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Abstract

In this study, we explore the behavior of a superconducting meso-wedge geometry in 3+1
dimensions (three spatial dimensions plus time) subjected to external transport currents
at its boundaries and surfaces, as well as external fields applied along the ẑ-direction.
The transport currents are included as two opposite polarities, J > 0 and J < 0, respec-
tively. Using the generalized time-dependent Ginzburg-Landau theory and considering
the order parameter κ, we focus on two scenarios: a fixed external magnetic field with
variable κ, and fixed κ with variable external magnetic field. As a result, under both
scenarios, we analyze the voltage-current characteristics of the superconducting meso-
wedge, finding that the critical currents differ between polarities, demonstrating the
system’s non-reciprocity. We further examine the efficiency of the diode as a function of
κ and the external magnetic field applied. Furthermore, our observations reveal that the
current polarity strongly influences the vortex configuration, the parameter κ, and the
applied magnetic field. In particular, the formation of Abrikosov-type vortices exhibits
pronounced inhomogeneity depending on the direction of the transport currents. This
underscores that the diode effect in the superconducting meso-wedge is intimately asso-
ciated with the anisotropic nucleation of Abrikosov vortices. Notably, the emergence of
polarity-dependent vortex patterns can serve as a distinctive hallmark of the diode effect
in these superconducting meso-wedge geometries.
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1 Introduction

The study of Abrikosov vortices in superconducting systems and their relationship to the diode
effect has become a central topic in contemporary condensed matter physics [1–3]. Abrikosov
vortices arise in type II superconductors, which are characterized by the Ginzburg–Landau
parameter (GLP) (κ > 1/

p
2). These vortices represent quantized magnetic flux lines that

penetrate the superconductor under an external applied magnetic field, allowing the coex-
istence of superconducting and normal-state regions [4–6]. Physically, an Abrikosov vortex
consists of a core where the superconducting order parameter ψ vanishes, surrounded by cir-
culating super-currents (Meissner currents) that screen the magnetic field. The arrangement
and dynamics of these vortices are governed by a balance of long-range attractive and short-
range repulsive interactions, strongly influenced by the geometry of the sample and external
conditions [7–12].

A powerful theoretical framework to describe these phenomena is the Ginzburg–Landau
theory (GL), which provides a macroscopic description of superconductivity in terms of a com-
plex order parameter ψ and accounts for the interplay between magnetic fields, currents, and
the superconducting condensate. In recent years, extensions of the GL theory have enabled
the exploration of more complex systems, including mesoscopic superconductors, multi-band
and multi-component superconductors, fractional vortices, and topological phases [13–16].
Importantly, the interaction of vortices with system geometry can generate rich spatial pat-
terns that critically impact the electromagnetic and transport properties of superconducting
materials [17]. Geometric confinement can alter the mobility, stability, and configurations of
the vortex, thus tuning the macroscopic response of the material [18–20].

In this context, Abrikosov vortices provide a natural platform to explore the supercon-
ducting diode effect. Their cores and circulating currents generate strongly inhomogeneous
current patterns that are coupled to the geometry and boundaries of the sample, thus intro-
ducing an intrinsic directionality in the transport response [21–24]. As a result, mesoscopic
superconductors hosting vortices can display distinct critical currents for opposite current di-
rections, making them ideal systems to investigate and enhance diode-like superconducting
behavior [25–28].

A related and rapidly emerging phenomenon is the superconducting diode effect, which
refers to the asymmetric response of a superconductor to transport currents of opposite po-
larities [29–31]. This effect manifests itself as a directional dependence in the critical cur-
rent or resistance, enabling superconducting transport in one direction while suppressing it
in the opposite direction. The diode effect is generally associated with symmetry-breaking
mechanisms, such as geometric asymmetry, intrinsic material anisotropy; or, in some cases,
due to external applied magnetic fields, which break time-reversal symmetry [31]. While the
diode effect has been widely studied in Josephson junctions [32–37] and engineered hetero-
structures, its manifestation in mesoscopic superconductors, particularly in systems hosting
Abrikosov vortices, remains relatively unexplored. Although currently, the efficiency of the
diode effect has been explored in different configurations [38, 39] and even accompanied by
altermagnets [40] and in some studies, where the efficiency peaks around 20-30% [41–43].
Anisotropy and geometric asymmetry can strongly modify vortex behavior, introducing direc-
tionality into the superconducting response and enabling novel functionalities for electronic
applications [29,31]. Theoretical approaches such as the London model and numerical simula-
tions based on the time-dependent Ginzburg–Landau equations have been employed to investi-
gate vortex–geometry interactions [18,19]. These studies have revealed mechanisms by which
the interplay between vortices and asymmetric boundaries can induce non-reciprocal current
transport, providing a pathway to superconducting rectification and new device concepts. Ex-
perimental observations have demonstrated the diode effect in a range of systems, including
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van der Waals hetero-structures without magnetic fields [33, 38, 44], thin films of conven-
tional superconductors under weak fields [45–48], and twisted tri-layer graphene, where the
coexistence of superconductivity and magnetism enables diode-like behavior [49].

A central requirement for the realization of the superconducting diode effect is the si-
multaneous breaking of fundamental symmetries. As emphasized in Ref. [44], nonreciprocal
supercurrents emerge only when both inversion symmetry (P) and time-reversal symmetry
(T ) are broken. Inversion symmetry can be lifted by structural asymmetry or by intrinsic
spin–orbit interactions such as those of Rashba type, whereas time-reversal symmetry is bro-
ken by the presence of an external magnetic field or magnetic order. The concomitant violation
of P and T generates magnetochiral anisotropy, which manifests as direction-dependent crit-
ical currents, J+c ̸= J−c . Within this symmetry-based framework, the meso-wedge geometry
provides a natural platform to realize the diode effect: the wedge shape intrinsically breaks
inversion symmetry through its triangular confinement, while the penetration of Abrikosov
vortices under an applied magnetic field explicitly breaks time-reversal symmetry. The coop-
erative action of geometry and vortex dynamics therefore creates the fundamental conditions
for nonreciprocal superconducting transport, as recently confirmed by experimental observa-
tions in wedge-shaped mesoscopic superconductors [50].

In this work, we investigate the superconducting diode effect in a meso-wedge-shaped su-
perconductor with inversion symmetry breaking and time reversal symmetry breaking given
by an applied magnetic field along the ẑ-direction, see Fig. 1(a) for details. Our main goal
is understanding how geometric anisotropy influences these system’s critical currents, diode
efficiency, and Abrikosov vortices nucleation. Specifically, we analyze the behavior of the su-
perconducting diode effect as a function GLP, labeled κ, and the applied external magnetic
field, Hz . We provide a detailed explanation of how periodic energy barriers at the system
boundaries contribute to the rectification effect, distinguishing this mechanism from that of
conventional Josephson-based superconducting diodes [30]. As a result, we show that the
meso-wedge geometry, which breaks inversion symmetry, together with the presence of the
magnetic field, which breaks time-reversal symmetry, leads to non-homogeneous critical cur-
rents of opposite polarity, J+c ̸= J+c . This asymmetry manifests as a finite superconducting-diode
efficiency, which depends on the parameter κ and on the intensity of Hz . Moreover, the diode
effect is accompanied by asymmetric patterns in the nucleation of Abrikosov vortices.

This paper is organized as follows. Section 2 describes the theoretical framework, including
the time-dependent Ginzburg–Landau equations used in our analysis. Section 3 shows the
main results from our numerical simulations, including voltage-current characteristics, first
critical current, diode efficiency, and vortex nucleation varying κ or magnetic fields. Finally,
we summarize our conclusions and outline future directions in Section 4.

2 Theory and model

We studied a real three-dimensional superconducting meso-wedge under a fixed external mag-
netic field (H= Hz) applied in ẑ direction. The geometry of our superconducting meso-wedge
is illustrated in Fig. 1 (a)-(b). The superconducting meso-wedge fills the domain Ω. The inter-
face between the lateral region and the vacuum is denoted by ∂Ωi , i = 1,2. The dimension of
the numerical sample is A×B×C. With this in mind, an external transport current (J) -in − x̂-
direction- is applied to the superconducting meso-wedge on the lateral of the geometry, see
Fig. 1(a). In this work, we employ the Generalized Time-Dependent Ginzburg-Landau Theory
(TDGL), formulated under the dirty limit and expressed in dimensionless units, as described
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Figure 1: (a) Schematic representation of the superconducting meso-wedge geom-
etry. The dimensions of the external numerical mesh are A= 30ξ, B=C= 15ξ. (b)
Real three-dimensional superconducting sample with meso-wedge geometry and its
projection of n-layers for the superconducting meso-wedge sample. The inclusion
of external/transport currents (J) -in − x̂-direction- is given by the lateral faces ∂Ωi ,
i = 1, 2, the external magnetic field (H= Hz) is in the ẑ-direction.

in Refs. [4,5,51–53].

1
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= (i∇+A)2ψ+ψ(1− |ψ|2) , (1)

for the potential vector:
∂ A
∂ t
= J−κ2(∇×∇×A) , (2)

where
J= Re
�

ψ̄(−i∇−A)ψ
�

−∇Φ , (3)

and κ characterizes the type of superconductor by relating the spatial variation of the order
parameterψ to the magnetic field penetration into the sample. In GL theory, κ is a dimension-
less quantity defined as the ratio between the magnetic penetration depth and the coherence
length of the superconductor. This parameter determines whether a material is classified as
type I or type II: for κ < 1/

p
2 the superconductor is type I, while for κ > 1/

p
2 it is type II.

Importantly, we associate the mechanical rigidity of the superconducting vortex lattice with κ.
Larger values of κ correspond to a softer vortex lattice, thereby facilitating vortex penetration
at lower values of J’s. In conjunction with the continuity equation, which also adopted the
Coulomb gauge ∇·A= 0 and Maxwell’s first law, the expression for the scalar potential (Φ) is
obtained as a Poisson time-dependent equation, which is given by:

∇2Φ=
∂ ρ

∂ t
= −∇ · J . (4)

The Eqs. (1)-(4) are solved in a self-consistent approach and the Neumann boundary con-
ditions for the potential/external current are n̂ · ∇Φ = −J in sections with external current
(∂Ωi , i = 1, 2) and n̂ · ∇Φ = 0 in the other sections, with n̂ being a surface normal vec-
tor. In addition, J corresponds to the total superconducting current density (Meissner plus
external/transport).
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In the quasi-steady regime, ∂tρ ≃ 0, so that Laplace’s equation (∇2Φ = 0) holds in the
bulk, with solvability requiring that the net injected current equals the extracted one. Because
a pure Neumann problem determines Φ only up to an additive constant, we fix the reference
by enforcing, e.g., 〈Φ〉∂Ω2

= 0. The instantaneous voltage is then computed as the difference
of surface-averaged potentials at the electrodes (leads),

V (t) = 〈Φ〉∂Ω1
− 〈Φ〉∂Ω2

, 〈Φ〉S =
1
|S|

∫

S
Φ dS , (5)

where, S denotes the leads surface—i.e., a subset of the boundary ∂Ω—over which the po-
tential is averaged. The voltage follows from time-averaging V (t) over the stationary win-
dow. Furthermore, in Eqs. (1), (2), and (3), dimensionless units were introduced as follows:
the order parameter ψ is in units of ψ∞ =

p

−α/β (the order parameter at the Meissner-
Oschenfeld state), where α and β are two phenomenological constants; H1 is the first critical
field (Meissner-Oschenfeld field); lengths are in units of the coherence length ξ; time is in
units of the Ginzburg-Landau characteristic time tGL = πħh/(8KB Tc); fields are in units of H c2,
where H c2 is the bulk second critical field; the vector potential A is in units of ξH c2; κ= λ/ξ
is the GLP, which describes the type of superconductor as a function of the spatial variation of
the order parameter ψ and the penetration of the magnetic field into the sample and Γ = 10.
In addition, we use the triple convergence rule for time [54,55].

d t1 =
aη

4
p

1+ Γ 2
, d t2 =

aβ
4κ2

, d t3 =
aν
4ζ2

, (6)

and

∆t ≤ min{d t1, d t2, d t3} , a2 =
2

1
δx2 +

1
δ y2 +

1
δz2

. (7)

For numerical calculations, we use the mesh size δx = δ y = δz = 0.1, the constant values:
η = 5.79, β = 1.0, ζ = 0.50, κ will be variable in a section of this manuscript, and ν = 0.03
[53]. For tolerance in convergence of the order parameter ψ, we employ ε = 1.0−9, and the
errors are of order O(∆x)2 for space and time. For boundary conditions of the order parameter,
we employ Robin’s boundary condition n · (i∇+A)ψ= −iψ/b, with n being a surface normal
vector and b, the de-Gennes extrapolation parameter and we have taken b→∞ in the lateral
contacts and b = 0 in the rest of the sample. Finally, as shown in Fig. 1(a), the dimensions of
the external numerical mesh are A= 30ξ, B = C = 15ξ, and in Fig. 1(b), the superconducting
meso-edge has n-layers, where C=nξ.

3 Numerical results

3.1 Current, non-reciprocity and efficiencies

This section presents the numerical results obtained for the superconducting meso-wedge. To
this end, we begin by showing in Fig. 2 the voltage response (V ) as a function of the externally
applied transport current (J) for different values of the GLP (κ) and the fixed magnetic field,
Hz = 1.0. It can be observed that the first critical currents, Jc , for positive and negative
current directions (J > 0 and J < 0) are not identical. In particular, the asymmetry between
the two critical values, J+c ̸= J−c —where “+” corresponds to J> 0 and “–” to J< 0—constitutes
the basis of the superconducting diode effect. This effect arises because vortex motion is
triggered at different threshold currents depending on the direction of J. Also, the values of
κ considered are all within the type-II superconducting regime and are ordered in increasing
magnitude. As κ increases, we observe a reduction in the Jc

′s. This behavior arises from an
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Figure 2: Voltage response (V ) as a function of the transport current (J) for a fixed
external magnetic field applied along the z-direction, Hz = 1.0, and for both cur-
rent polarities (J > 0 and J < 0). The results are shown for different values of the
Ginzburg–Landau parameter, κ.

increase in penetration depth, which modifies the slope of the voltage-current curve and leads
to the emergence of a transient resistive state. This state is associated with the nucleation and
motion of vortices inside the superconducting meso-wedge. Moreover, the transport current
along the − x̂-direction generates a preferred direction for vortex movement, driven by the
Lorentz force [19]. The resulting voltage jumps—reminiscent of the Shapiro steps [56]—are
related to the maximum velocity of the vortices, given by v∗ = V/B, where B is the magnetic
flux density. The vortex velocity is also influenced by vortex–vortex interactions, which depend
on the Meissner current’s circulation. These interactions can either enhance or suppress the
vortex mobility. Therefore, we associate the mechanical rigidity of the superconducting vortex
lattice with the parameter κ (here referred to as the GLP): larger values of κ reduce the lattice
stiffness, facilitating vortex entry at lower values of the external transport current.

Fig. 3 shows the magnitude of the first critical currents (Jc) -the onset of resistive states-
as a function of κ for both the polarities of J and fixed Hz = 1.0. It is important to note
that the first Jc corresponds to the threshold current above which vortices, either kinematic
or Abrikosov, become depinned and start to move across the meso-wedge. At this point, the
Lorentz force surpasses the pinning force, resulting in vortex motion, energy dissipation, and
a measurable variation in the scalar potential. This regime therefore marks the onset of the
resistive state within the mixed phase between the superconducting and normal states. For
completeness, we note that a second Jc also exists. However, this regime is not considered
in the present study, as the superconducting state is completely destroyed due to Cooper-pair
breaking, and the system transitions entirely to the normal state.

Taking the above into account, when we consider κ = 1.0, only a slight difference is ob-
served between Jc

′s, which may be attributed to the high rigidity of the superconducting con-
densate, where the strong coupling between Cooper pairs suppresses the vortex dynamics. In
contrast, for κ = 2.0, a more pronounced asymmetry emerges, suggesting that a lower rigid-
ity of the vortex lattice facilitates vortex motion and optical phonon-like oscillations. This
asymmetry increases with κ up to a certain value, after which it decreases for higher val-
ues of κ. Beyond the Jc threshold, the mesoscopic superconducting wedge exhibits a nearly
Ohmic (linear) response. Importantly, the observed difference between the Jc

′s for the pos-
itive and negative polarities of J confirms the presence of the superconducting diode effect.
This asymmetry reflects the breakup of the spatial inversion symmetry in the superconducting
meso-wedge [56].
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Figure 3: Magnitude of the first critical current (Jc) for both polarities of the trans-
port current (Jc), plotted as a function of Ginzburg-Landau parameter, κ. Results are
shown for fixed values of the external magnetic field, H= 1.0, for the superconduct-
ing meso-wedge sample.

Figure 4: Diode efficiency γd(H) as a function of the Ginzburg–Landau parameter κ,
for fixed external magnetic field values H ∈ [1.0, 1.4] (in steps of 0.1), in a meso-
scopic superconducting wedge acting as a potential diode. As the H increases, the
γd(H) decreases, and for sufficiently large values of H, the diode effect vanishes, i.e.,
γd(H)→ 0 for all κ.

We now proceed to characterize the diode effect quantitatively. To this end, it is useful
to define a signed efficiency parameter, following the approach introduced in Ref. [31] (and
references therein), which quantifies the degree of rectification by measuring the asymme-
try between the critical currents for opposite current polarities. This efficiency parameter is
defined as:

γd(H) =
|J+c (H)− |J

−
c (H)||

J+c (H) + |J−c |(H)
× 100 . (8)

The values of Jc
′s used in the evaluation of diode efficiency are extracted from the results

shown in Fig. 2 and Fig. 3, where the onset of resistive states for both polarities of the applied
J is determined. Using this information, in Fig. 4, we present the efficiency of the diode as a
function of κ, for several fixed values H ∈ [1.0, 1.4] (in steps of 0.1). For the lowest considered
H = 1.0, we observe that the efficiency of the diode reaches its maximum at κ = 2.0. Around
this point, the efficiency is most pronounced, but as the κ parameter increases, the efficiency
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Figure 5: Voltage V as a function of the external current J for a fixed
Ginzburg–Landau parameter κ = 2.0, considering both current polarities (J > 0
and J < 0), and for different values of the external magnetic field H ∈ [1.0, 1.4] (in
steps of 0.1).

decreases, exhibiting a non-monotonic behavior. This indicates an optimal range of κ values
where the asymmetry between Jc

′s is maximized. As we increase the external value of H,
the position of this maximum efficiency shifts to higher values of κ. This behavior suggests
that stronger H’s tend to favor rectification in samples with reduced superconducting rigidity
(larger κ), possibly due to enhanced vortex mobility and a softer vortex lattice. Nevertheless,
regardless of the H strength or the precise value of the κ parameter, the efficiency remains
bounded and does not exceed approximately 15%. Furthermore, for very low or very high
values of κ, the efficiency of the diode tends to vanish, as the difference between the Jc

′s for
positive and negative J directions becomes negligible. This suppression of the diode effect
occurs even though the meso-wedge geometry breaks the spatial inversion symmetry of the
system [16]. This highlights the crucial role played by the interplay between superconducting
rigidity (κ) and vortex dynamics in enabling rectification. Consistent with the previous anal-
ysis, the observed maxima in diode efficiency arise from the competition between J and the
energy barriers imposed by the superconducting meso-wedge boundaries. At specific current
amplitudes, the vortex entry and motion become strongly direction-dependent due to these
asymmetric boundary conditions, thereby enhancing the nonreciprocal response and produc-
ing the efficiency peaks. Hence, the maxima reflect optimal operating conditions where the
symmetry breaking induced by J is most effective.

In Fig. 5, we illustrate V as a function of J for a fixed value κ= 2.0, and for several values
of H ∈ [1.0, 1.4] (in steps of 0.1). The results are shown for both polarities: J > 0 and J < 0.
As H increases, vortex nucleation and penetration into the superconducting region become
more favorable, leading to a earlier onset of the resistive state. Our results confirm this: Jc de-
creases with increasing H, and the dissipation threshold shifts to lower values of J. Moreover,
a clear asymmetry is observed between Jc for opposite polarities of J, indicating the presence
of the superconducting diode effect. This asymmetry is more pronounced at lower H’s and
progressively weakens as H increases, consistent with a reduction in diode efficiency. Com-
pared with the results in Fig. 2, it is evident that the Jc’s are systematically lower due to the
enhanced vortex dynamics at higher H strengths. Beyond Jc, following the initial jump V asso-
ciated with vortex entry, the system enters a regime characterized by an approximately Ohmic
(linear) response [17]. These observations suggest that the diode efficiency as a function of
κ is likely to exhibit a non-monotonic and nonlinear dependence for varying H strengths, as
illustrated in the case of κ= 2.0.

8

https://scipost.org
https://scipost.org/SciPostPhysCore.9.1.006


SciPost Phys. Core 9, 006 (2026)

Figure 6: Magnitude of the first critical currents Jc , for both polarities, as a function of
the fixed external magnetic field H for a fixed Ginzburg-Landau parameter (κ= 2.0)
in the superconducting meso-wedge sample. Inset: efficiency value (γd(H)%), for
both polarities (J> 0 and J> 0), as a function of the fixed external magnetic field H
for a fixed κ= 2.0 in the superconducting meso-wedge sample.

With the previous results, in Fig. 6, we present the first Jc values as a function of H, for
a fixed value of κ = 2.0. The selected H’s are all above the first critical field H1, where
vortices are expected to nucleate and penetrate the superconductor. In this regime, the vortex
configurations can differ between J > 0 and J < 0 polarities, potentially leading to distinct
Jc values a key signature of the diode effect [18–20]. The results show a non-monotonic
dependence of the Jc on the H. Notably, the largest asymmetry occurs at H = 1.0, while
the Jc’s converge and become equal at H = 1.4 for κ = 2.0. In between, the Jc’s exhibit
alternating increases and decreases, indicating a complex interplay between vortex dynamics
and H strength. This behavior is consistent with the V-J characteristics shown in Fig. 5. It
suggests that the diode efficiency, as a function of κ, is expected to exhibit oscillatory or non-
monotonic behavior across different values of the H.

In the inset of Fig. 6, we show γd(H) for a fixed κ= 2.0, as a function of H ∈ [1.0, 1.4] (in
steps of 0.1). These results are consistent with the analysis of the Jc’s discussed in the previous
paragraphs. In particular, γd(H) exhibits an oscillatory behavior with varying H, reaching a
maximum at H= 1.0 and decreasing for larger values of H. Interestingly, despite the presence
of vortices in the sample, expected for all selected values H above H1, γd(H) remains non-zero.
This suggests that the presence of vortices does not completely suppress the rectification effect
and that specific vortex configurations can still lead to a measurable asymmetry between posi-
tive and negative Jc’s. These findings indicate that γd(H) of the superconducting meso-wedge
geometry is highly sensitive to the interplay between the external H, κ, and the geometric
asymmetry of the sample. Importantly, this result supports the idea that the diode effect can
arise solely from spatial symmetry breaking, without the need for Josephson junctions, as has
been commonly proposed in previous studies [44,45].

With this in mind, we conclude the presentation and analysis of the electronic transport
properties for the superconducting meso-wedge. However, the observed asymmetries in the
critical currents and diode efficiency suggest that the underlying vortex configurations play a
central role in enabling the rectification effect. To explore this hypothesis further, we examine
the spatial distribution of the Cooper pair density in the following section, which provides
insight into the vortex dynamics and their correlation with the diode effect.
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(a) κ=2 (b) κ=3
(i) J>0

(ii) J>0 (ii) J<0 (ii) J>0 (ii) J<0

(i) J<0 (i) J>0 (i) J<0

|Ψ|2

Figure 7: Color map of Cooper pair density |ψ|2 for different values of the
Ginzburg–Landau parameter GLP κ. Panel (a): κ = 2.0 and panel (b): κ = 4.0.
The external magnetic field is set to H = 1.0. The vortex states are projected onto
three different layers: (i) n = 1, and (ii) n = 4. The color bar indicates the intensity
of |ψ|2 across the superconducting meso-wedge geometry.

3.2 Vortex configuration

The intensity of the order parameterψ in GL theory represents the macroscopic wave function
of the superconducting state, and its squared modulus |ψ|2 corresponds to the local density
of Cooper pairs. Spatial variations in |ψ|2 are used to visualize the presence and distribution
of vortices, which appear as localized regions of the suppressed |ψ|2. We focus on the spatial
distribution ofψ to investigate the role of vortex configurations in the emergence of the diode
effect in the superconducting meso-wedge.

In line with this, Fig. 7 shows the colormap of |ψ|2 for a fixed H = 1.0 and two represen-
tative values of the GL parameter, in (a) κ= 2.0 and (b) κ= 4.0. The plots correspond to two
selected n layers along the ẑ direction, chosen to highlight differences in vortex behavior. In
particular, the lowest layer is shown because it is the one where vortices first penetrate. Fig.
7(a) shows the vortex configurations for κ = 2.0 in (i) n = 1 and (ii) n = 4, under both J > 0
and J< 0. For n= 1, a clear asymmetry arises between the two J directions: under J< 0, four
vortices are formed (indicated by the black arrow), whereas this configuration is absent for
J> 0. For n= 4, a similar asymmetry is observed, with two vortices emerging for J< 0, while
no such formation occurs for J> 0. These asymmetric vortex patterns are consistent with the
asymmetry in the J’s values reported in Figs. 2 and 3, which reveal the enhanced efficiency of
the diode effect. In addition, in Fig. 7(b), we consider κ = 4.0. In contrast to the behavior
at lower κ, the vortex configurations for both layers n = 1 and n = 4 remain identical under
J > 0 and J < 0. This invariance indicates that, at larger κ, the superconducting meso-wedge
no longer exhibits current–direction–dependent asymmetries in the vortex distribution. Cor-
respondingly, at κ = 4.0, the Jc values shown in Figs. 2 and 3 are symmetric with respect
to J, reflecting a regime where vortex nucleation is independent of J polarity and governed
solely by the magnitude of H. Such behavior is consistent with the expectation that increasing
κ reduces surface-barrier effects, leading to symmetric vortex entry for opposite J directions.

Furthermore, Fig. 8 shows the colormap of |ψ|2 for the superconducting meso-wedge
under (a) H = 1.1 and (b) H = 1.3, keeping κ = 2.0 for two representative layers: (i) n = 1
and (ii) n= 7. In Fig. 8(a), an asymmetry in vortex nucleation is clearly visible between J> 0
and J< 0 for both n= 1 and n= 7. For example, at n= 1 and J> 0, two well-defined vortices
are observed (black arrows), while for J < 0 four vortices appear. At n = 7, the number of
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(a) H=1.1 (b) H=1.3
(i) J>0

(ii) J>0 (ii) J<0 (ii) J>0 (ii) J<0

(i) J<0 (i) J>0 (i) J<0

|Ψ|2

Figure 8: Cooper pair density |ψ|2 for different values of the external magnetic field
H. Panel (a): H = 1.1, and panel (b): H = 1.3. The Ginzburg–Landau parameter
(GLP) is set to κ= 2.0. The density is projected for two selected layers of the super-
conducting meso-wedge: n = 1, and n = 7. The color bar indicates the intensity of
|ψ|2 in each region of the superconducting meso-wedge geometry.

vortices is the same for both J directions, but the nucleation pattern differs significantly. In
Fig. 8(b), corresponding to H= 1.3, asymmetry is again present in both layers. For n= 1, for
example, one vortex is nucleated under J > 0 (black arrow), while two vortices emerge for
J < 0. Similarly, at n = 7, one vortex appears for J > 0, whereas three vortices are present
for J < 0. From the perspective of transport efficiency, the critical J data in Figs. 5 and 6
demonstrate a diode effect, confirming a direct correlation between asymmetric Abrikosov
vortex nucleation and the emergence of the superconducting diode effect in the meso-wedge
geometry.

Having established the theoretical framework, we now focus on the experimental obser-
vations that validate and illustrate the physical behavior of the superconducting meso-wedge.

3.3 Discussion and experimental evidences

There is experimental support for the presence and role of vortices in the emergence of the
superconducting diode effect. Although imaging and resolving vortex configurations under
specific values of the external magnetic field H and applied current J can be technically chal-
lenging, recent advances—particularly the development of nanoscale SQUID-on-tip (SOT) mi-
croscopy have enabled direct measurements of local magnetic flux and vortex distributions in
superconducting systems. One of the most detailed experimental studies in this context is pre-
sented by A. Gutfreund et al. [57], who investigate Nb/EuS (S/F) bilayers and measure the
voltage V as a function of the external applied current J for a fixed κ. Remarkably, their data
exhibit distinct Shapiro steps—quantized voltage plateaus that result from phase locking be-
tween the time-dependent superconducting order parameter and an external frequency scale,
such as the motion of vortices or internal Josephson oscillations. The appearance of these
steps in their measurements closely resembles our theoretical predictions shown in Figs. 2
and 5, where similar features arise from dynamic vortex entry and collective motion under
increasing J. In addition, Gutfreund et al. report pronounced asymmetries in the critical J
values for opposite polarities of J (J > 0 and J < 0), consistent with the diode-like behavior
predicted in our model (Figs. 3 and 6). Importantly, their imaging of vortex configurations
reveals non-trivial spatial arrangements: instead of forming regular Abrikosov triangular lat-
tices, vortices are found to align along the sample boundaries or exhibit irregular clustering
patterns. These features are shaped by the combined effects of geometric confinement, sur-
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face energy barriers, and the Lorentz force acting on vortices under transport J’s. Strikingly
similar patterns emerge in our theoretical |ψ|2 maps (Figs. 7 and 8), particularly near asym-
metric boundaries, where vortex nucleation and trapping are strongly geometry-dependent.
Such vortex asymmetries is critical for manifesting the diode effect: rectification arises when
the vortex dynamics—specifically their nucleation sites, mobility, and paths—differ under cur-
rent reversal. No net diode effect would be observed if vortex motion were symmetric for both
directions of J. Therefore, the close agreement between vortex configurations and critical J
asymmetries in both our theoretical model and the experimental findings of Gutfreund et al.
provides strong evidence that vortex-mediated mechanisms are central to the non-reciprocal
transport observed in superconducting diode systems.

Castellani et al. [58] explores the diode effect in superconducting niobium nitride micro-
bridges in a complementary work. They measure the critical J’s and diode efficiency. Their
results reveal a peak in efficiency at specific H and J combinations, which follows a functional
dependence remarkably similar to that obtained in our simulations (Fig. 4 and Fig. 6, inset).
This supports the hypothesis that diode efficiency is maximized when vortex configurations are
strongly asymmetric and minimized when the system approaches dynamical symmetry. Also,
Taras et al. [59] investigate the superconducting diode effect from the perspective of nonre-
ciprocity induced by spatial symmetry breaking in a conventional Nb superconductor. Notably,
their experiments demonstrate that even without an external magnetic field, geometric asym-
metries in the sample can lead to rectification of the applied J. They show that the difference
between forward and reverse critical J’s persists up to zero temperature, an observation that
matches the predictions of our theoretical framework in the limit of low thermal fluctuations
and dominant geometric effects.

These experimental studies validate the formalism and results presented in this work. The
convergence between theory and experiment—regarding vortex distributions, critical current
asymmetries, Shapiro steps, and diode efficiency—highlights the key role of mesoscopic ge-
ometry and vortex dynamics in the superconducting diode effect. Our results suggest that
nonreciprocal superconducting behavior does not necessarily require Josephson junctions or
spin-orbit coupling, but can emerge naturally from the interplay between vortex physics and
broken spatial symmetry.

From a theoretical point of view, a further possibility to enhance diode efficiency would be
to introduce controlled anisotropies—either intrinsic to the crystal lattice, engineered through
artificial pinning patterns, or induced geometrically—so that vortex motion becomes direc-
tionally dependent, thus reinforcing rectification. In particular, optimizing the wedge angle,
tuning the orientation and strength of the applied magnetic field, or introducing a controlled
gradient of defects or thermal inhomogeneities could further amplify the asymmetry in vortex
dynamics and lead to higher diode efficiencies.

4 Conclusions

In this work, we have theoretically investigated the superconducting diode effect in a super-
conducting meso-wedge, focusing on the influence of the Ginzburg–Landau parameter κ and
the external magnetic field H on the resistive state and vortex dynamics. By computing the
critical current Jc for both transport current J polarities (J > 0 and J < 0), we identified
the emergence of a diode effect characterized by asymmetric transport, quantified via an effi-
ciency parameter γd(H). Notably, γd(H) exhibits a non-monotonic dependence on κ, reaching
a maximum at intermediate values and vanishing for larger κ, suggesting a relationship with
the rigidity of the superconducting condensate and the interplay between vortex mobility and
energy barriers.
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Our simulations reveal that the diode effect persists even in Abrikosov vortices and does
not rely on Josephson junctions or externally imposed symmetry breaking. Instead, it emerges
intrinsically from the spatial asymmetry of the sample geometry and the vortex dynamics it in-
duces. By analyzing the Cooper pair density |ψ|2 across multiple layers of the meso-wedge, we
show that vortex nucleation is highly sensitive to both geometry and the value of κ, resulting in
nontrivial configurations that break inversion symmetry and differ between opposite current
directions. The observed asymmetry in vortex configurations for J > 0 and J < 0 serves as a
direct microscopic signature of the superconducting diode effect. In particular, vortex entry
preferentially occurs near thinner regions of the sample, where reduced material thickness
lowers the energy barrier, reinforcing the directional vortex motion under applied current.

Furthermore, we observe that increasing the magnetic field modifies the spatial distribution
of vortices and suppresses γd(H), indicating a competition between H strength and geometric
confinement. Our results demonstrate that the superconducting diode effect can arise purely
from vortex-mediated mechanisms and broken spatial symmetry, offering a novel and intrinsic
route to nonreciprocal superconducting transport. These findings align closely with recent
experimental observations based on SQUID-on-tip microscopy and critical J measurements,
supporting the relevance and validity of the proposed theoretical framework. Overall, our
work contributes to the fundamental understanding of superconducting rectification and may
guide the design of future nonreciprocal superconducting devices without relying on complex
hetero-structures or artificial junctions.
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