U(1) 0.135904022658 -64.9106586457 -1.0818443108

16000 slow (1000∼2000) SU(2)×U(1) 0.126821199128 -65.0295658490 -1.0838260975

15000 medium (3000) SU(2)×U(1) 0.131687812195 -64.9776993639 -1.0829616561

16000 large (4000) SU(2)×U(1) 0.127244207774 -65.0483095680 -1.0841384928

15000 large (5000) SU(2)×U(1) 0.132342386810 -64.9877664803 -1.0831294413

extrap. -66.7684664015 -1.1128077734

extrap. error ± 4.56e-03

Table 24: Data for C60, Ntot = 62, S = 0. See Sec. 6 for details on the bond dimension
incrementation protocol.

bond dim. increment symmetry variance per site E E/L

14000 slow (1000∼2000) SU(2)×U(1) 0.111483782545 -62.7869028882 -1.0464483815

16000 slow (1000∼2000) SU(2)×U(1) 0.119667635466 -62.6074120632 -1.0434568677

15000 medium (3000) SU(2)×U(1) 0.122541374362 -62.5895070252 -1.0431584504

16000 large (4000) SU(2)×U(1) 0.119667635466 -62.6074120632 -1.0434568677

15000 large (5000) SU(2)×U(1) 0.125065586486 -62.5078200406 -1.0417970007

extrap. -64.9810150219 -1.0830169170

extrap. error ± 3.68e-03

Table 25: Data for C60, Ntot = 62, S = 1. See Sec. 6 for details on the bond dimension
incrementation protocol.

bond dim. increment symmetry variance per site E E/L

14000 slow (1000∼2000) U(2)×U(1) 0.140217832409 -62.3458427788 -1.0390973796

16000 slow (1000∼2000) U(2)×U(1) 0.130731479726 -62.4721647664 -1.0412027461

15000 medium (3000) U(2)×U(1) 0.136095093591 -62.3679731374 -1.0394662190

16000 large (4000) U(2)×U(1) 0.130812101335 -62.4860542411 -1.0414342374

15000 large (5000) U(2)×U(1) 0.135490162120 -62.4069163987 -1.0401152733

extrap. -64.4325029349 -1.0738750489

extrap. error ± 5.25e-03

Table 26: Data for C60, Ntot = 63, S = 1/2. See Sec. 6 for details on the bond
dimension incrementation protocol.

bond dim. increment symmetry variance per site E E/L

14000 slow (1000∼2000) SU(2)×U(1) 0.110868648671 -61.4808743475 -1.0246812391

16000 slow (1000∼2000) SU(2)×U(1) 0.103413283990 -61.5898491564 -1.0264974859

15000 medium (3000) SU(2)×U(1) 0.107002037933 -61.5394676338 -1.0256577939

16000 large (4000) SU(2)×U(1) 0.103413283990 -61.5898491564 -1.0264974859

15000 large (5000) SU(2)×U(1) 0.107709551776 -61.5438874189 -1.0257314570

extrap. -63.0470844675 -1.0507847411

extrap. error ± 2.32e-03
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Table 27: Data for C60, Ntot = 63, S = 3/2. See Sec. 6 for details on the bond
dimension incrementation protocol.

bond dim. increment symmetry variance per site E E/L

14000 slow (1000∼2000) SU(2)×U(1) 0.142897022042 -61.0008014205 -1.0166800237

16000 slow (1000∼2000) SU(2)×U(1) 0.132975317242 -61.1337803719 -1.0188963395

15000 medium (3000) SU(2)×U(1) 0.137260244327 -61.0940647523 -1.0182344125

16000 large (4000) SU(2)×U(1) 0.132512468442 -61.1414905453 -1.0190248424

15000 large (5000) SU(2)×U(1) 0.137905519692 -61.1007579958 -1.0183459666

extrap. -62.8444741267 -1.0474079021

extrap. error ± 4.50e-03

Table 28: Data for C60, Ntot = 64, S = 0. See Sec. 6 for details on the bond dimension
incrementation protocol.

bond dim. increment symmetry variance per site E E/L

14000 slow (1000∼2000) SU(2)×U(1) 0.106587928114 -60.1702174621 -1.0028369577

16000 slow (1000∼2000) SU(2)×U(1) 0.0989582789575 -60.2697980478 -1.0044966341

15000 medium (3000) SU(2)×U(1) 0.101934726830 -60.2443643559 -1.0040727393

16000 large (4000) SU(2)×U(1) 0.0987337990014 -60.2928024167 -1.0048800403

15000 large (5000) SU(2)×U(1) 0.101869205715 -60.2563401115 -1.0042723352

extrap. -61.6926752737 -1.0282112546

extrap. error ± 3.29e-03

Table 29: Data for C60, Ntot = 64, S = 1. See Sec. 6 for details on the bond dimension
incrementation protocol.

bond dim. increment symmetry variance per site E E/L

14000 slow (1000∼2000) SU(2)×U(1) 0.114286443750 -60.0958895711 -1.0015981595

16000 slow (1000∼2000) SU(2)×U(1) 0.105624198492 -60.2093091792 -1.0034884863

15000 medium (3000) SU(2)×U(1) 0.109141837355 -60.1757886515 -1.0029298109

16000 large (4000) SU(2)×U(1) 0.104981742230 -60.2358369592 -1.0039306160

15000 large (5000) SU(2)×U(1) 0.109864076307 -60.1825244363 -1.0030420739

extrap. -61.6684749901 -1.0278079165

extrap. error ± 3.39e-03
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