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Abstract

We solve the anharmonic oscillator using physics-informed renormalisation group
(PIRG) flows, focusing on the weak coupling regime dominated by instanton-induced
tunnelling processes. We demonstrate that the instanton physics underlying the ex-
ponential suppression of the energy gap is already captured at the first order of the
derivative expansion within the PIRG framework. The key advances of this work are
the implementation of a ground-state expansion in the PIRG flow and the adoption
of high-precision Galerkin-based numerics. Our determination of the decay constant,
ainst = 1.910(2), agrees quantitatively with the analytic value ainst = 1.886, differing by
only 1%. While the present formulation relies on a heuristic mapping that will be system-
atically refined in future extensions of the PIRG approach, these results already highlight
the remarkable ability of the method to capture non-perturbative quantum phenomena
within relatively simple truncations.
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1 Introduction

In the past five decades, the functional renormalisation group (fRG) approach has led to an im-
pressive plethora of non-perturbative results in statistical mechanics and quantum field theory,
see [1] for a recent compilation of results in various areas. As an exact equation it accommo-
dates topological effects, and its capacity for fully non-perturbative computations has been
impressively demonstrated in many areas of physics. Still, it is left to assess, which approxi-
mations are well-suited for capturing phenomena that are driven by topological configurations
or defects.

An optimal test case for such an analysis is provided by the anharmonic oscillator with
its instanton-dominated regime at small couplings λϕ: Firstly, it can be solved numerically
with Hamiltonian methods for all couplings. Secondly, in the weak coupling regime it has
an asymptotic analytic solution obtained in a saddle-point expansion about the topological
instanton solutions. Finally, the result for the energy gap∆E between the ground state and the
first excited state has a very characteristic non-perturbative dependence on the anharmonicity
λϕ with

∆E(λϕ → 0)∝
1
Æ

λϕ
e−ainst/λϕ . (1)

In (1) we have measured the coupling λϕ in units of the mass. The analytic result for the
coefficient in the exponent is ainst = 4

p
2/3 ≈ 1.886, see (5). The exponential damping can

be considered the smoking gun for the topological scaling induced by the tunnelling process:
this behaviour with an essential singularity for λϕ → 0 cannot be obtained within perturba-
tion theory and its signatures are well separated from the perturbative polynomial result. In
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combination this offers a complete insight to the system, and in particular also an analytic un-
derstanding of the underlying tunnelling physics. Accordingly, the anharmonic oscillator can
be used as a perfect model to dissect the convergence of the fRG approach, applied to topo-
logical phenomena. Specifically, such an analysis answers the question, which approximation
suffices to fully incorporate topological configurations.

For these reasons the anharmonic oscillator has been studied with the fRG for the past
two decades, initiated by the work in [2, 3], for further works see e.g. [4–8]. In these works
the derivative expansion has been used, either in leading order (local potential approximation
(LPA)) or in its first order with a field-dependent wave function. While the lowest order ap-
proximation fails to accommodate the instanton regime, the first order results point towards a
sizeable improvement. Still, none of these computations could confirm the exponential decay:
Firstly, the computations do not include the small coupling regime covered by the two-loop
or one-loop saddle point expansion. Moreover, already for larger couplings outside the ex-
ponential regime, sizeable deviations from the correct scaling with the coupling have been
reported.

In the current work we follow up on these analyses and study the anharmonic oscillator
in the first order of the derivative expansion. The analysis here is based on three pivotal new
ingredients:

(i) The use of physics-informed RG (PIRG) flows introduced in [9] within an expansion
about the ground state of the theory [10], see Section 3. This framework is able to
optimise the convergence of any expansion scheme and is applied to the derivative ex-
pansion.

(ii) The use of powerful numerical techniques, see e.g. [11–13]. Further details can be found
in Appendix A.

(iii) The use of an alternative observable for the detection of the exponential decay: instead
of only resolving the energy gap ∆E, we are computing the coupling-dependence of the
size of the exponentially flat field regime about vanishing fields. Within the PIRG setup,
the two are related by the same mechanism triggering the exponential behaviour.

The use of (i) and (ii) allows us to extend previous analyses to far smaller couplings, also reach-
ing for the instanton-dominated small coupling regime within the first order of the derivative
expansion. Then, (iii) makes use of an optimal observable that does not necessitate the evalu-
ation of the potential in the exponentially flat regime itself. In combination, these three novel
ingredients allow us to resolve the instanton-dominated regime of the anharmonic oscillator.
In particular we confirm the persistence of the exponential flattening of the energy gap in the
current PIRG approach, see Section 5. This clearly signifies that the fRG accommodates the
effects of topological configurations already in relatively simple approximations. Moreover,
we can convert the coupling dependence of the scaling of the exponentially flat regime to that
of the energy gap via a heuristic mapping. This leads to the result ainst = 1.910(2), see (42)
with a 1% deviation from the analytic result ainst ≈ 1.886 mentioned above.

2 The anharmonic oscillator and the derivative expansion

The quantum mechanical anharmonic oscillator can be expressed as a 0+1 dimensional Eu-
clidean quantum field theory with the classical action

S[ϕ̂] =

∫

dτ

¨

1
2

�

∂µϕ̂
�2
+

m2
ϕ

2
ϕ̂2 +

λϕ|mϕ|3

8
ϕ̂4

«

, (2)
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Figure 1: Energy gap∆E between the ground state and the first excited state: Eigen-
values: Numerical evaluation of the energy eigenvalues of the Schrödinger equation
(black line), Instanton: two-loop saddle point expansion in the dilute gas expansion
(5a) (dashed grey line), PIRG: Basic approximation to the first order derivative ex-
pansion of physics-informed flows in the ground state expansion (red straight line),
see Appendix B. The novel observable sensitive to the topological scaling is intro-
duced in Section 5.2, see Figures 4 and 5.

with the anharmonic self-interaction part and imaginary time τ. For later convenience we have
expressed (2) in the dimensionless coupling λϕ, measured in units of the mass scale |mϕ|, by
scaling out the momentum dimension with |mϕ|3. From now on we simply express all scales
in units of the mass and (2) turns into

S[ϕ̂] =

∫

dτ

�

1
2

�

∂µϕ̂
�2 −

1
2
ϕ̂2 +

λϕ

8
ϕ̂4

�

, (3)

where the minus sign in front of the mass term 1/2ϕ̂2 indicates the negative mass squared.
The field ϕ̂ in (3) is the microscopic quantum field or operator with the mean field ϕ = 〈ϕ̂〉. In
the anharmonic oscillator it is nothing but the time-dependent position variable x(τ) = ϕ(τ).

For double-well potentials Vcl(ϕ) with m2
ϕ < 0, the classical potential has two minima at

±ϕ0 with

ϕ0 =

√

√

√
2
λϕ

. (4)

We emphasise that this minimal field x0 = ϕ0 has a direct physical meaning in our quantum
mechanical example: it indicates the spatial location of the minimum of the potential. This has
to be contrasted with a higher dimensional quantum field theory, where the field amplitude is
not a direct measurable quantity such as a location.

In quantum mechanics spontaneous symmetry breaking is absent as tunnelling between
the two minima requires a finite energy and the ground state is a superposition of the states
centred at ϕ0. For small anharmonicities λϕ → 0, these minima are well separated. In this
limit the tunnelling phenomenon even dominates the fluctuation physics.
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This is clearly visible in the energy gap ∆E between the ground state and the first ex-
cited state, which carries a clear signature for the topological tunnelling effects. In the above-
mentioned limit of small anharmonicities it can be computed analytically using a saddle point
expansion about the topological tunnelling solution, the quantum-mechanical instanton. The
dimensionless energy gap ∆E within the two-loop dilute instanton gas approximation reads
[14],

∆Einst = 8 21/4

√

√

√
1
πλϕ

e−S0−
71
72

1
S0 , S0 =

4
3

p
2
λϕ

, (5a)

with the instanton action S0 and the exponent

S0 +
71
72

1
S0
=

ainst

λϕ
+

71
96

λϕ
p

2
≈

1.886
λϕ

+ 0.523λϕ , (5b)

measured in units of |mϕ|. Importantly, the expression (5) displays a characteristic exponential
suppression, which cannot be obtained in perturbation theory about the trivial vacuum: all
expansion coefficients of a Taylor expansion about λϕ = 0 vanish identically. In turn, for large
anharmonicities perturbation theory works very well, and (5) fails.

Both asymptotic regimes and the intermediate transition regime can be obtained accurately
by evaluating the energy eigenvalues of the Schrödinger equation numerically. In the present
work we use a basis consisting of the 50 lowest eigenstates to compute a benchmark for the
energy gap, see Figure 1. From this plot it is also evident that we have to go to anharmonicities
smaller than 0.4, to be safely in the instanton-dominated topological regime,

λϕ ≲ λinst , with λinst ≈ 0.4 , (6)

see the analysis in Section 5.1.2. We also show a basic approximation to ∆E obtained in the
present work, see Appendix B. As is explained there, this basic approximation captures the
perturbative regime quantitatively, while it only shows qualitative properties in the instanton-
dominated topological regime. The novel observable, designed for the computation of ainst
in (5), is introduced in Section 5.2, see Figures 4 and 5. This finalises our discussion of the
benchmarks, both the numerical solution and the topological analytic one in the instanton
dominated regime.

The computation in the present work is done with the functional renormalisation group
equation for the effective action, the Legendre transform of the logarithm of the generating
functional. As mentioned in the introduction, we use the novel physics-informed setup in-
troduced in [9] and explained in Section 3.1. Moreover, we use the derivative expansion for
the effective action. This is an expansion of the effective action in powers of derivatives of
the field, that is in terms of p2/m2

gap with a given mass gap mgap. The fRG approach is very
well adapted to such an expansion scheme as the infrared cutoff itself is an addition to the
physical mass gap of the theory, roughly speaking m2

gap → m2
gap + k2. In this approximation,

the effective action is given by

Γϕ[ϕ] =

∫

dτ
�

1
2

Zϕ(ϕ)(∂µϕ)
2 + Vϕ(ϕ) + · · ·

�

. (7)

Equation (7) displays the first order of the derivative expansion: the full effective potential
Vϕ(ϕ) and the classical kinetic term constitute the zeroth order term, also called the local
potential approximation (LPA). The first order term is proportional to Zϕ(ϕ) − 1. The dots
comprise all higher order terms starting with W (ϕ)(∂ 2

µϕ)(∂
2
µϕ). Finally, the subscript ϕ indi-

cates that the Legendre transform is taken with respect to the fundamental field.
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The energy gap between the ground state and first exited state of the anharmonic oscillator
is directly given by the mass of the scalar propagator. In terms of the effective action (7), it
is given by the RG-invariant curvature of the effective potential, evaluated at the equations of
motion ϕ = 0,

∆E =

√

√

√

V ′′ϕ (0)

Zϕ(0)
. (8)

Equation (8) has been computed in LPA and in the first order derivative expansion for the
effective action Γϕ[ϕ]. However, while for λϕ far outside the topological regime (6) and for
the whole coupling regime with m2

ϕ > 0, the first order results agree very well. Close to the
topological regime the results show sizeable deviations. Moreover, the standard setup does
not allow us to dive deep into the topological regime but only to graze it.

This concludes our brief overview of the anharmonic oscillator.

3 Physics-informed RG flows and the ground state expansion

In the following we set up a PIRG approach which overcomes these limitations and, with the
choice of an appropriate observable, allows us to quantitatively determine the prefactor in
the exponent of (5a). To this aim we resolve the exponentially flat regime between the min-
ima ±ϕ0 in the effective potential of the anharmonic oscillator, which arises in the regime
dominated by instanton-induced tunnelling processes. Evidently, the combination of an ex-
ponentially flat regime for small fields and a polynomial regime for larger fields destabilises
Taylor expansions in the field. About ϕ = 0, it does not capture the physics at all. Moreover,
even within computations of the full effective potential using advanced numerical methods
this combination of different regimes leads to instabilities if going beyond the lowest order
of the derivative expansion. For explicit examples of the potential for different couplings see
Figure 2a in Section 4.

This calls for an expansion scheme with optimised convergence, and in the present work
we use recent advances in physics-informed RG flows (PIRG flows) [9], or more precisely the
ground state expansion in PIRGs [10]. In this approach the derivative expansion is done about
the full propagator of the emergent dynamical (composite) degrees of freedom in the theory
at hand. This expansion can be cast in a simple form by using the generalised flow equation
with emergent composites as introduced in [15].

For details we refer to the works mentioned above, here we briefly recapitulate the PIRG
approach in Section 3.1 and the ground state expansion in Section 3.2.

3.1 Physics-informed RG flows

PIRGs are based on generalised flow equations for the generating functional at hand, including
not only RG steps such as the integration of momentum shells but also general reparametri-
sations of the theory, see [9]. For the Wilsonian effective action or path integral measure the
general RG setup has been constructed in [16], leading to the Wegner equation. Its simplest
form without reparametrisations of the fields is the Polchinski equation [17]. For the one-
particle irreducible (1PI) effective action the generalised flow equation has been constructed
in [15], its simplest form without reparametrisations is the Wetterich equation [18]. Both, the
Polchinski equation and the Wetterich equation can be considered as benchmark (or baseline)
equations and we include results from the latter and its proper-time variant as the baseline
here.
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In a setup with full use of reparametrisations of the theory we no longer consider the
effective action Γϕ[ϕ] of the fundamental field displayed in (7). Instead the effective action is
given in terms of a composite operator (mean) field

φ = 〈φ̂[ϕ̂]〉 , (9)

where the operator φ̂ is introduced to the path integral with a respective current term.
With functional flow equations one recasts the task of solving the path integral in solving it

differentially, typically in terms of momentum shells with the momentum cutoff scale k. Then,
the scale evolution of the 1PI effective action in terms of the new composite mean field, Γφ[φ],
is governed by the generalised flow [15],

�

∂t +

∫

τ

φ̇
δ

δφ

�

Γφ[φ] =
1
2

Tr

�

Gφ[φ]

�

∂t + 2
δφ̇

δφ

�

Rk

�

, (10)

where the trace is evaluated over momentum space. The dimensionless RG time is given by
t = ln(k/kref) and kref is chosen as some reference scale, typically the initial scale Λ. The
corresponding propagator Gφ = 〈φ̂(ω)φ̂(ν)〉c of the composite field φ reads

Gφ[φ](ω,ν) =





1

Γ
(2)
φ
[φ] + Rk



 (ω,ν) , (11)

with Γ (n)
φ
= δnΓφ/δφ

n. The regulator Rk implements the momentum cutoff at a given scale k

and is indicated in Appendix C. The Wetterich flow [18] is recovered from (10) with φ̇ = 0,
that is φ = ϕ.

The qualitatively novel ingredient of the PIRG setup is the full use of the freedom provided
by having two unknowns in the generalised flow equation (10)

∂tΓφ ≡ ∂tΓT , φ̇ = 〈∂tφ̂k[ϕ̂]〉 . (12)

This novel view on functional flows allows us to completely revert the common starting point:
For example, instead of starting with the definition of the composite field operator φ, we may
start with choosing a specific effective action, the target action ΓT [φ] = Γφ[φ] and compute
the respective composite operator.

In summary, instead of resolving the effective action for a given fundamental mean field
ϕ, we resolve the pair

�

Γφ[φ], φ̇[φ]
�

. (13)

This captures the fluctuation physics obtained from the removal of the momentum cutoff Rk via
(10) and allows for the implementation of an additional constraint. This comes at the price
of losing the direct relation to the generating functional in terms of the fundamental fields
Γϕ: Γφ[φ] is not simply a reparametrisation of the standard effective action. It only agrees
with the latter on the solution of the equations of motion of ϕ and φ, for more details see [9].

Using the interpretation of the field transformation as a temporal derivative φ̇ = ∂tφ, the
map φ[ϕ] can be reconstructed on the level of the mean fields

φ[ϕ] = ϕ −
∫ Λ

0

dk
k
φ̇[φk] . (14)

Alternatively, one can use a generalised version of operator flows within the PIRG setup, see
[19] and in particular Sec IV.A of the reference for a comparison of different constructions of
mappings between the mean fields.
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Equation (14) relates the original, fundamental (mean) field ϕ to the composite field φ.
Note that this does not enable us to learn the transformation on the level of the field operators
or their flow ∂tφ̂[ϕ̂]. In general this leads to the additional task of reconstructing correlation
functions of the fundamental field. This was discussed and solved in [9] at the example of a
simple integral. In the present context, this route is expanded on further in Appendix B.2. In
any case, for φ[ϕ] ̸= ϕ and hence φ̂[ϕ̂] ̸= ϕ̂, the effective action of the composite fields is
not that of the fundamental field,

φ ̸= ϕ =⇒ Γϕ[ϕ] ̸= Γφ
�

φ[ϕ]
�

. (15)

This originates in the fact that the Legendre transformation is taken with respect to different
field operators, see also [9,20] for explicit examples.

In the present work we use a specific application of the PIRG flows, the ground state ex-
pansion, which fixes the additional constraint allowed by the formulation in (13). This is
detailed below in Section 3.2. Importantly, instead of attempting a reconstruction of Γϕ[ϕ],
we focus on an observable that can directly be extracted from Γφ[φ]. This new observable is
tailor-made for predicting the prefactor ainst in (5), see Section 5.2. A minimal reconstruction
of the energy gap (8) is attempted in Appendix B. Neither the Appendix, nor (14) are used
to obtain any results stated in the main text and are provided to gain an intuition of this new
approach.

3.2 Ground state expansion

The ground state expansion was introduced in [10]. The underlying idea is that a formulation
in terms of the emergent dynamical degrees of freedom, including topological excitations and
resonances, improves the convergence properties of the expansion. For example, in the broken
phase of a given theory with a continuous symmetry a formulation in the Goldstone and radial
modes is certainly advantageous. This has been suggested in [21] and has been implemented
for the Beresinski-Kosterlitz-Thouless transition in [22, 23]. In the present quantum mechan-
ical example no spontaneous symmetry breaking is present but the theory is well-described
in terms of tunnelling processes for λϕ → 0 as discussed before. This suggests a flowing re-
formulation in terms the respective topological degrees of freedom which will be considered
elsewhere.

In the present setup, another part of a full ground state expansion is implemented: We use
the target action approach (12) and (13) to reduce the dispersion relation to a classical one as
first suggested in [24]. This absorbs the wave function Zϕ[ϕ] of the fundamental field ϕ into
the composite field φ[ϕ] with

Zφ[φ]≡ 1 , (16)

for applications see [10,24,25]. Equation (16) implements a classical dispersion relation. All
fluctuation physics∝ p2 is absorbed into the field definition, and hence Zϕ(ϕ) is absorbed in
φ. Accordingly, the target action in the first order derivative expansion of the PIRG is given
by the leading order derivative expansion,

ΓT,k[φ] =

∫

dτ
§

1
2
(∂µφ)

2 + Vφ,k(φ) +O(∂ 4)
ª

. (17)

This expansion has already been investigated in detail in O(N) theories in [10] with very
promising results. It is called a ground state expansion, because it allows for the interpretation
of φ as the field associated to this physical state with the classical (on-shell) dispersion.
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On a technical level, the ground state expansion leads to a vanishing flow of Zφ in (10)
with the target action ΓT = Γφ ,

∂t Zφ,k(φ) = ∂ω2

δ2∂tΓT,k[φ]

δφ(−ω)δφ(ω)

�

�

�

�

�

ω=0

!
= 0 . (18)

The effective potential Vφ,k(φ) of the composite field φ is determined by the dynamics of the
regulator induced flow, i.e. the right-hand side of (10). The target action (17) implements the
classical frequency dependence of the two-point function

Γ
(2)
k (ω,−ω)[φ] =ω2 + ∂ 2

φVφ,k(φ) , (19)

and removes all frequency dependences of higher order vertex functions Γ (n)k [φ] with n > 2
at the first order of the derivative expansion. This is a significant simplification in comparison
to the Wetterich setup, see (D.2).

It is left to determine the flowing field leading to the target action (17), which we
parametrise as

φ̇ = −
fk(φ)

2
. (20)

The pair (13) is computed from the flow equation for the effective potential Vφ(φ) and that of
the flowing field transformation fk(φ). Inserting the above parametrisations in the generalised
flow (10) for constant φ(τ) = φ leads us to

Vφ =
Ad kd+2

k2 + V (2)
φ
(φ)

�

1−
f (1)(φ)
d + 2

�

+
1
2

f (φ) V (1)
φ
(φ) , (21a)

where we have dropped the k dependence of Vφ and f for the sake of visibility and

Ad =
2πd/2

(2π)dΓ (d/2)d
. (21b)

We have used the flat regulator in the evaluation of the flow equation, see Appendix C for more
details. The derivative of the reparametrisation function f satisfies the algebraic relation

f (1)(φ) = Ad kd+2

�

V (3)
φ
(φ)
�2

�

k2 + V (2)
φ
(φ)
�4 , (21c)

which follows from the constraint (18). The integration constant is adjusted as

f (0) = 0 , (22)

which implements the φ→−φ symmetry for the flowing field. Moreover, it also leads to local
field transformations, i.e.

lim
|φ|→∞

φ̇ = const. (23)

The locality of the field transformation is pivotal for the formal existence of the emergent
composite, for a detailed discussion see [9].
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4 The effective potential

This Section details the evaluation of the flow of the effective potential Vφ(ρ). We discuss the
numerical setup in Section 4.1. In particular, we introduce an approximation of third order
derivative terms of the potential, that allows for an easy implementation of a numerically stable
scheme. This discussion is followed by one of the shape of the effective potential in Section 4.2,
specifically concentrating on the exponentially flat regime in the effective potential.

4.1 Numerical evaluation and approximation

We solve the flow equation of the fully field-dependent potential (21a) numerically, using a
continuous Galerkin method for the discretisation of field-space. We make use of the numerical
framework DiFfRG [13], which was first used in [26]. This is detailed further in Appendix A,
where we also briefly discuss the fluid-dynamic approach to solving RG flows. At every step
of the RG time evolution, we integrate f (1) as given by (21c) together with the boundary
condition (22). This resolves the field reparametrisation (20). It is a feature of the current
truncation and the scalar theory with one component, that f (1) is given algebraically. The
numerical simplification of this setup in comparison to the Wetterich flow is commented on in
Appendix D.3.

The diagrammatic part of the flow of the wave function (21c) contains a third derivative,
which is numerically hard to accommodate for in a fully field-dependent setup, built on the
basis of convection (first derivatives) and diffusion (second derivatives) dynamics. This term
also appears in the first order derivative expansion of the standard Wetterich flows, which are
briefly discussed in Appendix D, and is not exclusive to the PIRG setup. A formulation of a
stable numerical scheme including these terms is beyond the scope of the present work.

Instead, we work with a numerically motivated approximation for this term. To begin with,
we use the fluid-dynamical code frameworks [11–13,26–34] that are formulated in the scalar
invariant

ρ =
φ2

2
. (24)

These frameworks are described in more details in Appendix A. The stability of the numerics
is ensured by approximating the third derivative as
�

V (3)
φ
(ρ)
�2
= 2ρ
�

3V ′′φ (ρ) + 2ρ V ′′′φ (ρ)
�2
≈ 2ρ
�

3V ′′φ (ρ) + 2ρ V ′′′φ (ρ = 0)
�2

, (25)

where we use the notation V ′ = ∂ρV , and similarly for higher order derivatives w.r.t. ρ.
V ′′′
φ
(ρ = 0) refers to the value of the third derivative on the equations of motion at ρ = 0.
Note, that the approximation in (25) still accommodates a sizeable part of all higher order

scatterings in the field-dependent propagator and also the vertex itself via ∂ 2
ρ Vφ . However, it

does not capture the non-linear dynamics created by the ∂ 3
ρ Vφ term.

4.2 The exponentially flat regime

The computation is initialised at a UV-cutoff scale Λ = 300 in units of the mass This is suffi-
ciently large to lead to fully converged results, if using only the terms in the classical action in
the initial effective action. The respective initial potential is given by

Vφ,Λ(φ) = −
1
2
φ2 +

λϕ

8
φ4 . (26)

Moreover, at the initial scale Λ we identify the composite mean field φ with the fundamental
mean field ϕ,

φΛ[ϕ] = ϕ . (27)
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(a) Potential Vφ(φ).
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(b) Curvature ∂ 2
φ

Vφ(φ).

Figure 2: Field dependence on the composite field φ for different values of the cou-
pling λϕ. The exponentially flat regime increases exponentially with λϕ → 0 as noted
in (33). We have indicated the end of the exponentially flat regime, defined by ρc in
(31), with dashed vertical lines.

Hence, the initial effective potential of the composite field agrees with that of the fundamental
field,

Vφ,Λ(φ) = Vϕ,Λ(ϕ) . (28)

This setup leaves us with one tuning parameter λϕ. We have checked that the results do not
dependent on the UV-cutoff scale Λ, if the latter is increased while keeping λϕ fixed. This
confirms numerically the above statement that Λ = 300 is sufficiently large. Accordingly,
together with (28) this allows us to identify the initial coupling λϕ with the classical one that
we use in the Hamiltonian numerical approach for computing the energy gap ∆E, up to some
rescaling of the units

|mϕ| → (1+ ε)|mϕ| . (29)

Presently, we use a rescaling of ε= 4× 10−3 for the values indicated in Figure 1.
In the following we present results for

0.22≤ λϕ ≤ 2.0 . (30)

While the numerical evaluation at couplings lower than λϕ = 0.22 is stable, the computational
effort increases exponentially, see Appendix A.1 for a more detailed discussion. Hence (30)
is a reasonable compromise between computational aspects and the necessity to explore a
significant part of the instanton dominated region, which is located at λϕ ≲ 0.4, see Figure 1.

The physical potential at k → 0 is depicted in Figure 2 for different values of λϕ. The
pseudo-flattening behaviour of the curvature is discernable as a very large, flat regime at low
field values in Figure 2b. The vertical lines signal the end of the flat regime at ρc . We define

them as the point of the curvature change of the logarithm of V (2)
φ

,

0= ∂ 2
ρ log
�

∂ρVφ(ρ)
�

|ρ=ρc
. (31)

This regime emerges very similarly to the flattening of the potential associated to spon-
taneous symmetry breaking in higher dimensions d ≥ 2 and faces the same numerical chal-
lenges throughout the RG time evolution. These challenges are met with dedicated solvers,
see e.g. [11–13]. In contrast to d ≥ 2, symmetry is restored in d = 1 shortly before reaching
k→ 0, necessitating efficient implicit time stepping schemes [12] and integration to very high
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Figure 3: Schematic depiction of the exponentially suppressed/enhanced quantities
in both the zeroth order derivative expansion (LPA, left) and the current ground state
expansion (PIRG, right) for λϕ = 0.3. The purple line indicates the end of the flat
regime at ρc , (31), for the potential Vφ .

RG times. Presently, the numerical integration of the RG scale is performed up to k = 10−6

which corresponds to an RG time of t = 20.
In contrast to the standard Wetterich approach, the flattening behaviour is modified by

the introduction of the field reparametrisation. This shows in the increase in size of the flat
regime, whose boundary is indicated by the dashed lines in Figure 2. In fact, the regime blows
up exponentially and shows similar scaling to the instanton solution. The size of this regime
is an important observable and we discuss it further in Section 5.1.

Finally we remark that up until now, solving the Wetterich equation deep in the instanton
regime using the first order of the derivative expansion was plagued by large uncertainties
or altogether unsuccessful. We suspect this is linked to the exponential increase of numerical
precision that is needed for an approach without field transformations. Similar numerical
advantages may be present in different formulations of the RG, such as the proper time RG,
which was used to generate the results from [6], displayed in Figure 7.

5 Topology with PIRGs

In this Section we provide and discuss results in the first order derivative expansion of the PIRG
ground state approach. We emphasise again that this expansion, while related to the standard
derivative expansion for the Wetterich equation, is an optimised expansion scheme in terms
of its convergence as well as its numerical stability, see the discussion in Section 3 and [9].
Specifically we compute the prefactor ainst of the topological scaling of ∆E for λφ → 0, see
(1), which serves as a smoking gun signal for the topological tunnelling effects.

The full energy gap (8), including the prefactors, can also be computed within the PIRG
approach, but requires further preparations: to begin with, it can be computed directly from
the full two-point function Γ (2)ϕ (ω), see (8). In particular, it is not directly related to correlation
functions of Γφ , and it can only be extracted via a reconstruction, see [9]. For the sake of
completeness we discuss the respective reconstruction procedure in Appendix B. There, we
also provide results for the energy gap within a crude approximation, and discuss its viability.
A full reconstruction of the energy gap in the present approach will be presented elsewhere.

The present work pursues a different and more promising route, which only requires the re-
sults obtained from a direct computation of Γφ: First we concentrate on the qualitative question
whether the present fRG approach with PIRGs accommodates the instanton-induced physics
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effects. The presence of these topological effects is signalled by the exponential flattening of
the energy gap. This exponential flattening is directly related to the exponential widening
of the flat regime in the effective potential about vanishing field. In Section 5.1 we provide
a comprehensive discussion of quantities which contain exponential scaling in the instanton-
dominated regime. This allows us to dissect the numerical and structural mechanisms behind
the emergence of instanton-induced effects in the fRG-approach.

In a second step we extract the prefactor of the exponential flattening of the energy gap
from the widening of the flat region, see Section 5.2.

5.1 Dissection of the instanton-dominated regime

We start our analysis with the observation that for λϕ → 0, the effective potential Vϕ(ϕ) of
the fundamental field is necessarily exponentially flat between the minima ±ϕ0, (4), of the
classical potential in (2). For field values ϕ2 ≳ ϕ2

0 , the effective potential is polynomial. This
entails that ϕc ≈ ϕ0 in this limit, where the label c denotes the field value with the curvature
change (31). From the technical point of view, the pulling force of the flow in the non-convex
regime is to weak to move the end of the flat regime, (31), sizably towards smaller values:
the curvature V (2)ϕ of the potential at ϕc is positive and the pulling force is proportional to λϕ.
Accordingly it tends towards zero for λϕ → 0. In summary, the exponential flatness of the
potential is a property of the flat regime ϕ ∈ (−ϕc , ϕc) with ϕc ≈ ϕ0 and is mainly driven by
the wave function Zϕ.

5.1.1 Exponential scaling in the ground state expansion

In the ground state expansion we absorb the wave function into the field φ and use an LPA-
type potential as the target action of our expansion (17). The absence of instanton effects in
LPA implies that within this expansion, all instanton-induced physics are necessarily sourced
by the wave function Zφ and are transmitted to the potential via the flowing composite. In
Figure 3 we indicate all quantities in Vφ that contain exponential scaling. We also emphasise in
this context that while the ground state expansion is defined by absorbing the wave function
into the field, the wave function Zφ is not simply Zϕ but accommodates further frequency-
dependent couplings of higher order by the iteration process in the flow.

In summary, this leaves us with the following scenario: the exponential flattening of V (2)
φ
(0)

in Figure 2 is sourced entirely by φ̇(φ). A naive extraction and reconstruction of ∆E from
V (2)
φ
(0) is shown in Appendix B.2. Here, we want to focus on the broadening of the flat regime

in terms ofφ ∈ [−φc ,φc] (or alternatively ρc), which is also sourced by φ̇(φ), as the dynamics
of a purely LPA-type potential only contains a pulling force, which would lower ρc , as stated
above.

To interpret the broadening behaviour of the exponential regime quantitively we relate the
exponentially scaling quantities by a simple scaling Ansatz

∆E = Ac ρ
−dc
c + subleading. (32)

This Ansatz is made on a purely heuristic basis, and will be revised in forthcoming work, e.g. by
using generalised operator flows [19] for a rigorous reconstruction of observables in terms of
the fundamental field ϕ. The parameters Ac , dc in (32) are fixed in the perturbative regime
with 1.50 ≲ λϕ ≲ 1.86, see (39) and Figure 5a in Section 5.2. Values for these parameters in
the present approximation are provided in (40). Crucially, the relation (32) carries no topo-
logical information or exponential behaviour. Consequently, the occurrence of exponential
behaviour in the observable ρc is not affected by this rescaling, it simply changes the quanti-
tative result for the suppression coefficient and relates it heuristically to a known quantity, i.e.
the energy gap.
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(a) Scaling observable (34) of the energy gap∆E.
The observable is designed such that it is flat in
the instanton-dominated regime and linear in the
perturbative regime.
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(b) Scaling observable (37), of ρc , which mea-
sures the length of the flat area in the effective
potential Vφ , see (31) in Section 4.2.

Figure 4: Scaling analysis with the scaling observables∆E, (34), shown in Figure 4a,
and ρc , (37), shown in Figure 4b. We indicate three different regimes: the instanton-
dominated regime (orange), the transition regime (green) and the asymptotic per-
turbative regime (blue). The latter is used for fixing the parameters Ac , dc in the
relation (32) between the energy gap ∆E and ρc .

Using the Ansatz (32), the instanton-induced exponential behaviour of ρc , defined in (1),
should behave as

ρ−dc
c ∝ e

−
4
p

2m3
ϕ

3λϕ = e
−ainst

m3
ϕ
λϕ . (33)

Provided dc > 0, (33) describes the exponential widening of the flat regime which has already
been discussed in Section 4.2. Moreover, this observable has the benefit of easy accessibility
and numerical stability in the present setup: ρc is exponentially growing and its relative error
within the given numerical setup is small. In contrast,∆E is exponentially small and numerical
errors on Vϕ/Zϕ or Vφ get exponentially enhanced, which requires an exponential increase of
precision for λϕ → 0.

5.1.2 Mapping out the instanton regime

Before proceeding with the extraction of ainst from the numerical data of ρc at hand, we il-
lustrate the procedure with our baseline solution for ∆E, i.e. the eigenvalues displayed in
Figure 1. This analysis can be used to map out three different regimes for the anharmonic
oscillator:

(1) λϕ ≳ 0.8: The perturbative regime with a polynomial behaviour of all observables in
λϕ, and in particular of ∆E and ρc .

(2) 0.8≳ λϕ ≳ 0.4: The transition regime between the perturbative one and the instanton-
driven regime. We expect that this regime is subject to intricate dynamics as it has to
accommodate both, perturbative and topological effects.

(3) λϕ ≲ 0.4: The instanton-dominated regime which is well described by a saddle point
expansion about the tunnelling solution.

Now we construct an observable which shows a trivial scaling in the two asymptotic regimes.
In particular, the polynomial sub-scaling of the instanton-dominated regime induced by the
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(a) Rescaling of the new observable ρc to match
the data of the energy gap in the perturba-
tive regime. The fit parameters are given by
dc = 1.269(1) and Ac = −0.3834(3).
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(37), the energy gap is projected with (34). We
use the same shading as in Figure 4.

Figure 5: Extrapolation of the instanton behaviour from ρc (the size of the pseudo-
flat regime). First ρc is fitted to match ∆E in the perturbative regime (1), then we
use the projection (37) to extract the exponential suppression in the instanton regime
(3).

perturbative saddle point expansion about the tunnelling solution is taken into account. The
observable is given by

a∆E(λϕ) = λ
2
ϕ ∂λϕ log
��

1+ c∆Eλ
2
ϕ

�
q

λϕ∆E
�

. (34)

Equation (34) tends towards the instanton coefficient ainst in (5) for λϕ → 0,

a∆E(0) = ainst ≈ 1.886 . (35)

The factor (1 + c∆Eλ
2
ϕ) accommodates the sub-leading scaling in the instanton-dominated

regime. It is worth noting that the linear two-loop part in (5) leads to a quadratic term propor-
tional to λ2

ϕ in (34), but this term is apparently cancelled by further ones from the polynomial

prefactor in ∆E. We are left with the cubic subleading term from λ2
ϕ∂λϕ log
�Æ

λϕ∆E
�

. We fix
c∆E such that this contribution is cancelled, leading to

c∆E = 1.781 . (36)

This construction leaves us with the observable a∆E(λϕ) which is flat in the instanton-
dominated regime and shows a linear running with λϕ in the perturbative regime. Clearly,
the transition regime between the flat instanton-dominated and linear perturbative regime
has a non-trivial λϕ-dependence. The result for a∆E(λϕ) is shown in Figure 4a. We find, that
the flat instanton-dominated regime (in orange) reaches to λϕ ≈ 0.4. The interface regime
(2) (in green) is located at 0.8 ≳ λϕ ≳ 0.4, and the perturbative regime (in white) is defined
by λϕ ≳ 0.8 with a clear linear (i.e. purely polynomial) scaling.

5.2 Topological scaling from PIRGs

The analysis in Section 5.1.2 is with the observable ρ−dc (λϕ) instead of ∆E(λϕ). We refrain
from using any data of the energy gap which is gathered in Appendix B, since the reconstruction
of observables in terms of the fundamental field ϕ is ongoing progress. A naive projection of
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the available data did not show a flattening of the scaling observable (34) in the instanton
regime for λϕ ≲ 0.4.

We define
aρc
(λφ) = λ

2
ϕ ∂λϕ log
��

1+ cρc
λ2
ϕ

�
q

λϕ ρ
−dc
c

�

. (37)

The prefactor dc takes into account the non-trivial power in the map from ρc to ∆E. It is a
universal power and dc is fixed in the asymptotic perturbative regime. This is done by fitting

log∆E(λϕ)≈ −dc logρc(λϕ) + log Ac , (38)

in the perturbative regime with
1.50≲ λϕ ≲ 1.86 , (39)

see Figure 5a. The additional term Ac takes into account the prefactor in the relation (32).
The best χ2-fit is obtained with

dc = 1.269(1) , log Ac = −0.3834(3) . (40)

Finally, the parameter cρc
is adjusted such that the subleading term of ρc in the instanton-

dominated regime is cancelled and the flat regime with aρc
(λϕ)≈ aρc

(0) is approached earlier.
Note that cρc

̸= c∆E already without approximations. This leads us to

cρc
= 1.79(1) . (41)

To obtain an error estimate, we have varied the size of the fit regime by taking away points
from the lower end: For λϕ ≲ 0.3 our approximation breaks down, most likely due to the
incomplete treatment of V (3). This failure is apparent due to a sudden and sharp rise in the
projection of the data using (37). Fortunately, this failure occurs for λϕ deep in the flat regime
where the instanton asymptotics has already fully set in. We have dropped data points with
λϕ ≲ 0.3 in Figure 4b. Importantly, the respective systematic error in the determination of
cρc

is very small, see (41). This leads to a small error in the determination of the instanton
coefficient (42).

The result for aρc
(λφ) is shown in Figure 4b and constitutes the main computational result

in the present work: it clearly shows an extended flat regime, which signals the exponential
scaling of our observable. This scaling is the smoking gun for the instanton-dominated regime:
the present computation is a first and impressive numerical confirmation of the capacity of the
fRG approach to accommodate topological effects in relatively simple approximations. This
already exciting result is combined with the numerical one for the instanton coefficient ainst
with

ainst,ρφ = 1.910(2) . (42)

Equation (42) a deviation on the 1% level from the exact result (35). Here we have extrapo-
lated the horizontal line in the flat regime to λϕ = 0, and the small systematic error originates
from the ≲ 10−5 relative deviation from flatness in this regime (measured in ainst).

We close this Section with a few remarks. We have derived two exciting results:
First of all, the present analysis has proven that the fRG approach, at least in its PIRG

representation, can capture topologically driven effects already in a relatively simple approxi-
mation, the first order derivative expansion. The smoking gun plot is given by Figure 5b: the
scaling observable aρc

, (37), is flat in the exponentially suppressed regime and the latter is in
one-to-one correspondence to the presence of instanton-induced effects. The existence of the
flat regime is proven in Figure 4.
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Secondly, we have used the scaling observable for the computation of the scaling coefficient
ainst in the energy gap. The result (42) agrees quantitatively within 1% with the analytic one,
see (5). This quantitative agreement is far better that our own, optimistic, expectations. While
it certainly is related to the optimised expansion scheme in the PIRG approach, the ground state
expansion, this fact still awaits a full explanation, in particular an assessment of the dynamics
at work.

We also remark in this context that the leading order map (32), fixed in the asymptotic
perturbative regime, is working well over the whole λϕ-regime shown in Figure 5b: both
asymptotic regimes agree very well, while the transition regime with its intricate dynamics
would require higher order terms in (32). Still, as in the case of the instanton coefficient this
awaits a full explanation. We leave such an evaluation and improvements upon the present
approximation to future work.

6 Conclusion and outlook

In the present work we have tackled the question whether topological effects can be accom-
modated in functional renormalisation group flows within standard expansion schemes such
as the derivative expansion. This has been done within an application to the anharmonic os-
cillator with its relatively simple dynamics apart from the instanton-induced effects. Using the
new physics-informed functional Renormalisation Group (PIRG) [9], we have found solid ev-
idence for the incorporation of topological tunnelling effects. This was the case already in the
relatively simple approximation used: the first order of the derivative expansion. The progress
is rooted in a combination of three novel ingredients already emphasised in Section 1: (i) the
use of PIRG flows within an expansion about the ground state of the theory [10]; (ii) the use
of powerful numerical techniques, see e.g. [11–13]; (iii) the use of specific scaling observables
optimised for the detection of the exponential instanton-induced scaling.

Results have been discussed in detail in Section 5.2. In short, the accommodation of topo-
logical effects is in one-to-one correspondence to an emergent flat regime for the new scaling
observable and is clearly visible, see Figures 4b and 5b. The resulting instanton coefficient
(42) is in within 1% agreement with the analytic one in (35). This quantitative agreement
within 1% is unexpected and warrants further analysis. It is certainly related to the optimised
expansion scheme, but also to the relatively simple dynamics of the system apart from the
topological tunnelling effects. However, there may be even more structure to it. This and
further improvements will be discussed elsewhere.

With the present approach we envisage applications to further systems and phenomena
involving topological effects, a very interesting application is e.g. that to the Berezinski-
Kosterlitz-Thouless transition [35–38]. For previous work using fixed-point analyses in the
fRG see [39–44]. We hope to report on these applications in the near future.
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A Numerical evaluation

In this Appendix we outline the numerical evaluation of the flow equations. The flow of the
effective potential Vk(φ), (21), is a partial differential equation of convection-diffusion type
and is solved numerically using the (continuous) Galerkin method. This method has also been
used in the context of the fRG in [13,26,33]. Continuous Galerkin methods (CGM) are finite
element methods, which are related to Discontinuous Galerkin methods (DGM). The latter
have been used in the fRG in [11, 27, 28]. Additionally, finite volume implementations of
the RG flows have been investigated in [29–32, 34]. While DGMs are a combination of finite
element and finite volume methods which allow the quantitative evaluation of shock waves,
it is often reasonable to use a simpler method if the presence of shocks can be excluded. This
is the case for the present investigation of the quantum anharmonic oscillator, since to our
knowledge shock development has only been found in presence of spontaneous symmetry
breaking and first order phase transitions in an fRG context [28].

The flow equation is reformulated in terms of the invariant ρ = φ2

2 , which manifests the
φ → −φ symmetry of O(1) theory. The derivatives of the potential are given in terms of the
new function u as

u(ρ) := ∂ρVφ(φ) =
V (1)
φ

φ
,

u(ρ) + 2ρ∂ρu(ρ) = V (2)
φ

,

3∂ρu(ρ) + 2ρ∂ 2
ρu(ρ) =

V (3)
φ

φ
.

(A.1)

Furthermore, we take a ρ derivative of the flow equation (21), such that it turns into a closed
expression in u and its higher derivatives,

∂tu= ∂ρ

�

1
2

f (φ)φ u+
Ad kd+2

�

k2 + u+ 2ρ∂ρu
�

�

1−
f ′(φ)

3

�

�

, (A.2)

with Ad given in (21b). The flowing field transformation in terms of ρ is given by

f ′(φ) = 2ρAd kd+2

�

3∂ρu(ρ) + 2ρ∂ 2
ρu(ρ)
�2

�

k2 + u+ 2ρ∂ρu
�4 . (A.3)

We have commented on an approximation of 2ρ∂ 2
ρu in the main text in (25). For the compu-

tation of the energy gap in Appendix B we also provide an error using a second approximation

�

V (3)
φ
(ρ)
�2
≈ 2ρ
�

3V ′′φ (ρ)
�2

. (A.4)

A.1 Numerics of the blow up

In Section 4, we discussed the blow up of the exponentially flat region and the connected
increase of numerical cost.

In general, the use of fluid-dynamical methods requires two properties of the grid:

• It needs to be fine enough to capture the convexity restoring dynamics in the flat part.

• Its largest value needs to be big enough to assume a vanishing flux at the boundaries,
see also [27].
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In presence of the exponential blow up of the flat region, this entails that we need to use a
exponentially larger grid with a fine resolution as we go to smaller λϕ. Thus the lower bound
in (30) is a (current) numerical bound, and our numerical simulations converge for values
of the coupling λϕ ≥ 0.22. We emphasise that we have not designed a dedicated code for
this purpose and this bound is readily lowered with modifications of the present code, such as
coordinate transformations of the numerical grid.

To conclude, the limiting factor to access the fully field-dependent potential for couplings
λϕ < 0.22 is the size of the numerical grid, which is currently implemented as a finely resolved
interval ρ ∈ I1 = [0, 70] and a coarsely resolved interval ρ ∈ I2 = [70,100]. Once the
pseudo-flat regime enters I2 the numerical implementation fails. The second interval is added
to ensure the correct implementation of boundary conditions at large field values at a low
numerical cost.

B The energy gap from PIRGs

The present work uses the ground state expansion discussed below in Section 3.2, augmented
with a derivative expansion. It is suggestive that within this combined scheme the differences
(15) between the effective actions are minimal and the dominant feature of this PIRG scheme is
an optimisation of the convergence of the derivative expansion and its numerical optimisation.
We shall test this educated guess within the computation of the energy gap in the first order
derivative expansion,

Γϕ(ϕ)≈ Γφ (φ(ϕ)) . (B.1)

This additional approximation is evaluated in Appendix B.2 in light of the exact but more
involved complete reconstruction scheme derived in [9,19].

The ground state expansion (16) is implemented with a map φ̇(φ) that does not contain
any derivatives, see (20) below. Accordingly, the first order derivative terms in Γϕ and any ob-
servables derived from it, can only originate in the classical dispersion in Γφ and the mapφ(ϕ).
This also entails that the present expansion scheme supports the approximate identification
(B.1). In combination this leads to approximate relation

∫

dτ
1
2

Zϕ(ϕ)(∂µϕ)
2 ≈
∫

dτ
1
2

�

∂µφ(ϕ)
�2

, (B.2)

which implies
Zϕ(ϕ)≈
�

φ′(ϕ)
�2

, (B.3)

up to higher order terms. Equation (B.3) is already suggested by the dispersion (16) itself.
Within the effective action approach, the energy gap is defined as the RG-independent

curvature of the effective potential of the fundamental field at the minimum, (8). We have
argued in Sections 3.2 and 4.2, that in the ground state expansion the effective action of the
fundamental field is approximately given by that of the composites, (B.1), if evaluated close
to the minima of the effective actions. In combination this leads us to

Γϕ[ϕ]≈
∫

dτ
�

1
2

�

φ′(ϕ)∂µϕ
�2
+ Vφ (φ(ϕ))
�

, (B.4)

at vanishing cutoff scale, k → 0. Consequently, the energy gap (8) satisfies the approximate
relation

∆E ≈

√

√

√

V ′′
φ
(0)

φ′(0)2
=
Ç

V ′′
φ
(0) , (B.5)
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Figure 6: Field dependence of the reconstructed wave function Zϕ(ϕ) ≈ (φ′(ϕ))2.
The end of the exponentially flat regime ρc is indicated by the dots.

where we have used Zϕ(0) = 1 with

φ′(ϕ = 0) = 1 . (B.6)

The latter is obtained from the field transformation (14) and is depicted in Figure 6 for different
values of the coupling λϕ. Figure 6 shows the wave function Zϕ(ϕ) for the approximation
(B.4).

B.1 Direct results

In the present work we use (B.5) to determine the energy gap. The results are depicted in
Figure 7. We also include results from a zeroth order derivative expansion (LPA), as well as
data for a first order derivative expansion using a proper-time flow [45]. The data is taken
from [6], Table IV, column ∆Ept10. We include this data because this specific combination
of flow equation and approximation produces, to this date and to our knowledge, the most
quantitatively precise results obtained from the fRG.

For a better comparison of the results, we also depict the relative error of our result in Fig-
ure 7. This relative error is defined in reference to the solution computed from the eigenvalues
(∆EEv)

δ#,rel =
∆E# −∆EEv

∆EEv
. (B.7)

B.2 PIRGs and reconstruction

We have discussed in Sections 3.1 and 3.2, that the identification (B.1) is only an approxima-
tion, albeit one that is supported by the ground state expansion. Still, in regimes with a strong
field-dependence of the transformation special care is necessary. We know from the investiga-
tions in [9]within the simple benchmark case of a one-dimensional integral (0+0-dimensional
QFT in comparison the (1+0)-dimensional QFT for quantum mechanics), that extreme choices
for the target action, such as the classical action, lead to qualitative differences in the two exact
effective actions without any approximation.
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Figure 7: Energy gap∆E as a function ofλϕ. The eigenvalues (black) are numerically
evaluated from the Schroedinger equation and serve as a benchmark. The right plot
shows the relative error (B.7) with respect to this benchmark. The zeroth order
derivative expansion (LPA) calculation (blue) is performed with f (φ) = 0 and the
flowing fields (red) are evaluated using f (φ) as given by (21c). The error estimate on
the approximation (A.4) is dashed. Additionally we include the two-loop instanton
solution (5a) (grey) and reference data from [6].

For this reason we discuss the reconstruction of observables and the effective action, which
was introduced in [9]. There it has been shown that cumulants of

∫

ϕ2 and
∫

ϕ4 can be

computed from derivatives of the effective action Γ (c)
φ
[φ] simply by taking derivatives w.r.t. mϕ

and λϕ. Here, the superscript (c) used in the effective action indicates a normalisation of the
path integral and hence also its Legendre transform, that does not depend on the parameters
of the classical action,

Z(c)
φ
[Jφ] =

∫

dϕ̂ e−S[ϕ̂]+
∫

dτ Jφ(τ) φ̂[ϕ̂] , (B.8)

for more details see [9]. The computation of the energy gap is more involved, since the ap-
proach does not offer access to local correlation functions, but only to momentum (frequency)
averaged quantities i.e.

δΓ
(c)
φ
[0]

δm2
ϕ

=
1
2

∫

x
〈ϕ(x)ϕ(x)〉=

1
2

∫

ω

V1

Zϕ(ω) (ω2 +∆E2)
. (B.9)

We have assumed the general shape G−1
ϕϕ = Zϕ(ω)
�

ω2 +∆E2
�

for the scalar propagator, Γ [0]
indicates the solution on the equation of motion for φ, related to that of ϕ with ϕ = 0, and
V1 is the temporal volume. Equation (B.9) follows from Γ (c)

φ
[0] = − lnZ(c)

φ
[0].

To proceed with the computation, we need to make an assumption for Zϕ(ω) in (B.9):
e.g. for a constant wave function Zϕ(ω) = Zϕ(0), we obtain

C0 =
δΓ
(c)
φ
[0]

δm2
ϕ

=
V1

4 Zϕ(0)∆E
. (B.10)

This assumption holds true in a free theory or for positive m2
ϕ > 0. Using Zϕ(ω) = 1, the

former can be verified analytically, the latter was confirmed numerically.
Equation (B.10) already has an interesting consequence: in the PIRG framework the com-

putation of Γφ implies a respective one of Γϕ with a given normalisation of the field. If this
induced normalisation is given by Zϕ(0) = 1, the integrated cumulant (B.10) already provides
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us with the energy gap. Indeed, while being short of a proof, it is suggestive that the ground
state expansion is arranging for precisely this normalisation.

We proceed with the analysis of the general situation, where we need more information
on the momentum structure of the cumulants. This information can be obtained by inserting
a prefactor Z = (1± ε) for the kinetic term in the classical action (2) and taking derivatives
with respect to this factor instead of the couplings m2

ϕ,λϕ.
We are then able to compute cumulants of the shape

Cn =
δnΓ

(c)
φ
[0]

δnZ
= −
�

−
1
2

∫

x
〈
�

∂µϕ(x)
�2〉
�n

. (B.11)

These integrals contain divergences of n−1-th order and need to be regularised with the same
UV cutoff as is used in the RG flow. For example, for n= 1 we find

C1 =
δΓ
(c)
φ
[0]

δZ
= V1

¨

∫

ω

ω2

Zϕ(ω) (ω2 +∆E2)
−

ω2

ω2 + RΛ(ω2) +m2
ϕ

«

, (B.12)

where we have used that Γ (c)
φ
[0] is the integrated flow, beginning from the classical action at

some initial scale Λ with the corresponding regulator RΛ.
The determination of Cn allows to make an Ansatz for the the momentum dependence of

Zϕ(p) with n coefficients, e.g.

Zϕ(ω) = 1+ (Λ−ω)F(ω; c1, . . . , cn) , (B.13)

and hence to reconstruct ∆E with increasing precision.

C Regulator choice

The present work uses a simple flat or Litim regulator [46] which is given by

Rk =
�

k2 − p2
�

Θ

�

1−
p2

k2

�

. (C.1)

This regulator choice turns the evaluation of momentum loops analytical. In future works
we envisage using smooth variants of the Litim regulator [33,47]. These functions are better
suited to evaluate momentum dependent approximation schemes [15].

The standard Wetterich approach sometimes uses a modified regulator function
Rk → Zϕ(ϕ0)Rk, where Zϕ(ϕ0) is the wave function evaluated on the equations of motion.
By using the ground state expansion we have set Zφ[φ] = 1, which makes this modification
unnecessary. Moreover, the PIRG approach regulates the composite field φ thus effectively
arranging for

1
2

∫

p
φ[ϕ]Rk(p

2)φ[ϕ]≈
1
2

∫

p
ϕZϕ(ϕ)Rk(p

2)ϕ , (C.2)

in the ground state approach with (18), without destroying the one-loop exactness of the
Wetterich equation.

D Comparison to Wetterich flows

In the present Section we outline the technical and numerical simplification of the ground state
expansion [10,24,25]within the PIRG setup [9], in comparison to the baseline Wetterich flow.
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The Wetterich flow is obtained from (10) by setting the emergent composite operator to φ̂ = ϕ̂
and consequently φ̇ = 0. For a clear distinction with the ground state expansion setup, we
only use the notation in terms of the fundamental (mean) field ϕ = 〈ϕ̂〉 in the following.

We begin in Appendix D.1 by detailing the Ansatz for the vertices within the first order
derivative expansion of the standard Wetterich setup. This is followed by a discussion of the
flows in Appendix D.2. Lastly, we comment on the simplified numerical setup in Appendix D.3.

D.1 Truncation

The 1PI correlation functions can be deduced from the Ansatz (7), by evaluating the corre-
sponding functional derivatives at constant fields ϕ(τ) = ϕ. For example, the dispersion in
frequency space is given by

Γ (2)ϕ (ω,−ω)[ϕ] =ω2Zϕ + ∂
2
ϕVϕ , (D.1)

where the superscript (n) denotes the nth derivative with respect to the scalar field. For non-
trivial Zϕ, this dispersion relation is not a classical one, since the frequency term has a cor-
rective, field-dependent factor. This is due to the fact that ϕ is not the renormalised physical
field, which is needed for a simple description in terms of the ground state of the theory.

The difficulty incurred by using the full first order derivative expansion becomes apparent
at the example of the three- and four-point vertex functions

Γ (3)ϕ (ω,ν,−ω− ν)[ϕ] = (ω2 + ν2 +ων) ∂ϕZϕ + ∂
3
ϕVϕ , (D.2a)

and
Γ (4)ϕ (ω,−ω,ν,−ν) = (ω2 + ν2) ∂ 2

ϕ Zϕ + ∂
4
ϕVϕ . (D.2b)

Additionally to the frequency independent scatterings contained in Vk-derivatives, (D.2) con-
tains frequency dependent contributions which are generated by the field-dependent wave
function. These terms drop in the commonly used LPA’ approximation scheme.

Similarly, we have seen in (19) that the higher vertices in the ground state expansion also
do not have a momentum dependence. However, they correspond to the full first order of the
derivative expansion, while maintaining the benefits of LPA’.

D.2 Flow equations

Flow equations in the derivative expansion are evaluated by projecting on the corresponding
momentum structure and evaluating again at constant fields. Within the first order derivative
expansion and our present choice of regulator function, Appendix C, the flow of the potential
reads

∂t Vϕ =
Ad kd+2

k2 + V (2)ϕ
2F1

�

1, d/2,1+ d/2,
k2(1− Zϕ)

k2 + V (2)ϕ

�

, (D.3a)

where Ad is given by (21b) and stems from the angular integration. 2F1 is the hypergeometric
function. For integer values of d it reduces to expressions containing the tanh- or log-function.

The structure of (D.3) can be simplified by choosing a regulator which contains the wave
function as a prefactor. However, introducing field dependences to the regulator function turns
the flow equation inexact and destroys the one-loop exact structure of the Wetterich equation.
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The flow of the wave function is obtained by taking aω2 (frequency) derivative of the flow
of the two-point function, and is given by

∂t Zϕ(ϕ) =
1
2
∂ω2

δ2∂tΓk[ϕ]
δϕ(−ω)δϕ(ω)

�

�

�

�

ω=0

=

∫

dν
2π
∂tRk(ν)G

2
ϕ(ν) (D.3b)

×
∂

∂ω2

¦

−
1
2
(ω+ ν)2Z (2)ϕ +

�

(ω2 + ν2 +ων)Z (1)ϕ + V (3)ϕ
�2

Gϕ(ω+ ν)
©

�

�

�

ω=0
.

The evaluation of the frequency derivative and the integration of the loop lead to additional
expressions in terms of the hypergeometric function 2F1. Since the present work aims for an
implementation in terms of the ground state expansion we refrain from solving this equation
any further. For a pedagogic derivation of these flows, also including diagrams, see e.g. [6,48].

D.3 Numerical simplifications

Both the ground state expansion, as well as the Wetterich approach in the first order of the
derivative expansion use two flow equations. These define the two field dependent expansion
coefficients Zφ and the potential Vφ .

In the Wetterich approach, this constitutes a system of two highly non-linear partial dif-
ferential equations (PDE), (D.3), which are numerically hard to resolve. In particular, when
using the flat regulator (C.1), the convexity restoring pole in the flow is encoded in the hy-
pergeometric function 2F1 in (D.3a) and requires high numerical precision in both Zϕ and
Vϕ.

In contrast, the present approach is given by one PDE for the potential Vφ , whereas the
defining flow equation for the wave function Zφ reduces to an algebraic relation (21c) which
is inserted into the flow of the potential. In terms of difficulty this is more comparable to an
LPA’-type computation, see also the discussion in [10], Section III A.

Furthermore, the flowing field approach significantly simplifies the dynamics of the re-
maining partial differential equation (21a) in comparison to the coupled system (D.3). For
example, the pole in the flow (21a) is only affected by the value of the potential Vφ and not
both functions.

For the practical computation, the largest simplification by far is the change of dynamics in
the PDEs, which is gained by the different formulation: For example, very steep structures in
Zϕ, see Figure 6 for a naive reconstruction, are translated to a simple linear convection term
in the dynamics of the potential and create the broadening flat regime described in Figure 3.
In the fluid-dynamical framework we are presently using, resolving a linear convection term
is much simpler than a steep slope.
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