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Abstract

We consider pseudo Nambu-Goldstone bosons arising from Dirac fermions transforming
in real representations of a confining gauge group as dark matter candidates. We con-
sider a special case of two Dirac fermions and couple the resulting dark sector to the
Standard Model using a vector mediator. Within this construction, we develop a con-
sistent low energy effective theory, with special attention to Wess-Zumino-Witten term
given the topologically non-trivial coset space. We furthermore include the heavier spin-
0 flavour singlet state and the spin-1 vector meson multiplet, by using the Hidden Local
Symmetry Lagrangian for the latter. Although we concentrate on special case of two
flavours, our results are generic and can be applied to a wider variety of theories fea-
turing real representations. We apply our formalism and comment on the effect of the
flavour singlet for dark matter phenomenology. Finally, we also comment on generalisa-
tion of our formalism for higher representations and provide potential consequences of
discrete symmetry breaking.
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1 Introduction

A class of particle physics models dubbed Strongly-Interacting Massive Particles (SIMP) [1]
reconciling correct relic density together with large self-interaction consistent with current
limits from astrophysics realized in QCD-like models have gathered a lot of attention in recent
years. These are models of fermions, transforming under a non-trivial representation of a non-
Abelian gauge group in the ultra-violet (UV) and resulting in pseudo Nambu-Goldstone bosons
(pNGBs) due to spontaneously broken (approximate) symmetry in the infra-red (IR). These
particles are dubbed “dark pions” (π), in analogy to QCD. An additional mediator is introduced
in order to maintain kinetic equilibrium between the new non-Abelian sector and the SM.
Dark pions are stabilised against decays through a mediator via careful charge assignments.
Such models feature a 3π→ 2π cannibalization process resulting due to Wess-Zumino-Witten
(WZW) term [2, 3], that may be used to set the relic density via a freeze-out process and a
2π→ 2π self-scattering mechanism for generating large enough dark matter self-interactions.

While these models seem very tempting, the sheer complexity of such a dark sector should
not be underestimated. The number of physical bound states can be numerous and dependent
on the details of the theory. States other than the dark pions may become relevant for DM
physics [4–7]. Most investigations so far use effective field theory approaches such as chiral
perturbation theory to describe the dynamics of the relevant parts of the particle spectrum.
However, it is hard to say in general which states will be relevant, if we do not know the
exact mass spectrum, which depends on the details of the UV model. There have been novel
approaches [8–10] in combining effective field theories and lattice field theory methods in the
context of DM, in order to constrain or calculate the mass spectrum and low energy effective
constants (LEC) for an effective DM description.

In this work, we will focus on Dirac fermions transforming under a finite dimensional, uni-
tary, real representation of a gauge group. The defining feature of such representation is that
it is unitary-equivalent to its complex conjugate representation. Thus, there is no way to dis-
tinguish particles and anti-particles with respect to this gauge group on physical grounds. The
prototypical theory is an SO(NC) gauge theory, with fermions transforming under the so-called
vector representation of SO(NC). These theories have been studied very little in the context of
DM [1,11–13]. They are also studied in the context of composite Higgs dynamics [14–21]. The
meson spectrum resulting from real representations is also studied on lattice. Investigations
for the SO(4) gauge group with two Dirac fermions are available in [22]. In [23, 24] lattice
simulations for SU(4) gauge theory with fermions simultaneously transforming fundamental
and two-index antisymmetric (sextet) representation were performed, while results for Sp(4)
gauge group with dynamical fermions simultaneously in fundamental and antisymmetric rep-
resentation are available [25]. Lattice simulations for fermions in several representations of
Sp(4) gauge group in quenched limit are also available in [26]. Finally, [27, 28] computed
the mass spectrum for models considered in [21, 23, 25] using holography approach. The
formalism we derive in this work can readily utilise results from these works.

We focus on the scenario with NF = 2 Dirac flavors as a minimal candidate theory contain-
ing a WZW term, NF = 1 contains no WZW interactions. We examine in-depth the UV and IR
behaviour of this theory with a detailed analysis of associated symmetries, and construct the
low energy chiral Lagrangian including the vector mesons and the pseudo-scalar singlet η′.
We point out that in this case a topological obstruction renders the standard construction and
classification of WZW terms [3,29,30] inconclusive. However, since these terms are essential
for the SIMP model, we exploit a different approach, first explored in [31] to construct the
WZW term, even if the standard approach seems to be not available.
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Finally, we investigate the effect of the light η′ on DM freeze-out due to an anomalous
decay channel, once we couple the dark sector to the SM via a dark photon. We therefore
derive a representation theoretic criterion that characterizes for which theories the physics
of the η′ meson becomes important for DM. To the best of our knowledge, the role of this
particle for DM physics was not investigated within the SIMP model so far, mostly because
its QCD analog is rather heavy. However, no statements exist for general theories. With this
setup we also lay the foundation for lattice studies of these strong dark sectors by offering
classifications and construction recipes for interpolating operators of all the relevant particle
states. Further, we provide some technical details on the structure of continuous and discrete
symmetries of the underlying UV theory.

The structure of the paper is as follows. In section 2, we introduce the UV Lagrangian for
the dark matter model based on an SO(NC) gauge theory with mass degenerate fermions and
identify the symmetries. In section 3, we derive the associated chiral Lagrangian including
non-anomalous and anomalous (WZW) terms and include the η′. We use this formalism and
develop dark matter phenomenology in section 4, establishing the interplay of 2→ 2 and 3→ 2
annihilation processes and comment on the viable regions of parameter space compatible also
with the pion self-scattering cross section. In section 5 we discuss generalizations to other
gauge groups and higher order representations. Finally we conclude in section 6.

How to read this paper?

A big part of the paper is an in-depth discussion of the construction and properties of QCD-
like theories with fermions in real representations. Given the familiarity with SU(NC) gauge
groups, a large part of SIMP literature is focused on it. This article is aimed at closing the gap in
the literature by providing a cohesive formalism while being as self contained as possible. The
price one pays for providing such a framework is the length of the paper. For an efficient first
read, especially from the point of view of DM phenomenologists, we point towards a couple
of relevant results, beyond the brief explicit phenomenological applications in section 4. We
note here that our construction of low energy chiral Lagrangian is generic and can be applied
to a wide variety of theories featuring real representations.

• Figure 2 summarizes the global symmetry structure of the theories.

• The criterion (34) can be used to estimate if a light η′ particle can be expected in a given
theory.

• Equation (49)-(54) states the lowest order Lagrangian for massless dark pions, massless
dark photon and vector mesons. It demonstrates modification of pion self-interactions
for mass degenerate theories as explained in (70). The mass term for the dark photon
is given in (108).

• Modifications to the pion Lagrangian, when including the η′ state can be found in (106).

• The WZW term expanded to lowest order without vector mesons is given in (109)-(111)
and with vector mesons in (116)-(121). Inclusion of vector mesons results in four addi-
tional low-energy effective constants CHLS , Canom.

1,3,4 . The values of the relevant low-energy
constants may be estimated by assuming vector meson dominance, which allows to de-
velop some phenomenological intuition. We discuss the potential values using eqn. (65)
and (116)-(121).

• In section 5 we discuss a potential source of gravitational waves from domain wall col-
lapse due to the U(1)A axial symmetry. This would be complementary to first order
transition signals and unique to sectors with fermions in non-fundamental representa-
tions. If such signals can be observed remains an open question.
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2 Short range description

Successful construction of a low energy effective theory starts by investigation of the symme-
tries of the underlying microscopic theory in the ultraviolet (UV). The dark sector model we
want to investigate comprises a new strong dark force, that mimics features of QCD, and an
abelian sector that acts as a mediator between the dark sector and the SM. Within our setup
the dark sector is QCD-like, in other words it features a chirally broken phase in the IR and the
coupling behaves asymptotically free. We describe the IR properties via chiral perturbation
theory methods. The coupling of the abelian sector shows the opposite behaviour in the IR. It
thus is a fair assumption to treat it as a small perturbation to the strong sector. Accordingly,
our discussion will treat these sectors separately.

2.1 The isolated strong dark sector

The strong dark sector consists of NF = 2 Dirac fermions q(k) transforming under the non-
abelian gauge group GC = SO(NC) in the vector representation R of dimension dR = NC . We
call the Dirac fermions dark quarks, in analogy to QCD. The dynamics of the dark gluons Aαµ
is described by a Yang-Mills Lagrangian

LUV
YM = −

1
4

AαµνA
µν
α , (1)

with Aαµν = ∂µAαν− ∂µAαν+ gDCα
βγ

AβµAγν the field strength tensor of the dark gluons and gD the
gauge coupling of the strong dark force. The dark quarks are coupled to the dark gluons by
virtue of the gauge principle

LUV
q =

NF
∑

j=1

�

q( j)iγµDR
µ [A]q

( j) −m q( j)q( j)
�

, (2)

with q( j) the adjoint Dirac spinor and the covariant derivative given by

DR
µ [A]q := ∂µq− i gDAαµTR

α q , (3)

where TR
α denotes the generators in representation R. The vector representation R is a real

representation. On physical grounds this means that fermions and anti-fermions are indistin-
guishable with respect to the strong gauge group GC . Mathematically, this can be formulated
via existence of a unitary matrix S that maps the representation R equivariantly onto its com-
plex conjugate representation i.e.

SURS−1 = UR∗ , or STR
α S−1 = −
�

TR
α

�⊤
. (4)

Here ∗ denotes complex conjugation of a matrix. For a real representation, S is symmetric and
S∗ = S−1 [32]. Due to the reality of the theory, the fundamental degrees of freedom are not
NF Dirac fermions q( j) but 2NF Majorana fermions q(n)M , with respect to an augmented charge
conjugation operator

C : q 7−→ qC = CSq∗ , (5)

where C = −iγ2 is the charge conjugation matrix as defined in (G.3) and the matrix S
makes the equivalence between R and its conjugate representation explicit. Since each Ma-
jorana fermion satisfies Cq(n)M = q(n)M , every Dirac fermion may be decomposed according to

q( j) = q( j)M + iq( j+NF )
M .
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Rewriting the dark quark Lagrangian in terms of these Majorana fermions makes the chiral
symmetry of the Lagrangian explicit and would result in the Lagrangian stated in [1, 33] for
the SO(NC) case. Instead we would like to employ the Nambu-Gorkov formalism [34], since
it pronounces the flavour structure and makes it easier to compare features with symplectic
gauge theories. For this we fix a chiral basis of the γ-matrices (G.2) and decompose the NF
Dirac spinors q( j) into 2NF left-handed Weyl (anti-)spinors

q( j) =

�

ψ( j)

ESψ( j+NF )∗

�

. (6)

Here1 E = iσ2 is a non-zero off-diagonal block of the charge conjugation matrix C . We can
rewrite the Lagrangian using E−1σµ E = gµµ(σµ)⊤ = (σµ)⊤, eqn. (4), anti-commutativity of
fermions and partial integration2

LUV
q =

2NF
∑

n=1

ψ(n)†iσµDR
µ [A]ψ

(n) −
1
2

mωmk

�

ψ(m)†ESψ(k)∗ −ψ(m)⊤E∗S∗ψ(k)
�

= iΨ†σµDR
µ [A]Ψ −

m
2

�

Ψ†ESω∗Ψ∗ −Ψ⊤E∗S∗ωΨ
�

.

(7)

In the second line we collected all Weyl spinors in Ψ⊤ =
�

ψ(1)⊤, . . . ,ψ(2NF )⊤
�

. The symmetric
tensorωi j , defining the structure of the mass term, may be represented by the following matrix

ω=

�

0 1NF

1NF
0

�

. (8)

To investigate non-degenerate masses, one can replace mωi j = Mi j with an appropriate sym-
metric rank 2 mass tensor.

2.1.1 Anomalous symmetry breaking

In the chiral limit m −→ 0, the Lagrangian (6) in the Nambu-Gorkov formulation demonstrates
that the action is invariant under complex rotations of the 2NF Weyl fermions, which results
in a global U(2NF ) symmetry on the classical level. The associated currents are given by

jµN = Ψ
†σµTF

N Ψ , (9)

with TF
N the generators of U(2NF ) in the fundamental representation. On quantum level,

only a subgroup of the global symmetry may be an actual symmetry due to the potential
non-invariance of the fermionic path integral measure [35]. This is similar to the anomalous
breaking of the U(1)A in QCD, resolving the so-called “U(1)-problem” [36]. The derivation
works analogously to that of standard QCD [37] [38, Chpt. 22]. Under a global transformation
UF = exp
�

−εF
�

, with εF = −iεN TF
N , the path integral measure shifts the phase according to

DΨDΨ −→ eiA[εF ,A]DΨDΨ , (10)

which is determined by the anomaly functional A[ε, A] =
∫

d4 x εNAN [A]. The anomaly func-
tional for these global symmetries calculated by a perturbative one-loop calculation [38, Chpt.
22.3], involving the triangle diagrams in figure 1 is given by

A[ε, A] = 2i TRTr
�

εF
	 g2

Dε
µνρσδαβ

64π2

∫

d4 x Aαµν(x)A
β
ρσ(x)

= 2i TR Tr
�

εF
	

QTopo[A] .

(11)

1For the conventions on γ-matrices, Pauli-matrices and charge conjugation see appendix G.
2We assume appropriate boundary conditions.
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jµN (x)

Jνα(y)

Jσ
β
(z)

jµN (x)

Jνα(y)

Jσ
β
(z)

Figure 1: Triangle diagram contributing to the axial anomaly. The axial anomaly
leads to non-conservation of the singlet flavour current jµ0 , sourced by the dark glu-
ons.

Here TR is the Dynkin3 index of the representation R. TR = 1 for the vector representation
of SO(NC). The topological charge operator QTopo[A] takes on only integer values in a dark
gluon background. The existence of topologically non-trivial gauge field configurations was
first proven in [39] for SU(2) and later for all simple Lie-groups [40,41]. Since Tr

�

εF
	

= 0 im-
plies vanishing anomaly, global symmetries within the SU(2NF ) subgroup are non-anomalous.
Moreover, there exists a non-anomalous set of discrete symmetries for which Tr

�

εF
	

̸= 0, dis-
cussed below in section 2.1.5.

2.1.2 Explicit symmetry breaking

Like in QCD, the mass-term introduces a source of explicit symmetry breaking. We restrict the
generic mass matrix M to be real in order to avoid explicit C P-violating terms. In a tensorial
notation the mass matrix is a symmetric rank 2 tensor under the flavour symmetry group
GF = SU(2NF ). The isotropy condition for the unbroken flavour group HF is given by

�

UF
h

	k
l Mkm

�

UF
h

	m
n = Mln , or UF⊤

h MUF
h = M , (12)

where UF
h ∈ HF . Taking the determinant of this equation one arrives at the constraint

det
�

UF
h

�2
= 1. In the mass degenerate case i.e. M = mω, the unbroken subgroup is spanned

by the generators of so(2NF ). The isotropy condition (12) can be translated to the level of
Lie-Algebras

Broken U(4) generators TF⊤
a ω−ωTF

a = 0 , a = (0), 1, . . . , 9 . (13)

Unbroken U(4) generators TF⊤
A ω+ωTF

A = 0 , A= 10, . . . , 15 . (14)

Here A denotes the index of the unbroken and a that of broken generators of the flavour algebra
gF . The zeroth index always refers to the generator defined by

p

4NF TF
0 = 1, which generates

the anomalously broken U(1)A component in U(2NF ). We may introduce the gauge invariant
operators

OPS
a := Ψ⊤E∗S∗ωTF

a Ψ +Ψ
†ESω∗TF∗

a Ψ
∗ , (15)

which help express (partial) conservation laws of the (broken) currents of the global flavour
symmetries (PCBC-Relations). These are the analog of the PCAC-relations [42] in real world
QCD.

∂µ jµA = 0 , (16)

∂µ jµa = −i mOPS
a , (17)

∂µ jµ0 = −i mOPS
0 − g2

DTR
εµνρσδαβ

16
p

2π2
AαµνA

β
ρσ . (18)

3In principle the value of TR is defined up to a multiplicative constant that can be absorbed in the running-
coupling. In appendix C we explain why TR = 1, which is related to the definition of topological charge of the
gluon field configuration.
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Let us note that for non-degenerate fermions masses, the symmetry breaking pattern may be
investigated in exactly the same way. The flavour symmetry is then generated from the algebra
so(2)⊕ so(2). The PCBC relations must be modified accordingly.

2.1.3 Spontaneous symmetry breaking

The order parameter may be defined via a quark condensate

χc := 〈0|Ψ†ESωΨ∗ |0〉 − 〈0|Ψ⊤SEωΨ |0〉= 2δi j 〈0|q
(i)q( j) |0〉 , (19)

whose isotropy group is the same as the degenerate mass term (12). Hence, the unbroken
symmetries are exact symmetries of the quantum theory and the mass term, acting as a per-
turbation to the system in the chiral limit, allows to argue why we expect to see this specific
breaking pattern. The Nambo-Goldstone theorem then tells us that we expect

#NGb’s= dimgF − dimhF
NF=2
= 9 , (20)

pNGb’s states in the theory, which are the lightest states in the theory if we are reasonably
close to the chiral limit.

2.1.4 Spatial parity

For Dirac fermions the spatial parity transformation may be represented by
P : q(t, x⃗) 7−→ ηPγ0q(t,− x⃗), with ηP an arbitrary complex phase [43]. It is possible to adapt
a choice of ηP = −i such that P commutes with the flavour symmetries. This can be seen
explicitly by expressing the action of parity in the Nambu-Gorkov basis

P : Ψ(t, x⃗) 7−→ iωSEΨ∗(t,− x⃗) . (21)

This also demonstrates a connection between spatial parity and the properties of so-called
Riemann symmetric spaces, which will be very convenient later in the description of the low
energy effective theory. A coset space GF/HF is said to be symmetric if it is connected, compact
and if the Lie-algebra gF decomposes according to gF = hF ⊕ k, with k being spanned by the
broken generators, such that

[hF ,hF ] ⊂ hF , [hF ,k] ⊂ k , [k,k] ⊂ hF . (22)

Due to this decomposition, such a space allows for an involutive Lie-algebra automorphism
σ̂ : gF → gF with positive eigenspace hF and negative eigenspace k. In case of GF = SU(2NF )
and HF = SO(2NF ), this automorphism is given explicitly via

∀B ∈ su(2NF ) : σ̂(B) := −ω−1B⊤ω , (23)

and will be dubbed “naive parity”. To highlight the relation to spatial parity consider for
example the flavour current composite field given in (9). Using (21) and E†σµE = gµµσµ⊤

we obtain

Ψ†σµT F
NΨ

P
7−→ −Ψ†
�

E†σµE
�⊤ �

ω†TF
N ω
�⊤
Ψ = gµµΨ†σµσ̂(T F

N )Ψ .

The result depends only on whether the index N refers to an element of hF or k. For (ax-

ial)vectors fields we can express BN
µ (t, x⃗)

P
7−→ (−) + gµµBN

µ (t,− x⃗). This can be more conve-
niently formulated by defining the connection 1-form B = −iBN

µ T F
N dxµ. The correct parity

transformation depends on the index N and is given by

P(B(t, x⃗)) = σ̂(B(t,− x⃗)) . (24)

8

https://scipost.org
https://scipost.org/SciPostPhysCore.9.1.007


SciPost Phys. Core 9, 007 (2026)

Extracting the coordinates again gives the correct transformation behaviour, where σ̂ deter-
mines the transformation of the flavour algebra index N and dxµ|(t,− x⃗) = gµµdxµ|(t, x⃗) supple-
ments the correct factors from changing the spatial argument. We can use this to define spatial
(and naive) parity for any kind of gF -valued field e.g. the dark pions. Since the Lagrangian
(2) and (1) are invariant under spatial parity and, by virtue of the Vafa-Witten theorem [44],
spatial parity can not be broken by quantum effects, parity is a good symmetry of our quantum
theory. More importantly, since it commutes with the global symmetry GF due to our choice
of ηP , we can classify physical states by their parity and flavour quantum numbers.

2.1.5 Charge conjugation

In the Nambu-Gorkov formulation, charge conjugation manifests as flavour symmetry

C : Ψ(t, x⃗) 7−→ωΨ(t, x⃗) . (25)

This reflects the fact that dark quarks cannot be physically distinguished from dark anti-quarks
in this theory. Since charge conjugation respects the isotropy condition specified in (12), leaves
the Lagrangian invariant and det (ω) = (−1)NF = 1 for NF = 2, it is a good symmetry of quan-
tum theory. However, since it manifests as a flavour symmetry it does not give us any new
information. One might consider what happens if only a single Dirac fermion is charge conju-
gated. In principle, this should also be a symmetry of quantum theory, since dark quarks and
anti-quarks are indistinguishable. If we agree to only charge conjugate q(1), the transformation
manifest as a left-multiplication of Ψ with the matrix

Cu =







0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1






. (26)

Again, this matrix respects the isotropy condition (12) and is a symmetry of the Lagrangian.
However, it has negative determinant i.e. det (Cu) = −1. If we assume that εF = −ln (Cu)
we obtain from (11) that in instanton backgrounds with QTopo[A] = 1 the following condition
must hold in order for the transformation to be non-anomalous

det (Cu) ∈
n

e−ikπ/TR
�

�

� k = 0,1, . . . , 2TR − 1
o

TR=1
= {1,−1} . (27)

This shows that this symmetry is not anomalous. Further, one observes that this action of
charge conjugation does not commute with the rest of the flavours symmetries. Hence it does
not seem to be useful to classify states via their charge conjugation quantum numbers. How-
ever, the symmetry enlarges the physically realised SU(2NF ) chiral symmetry to Z2⋉SU(2NF )
and the unbroken flavour symmetry to Z2 ⋉ SO(2NF ) ∼= O(2NF ). The semi-direct product
reflects the fact that the discrete symmetry does not commute with the rest of the flavour
symmetries. While the pNGb states remain completely ignorant of this enlargement, the dis-
crete transformations relate elements of the self-dual and anti-self-dual antisymmetric 2 index
representation of SO(4), causing the lightest vector mesons states to be mass-degenerate.

In principle TR > 1 can hold for higher tensor representation, leading to the appearance of
larger discrete symmetries. These nevertheless are dynamically broken by the chiral conden-
sate. Their precise structure and potential phenomenological consequences will be discussed
in section 5. A summary of the symmetries of the strong dark sector in isolation can be found
in figure 2.
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O(4)

O(2) × O(2)

Z2 ⋉ SU(4)

U(4)

SO(NC) − Vector

real

Strong dark sector

SU(2)I × U(1)B

Coupling to U(1)D

U(1)× U(1)

Q ̸= 0

Sp(4)

SU(2) × SU(2)

SU(4)

U(4)

SU(2)I × U(1)B

U(1)× U(1)

SU(2)× SU(2)× U(1)B

U(2) × U(2)

SU(NC) − Fund. Sp(2NC) − Fund.

complex pseudo − real

Axial anomaly

Chiral condensate χc ̸= 0

deg. mass m(1) = m(2) ̸= 0

non deg. mass m(1) ̸= m(2) ̸= 0

Other QCD like theories

Axial anomaly

Chiral condensate χc ̸= 0

deg. mass m(1) = m(2) ̸= 0

non deg. mass m(1) ̸= m(2) ̸= 0

Figure 2: Comparison of symmetry breaking patterns in QCD-like theories with two
Dirac fermions i.e. NF = 2. The main features of the patterns are determined by
the gauge group representation being real, pseudo-real or complex. On the left: The
breaking pattern for the dark sector considered here for Dirac fermions gauged under
SO(NC)-vector representation. On the right: 2-flavour QCD and a dark Sp(2NC)
theory with two fundamental Dirac fermions discussed in [8]. The explicit breaking
via charge assignments Q is discussed in section 2.2.1.

2.2 The dark photon

As a mediator between the strong dark sector and the Standard Model (SM) we consider a
massive dark photon [45,46], which is implemented by a U(1)D gauge field Z ′µ. The mass of
the particle is provided by an abelian Brout-Englert-Higgs effect, triggered by an additional
U(1)D scalar field ϕD. In total this allows for three new parameters of the theory. The dark
charge eD and two parameters in the potential of the scalar field. However, the latter two can
be varied independently to set the mass mZ ′ of the dark photon and the mass of the scalar
field. Thus, we take mZ ′ as a free parameter of the theory. For the coupling to the SM we
consider a kinetic mixing portal

Lmix =
ϵ

cos (ΩW )
Z ′µνBSM

µν , (28)

with Z ′µν and BSM
µν the field strength tensors of the dark photon and SM Hypercharge. The

parameter ΩW denotes the Weinberg mixing angle and ϵ is a real constant parametrizing the
strength of the kinetic mixing.

2.2.1 Charge assignments

The simplest way to couple the dark photon to the dark fermions is by gauging a suitable 1-
parameter subgroup of the flavour symmetry GF . This adds a coupling term between the dark
photon and the dark electromagnetic current to the Lagrangian

LΨZ ′ = −ieDΨ
†σµQΨZ ′µ , (29)

which explicitly breaks the global O(2NF ) symmetry. The charge assignment matrix Q is de-
termined by the generator of the gauged 1-parameter subgroup of the flavour symmetry. Since
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we consider vector-like dark quarks, one can only consider gauging part of the unbroken sub-
group HF . As a side-effect, we obtain that the U(1)D is consistent i.e. we do not have to
worry about [U(1)D]3 triangle gauge anomalies as HF is anomaly free embedded in GF . One
way to choose the charge assignments was presented in [33]. There the authors use the fact
that SO(2NF ) contains a U(NF ) ∼= U(1)B × SU(NF )I subgroup. Gauging the U(1)B generator
ensures that the pions still transform under a non-abelian SU(NF )I symmetry. We choose this
U(1)B generator to be the charge matrix which in the Nambu-Gorkov basis is given as

Q= 1
p

4NF
diag(1, · · ·
︸︷︷︸

NF

,−1, · · ·
︸ ︷︷ ︸

NF

) .

The reminiscent SU(NF )I ⊂ U(NF ) global flavour symmetry prevents the dark pions from
decaying into the SM. In the case of NF = 2, the non-abelian symmetry SU(NF )I acts on the
Dirac quarks in the same way as Isospin in standard QCD. This can best be seen by using
SO(4) ∼= SU(2)I × SU(2)B, where the left symmetry acts on the flavour indices of the Dirac
fermions q( j) as a left multiplication with an SU(2)I matrix in the fundamental representation.
The 1-parameter subgroup generated by Q in SU(2)B acts analogous to the Baryon number
symmetry in QCD, when translated back to the Dirac formulation. Thus, the above charge
assignment corresponds to charging Baryon number symmetry, leaving Isospin unbroken. This
interpretation was also adopted in [47], providing more details on the action of SU(2)I on the
two Dirac fermions. Finally let us comment on the uniqueness of this assignment. In order to
guarantee the stability of the dark pions, one has to look for a charge assignment such that
the pion currents are free of anomalies. This can be guaranteed demanding that the charge
assignment satisfies

Q2∝ 1 . (30)

Due to Q being traceless,4 this condition strongly restricts the eigenvalues of the charge as-
signment and renders the above charge assignment unique up to a change of basis.

For general NF the pions split into a charged and a neutral multiplet under SU(NF )I , fur-
nishing the symmetric and the adjoint representation of SU(NF )I [33]. A convenient choice of
SU(2NF ) generators, compatible with all these symmetry structures is presented in appendix
A. Any kind of U(1)D charge assignment will always break the discrete Z2 symmetry explicitly.

2.3 Light dark mesons states

For dark matter phenomenology we identify the pNGbs of the spontaneously broken (approx-
imate) global chiral symmetry which are the lightest states in the physical spectrum that dom-
inate5 the low energy behaviour of the theory as dark matter candidates. However, it has
been shown that the interesting domain for dark matter phenomenology in parameters space
prefers large number of colour degrees of freedom [1] and typically lies close to region where
other states e.g. vector mesons, become important for phenomenology. In the following we
classify all these states with respect to parity and their flavour multiplet structure. The flavour
symmetry for an isolated dark sector is given by O(2NF ). After coupling to the dark photon
the global symmetry is SU(NF )I×U(1)B. The representations of U(1)B may be used to classify
the charge assignments under the U(1)D gauge symmetry.

4The traceless property is also required to avoid gravitational anomalies.
5In contrast to Sp(2NC ) theories [8], there are also “Baryon-like”, fully anti-symmetrized NC -quark bound states

in the theory. However, they will be significantly heavier than the 2-quark mesons states. Furthermore, these states
can always scatter into lighter meson states via the dark strong-force, as realized by Witten [48]. Hence, any initial
abundance of these states will be quickly diluted in the late universe and we decided to neglect them completely
from our considerations in this paper.
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2.3.1 Pseudo-scalar mesons

The vacuum expectation values of the commutator of the pseudo-scalar operators OPS
a in (15)

with the chiral charge operators associated to the broken symmetries turn out to be propor-
tional to the chiral condensate χc . For NF = 2 this indicates the presence of ten states in the
Nambu-Goldstone phase of the theory [49], of which nine may be identified as the pNGb’s of
the symmetry breaking pattern su(4) → so(4). In analogy to QCD we denote these as dark
pions πa.

The tenth state, corresponding to OPS
0 , is related to the anomalous U(1)A and remains mas-

sive even in the chiral limit. This is analogous to QCD and can be seen from the PCBC relation
(18) in which the axial anomaly sources non-conservation of the associated current jµ0 . Hence,
we expect this particle to be heavier than the dark pions in general. The precise mass, and
mass splitting to the pions, needs to be calculated with the help of non-perturbative methods
e.g. lattice field theory or functional methods. Nevertheless, in contrast to real world QCD,
the relative mass splitting ∆m2

η′/m
2
π between η′ and π might be small for mass-degenerate

dark quarks6 and large NC arguments may apply, suppressing the gluonic contribution to the
η′ mass. The first means that a contribution from a heavy strange-quark-like state is absent,
while the latter amounts to η′ being an effective tenth pNGb state7 in an appropriate large NC
limit, explained further below.

Note that operators OPS
a are all hermitian and hence not all of them can have a defined

charge under U(1)D, since not all dark pions are neutral. For some calculations it is useful to
adopt a basis π̃a of dark pion states that are also eigenstates of the charge assignment operators
Q. In the basis chosen8 this can be achieved by the following complex linear combination




























|π̃1(p)〉
|π̃2(p)〉
|π̃3(p)〉
�

�π̃4(p)
�

|π̃5(p)〉
|π̃6(p)〉
�

�π̃7(p)
�

|π̃8(p)〉
�

�π̃9(p)
�





























=
1
p

2





























p
2 0 0 0 0 0 0 0 0

0
p

2 0 0 0 0 0 0 0
0 0

p
2 0 0 0 0 0 0

0 0 0 1 0 0 −i 0 0
0 0 0 0 1 0 0 −i 0
0 0 0 0 0 1 0 0 −i
0 0 0 1 0 0 i 0 0
0 0 0 0 1 0 0 i 0
0 0 0 0 0 1 0 0 i

























































|π1(p)〉
|π2(p)〉
|π3(p)〉
�

�π4(p)
�

|π5(p)〉
|π6(p)〉
�

�π7(p)
�

|π8(p)〉
�

�π9(p)
�





























. (31)

The normalisation of the matrix is chosen such that the matrix preserves the normalisation of
the pion states. The η′ state is neutral and hence already a charge eigenstate.

In the case of an explicit mass splitting m1−m2 =∆m the dark pions in isolation arrange in
multiplets under O(2)×O(2), as summarised in figure 4. The singlet dark pion is not protected
by any flavour symmetry and hence may decay in the presence of a mediator. In order to avoid
problems with dark matter stability, we focus on the mass degenerate case.

6Even for mass non-degenerate dark quarks, these arguments should hold, since the mass-splitting should be
small in order to make the dark pions sufficiently meta-stable.

7The full U(2NF ) can not be expected to be restored in the large NC limit because axial anomaly (11) is not
affected by the large NC limit. However, the topological charge density in the local current operator equation
(32) may be effectively vanishing in this limit. Since the operator identities for OPS

0 with the currents and chiral
condensate are identical in structure to the rest of the pNGb’s, the only difference is the non-conservation of the
current in the first place. If this contribution is suppressed in the large NC limit, a treatment as an effective pNGB
appears valid.

8See appendix A for more details.
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pseudo-scalar mesons vector mesons

O(4) Classification

SUI (2)× UB(1) Classification

η′

π̃1 π̃2 π̃3

π̃4 π̃5 π̃6

π̃7 π̃8 π̃9

ρ̃10 ρ̃11 ρ̃12

ω̃14 ω̃15

ω̃13

+ −0

Figure 3: Classification of all light states relevant for DM phenomenology with re-
spect to parity and the global symmetries O(4) and SU(2)I × U(1)B. The gray scale
indicates the charge of the particles under U(1)D within an isospin multiplet. The
denoted states are in the eigenbasis of the charge operator Q. See also table 4 in
appendix E.

O(4) Classification

O(2)×O(2) Classification

η′π̃1 π̃2 π̃3

π̃4 π̃5 π̃6

π̃7 π̃8 π̃9

Figure 4: Classification of the pseudo scalar mesons in presence of an explicit mass-
split m2 −m1 =∆m of the quark current masses.

2.3.2 Large NC considerations for η′

While the existence of η′ in our setup has previously been established in section 2.3, whether
it will ever become light enough to matter for phenomenological purposes is unclear. Such
investigations can be performed on lattice, however it is out of scope for our current work.
We would instead like to develop an expectation about whether η′ can become light using
perturbative arguments.

Such approaches have been used in analysing real world QCD theories. In that case, in the ’t
Hooft large NC limit [50], the contributions of the axial anomaly (18) are suppressed by a factor
1/NC [37] and hence the η′ state in QCD becomes massless in the chiral limit for NC →∞.
Large NC considerations have been useful to investigate potentially non-perturbative features
of QCD, which are not accessible in a small-coupling perturbative approach [51]. However,
results like quark loop suppression leading to a geometric classification of classes of diagrams
heavily depend on the fact that the quarks transform in the fundamental representation of
SU(NC).

The main argument towards this is to understand whether the second term representing
gluodynamic contribution in (18) can become arbitrarily small in large NC limit. This is how-
ever a non-trivial question given that the running of gD depends on NC . Similar to the original
discussion by ’t Hooft, we resort to writing gD in terms of λ = β0 g2

D and subsequently (18)
becomes

∂µ jµ0 = −i mOPS
0 −

TR
β0
λ
εµνρσδαβ

16
p

2π2
AαµνA

β
ρσ . (32)
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Here β0 (and β1 below) denote the renormalisation scheme independent one- (and two-)
loop coefficients [52] of the β-function for the strong dark coupling gD. Eqn. (32) allows to
analyse the large NC behaviour in terms of TR/β0 λ. The value of λ is determined by the
renormalisation group equation from an initial value λ0 at a UV cutoff

β(λ) = −
2

(4π)2
λ2 −

2
(4π)5

β1

β2
0

λ4 + . . . , (33)

where dots denote higher-loop contributions. For an asymptotically free threoy in absence of
Banks-Zaks fixed point, the coefficient β1/β

2
0 in (33) becomes a constant in the large NC limit

and thus the running of λ does not have any additional NC dependence up to two loops. Its
value can thus be considered to be almost NC independent for sufficiently large number of
colours. Given the explicit expression of β0, for the second term in (32) to vanish in large NC
limit,

TR
cadj
−−−−→
NC→∞

0 , (34)

is necessary. This criterion can be checked on purely representation theoretical grounds. Table
3 in the appendix shows that only the fundamental representations of the classical groups
feature a light dark η′ state in the large NC limit. Luckily, a lot of the standard treatments
from large NC real world QCD remain valid for these theories. Essentially, all techniques and
results for the lowest order expansion in terms of 1/NC can be assumed to remain valid also for
(pseudo-)real theories. This can be understood by the following argument. The fact that the
fermions transform in the fundamental (or vector) representation of the gauge group, allows
a geometric classification of Feynman diagrams. The difference between the complex and the
real case occurs due to the additional reality condition imposed on the colour matrices. For
the complex case only oriented geometries are allowed, while for the real case there may also
be non-orientable geometric structures. However, such are typical higher genus surfaces and
thus contribute only to higher order in 1/NC [53].

2.3.3 Vector mesons

For the region mπ/ fπ > 4, which is required for these models to successfully address the dark
matter problem [1], the vector mesons are expected to be close to the two pion threshold
mV ≈ 2mπ. This is important since for mV < 2mπ, the vector mesons are stable in the isolated
theory. When coupled to the SM, they can decay via the dark portal and hence take part in the
cosmic depletion process [4–7]. Adding vector mesons may also help improve predictability
of the low energy effective theory for mπ/ fπ ≈ 4π [7,54].

A full classification of these states in the case of NF = 2 can be found in figure 3. We note
that the parameters mV , mπ and fπ are not independent, but are related by the underlying
UV theory. Thus, mV should be determined for example as a function of mπ and fπ by the
use of lattice studies. Bilinear interpolating operators, with a significant overlap with the
vector meson states are provided in appendix E. These are useful for investigations using non-
perturbative techniques.

3 Long range description

We turn towards the low energy effective description of the relevant degrees of freedom dis-
cussed in the previous section. The Lagrangian of vector mesons and pions is constructed
via the hidden local symmetry (HLS) [54–60]. This approach was shown to be equivalent
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Table 1: Summary of the transformation behaviour of the building blocks for the HLS
approach. Here Ug(x) ∈ GHLS

F, local, Uh(x) ∈ HHLS
F, local and σ̂ is the naive parity operation

defined in (23). The action of charge conjugation C is already included in the flavour
symmetry.

Field GHLS
F, local ×HHLS

F, local P

γ UgγU†
h ω†γ∗(t, −⃗x)ω

Vµ UhVµU†
h + Uh∂µU†

h gµµ σ̂
�

Vµ(t, −⃗x)
�

Bµ Ug BµU†
g + Ug∂µU†

g gµµ σ̂
�

Bµ(t, −⃗x)
�

X Ug X U⊤g ωX ∗(t, −⃗x)ω⊤

to many other approaches at the level of on-shell tree-level amplitudes, but has the advanta-
geous feature of allowing a well-defined derivative expansion of the effective Lagrangian [54].
This allows a consistent truncation of the low energy theory. Especially, when fixing the HLS
gauge, the model is equivalent to the non-linear Σ-model, which we will refer to as Callan-
Coleman-Wess-Zumino (CCWZ) model [61,62]. We note here that it is also possible to include
axial-vectors within the generalised HLS formalism [55]. However, we do not focus on them
here as they are heavier than vector mesons by about a factor of

p
2 [22]. Taking also into

account large NC arguments we will consistently include the η′ meson into the effective theory.
The dark photon is introduced by gauging part of the unbroken flavour symmetry, exactly in
the same way as it was done in the UV. Furthermore, the general language adopted by [55]
turns out to be well suited for the description of the anomalous part of the action i.e. the
Wess-Zumino-Witten term.

For the following it will be convenient to add scalar and vector source terms to the UV
Lagrangian (6), which transform such that the UV Lagrangian is invariant under local SU(2NF )
transformation. The UV Lagrangian (2) is modified to

LUV
q;Ext = iΨ†σµDR

µ [A]Ψ + iΨ†σµBµΨ −
1
2

�

Ψ†ESXΨ∗ −Ψ⊤E∗S∗X ∗Ψ
�

. (35)

With the help of the “spurion-fields” Bµ and X , it will be possible to easily include effects of the
mass term and the dark photon via setting X = M and Bµ = −ieDZ ′µQ. Their transformation
behaviour under the local symmetry is summarised in table 1. With all these ingredients we
may formulate a low energy effective description of all the relevant states involved in the
phenomenologically interesting processes of these dark matter models discussed in section
2.3. This procedure is well known and was studied in depth for SU(N) theories [42, 63].
The HLS approach was originally formulated for general coset spaces as well [55] and several
useful results for chiral perturbation theory of general coset spaces exist [64]. The purpose
of the following is not to reinvent these results, but to bring them together in the context of
strongly interacting dark matter to provide a solidly worked out framework, ready to be used
by phenomenologists.

3.1 Hidden local symmetry Lagrangian

We start by discussing a Lagrangian, describing the interaction between the dark pions π,
dark mesons ρ, ω and the dark photon Z ′. For this we use the framework of HLS [55], very
successfully applied to real world QCD. The building blocks of the HLS approach are matrix-
valued fields, transforming in a linear representation of the group GHLS

F, local×HHLS
F, local. In the HLS

15

https://scipost.org
https://scipost.org/SciPostPhysCore.9.1.007


SciPost Phys. Core 9, 007 (2026)

approach HF = SO(2NF ) is always considered as local. Since we want to make contact to the
external sources via the spurion field Bµ, we also consider GF = SU(2NF ) as a local symmetry.
If we do not care about the gauging of the chiral symmetry in the UV, then we can take GF as
global symmetry. The vector particles ρ,ω and Z ′ are modeled with the help of matrix-valued
vector fields. For the dark vector mesons we use the gauge field Vµ = −i gV V A

µ TF
A related to

the local group HHLS
F, local. The constant gV is a yet unspecified parameter of the theory, related

to the interaction strength of the vector mesons and thus to the underlying strong interaction
of the dark sector. The external sources Bµ are implemented as the gauge fields of GHLS

F, local, and
may be used to include the dark photon by setting Bµ = −ieDZ ′µQ.

In order to introduce the pions we introduce a GF -valued scalar field γ, transforming in
a bi-fundamental representation of the HLS group. The transformation behaviour of all the
fields are summarised in table 1. Taking into account the splitting gF = hF ⊕k, we may always
decompose [61,62]

γ= e−ξe−σ , (36)

such that ξ ∈ k and σ ∈ hF . Due to their transformation behaviour, the fields ξ may now
be interpreted as the Nambu-Goldstone bosons of the spontaneously broken global symmetry.
Thus, when re-scaling the components of ξ by an appropriated dimensional constant fπ, one
may interpret them as dark pions according to

ξ= −i
πa

fπ
TF

a . (37)

The compensator fields σ do not have a direct interpretation as scalar fields on their own and
are best removed by fixing a unitary gauge for the fields Vµ via the HLS gauge-fixing condition

e−σ = 1 . (38)

In order to preserve this condition under an arbitrary GHLS
F, local transformation Ug(x), one must

also add a compensating HHLS
F, local transformation Uh(x) = Uh[Ug(x),π(x)], which depends on

Ug(x) and π(x). Hence this breaks the HLS group GHLS
F, local × HHLS

F, local down to a non-linear re-

alised subgroup GCCWZ
F, local. This non-linear representation is exactly the transformation in the

CCWZ construction [61, 62] i.e. the non-linear Σ-model, fortifying the interpretation of ξ
as the Nambu-Goldstone bosons. In fact it was demonstrated that integrating out the vector
meson fields Vµ with their equation of motion, after the HLS gauge-fixing, renders the HLS
equivalent to the non-linear Σ-model [55]. The HLS symmetry is used mainly as an organiza-
tional tool, allowing for consistent truncation [56] in terms of a derivative expansion.

In order to construct the Lagrangian, it is useful to combine the fields γ, V and B, as well
as potential derivatives thereof, into terms with simple transformation behaviour. From the
quantity γ we can construct the Maurer-Cartan form Ωµ and the vector-field B̂µ

Ωµ = γ
†∂µγ , (39)

B̂µ = γ
†Bµγ . (40)

Further we define the combined quantity

Ω̂µ = Ωµ + B̂µ , (41)

which transforms as Ω̂µ 7→ UhΩ̂µU†
h+Uh∂µU†

h and is thus invariant under GHLS
F, local. The quantity

Ω̂µ is gF -valued. The coset space GF/HF may be split into

Ω̂µ = Ω̂h;µ + Ω̂k;µ , (42)
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by using the parity operator σ̂ to project out its component on hF and k. While Ω̂h;µ transforms
the same as Ω̂, we have that Ω̂k;µ transforms in the adjoint of HHLS

F, local. If we further subtract

the field Vµ, the quantity Ω̂h;µ− Vµ also transforms in the adjoint of HHLS
F, local. From these quan-

tities we can now build all local terms that are invariant under the HLS, parity and charge
counjugation. Hence, we use them to build the low energy effective Lagrangian. By using the
derivative expansion of the HLS approach [54] we can classify sub-leading contributions in
the Lagrangian. In this counting scheme a derivative i.e. external momentum p is considered
to be a small quantity δ ∼ p. The couplings of the HLS gauge fields are assumed to be smaller
or at most of the same order, e.g. δ ∼ gV ∼ eD. In fact, in order to include the dark photon by
gauging the flavour symmetry in the effective Lagrangian of the strong dark interactions, one
implicitly assumes that one may treat Z ′ as a small perturbation in the IR. Hence eD≪ gV ∼ δ.
The success of the counting scheme is rooted in the gauge structure of the HLS approach [56].
The lowest order (O(δ2)) Lagrangian in the chiral limit, i.e. X = 0, is given by [55]

LIR;(2)
HLS = − f 2

π Tr
�

Ω̂k;µ Ω̂
µ

k

	

− CHLS f 2
π Tr
��

Ω̂h;µ − Vµ
� �

Ω̂
µ

h − Vµ
�	

. (43)

The prefactor − f 2
π of the first term ensures canonical normalisation of the pion fields. The

parameter CHLS is a dimensionless, undetermined parameter of the theory. The Lagrangian
obtained is the most general HLS result. It is convenient to rewrite the Lagrangian as9

LIR;(2)
HLS = − f 2

π Tr
�

Ωk;µΩ
µ

k

	

(44)

− f 2
π Tr
�

B̂k;µB̂µk + 2Ωk;µB̂µk
	

(45)

− CHLS f 2
π Tr
�

Ωh;µΩ
µ

h + VµVµ − 2VµΩ
µ

h

	

(46)

− CHLS f 2
π Tr
�

B̂h;µB̂µh + 2Ωh;µB̂µh − 2VµB̂µh
	

. (47)

In this form one can read off the Lagrangian for several special cases. If we would like to look
at the dark sector in isolation i.e. if we have no dark-photon field Z ′, we simply neglect the
terms (45) and (47), since they vanish in the decoupling limit Bµ→ 0. In the case one wants
to do dark matter phenomenology without the vector mesons one simply needs to integrate
them out by using their equation of motion V = Ω̂h;µ. This leads to vanishing of the terms
(46) and (47). Thus, in the following, this can always be accounted for by setting CHLS = 0 in
the results that follow. The results then, after enforcing the condition (38), coincide with the
CCWZ construction [55]. Of course, if one wants to treat the vector mesons Vµ or the vector
sources Bµ as dynamical fields, one should also include their kinetic terms in the Lagrangian

LIR;(2)
HLS,YM = −

1
4

V A
µνVµνA −

1
4

BαµνBµνα . (48)

Indeed, these appear at order O(δ2) in the HLS counting scheme. It is a central assumption of
HLS that the kinetic term for the vector mesons is dynamically generated by quantum effects
of the underlying strong dynamics [55]. Integrating the vector mesons out with the equation
of motion and keeping terms up to a consistent order in the HLS counting scheme, reproduces
higher order terms10 of the CCWZ construction [54].

The HLS construction prevents us from introducing an explicit mass term for the vector
mesons. However, such a term appears dynamically, and is related to two of the free param-
eters of the theory, the constant CHLS and the coupling gV . This can be seen by fixing the

9This result is independent of the condition (38). The HLS gauge is only fixed for the expansion in terms of the
pions.

10At least that is the case in the case of SU(N) theories with NF fundamental fermions as considered in [54].
Based on the symmetry structure we would expect exactly the same result in the (pseudo-)real case. In the complex
case, the obtained LECs from integrating out the vector mesons to a large extent saturate the experimental values.
Such a statement can of course not be made in the present case, however it supports the use of HLS as an appropriate
low energy effective description.
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unitary gauge and performing a chiral expansion of the Lagrangian (43). For technical details
on the expansion, see appendix D, which provides a convenient framework for performing the
chiral expansion, using the properties of the symmetric splitting gF = hF +k. The lowest order
expansion and truncation, describing all tree-level processes involving at most four dark pions
is given by

LIR;(2)
HLS =

1
2
δab ∂µπ

a∂µπ
b + g4π Cabcd π

a∂µπ
bπc∂ µπd (49)

+ gZ ′ππ Cqab Z ′µπ
a∂µπ

b + gVππ CAab V A
µ π

a∂µπ
b (50)

+
m2

V

2
δABV A

µ V Bµ +
m2

V r2

2
Z ′µZ ′µ −m2

V rV A
µ Z ′µQqA (51)

+ gZ ′4π Caqbcd π
aZ ′µπ

bπc ∂ µπd + gV4π CaAbcd π
aV A
µπ

bπc ∂ µπd (52)

+ gZ ′Z ′ππ Caqbqπ
aZ ′µπ

bZ ′µ − gV Z ′ππ CABabπ
aV A
µπ

bZ ′µ (53)

+ gZ ′Z ′4π Cabqcdqπ
aπbZ ′µπ

cπd Z ′µ − gZ ′V4π CabAcdqπ
aπbV A

µπ
cπd Z ′µ (54)

+O(π6;δ2) .

Here the indices a, b, c, . . . sum over the broken generators of gF e.g. a = 1,2, . . . , 9. The
indices A, B, . . . sum over the unbroken generators, e.g. A= 10, 11, . . . , 15. The index q denotes
the index of the generator that is proportional to the charge assignment matrix Q. In the case
discussed q = 13. The coefficient matrices can be expressed as traces over generators

QqN = 2Tr
�

QTF
N

	

, (55)

CN MK = −2i Tr
�

TF
N

�

TF
M , TF

K

�	

, (56)

CN MK L = −2Tr
��

TF
N , TF

M

� �

TF
K , TF

L

�	

, (57)

CN MK LH = 2i Tr
��

TF
N , TF

M

� �

T F
k ,
�

TF
L , TF

H

��	

, (58)

CN MK LHI = 2Tr
��

TF
N ,
�

T F
M , TF

K

�� �

T F
L ,
�

TF
H , TF

I

��	

, (59)

and can all be reduced to contractions of the structure constants CN MK of gF . Here the indices
N , M , K , . . . run over all generators e.g. N = 1, 2, . . . , 15. In general, a quantity with an index
q can be expressed by contracting it with QqN e.g. CqMK =

∑

N QqN CN MK . The coupling
constants are given in terms of the four parameters CHLS , gV , fπ, eD.

g4π =
4− 3CHLS

24 f 2
π

, (60)

r =
eD

gV
, m2

V = CHLS f 2
π g2

V , (61)

gZ ′ππ = eD
2− CHLS

2
, gVππ = CHLS

gV

2
, (62)

gZ ′4π =
eD

24 f 2
π

(7CHLS − 8) , gV4π = CHLS
gV

24 f 2
π

, (63)

gZ ′Z ′ππ = e2
D
(CHLS − 1)

2
, gZ ′Vππ = CHLS

gV eD

2
, (64)

gZ ′Z ′4π = e2
D
(CHLS − 1)

6 f 2
π

, gV Z ′4π = CHLS
gV eD

24 f 2
π

. (65)

These are very similar to that of the QCD, e.g. (61) is analogue of the QCD KSRF relation. To
our knowledge, this relation has not yet been tested on lattice for SO(NC) gauge group. Of the
quantities CHLS , gV , fπ, only one is a free parameter of the theory, being related to the others via
non-trivial relations, determined by the UV theory. Relations among these might be studied for
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the dark sector in isolation on the lattice e.g. by studying KSRF relation [65,66] (see e.g. [67]
for a discussion in context of SU(NC) theories). Interestingly, from the knowledge of CHLS in
isolation, it seems one can also infer information about the interaction of the dark hadronic
sector with dark electromagnetism. As a phenomenological guideline on what value we can
expect for the dimensionless quantity CHLS , note that gZ ′ππ = 0 for CHLS = 2. Hence, the dark
pion form factor is dominated by the contributions of a neutral vector meson, interacting with
the pions and subsequently oscillating into a dark photon [55]. This can be seen as a realization
of vector meson dominance (VMD) and indeed for this parameter the Lagrangian (49)-(51)
reproduces the phenomenological Lagrangian of VMD [68]. CHLS = 2 also corresponds to the
choice in QCD and ensures coupling universality gV = gVππ.

All phenomena related to ππ→ ππ at tree-level can successfully be treated with the first
three lines (49)-(51) of the Lagrangian. Eq. (52)-(54) can only contribute via loops and thus
are suppressed by an additional factor p2 = δ2. Hence, when only considering ππ → ππ

processes, we could actually neglect these from the Lagrangian. However, it should be noted
that semi-annihilation processes, like πππ→ Vπ or πππ→ Z ′π described by (52), enter at
the same order O(δ2). Such processes may affect the cosmological depletion of dark matter if
mV < 2mπ [6] or mZ ′ ∼ 2mπ, since these terms can also provide number changing processes
in the dark sector, which might contribute to the freeze out of the dark sector species [4].

3.1.1 Contributions of explicit symmetry breaking

So far we have considered the chiral limit. In order to take into account the effects of the
explicit symmetry breaking by a mass term, e.g. X ̸= 0, it is useful to work with a field variable
Σ, that transforms linearly under the group GCCWZ

F, global. Such a field can be build from γ, because
the coset space is symmetric [61,62]

Σ := γωγ⊤ . (66)

This quantity transforms as Σ → UgΣU⊤g under arbitrary HLS transformations and does not
see anything of HHLS

F, local. Hence, it transforms linearly under GCCWZ
F, global after HLS gauge fixing. In

the ground state it should hold

〈0|Σ |0〉= Σ[π= 0] =ω . (67)

Now again, we consider all local terms, compatible with Lorentz-symmetry, HLS and parity.
Taking also into account the spurion field X , and following the previous discussion, we obtain
only one new term at lowest order

LIR;(2)
M = CX

�

Tr
�

X †Σ
	

+ Tr
�

XΣ†
	�

. (68)

Setting X = mω, and demanding δZUV

δm = δZ IR

δm , with ZUV/IR the partition function in the UV and
IR, one obtains 16CX = χc [42,69] with the chiral condensate χc defined in (19). Expanding
the HLS-gauge-fixed action to lowest order yields a mass term for the dark pions and four pion
contact interactions. The pion mass is given by

m2
π =

mχc

4 f 2
π

. (69)

This is the analog of the Gell-Mann-Oakes-Renner (GMOR) relation from QCD. Within the HLS
formalism additional mass terms corresponding to explicit breaking of HLS symmetry breaking
can appear (see e.g. [70]). However they occur at higher order and we do not include them
here.
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The overall four-point interactions among the dark pions become modified by a contri-
bution involving the totally symmetric11 coefficients Sabcd = Tr

¦

TF
(a TF

b TF
c TF

d)

©

. The explicit
form of the resulting LO Lagrangian is given by

LIR;(2)
4π = g4π Cabcd π

aπc ∂µπ
b ∂ µπd +

m2
π

3 f 2
π

Sabcd π
aπbπcπd . (70)

It is important here to note that the four pion vertex is dependent on the HLS free parameter
CHLS through the coefficient g4π. In order to compute physical 4π scattering amplitudes with
CHLS ̸= 0 one must also take into account the associated vector meson terms to obtain con-
sistent results. If one intends to make contact with the formalism in [1,69], one may express
(44) and (45) in terms of a covariant derivative of Σ by using

Tr
�

Ω̂k;µΩ̂
µ

k

	

= −
1
4

Tr
¦

(∂µΣ+ BµΣ+ΣB⊤µ )(∂µΣ+ BµΣ+ΣBµ⊤)†
©

. (71)

The Lagrangian derived so far exhibits an additional, non-physical symmetry, given by the
naive parity transformation, described by acting with σ̂ from (23) on the π-fields, without
changing the spacetime argument. This prevents the occurrence of processes with an odd
number of dark pions. Hence, the Lagrangian so far will not feature a five pion vertex.

3.2 Wess-Zumino-Witten action

In the following, we turn our attention to terms in the low-energy effective action, which
violate naive-parity, while respecting all other physical symmetries. These allow for processes
involving an odd-number of dark pions. They slipped our attention so far, because they are
of higher order. They are however required for the low energy theory to match the ’t Hooft
anomaly structure of the underlying UV theory [71].

All terms constructed so far are “non-anomalous” i.e. they are invariant under12 the fully
gauged GCCWZ

F, local symmetry. Hence, they cannot satisfy the anomaly equation discussed below.
Thus, we select this subset of higher order terms to be part of the low energy effective the-
ory. These terms go under the name Wess-Zumino-Witten (WZW) terms [2, 3]. A standard
construction and classification of such terms [29,30,72], originating from an elegant geomet-
ric interpretation [3] exists. This classification applies for a large class of theories of fields
γ : S4 → GF/HF , where GF is compact, HF a Lie-subgroup and GF/HF a connected, homo-
geneous space satisfying the topological condition π4(GF/HF ) = 0. Here π4(X ) denotes the
so-called “fourth homotopy group” of a topological space X . However, if this condition is not
satisfied, the geometric classification is inconclusive, as is pointed out13 in [73]. In the case of
interest π4(SU(4)/SO(4)) ̸= 0, hence the condition is not satisfied.14 More details on this can
be found in Appendix B.

However, recent studies concluded that topological terms of Wess-Zumino type over a four
dimensional spacetime correspond to closed, integral 5-forms on GF/HF that satisfy the so-
called “Manton condition” [73]. Furthermore, due to GF = SU(4) being a semi-simple Lie-
group, the Manton condition reduces to GF -invariance and since GF/HF = SU(4)/SO(4) is a

11The round brackets denote total symmetrization i.e. C(i1 ,...,in) =
1
n!

∑

σ∈Sn Ciσ(1) ,...,iσ(n) . Sn denotes the group of
all permutations of n objects.

12The global symmetry in the ’t Hooft argument is not the hidden local symmetry group GHLS
F, local, but the diagonal

subgroup GCCWZ
F, local, which remains after gauge-fixing HHLS

F . The dark pions transform in a non-linear realization of
this group, which is essential for the anomaly matching argument.

13Contrary to the claim in [29].
14That this might be a problem was also already remarked in [72].
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symmetric space, the space of closed GF -invariant forms is given by the De Rham cohomol-
ogy15 of GF/HF . Thus we can conclude that there exists a single WZW term in this theory.
In order to construct this term however, we do not apply the method utilizing local differen-
tial forms presented in [73], but rather retreat to the original argument given by Wess and
Zumino [2], which was later generalised [31] and especially works for arbitrary compact GF ,
broken to an anomaly free subgroup HF such that GF/HF is connected.16 If π4(GF/HF ) = 0
is satisfied, the construction can be shown to be consistent with the geometric one [31]. As a
side effect of this construction the coefficient of the WZW term in the low energy effective ac-
tion is simultaneously determined from the anomaly matching argument. We find that for the
real representation SIMP models discussed in [1], the coefficient of the 3→ 2 pion scattering
vertex is overestimated by a factor two. This was realised also with the geometrical argument
in [11].

In the following it will be useful to stick to the language of Lie-algebra valued differential
forms. Especially, we use the gauge connection 1-forms B = Bµdxµ and A = Aµdxµ, which
are matrix-valued differential forms. The method used makes explicit use of the non-linear
transformation behaviour of the pions and requires to gauge-fix17 the HLS according to (38).

3.2.1 A solution of the ’t Hooft anomaly equation without dark vector mesons

Starting point is the gauging of the flavour symmetry GF = SU(2NF ) of the Lagrangian (2)
in the chiral limit, to obtain an action SUV

q,cov.[q, A+ B]. Here A+ B denotes the gauge connec-
tion of GC × GCCWZ

F . The obtained action coincides with the one if we would have used (35)
with X = 0. A general gauge transformation is parameterized by a gauge transition function
ε : M → gC ⊕ gF , which might be split according to ε = εC + εF . Gauge transformations
UC/F := e−ε

C/F
, belonging to either GF or GC , commute with all transformations of the other

type. A general gauge transformation is given by A+ B→ (A+ B)′ = A′ + B′, where

A′ = UCAUC† + UCdUC† = A+δC
εA+ . . . , (72)

B′ = U F BU F† + U F dU F† = B +δF
εB + . . . (73)

Next we introduce a functional fW [A+ B] via the partition function

eZ[A+ B] = eifW [A+B] =

∫

DqDq eiSUV
s,cov.[q,A+B] . (74)

If the theory has an anomaly, the functional fW is not invariant under gauge-transformations
and the anomaly functional is exactly given by the gauge variation of fW i.e.

fW [A′ + B′]−fW [A+ B] =A[ε, A+ B] . (75)

At this stage the fields A and B are classical background fields without any dynamics. In order
to interpret Aαµ as the dark gluon fields we need to add a Yang-Mills term to the action SUV

q,cov.
and path-integrate over the A-fields. The path-integral

ZUV [B] = eiWUV [B] =

∫

DA eifW [A+B]+iSY M [A] , (76)

15Note that this is different to the classification in [74], where= SO(6)/SO(4) is not symmetric, due to a different
embedding of SO(4) into SO(6), although SO(6)∼= SU(4). In SO(6)/SO(4) coset space four additional topological
terms of WZ-type related to exact differential 5-forms on GF/HF are present.

16For a more modern WZW construction see also [75,76].
17If π4(GF/HF ) = 0, a solution to the anomaly equation may be constructed via the methods presented in [72],

without enforcing the HLS-gauge fixing. Hence, this seems to be a technical issue.
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is only well defined if fW [A+ B] is invariant under GC gauge transformations. Since the rep-
resentation R of GC is real and all the generators of GF and GC are traceless, the associated
anomaly vanishes. Hence, gauge invariance under GC is guaranteed. Gauge variations of
WUV [B] associated with GF on the other hand may produce an anomaly, which is proportional
to Tr
�

T F
N

�

TF
K , TF

L

		

. There is no reason why this anomaly should be absent and as it turns
out for GF = SU(2NF ) it is not. We may now proceed in the same fashion in the low energy
regime. For this we neglect for now the vector mesons V and start only with the flavour gauged
CCWZ Lagrangian i.e. S IR

cov.[ξ, B] = S IR;(2)
HLS [ξ, B; CHLS = 0]. We consider the HLS to be gauge

fixed and γ to transform non-linear under the flavour symmetry GCCWZ
F, local. We hence always take

γ= exp (−ξ). The partition function gives us

ZIR[B] = eiWIR[B] =

∫

Dξ eiS IR
cov.[ξ,B] . (77)

Note that, B is a generic gF -valued non-abelian gauge-connection, not only the dark photon.
According to the anomaly matching argument [71], the IR theory must reproduce the same

anomaly under a GF gauge variation as the theory in the UV i.e. δFε WIR[B]
!
= A[εF , B].

However, the action S IR;(2)
HLS [ξ, B; CHLS = 0] is gauge invariant and thus gives δF

εWIR[B] = 0.
From this we can conclude that so far we miss a part in the low-energy effective description,
the so-called Wess-Zumino-Witten term. In order to satisfy the anomaly matching condition
we add to S IR

cov.[ξ, B] an action SW ZW [ξ, B], which satisfies the following anomaly equation

δFε SW ZW [ξ, B] =A[εF , B] . (78)

Algebraically, the gauge variation operator δFε acts as a derivative and its action on the Nambu-
Goldstone bosons is defined via

eδ
F
ε e−ξ = e−ε

F
e−ξeλ , (79)

where λ= λ[ξ,ε] ∈ hF . In [31] it was proven that such an action exists if none of the unbro-
ken currents, associated with symmetry transformations of HF , are anomalous in presence of
arbitrary background gauge fields B. This condition may be expressed as

∀ε ∈ hF : A[ε, B] = 0 . (80)

Can and should we, in our theory, impose this additional constraint on the anomaly? It is
well known that when calculating the anomaly from triangle diagrams, the freedom to choose
a regularisation scheme affects the anomaly. This choice can be used to put the anomaly in
certain currents, for example the broken currents, such that the unbroken ones are free of
anomalies [38, Chpt. 22]. This freedom can be used to enforce this additional condition.
The question if we should impose the condition depends on the physical interpretation of the
fields B. If we want to interpret18 them as the dark photon fields Z ′, this condition is actually
required by physics in order to obtain a well defined gauge theory for Z ′. If B has no physical
interpretation and is simply a background field that gets switched off later on in the calculation,
we are free to choose any regularisation, so we can impose this condition freely, as long as we
do it consistently. Next we introduce a parameterized version of the shifted Maurer-Cartan
form (41)

Ω̂τ := e−τδ
F
ξ B = eτξBe−τξ + eτξde−τξ =: B̂τ +Ωτ , (81)

with τ rescaling the pNGB fields. If the condition (80) is satisfied, the Wess-Zumino-Witten
action is given by [31]

SW ZW [ξ, B] =

∫ 1

0

dτ A[ξ, Ω̂τ] . (82)

18Or at least a subset of B, corresponding to the correct one-parameter subgroup.
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Note that the Nambu-Goldstone fields ξ do not only enter the first argument of the anomaly,
but also via Ω̂τ. As a last step we only need to determine the form of the anomaly in the UV. For
this we make use of the Wess-Zumino consistency condition [2] and the Stora-Zumino descent
equations [77]. The latter fix the anomaly up to the gauge variation of a local functional. Thus
we have the following ansatz for the anomaly

A[ε, B] =N
�

A0[ε, B] +δF
εFBC[B]
�

, (83)

where N is a normalisation and A0[ε, B] is the canonical, consistent anomaly with imposed
Bose symmetry [78] given by

A0[ε, B] =

∫

M
Tr
§

ε d
�

BdB +
1
2

B3
�ª

. (84)

Here the product of the differential forms is the exterior product, not to be confused with an
ordinary matrix product. The local functional FBC acts as the analog of the Bardeen counter
term [79] and was determined in [31]. We will not state the expression for FBC , since further
simplifications in the explicit expression arise due to parity.

As demonstrated in [31], the ansatz for the anomaly (84) may be split into three parts

A[ε, B] =A−[εk, B] +A+[εk, B] +FR[εk, B] , (85)

where A±[εk, B] signify ± parity projections and FR[εk, B] = 0 for SU(2NF )/SO(2NF ).
The functional FR vanishes if the space GF/HF is symmetric. For the other two parts19

A±[εk, PB] = ∓A±[εk, B] holds. Since spatial parity is a good symmetry of the quantum
theory, one can determine from (75)-(76) that A[ε, PB] =A[ε, B], and hence A+[εk, B] = 0.
The remaining term is given explicitly via

A−[εk, B] =N
∫

M
Tr
¦

εk

�

3F2
B;h + F2

B;k − 4
�

B2
k FB;h + BkFB;hBk + FB;hB2

k

�

+ 8B4
k

�©

, (86)

where FB = dB+B2 = FB;h+ FB;k and B = Bh+Bk. Note that only εk appears in (85) and (86),
since by construction A[εh, B] = 0 must hold, enforced by the counter term. It is well known
that the Wess-Zumino consistency condition is so restricting that it fixes the anomaly if only
the quadratic coefficient of the anomaly is known. The ansatz (84) satisfies this condition
and the only open parameter N determines the quadratic coefficient. We can calculate the
coefficient of the contribution of 3NTr

¦

εkF2
B;h

©

to the anomaly from a perturbative, one-loop
triangle diagram calculation, involving a broken and two unbroken currents. However, for
this calculation it is important to choose the regularisation consistently, since we imposed the
condition (80) [38, Chpt. 22]. From this we obtain

N =
i dR
24π2

. (87)

The dimensionality dR of the gauge group representation enters because every gauge degree
of freedom produces a copy of the flavour anomaly. This result is consistent with the normal-
isation in [72]. When working in the vector representation of SO(NC), we obtain dR = NC .
The physical Wess-Zumino-Witten action may now be obtained by setting the fictitious gauge

19Note that our definition of parity is little bit different from the definition in [31]. Their definition of parity
commutes with gauge-transformations. This is because they define it on the split components each. For us it holds
PδF

ε = δ
F
PεP. The validity of their arguments remain.
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fields to a physical value. The ungauged Wess-Zumino-Witten action may be obtained in the
decoupling limit20 B→ 0. In this limit

lim
B→0
Ω̂τ(x) = e−τξ(x)deτξ(x) =: Ωτ(x) . (88)

Thus Fτ := FB[Ω̂τ] = dΩ̂τ+Ω̂2
τ = 0 and hence the only term in A[ξ, Ω̂τ] surviving is involving

(Ω̂τ)
4
k = (Ωτ)

4
k. The Wess-Zumino-Witten action is given by

SW ZW [ξ] = lim
B→0

SW ZW [ξ, B] =
idR
3π2

∫

M

∫ 1

0

dτ Tr
�

ξ(Ωτ)
4
k

	

. (89)

Expanding Ωτ to first order, it is possible to integrate out τ explicitly and one obtains a five
point vertex involving the Nambu-Goldstone fields

SW ZW [ξ]≈
idR

15π2

∫

M
Tr {ξdξdξdξdξ} , (90)

with ξ= −iπ/Fπ. This corresponds to half the vertex stated in [1].

3.2.2 General solution to the t’Hooft anomaly equation

The solution derived so far did not involve the vector mesons V . Since the anomaly equation
(78) is linear, adding the solution SWZW to the HLS gauge-fixed action S IR;(2)

HLS [ξ, B, V ] now also
reproduces the anomaly structure correctly, one might consider the issue resolved. However,
due to the linearity of (78), the solution is not unique and actually four more undetermined
parameters appear, when including the vector mesons. This is because we may construct four
linearly independent operators21 at the same order as the WZW term, which are invariant
under the HLS and spatial parity, but which explicitly break naive parity. They are

LIR,anom.
1 = Tr
��

Ω̂h − V
�

Ω̂3
k

	

, (91)

LIR,anom.
2 = Tr
¦

�

Ω̂h − V
�3
Ω̂k

©

, (92)

LIR,anom.
3 = Tr
�

FV (Ω̂h − V )Ω̂k

	

= −Tr
�

FV Ω̂k(Ω̂h − V )
	

, (93)

LIR,anom.
4 = Tr
�

FB̂; h(Ω̂h − V )Ω̂k

	

= −Tr
�

FB̂; hΩ̂k(Ω̂h − V )
	

. (94)

We again used the language of gF -valued differential forms i.e. Ω̂h = Ω̂h;µdxµ and

Ω̂k = Ω̂k;µdxµ. Further FV =
Vµν
2 dxµ ∧ dxν, FB̂ = γ

†FBγ and FB = dB + B2 =
Bµν
2 dxµ ∧ dxν.

Since, they can be added to the action without altering the anomaly structure and bare the
same features as the WZW term otherwise, we should also add them to the action. The full
generalised22 WZW action, as general O(δ4) solution to the anomaly equation (78), is hence
given by23

SW ZW =

∫ 1

0

dτ A[ξ, Ω̂τ] +
i dR
8π2

4
∑

i=1

Canom.
i

∫

M
LIR,anom.

i . (95)

20We assume this limit to be well defined and that the theory converges again to the one without background
gauge fields.

21There two more terms one can construct, which are Tr
�

FB̂,k(Ω̂h − V )2
	

and Tr
�

FB̂,kΩ̂
2
k

	

. Those can be shown
to vanish using that σ̂(AB) = (−)pq+1σ̂(B)σ̂(A) and TrAB = Tr{σ̂(A)σ̂(B)}= −Tr{σ̂(AB)}. Here A is a p-form and
B a q-form. With the same relations the second equality sign in (93) and (94) can be proven.

22One should remark that this solution is derived for HLS vector mesons in unitary gauge. It is no problem to
generalize this result to arbitrary HLS gauges by using the five dimensional description, available ifπ4(GF/HF ) = 0.
Thus, the requirement of a specific HLS gauge in the case of π4(GF/HF ) ̸= 0 seems to be only a technical issue.

23We note here that the gauged WZW for Sp(4) theory obtained in [8]was derived under so called massive Yang-
Mills approach and not under HLS. The two approaches are related to each other via specific choice of gauges [55].
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Phenomenological guidance for the values of the constants Canom.
i can be obtained by VMD

considerations. This is further discussed in section 3.4. The general solution is a generalization
of the result obtained in real world QCD [54]. We note that [80] has same result as [54] with
two superfluous terms. In our construction, the issues that lead to the superfluous terms are
avoided automatically. Since the structure of this solution overall is exactly the same as in
the one obtained in real world QCD, we expect all the statements in [80] to remain true. For
details see appendix G.

3.3 Taking into account η′

In the cases where the η′ particle is expected to be close in mass to the other dark pions,
we use a combined approach of chiral perturbation theory and large NC arguments, in order
to include it into the low energy effective description consistently. For this we followed the
method of [81], coupling an external pseudo scalar spurion source θ to the topological charge
QTopo and adding it to the Lagrangian (35) in the UV, such that it counters the effects of
the axial anomaly. This allows the usage of an effectively enlarged hidden local symmetry
G̃HLS

F, local × H̃HLS
F, local = U(2NF )× O(2NF ) to model the IR Lagrangian. Fixing the spurion source

to a vanishing value θ = 0 then allows to take into account the effects of the axial anomaly
systematically. For this we first classify all terms of lowest order in O(δ2) and afterwards
drop terms which are suppressed in the large NC limit. In SU(NC) gauge theories, the order
O(1/NC) in large NC suppression of each term in the effective action can be inferred by the
counting rules developed in [82]. However, due to the geometric argument given in [53], as
already discussed in section 2.3, we expect that the counting rules for the SO(NC) case work
the same, as long as we do not go beyond leading order. Below, we only discuss the derived
Lagrangian, skipping a detailed derivation, since the treatment follows closely the one in [81],
where the explicit application of the large NC counting rules, to drop suppressed contributions,
was exemplified at the end of the article.

3.3.1 Non-anomalous action

In order to include the η′ as an effective pNGb in the large NC limit, a treatment which was
well motivated in section 2.3, one extends the field γ̃ ∈ G̃F to be valued in the enlarged chiral
group. Then

Σ̃= γ̃ωγ̃⊤ , (96)

transforms in linear under G̃HLS
F, local and is ignorant to H̃HLS

F, local. Hence, Σ̃ transforms also linear

under G̃CCWZ
F, local. The other quantities, like Ω̃, are defined analogously as in section 3.1. All the

information of η′ is captured in the phase of γ̃ or better

η′

fη′
=
−i
p

NF
ln (det (γ̃)) , (97)

where fη′ is a constant of unit energy dimension in order to interpret η′ as a proper scalar field,
related to the effective pNGb. The transformation behaviour of η′ may also be inferred from
(97), transforming as a singlet under O(2NF ) and being shifted by a phase under anomalous
transformations in U(2NF ). After HLS gauge-fixing, this allows to interpret

ξa =

¨

η′

fη′
, if a = 0 ,

πa

fπ
, a ̸= 0 ,

(98)

where in general fη′ ̸= fπ are different decay constants. In fact, there is no symmetry structure
for finite NC that might relate these two constants. In the EFT this manifests by the presence
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of an additional kinetic term24 for the η′

L̃IR;(2)
HLS ⊃

f 2
η′ − f 2

π

2 f 2
η′

∂µη
′∂ µη′ =

f 2
π − f 2

η′

2NF
Tr
�

Ω̃k;µ

	

Tr
�

Ω̃
µ

k

	

, (99)

independent of the π kinetic term. We have used here that

Ω̃µ = i
∂µη
′

fη′
T F

0 +Ωµ , (100)

and Tr
�

Ωµ
	

= 0. The LEC of the term (99) is fixed by the canonical normalisation condition.
Thus, if we would have set fη′ = fπ in (98), we would have ended up with an additional LEC
that allowed us to again vary them independently. However, from large NC counting rules,
we learn that flavour traces in the EFT are related to quark loops and contributions from such
terms are suppressed stronger the more flavour traces appear [71]. Hence, by comparison
with the π kinetic term, we estimate

f 2
η′ − f 2

π

2NF f 2
π

∼O(1/NC) −−−→NC→0
0 . (101)

At lowest order O(δ2), we obtain only one additional term dominant in 1/NC suppression,
given by

L̃IR;(2)
HLS ⊃ −∆m2

η′
η′

2

f 2
η′

=
∆m2

η′

f 2
η′

NF
ln (2det (γ̃)) . (102)

The LEC ∆m2
η′ parametrizes the mass of the η′ in the chiral limit. This log-det formula for the

mass term is also seen in QCD for the contributions of the axial anomaly [37]. From the large
NC counting rules one can infer that

∆m2
η′

f 2
η′

∼O(1/NC) −−−→NC→0
0 , (103)

consistent with expectations from the Witten-Veneziano formula [37,83]. Note that we did not
put these terms by hand, but they are present at lowest order within a consistent low energy
effective construction based on a combined derivative and large NC expansion [81]. Finally,
we take into account what happens if we move away from the chiral limit by introducing quark
masses. At lowest order in 1/NC , this results in the analog of (68) and is explicitly written as

L̃IR;(2)
M = CX

�

Tr
�

X †Σ̃
	

+ Tr
�

X Σ̃†
	�

. (104)

The interpretation of the associated low energy effective constant CX = χc/16 remains un-
changed. It defines the pion mass mπ via (69). From a lowest order expansion we obtain the
following GMOR-like relation for the η′ mass

m2
η′ = m2

π

f 2
π

f 2
η′

+
∆m2

η′

f 2
η′

. (105)

Since this mass term, after fixing X = mω, breaks the chiral symmetry explicitly, it introduces
contact interactions between the dark pions and η′. The part of the lowest order Lagrangian,
describing all the interactions among dark π and dark η′ fields, is given by

L̃IR;(2)
πη′

= LIR;(2)
4π +

m2
π f 2
π

8NF f 4
η′

η′
4 +

m2
π

2 f 2
η′

NF
δabπ

aπbη′
2 +
p

32
p

9NF

m2
π

fπ fη′
Dabc π

aπbπcη′ , (106)

24The traces would have vanished in the case without the η′.
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with LIR;(2)
4π given in (70) and 2 Dabc = Tr

�

TF
a

�

TF
b , TF

c

		

the totally symmetric D-symbol of
the flavour algebra. At this order no other terms enter at the same order in the HLS formal-
ism. Especially it seems that the vector mesons do not obtain any contribution from explicit
symmetry breaking at the order O(δ2). It is interesting to note here that the vanishing of the
D-symbol indicates the absence of ππ → πη′ processes. For the SO(NC) theories presented
here this term is present, while it is absent in the two-flavour Sp(4) theory [8]. The presence
of such interactions is interesting for η′ phenomenology, as discussed in section 3.4.2.

3.3.2 Anomalous action

The anomalous action may be derived along the same lines in section 3.2, but for the en-
larged HLS group G̃HLS

F, local × H̃HLS
F, local = U(2NF ) × O(2NF ). This amounts to the same result,

now interpreting the pNGb fields ξ as in (98). Especially, for the ungaged action we obtain
S̃W ZW [ξ] = SW ZW [π] i.e. the result in (89) remains valid and is independent of η′. While
one might guess this already from the structure of the chiral multiplets, one can obtain this
result by a simple calculation. By first using (100) for Ω̃ and the fact that η′ commutes with
the dark pions, one may verify (Ω̃τ)2k = (Ωτ)

2
k. Hence, the only terms where η′ can enter

have totally anti-symmetric25 coefficients∝ Tr
¦

1TF
[a T F

b T F
c T F

d]

©

. These expressions vanish for
SU(2NC), as can be verified by explicit calculation. For SIMP dark matter this means that η′

can not influence the freeze-out via the 3→ 2 process, even in the limit of large NC , where it
is mass degenerate with the dark pions. However, the situation becomes more delicate when
also considering the presence of the portal mediator Z ′, since the η′, as a flavour singlet, may
decay to the SM.

3.4 The dark photon

The dark photon can be included in the IR description by gauging an appropriate one-
parameter subgroup of the chiral symmetry. The expression for the resulting non-anomalous
terms in the Lagrangian have already been discussed in section (3.1). The dark photon enters
also in the WZW action and details will be discussed below. The crucial assumption here is
that, with decreasing energy, the U(1)D coupling runs to a fixed value eD, small compared to
the scale of the strong interactions, which becomes large in the IR. This allows to treat the
dark photon as a perturbation to the strongly interacting system. In terms of the vector meson
coupling gV , this amounts to

r =
eD

gV
≪ 1 . (107)

3.4.1 Mixing and mass term

In the UV description we provided a mass to the Z ′ via an abelian BEH mechanism. The
scalar field involved can always be considered as sufficiently heavy and thus integrated out
in the IR theory. The Lagrangian (46) already contains a mass term for the dark photon.
However, the origin of this mass term is not the BEH mechanism in the UV, but rather results
from another BEH-like phenomena, responsible for the masses of the vector mesons in the
HLS description [55]. This becomes evident from two observations. First, we realize the fact
that this mass term vanishes if the vector mesons are integrated out [54]. Second, we observe
that the Lagrangian (46) is not diagonal in Vµ and Bµ. If one introduces a diagonalizing basis,
one obtains a massless field that can be interpreted as the physical dark photon [55]. For
the physical dark photon Z ′ we may put a mass term by hand, implementing the features of

25The square brackets denote total anti-symmetrization i.e. C[i1 ,...,in] =
1
n!

∑

σ∈Sn sign (σ)Ciσ(1) ,...,iσ(n) . Sn denotes
the group of all permutations of n objects. sign(σ) = ±1 indicates if a permutation σ is even or odd.
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the BEH effect. However, due to the smallness of r ≪ 1, this mixing is negligible and for all
phenomenological purposes the field Bµ = −ieDZ ′µQ can be interpreted as the physical dark
photon. Hence, the dark photon mass term can be introduced directly as

LIR
mZ′
= −

m2
Z ′

2
Z ′µZ ′µ . (108)

The same holds true for the inclusion of the kinetic mixing term (28). If the vector mesons
are not present, the interpretation of the field Bµ = −ieDZ ′µQ as the physical dark photon
is exact. Moreover, the non-diagonal structure of (46) also automatically captures mixing
between the neutral hadronic singlet ρ̃13 and Z ′. This is a phenomenon analogous to ω− γ
mixing in the SM. In the SM there is also ρ0 − γ mixing between the neutral ρ-meson and
the photon, or ω−ρ0 mixing [68]. However, in the dark sector considered, there exists only
one such neutral vector mesons singlet, namely the ω13. This ultimately results from the
enhanced flavor symmetry, which allows to gauge a dark photon while leaving the analog of
isospin intact. The neutral ρ-mesons transform in a triplet under dark isospin and are hence
protected from mixing with the dark photon.

3.4.2 Anomalous decays

In order to include the dark photon into the anomalous terms one simply uses the result (82)
or (95), with non vanishing 1-form B = −ieDZ ′µQdxµ. This requires plugging also non zero

Fτ := FB[Ω̂τ] = dΩ̂τ + Ω̂2
τ ̸= 0 in the formula for the chiral anomaly (86). The 1-form Ω̂τ

was defined in (81). Using appendix D, one may consistently expand the obtained action to
lowest order. If we are only interested in scattering processes of five dark pions in the final
states, these comprise 5π, 3πZ ′ and π→ 2Z ′ vertices. All other vertices can only contribute
via loops and are thus dropped. The result is

LW ZW ≈
dR

15 f 5
π

εµνρσπa∂µπ
b∂νπ

c∂ρπ
d∂σπ

e Tr
�

TF
a TF

b TF
c TF

d TF
e

	

(109)

+ i
dReD

6
εµνρσ∂µξ

a∂νξ
b∂ρξ

c Z ′σ Tr
�

T F
a T F

b T F
c Q
	

(110)

−
dRe2

D

8
ξεµνρσ∂µZν∂ρZσ Tr

�

TF
a Q2
	

. (111)

At this truncation, the Lagrangian also describes ξ → Z ′Z ′ decay processes and scattering
with three dark pions and a dark photon in the final state consistently i.e. it takes into account
all relevant effects at same order O(δ4). Note that, due to the discussion in 3.3, the η′ will
not appear in (109), which we emphasise in our notation. However, in (110) and (111), the
pNGb fields ξa, may be interpreted as either the pions (37) only or to include also the η′

according to (98). The results look the same in both cases. In (111) we meet condition (30),
guaranteeing the stability of the dark pions, causing the anomalous decay vertex to vanish.
Thus, π→ Z ′Z ′ decays are absent and the dark pions are stable. However, for η′ this vertex
does not vanish and the singlet may decay into two Z ′, which may further decay into the
standard model. Two processes which make this possible are depicted graphically in figure
6. In case mη′ ≈ mπ, this might actually lead to dark pions scattering into η′ via the contact
interaction (106), introduced by the mass term (104), followed by decays of η′ to the SM.
Such a reaction may for example lead to additional depletion of DM during freeze out. We
comment on phenomenological detail in section 4.3.2. From the discussion in section 2.2,
it becomes evident that the issue of heaving at least one particle among the ξa that decays
via Z ′ is generic. The charge assignment where η′ is unstable seems to be the best one can
do from a stability point of few but for future investigations it might be useful to look into
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scenarios where meta stability is introduced via a different charge assignment or an explicit
mass splitting of the dark quarks. The vertex (110) may give resonant dark photon contribution
to the thermally averaged five pion scattering cross-section if the mass mZ ′ ∼ 2mπ is close
to the two pion threshold. Such scenarios have already been investigated for SU(NC) dark
sectors [84]. Further investigations, using the theory descriptions presented here, may be
carried out for the (pseudo-)real case in the future.

3.4.3 Vector meson dominance

The particular solution of the anomaly equation does not have any information on the vec-
tor mesons, which enter only via the homogeneous part. For the following we again use the
language of differential forms to stay concise in notation. Expanding and truncating the ho-
mogeneous solutions (91) to (94) gives

LIR,anom.
1 ≈ Tr{ξdξdξdξdξ}+ Tr{dξdξdξB} − Tr{dξdξdξV} , (112)

LIR,anom.
2 ≈ 0 , (113)

LIR,anom.
3 ≈ Tr{ξdVdV} − Tr{ξdVdB} − Tr{dξdξdξV} , (114)

LIR,anom.
4 ≈ Tr{ξdBdV} − Tr{ξdBdB} − Tr{dξdξdξB} . (115)

For the expansion we used explicitly the restriction of B to the unbroken algebra hF , applicable
for the dark photon. In order to gain an intuition on what values the undetermined parameters
Canom.

i may adopt, it is useful the see how we can adjust these parameters to incorporate
complete vector meson dominance (cVMD) in the anomalous vertices. By cVMD we mean here
the suppression of all vertices containing a dark photon in (109)-(111) and replacing them
by vertices with a neutral vector meson. In this case all the interactions in (109)-(111) are
described by interactions of pions and neutral vector-mesons, which then mix with the dark-
photon. But all direct anomalous interactions with the dark photon are absent. Expanding the
general solution (95) to leading order consistently results in

LW ZW ≈
i dR
8π2

�

8
15
+ Canom.

1

�

Tr{ξdξdξdξdξ} (116)

+
i dR
8π2

Canom.
3 Tr{ξdVdV} (117)

−
i dR
8π2

�

Canom.
1 + Canom.

3

�

Tr{dξdξdξV} (118)

+
i dR
8π2

�

Canom.
4 − Canom.

3

�

Tr
�

ξdVdZ ′
	

(119)

+
i dR
8π2

�

1− Canom.
4

�

Tr
�

ξdZ ′dZ ′
	

(120)

+
i dR
8π2

�

Canom.
1 − Canom.

4 +
4
3

�

Tr
�

dξdξdξZ ′
	

. (121)

Here we used the 1-forms V = −i gV V A
µ TF

A dxµ and Z ′ = −ieDZ ′µQdxµ together with

Tr
�

ξdVdZ ′
	

= Tr
�

ξdZ ′dV
	

. Then cVMD would demand the last three vertices (119), (120)
and (121) to vanish. This requirement fixes all the relevant LECs to the values Canom.

1 = −1/3
and Canom.

3 = Canom.
4 = 1. Additionally, to cVMD in the anomalous sector, one may require

CHLS = 2 to implement vector meson dominance in the pion form factor, as discussed in 3.1. It
should be noted that similar to the modification of the 4π interaction vertex, discussed in (68),
the 5π interaction is also modified through the coefficient Canom.

1 . This modification does not
vanish in the cVMD limit. However, when computing the 3→ 2 interactions with Canom.

i ̸= 0,
all terms should be consistently taken into account. In real world QCD, a limit of complete
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vector meson dominance (VMD) like this does not seem to be favored by experiment and the
physical parameters specify a small deviation of this point [54]. Although one can not exper-
imentally verify cVMD properties for dark matter, we may use this as guidance for choosing
these parameters.

For SU(NC) it has been demonstrated that including the vector mesons in the low energy
effective description might help to resolve some problems with perturbativity and related issues
of the validity of the EFT including pions only [7]. An investigation of this issue in the SO(NC)
case is missing and left for future investigations, given the provided framework in this paper.

4 First phenomenological applications

The chiral Lagrangian developed in the previous section can now be used to study dark matter
phenomenology. In particular inclusion of heavier states such as the vector mesons Vµ and
the flavour singlet η′, may have implications on the viable dark matter parameter space. In
this section, we therefore analyse the effect of the flavour singlet on dark matter phenomenol-
ogy while ignoring the vector mesons which may be nearby. By doing so, we can explicitly
demonstrate the effect of η′ without worrying about vector meson induced effects. We expect
vector meson induced number changing or semi-annihilation processes to be relevant in this
theory as well. Their effects will be analysed in a future work. The relevant free parameters
of our analysis are mπ, mπ/ fπ. All other quantities such as the masses of vector mesons and
flavour singlet as well as the related decay constants and couplings are a function of the two
free variables. Non-perturbative methods e.g. lattice calculations are necessary to establish
these functions. Some of this analysis can be found in [22], however not all relations are yet
available. In particular, computing the properties of flavour singlet is a challenging task, e.g.
see [85] for an analysis in the context of Sp(4) theories. For our phenomenological analysis,
we therefore treat the mass of the η′ and the corresponding decay constant fη′ as free param-
eters. For sufficiently large NC we know mη′ ∼ mπ and fη′ ∼ fπ, which can be used to choose
meaningful values.

4.1 Boltzmann equations

For our numerical analysis we solve the following system of Boltzmann equations allowing for
the possibility for η′ to decay out of equilibrium.

ṅπ + 3 H nπ = 〈σv〉η′η′→ππ

�

n2
η′ −

n2
π

n2
π,eq

n2
η′,eq

�

+ nπ〈σv〉πη′→ππ

�

nη′ −
nπ

nπ,eq
nη′,eq

�

− 〈σv2〉3π→2π

�

n3
π − n2

πnπ,eq

�

, (122)

ṅη′ + 3 H nη′ = −nπ〈σv〉πη′→ππ

�

nη′ −
nπ

nπ,eq
nη′,eq

�

− 〈σv〉ηη′→ππ

�

n2
η′ −

n2
π

n2
π,eq

n2
η′,eq

�

− 〈Γη′〉
�

nη′ − nη′,eq

�

, (123)

where nπ, nη′ denote pion and η′ number densities and 〈. . .〉 denote thermal averages, which
are detailed below. We define the Hubble constant and the entropy as

H =
p

g∗πT2

p
90Mpl

, s =
2π2 g∗s

45
T3 , (124)
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with g∗, g∗s being the effective SM degrees of freedom. We use the data for the SM effective
degrees of freedom given in [86]. Finally, we approximate

〈Γη′〉 ≃
K1(mη′/T )

K2(mη′/T )
Γ (η′) , (125)

where K1, K2 are modified Bessel functions of 1st and 2nd kind. It is clear that the system
decouples when 〈σv〉πη′→ππ = 〈σv〉η′η′→ππ = 0 and an analytical approximation for the re-
sulting 3π→ 2π Boltzmann equation can be found. We employ the formalism given in [84]
for such an analytical treatment.

4.2 Relevant 2→ 2 and 3→ 2 cross sections

We compute thermally averaged cross sections using Mathematica and by explicitly summing
over relevant generators. We use FeynCalc to compute Lorentz traces. We compare our
results with [1]. It should be noted that the global flavour symmetry in [1] is SU(NF ) while
in our convention it is SU(2NF ). Therefore when comparing we substitute NF = 4 for results
from [1] and NF = 2 for our results. We first present the form of the 2→ 2 self-scattering cross
section as it does not need thermal averaging.

4.2.1 2π→ 2π self-scattering

The self-scattering cross section among all pions (Nπ = 9) of the theory is given by

σ2π→2π =
1

N2
π

1
64S f π2 s

∫

|M|2→2 dcos (θ ) dφ

≈
1

4608πm2
π

�

145 m4
π + 384 m2

π p2 + 320 p4
�

f 4
π

,

where we have used S f = 2 and s ≈ 4 m2
π. Our result agrees with [1] in the limit p → 0

where we substitute NF = 4 in their calculations to be consistent with their global flavour
symmetry and accounting for different definitions of fπ ( f Ref.Ref.[1]

π = 2 fπ). For our numerical
calculations we subsequently use p → 0. In order to match to the upper limit on DM self-
interaction cross section we use 2cm2/g [87,88] and obtain

σ2π→2π

mπ
= 2.2× 105 cm2

g
145

4608π
MeV−3

m3
π

m4
π

f 4
π

≲ 2
cm2

g
. (126)

This leads to a limit on the pion mass of

mπ ≳ 10.32MeV
�

mπ
fπ

�4/3

. (127)

While in complete isolation, all nine pions are expected to be present today in the Universe,
in presence of coupling with the external Z ′, this may not be the case [89]. Coupling with
Z ′ breaks the flavour symmetry and in turn leads to radiative corrections to the masses of
charged pion. These are proportional to 2κ e2

D/ f 2
π , where κ is low energy constant, and thus

the charged pions are expected to be heavier than the neutral counterparts. Once the 3π→ 2π
interactions freeze-out, the residual forward annihilation processes π+π− → π0π0 continue
depleting the abundance of all charged pions. These forward annihilation processes can be
desirable as it eliminates any millicharged dark matter from the present Universe and evades
any Z ′ mediated direct detection constraints. The details of exact charged pion abundance
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depend on the details of the mediator sector. In order to estimate the effect of such forward
annihilation we consider here the two extremes, one where all nine pions remain in the present
Universe and second, when only the neutral pions remain. Correspondingly, we also compute
the self-interaction cross section among the three neutral species only (Nπ = 3). This results
in

σ2π̃0→2π̃0

mπ
= 2.2× 105 cm2

g
23

1536π
MeV−3

m3
π

m4
π

f 4
π

≲ 2
cm2

g
, (128)

and leads to a lower bound on pion mass of ∼ 8 MeV at mπ/ fπ = 1.

4.2.2 3π→ 2π cannibalisation process

All nine pions participate in the 3→ 2 process. The corresponding annihilation cross section
is given by

〈σ v2〉3→2 =
d2
R

N3
π

25
2048

p
5
π5

m5
π

x2 f 10
π

. (129)

Our results differ by a factor of 1/12 with respect to [1] after rescaling for f Ref.[1]
π = 2 fπ.

There are two reasons behind this, first, explained in(87) dR = NC and the factor of 1/3 arises
from correcting for Galilean invariant thermally averaged cross section [90,91].

4.2.3 η′π→ ππ,η′η′→ ππ processes

After explicit symmetry breaking by the charge assignment, the remaining SU(2)I × U(1)B
symmetry restricts the possible scattering processes. For example in η′π → ππ scattering,
only vertices where all three pion states are charged differently are non-vanishing. U(1)B
conservation further demands that η′π0 or η′η′ scatter into a pair of anti-particles π+π−. In
fig. 3 we illustrated that the nine pions of the theory break into three triplets corresponding
to neutral and ± charged states. Hence, all of the pions in the scattering processes πη′→ ππ,
η′η′→ ππmust belong each to a different multiplet. Considering this, the squared amplitudes
are

|Mπη′→ππ|2 =
9 m4

π

2 f 2
η′

f 2
π

, |Mη′η′→ππ|2 =
9 m4

π

8 f 4
η′

. (130)

The corresponding thermally averaged cross-section is given by

〈σvrel〉=























9
512π

m2
π

f 4
η′

√

√

√

1−
m2
π

m2
η′

, for η′η′→ ππ ,

9
128π

m2
π

f 2
η′

f 2
π

√

√

√

1−
4m2

π

(mπ +mη′)2
, for η′π→ ππ ,

(131)

where we have used s = 4m2
η′ or s = (mη′ + mπ)2 for η′η′ → ππ and η′π → ππ processes

respectively in the non-relativistic limit.

4.3 Numerical results

4.3.1 3π→ 2π WZW processes

We first demonstrate the region of viable parameter space by requiring correct relic density and
obeying the self interaction cross section for pion only processes. Correspondingly, in (123)
we set 〈σv〉η′η′→ππ = 〈σv〉η′π→ππ = 〈Γη′〉 = 0 and solve the resulting Boltzmann equation
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Figure 5: (left): Relic density contour obtained by numerically solving Boltzmann
equation (red solid line) and corresponding analytical solution (green dashed line)
for fixed NC = 6, NF = 2. Relic density contours (Ωh2 = 0.12) in mπ/ fπ – mπ plane
(solid lines) for various values of NC and two Dirac fermions. Contours representing
the DM self interaction cross section of 2 cm2/g are also shown if all 9 pions take part
in the interaction (light green dot dashed line) or only neutral pions (π̃1, π̃2, π̃3) are
accounted for (dashed dark green line).

numerically. We also employ analytical approximation as shown in [84]. Fig. 5 (left) shows
good agreement between the numerical solution of the Boltzmann equation (red solid line)
and the analytical approximation (green dashed line) for NC = 6, NF = 2. Given this agree-
ment, we use the analytical approximation to compute relic density in the right panel. In fig. 5
(right), we show the combined results of self-interaction cross-section and relic density con-
straints for several values of NC with two Dirac flavours. We compute the self interaction cross
section among all nine pions in the theory as well as using only the charge neutral three pions
(π̃1, π̃2, π̃3). Given the smaller number of neutral states the self-interactions and relic density
can be reconciled for smaller pion mass for a given NC . As the self-interaction cross-section is
independent of NC , the self-interaction favoured region does not depend on NC . NC > 10 is
required for self-interactions and relic density to be satisfied at the same time for self interac-
tions among all pion states, while NC can be smaller for neutral only states. The pion mass
required for a phenomenologically viable parameter space decreases for larger NC .

4.3.2 Effect of η′

Above discussion demonstrates that for large NC one can fulfill relic density requirement for
smaller pion masses. For such large values of NC , the purely gluonic contributions to mη′ will
become suppressed. Therefore, we investigate the importance of η′ for relic density calcula-
tions in a regime where the relative deviation (mη′ −mπ)/mπ is small.

We begin with estimating the η′ lifetime as it could strongly affect the relic density esti-
mates. A short lived η′ would decay in equilibrium and act as a semi-annihilation partner much
similar to the ρ meson illustrated in [4,6,33], while a very long-lived state which mixes with
π and decays out of equilibrium e.g. in mass split theories can also be of phenomenological
interest [92,93].

The flavour singlet η′ decays via an anomalous vertex given in (111). This leads to two
possible η′ decay modes. First decay mode is analogous to the anomalous SM neutral pion
(π0

SM → γγ decay), η′ → Z ′Z ′ → 4 f , where f denotes SM fermion and second is the loop
induced η′→ 2 f final state analogous to electromagnetic decays of SM neutral pion.
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Figure 6: η′ decays to off-shell Z ′ mediated 4 f final state (left) and the helicity
suppressed 2 f final state (right).

The exact lifetime of η′ is not relevant for our phenomenological studies, therefore we
follow [93] to estimate the lifetime. Taking into account symmetry factors for our setup the
lifetime estimates are

Γ (η′→ 4 f ) =
m3
η′

π

�

αDdR
8π fη′

Tr
�

T F
0 Q

2
	

�2�
α

2π
ε2
� mη′

2mZ ′

�4
�2

= 1.06× 10−11α
2
Dd2

Rm9
πε

4

m8
Z ′

�mη′

mπ

�11�mπ
fπ

�2

,

(132)

where we substituted Q1 = 1,Q2 = −1 and assumed fη′ = fπ. Similarly

Γ (η′→ 2 f ) =
m3
η′

π

�

αDdR
8π fη′

Tr
�

T F
0 Q

2
	

�2�
α

2π
ε2

�

m2
η′

m2
Z ′

�

�m f

mπ

�

�2

= 2.72× 10−9
α2

Dd2
Rm2

f m3
πε

4

m4
Z ′

�mη′

mπ

�7�mπ
fπ

�2

,

(133)

where m f is the mass of heaviest phase space allowed Standard Model fermion. As η′ → 2 f
interaction is helicity suppressed, the η′ decays to the heaviest available SM fermion via this
decay mode.

For concreteness, for the benchmark discussed in fig. 7, we analyse the BBN and ∆Ne f f
constraints here. The first and foremost requirement is that our dark pions are thermalized
with the SM bath. Taking results from [33], for our benchmark ε ∼ 5 × 10−4 satisfies this
requirement. We note here that the gauge groups for the two scenarios are different however
we expect it to make small difference in the overall conclusions.

From eq.(132)-(133) it is clear that η′ → 2 f decay mode dominates the life-
time for moderate mη′ masses we assume here. As a benchmark scenario, for
NC = 5,αD = 1/(4π),ε = 5 × 10−4, mη′/mπ = 1.01, mπ/ fπ = 10, mπ = 0.3GeV and
mZ ′ = 10GeV the lifetime is ∼ 105 sec. This shows that the lifetime is generally relatively
large≫ 1sec. Owing to this observation, we set Γη′ = 0 in the Boltzmann equations since it is
irrelevant for the timescales of interest.

In fig. 7, we show the effect of inclusion of η′ in relic density. There are three number
changing processes of interest here 3π→ 2π, η′η′→ ππ and πη′→ ππ. Including all three
processes, leads to a small increase in the overall relic density if the mass difference between
η′ and πD is small. We obtain the correction to be up to 10% for a percent level mπ − mη′
splitting. This relative increase rapidly vanishes as η′–πmass difference increases and by 10%
mass splitting the η′ makes almost no difference to the relic density. The increase in the relic
density can be understood as an effect of residual forward annihilation processes η′η′ → ππ
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andπη′→ ππ given that mπ ≲ mη′ . It is also interesting to understand the relative importance
of η′η′ → ππ and πη′ → ππ processes. The processes involving two η′ suffer a stronger
Boltzmann suppression compared to processes involving one η′. The η′η′→ ππ cross section
depends on both mη′ and fη′ however given that this processes is more Boltzmann suppressed
compared to πη′→ ππ, the final relic density does not sensitively depend on the value of fη′ .
Finally, the increase in the relic density is more pronounced for larger mπ as the 3→ 2 cross
sections become comparable to semi-annihilation cross sections.

Finally, the corresponding cosmic time as shown in fig. 7, demonstrates that the relevant
decoupling processes happen at timescales much smaller than the η′ lifetime, justifying our
procedure of setting Γη′ = 0 in the Boltzmann solver. If the η′ decays rapidly with lifetime
10−2 − 10−1 seconds, our procedure will not be justified and the equations should be solved
in presence of Γη′ contribution.

One may now worry that late time entropy injection due to η′ decays may rule this scenario
out, indeed [92] puts strong constraints on similar scenarios. The constraints obtained in [92]
are for lighter meson masses compared to ours. For such light mesons, the 4 f final state is
dominant, correspondingly the lifetime is extremely large and the CMB constraints as given
in [94] are very strong. Our heavier masses alleviate this situation considerably. Below we
demonstrate that the remaining η′ abundance for our benchmark is always negligible such
that this scenario is safe from these constraints.

Constraints from Big Bang Nucleosynthesis (BBN) and the effective number of relativistic
degrees of freedom, ∆Neff, are primarily sensitive to two effects: (i) modifications of the Hub-
ble expansion rate around T ∼ MeV, and (ii) late-time electromagnetic or hadronic energy
injection at t ∼ 0.1–104 s, which can perturb the neutron–proton ratio or spoil light-element
synthesis [94–97].

In the present model, the dark pions remain in kinetic equilibrium with the SM bath until
well below the MeV scale and share the photon temperature. The heavier state η′ stays in
thermal contact with the pions via η′η′ ↔ ππ annihilations, which remain efficient even
after the 3→ 2 pion processes freeze out. These annihilations reduce the η′ number density
to a negligible level before BBN becomes sensitive to its presence.

As shown in fig. 7, we find that the η′ comoving abundance satisfies Yη′(t ∼ 1s) ∼ 10−11

for the benchmark mπ = 0.3GeV and mη′ = 0.303GeV. The corresponding energy density,
ρη′ = mη′ s Yη′ at T ∼ MeV, is smaller than the Standard Model radiation density by a fac-
tor ρη′/ρrad ∼ 10−3–10−4, far below the O(10%) level that would affect BBN or contribute
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Figure 7: Evolution of pion and η′ abundance as a function of x for two different
values of mη′ . Γη′ is set to 0 to obtain these results.
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appreciably to ∆Neff.
Even if the η′ lifetime exceeds one second, the extremely small abundance prevents any

significant injection of electromagnetic energy. This places the scenario well outside the re-
gions constrained by late-decay analyses such as those in Refs. [94, 95], which conclude that
the fraction of late decaying relic must be smaller than 10−2 for lifetimes smaller than 106

sec, this fraction is tightly constrained to be below 10−11 for lifetimes around 1013 sec. Our
predicted abundances, with lifetime of ∼ 105 sec, and Yη′ ∼ 10−12–10−11 after η′ freeze-out,
lie many orders of magnitude below these limits.

We therefore conclude that the η′ is cosmologically safe throughout the relevant parameter
space. Neither BBN nor ∆Neff constraints pose any restriction provided the thermal history
remains as described above and the η′ interactions continue to deplete its abundance prior to
t ∼ 1s.

5 Generalizations of the SO(NC)-vector model

So far the model discussed was based on two Dirac fermions in the vector representation of
SO(NC). The essential property used was the reality of the fermions representation. Hence
generalisations to arbitrary gauge groups GD and number of Dirac fermions NF are possible.
The latter is straightforward and we kept the arbitrary number NF in the notation where the
generalised statement holds. The case NF = 2 was of special interest since it is minimal in the
sense that for NF = 1 no WZW term exists.26 The intermediate case of a theory built from 3
Majorana forms [1], denoted as NF = 1.5, allows a WZW. However, in this case the neutral
pion is always a flavour singlet, once the dark photon is introduced.

Most of the results may be generalised for a general dark gauge group GD as long as the
fermions transform in a real representation R of GD. However, there are two major differences
to be taken into account when deviating from the SO(NC) vector scenario. First, in order
to guarantee occurrence of chiral symmetry breaking, the theory must lie below conformal
window [52, 98], which strongly depends on the choice of GD and R and in turn constraints
theory realisations.

Secondly, there are additional features related to the anomalously broken axial symmetry.
As discussed in 2.3, the criterion (34) may tell us if we can expect the η′ to be light in an
appropriate t’Hooft large NC limit. If η′ can not be expected to become massless in the large
NC limit, the methods developed in 3.3 can not be applied. This was recently argued also
in [99] in the context of 2 index chiral gauge theories.

Furthermore, the Dynkin index TR ̸= 1 may be different from unity, see tabular 3 in
appendix C. According to equation (27), not only charge conjugation but a Z2TR subgroup
of U(2NF ) matrices, with complex determinants e−ikπ/TR , can be non-anomalous. Here
k = 0, . . . , 2TR − 1. To give a representation of this subgroup, it is more useful to work with a
basis of Majorana fermions, rather than the Nambu-Gorkov formalism.27 Then the matrices

Ck :=







1 0 0 0
0 1NF−1 0 0
0 0 eikπ/TR 0
0 0 0 1NF−1






, (134)

furnish a representation of Z2TR . Note that Ck=TR = Cu given in (26), when changing back
to the Nambu-Gorkov formalism. When multiplying with a suitable flavour transformation

26Although there might be a different portal mechanism [12] which makes this scenario interesting.
27In order to see how the representation of the flavour matrices can be related, see appendix A.
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UF ∈ SU(2NF ) of unit determinant i.e. det
�

UF�= 1, we may obtain

UFCk :=









eikπ/2TR 0 0 0
0 1NF−1 0 0
0 0 eikπ/2TR 0
0 0 0 1NF−1









. (135)

This is the representation of an axial transformation of the first Dirac fermion q(1) in the Ma-
jorana basis adopted. The path integral measure changes as

DqDq
UF Ck7−−−−−−−→ e−i2k(nL−nR)π/2TRDqDq , (136)

with the difference of fermion zero modes (nL − nR) = 2TRQTopo given via the Atiyah-Singer
index theorem [78]. Since QTopo is always an integer, all these transformations leave the path-
integral invariant. The occurrence of these symmetries is consistent with predictions made
with the effective ’t Hooft vertex [100,101].

However, the only transformations satisfying the isotropy condition (12) are given by
Z2 = {Ck=0 = 1, Ck=TR = Cu}. Thus, the discrete axial symmetry is spontaneously broken
by the chiral condensate. For sufficiently low energies, the description of the dark pions is
expected to still hold as derived in section 3.

However, one expects that the spontaneous breakdown of discrete global symmetries leads
to the formation of domain walls [38, Chpt. 23]. Due to the explicit symmetry breaking terms
in the theory, those domain walls will either not form at all or are unstable and eventually
collapse. The latter leads to potential gravitational wave signatures [102]. These potential
signatures are complementary to the ones produced by a first order phase transition as sug-
gested in [103]. Further investigation is beyond the scope of this paper and left for the future.

6 Summary and conclusion

Pseudo-Nambu Goldstone bosons as dark matter candidates emerging from new confining
strongly interacting scenarios present an interesting opportunity to reconcile dark matter relic
density generated by 3 → 2 WZW interactions together with large self-interaction cross sec-
tions generated by 2 → 2 Goldstone scatting processes. Such confining non-Abelian sectors
also present new signatures at colliders. Investigations of these scenarios are thus important
to establish the viability of dark matter compatible parameter space.

Despite their appeal, construction and analysis of such theories remains a challenging task.
It involves identifying local and global symmetries of the theory, their breaking patterns and
construction of underlying effective Lagrangian for efficient perturbative calculations. In this
context, we concentrated on realisation of non-Abelian gauge group accommodating a real
representation with Dirac fermions, which have been studied little so far. In particular we anal-
ysed theories with two Dirac fermions. These theories are interesting due to their topologically
non-trivial coset geometry, rendering the standard construction of the WZW terms inconclu-
sive. We therefore used an alternative construction of WZW terms. Using this construction,
we not only fixed the form of the WZW terms but also the overall normalisation coefficient
which otherwise remains to be fixed via experimental measurements or via anomaly mediated
decays. Finally, we included η′, the flavour singlet meson in the effective Lagrangian.

In order to thermalise the dark sector with the SM bath, we used the well established
Z ′ mediator mechanism. While the stability of the pNGBs can be preserved even after intro-
duction of this mediator, it destabilises the singlet η′ typically resulting in a long lived state.
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The mediator also introduces a mass splitting between neutral and charged Goldstones due to
radiative corrections.The precise value of the mass split remains to be estimated.

We then used this framework for phenomenological study. The aim of this study was
twofold. One was to establish the dark matter relic density and self interaction favoured re-
gions while considering an isolated dark sector. The second aim was to investigate the effect
of mediator mechanism on relic density and self interaction cross sections.

The inherent non-perturbative nature of such dark sector theories presents several inter-
esting challenges in making systematic progress. While usage of chiral effective theories is
well established in treating such sectors in the chirally broken phase, several questions remain
unanswered. Some of these questions are, at what value of NC , NF does the theory enter con-
formal phase, what is the dependence of LECs in the chiral Lagrangian (e.g. masses and decay
constants) on the fundamental parameters of the theory such as NC , NF , mπ/ fπ, at what NC
does the η′ becomes mass degenerate with Goldstones?

While the main part of the article was concerned with an SO(NC) gauge theory with
mass-degenerate vector fermions, we also discussed generalisations for other gauge theories
with real fermion representations finding interesting deviations related to the axial anomaly.
We also discussed the expected symmetry structure and mass-spectrum in the mass non-
degenerate case. Our investigations based purely on usage of effective theories were pre-
liminary steps towards answering these questions for real representations. These conclusions
can now be taken as inputs for further lattice investigations.
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A Generators of SU(2NF)

In figure 8 we provide a convenient choice of generators for the U(2NF ) flavour symmetry,
that is useful for explicit calculations due to its compatibility with all the symmetry breaking
patterns. We state one choice of matrices explicitly for the case of SU(4), while also providing
the general parametrization of the generators in terms complex (anti-)symmetric and hermi-
tian matrices for general SU(2NF ). The matrices given explicitly are normalised such that
Tr
�

TF
N TF

M

	

= 1
2δN M . This choice of basis makes evident the multiplet structures under the

various global symmetries. The dark pions states correspond to the matrices TF
1−9, which split

into matrices that furnish the Adjoint and the complex 2-index symmetric representation of
U(NF )∼= SU(NF )I×U(1)B. The Adjoint representation, parametrized by all NF ×NF hermitian
matrices H1, form the neutral pion multiplet under U(1)D. The generators parametrized by
the complex, traceful, symmetric matrix S relate to the two multiplets of all the charged pions
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and their anti-particles with respect to U(1)D. The generator T13 = Q, corresponds to the
charge assignment matrix and is the generator of U(1)B. The generators parametrized by the
hermitian NF ×NF matrices H2 correspond to the global isospin symmetry SU(NF )I . Simulta-
neously, since Q commutes with the generators of SU(NF )I , they can be used to parameterize
the neutral vector meson flavour multiplet, substituting the generalization to the ω-meson in
QCD. These matrices stated in figure 8 furnish the fundamental representation of su(2NF ),
with the matrix components given with respect to the Nambu-Gorkov basis (6). Instead, one
could have used the Majorana basis q( j)M for the fermions, which lead to a different representa-
tion TM

N of the flavour generators. Both representations are related via a basis transformation

TF
2 =

1p
8







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






TF

1 =
1p
8







1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1






TF

3 =
1p
8







0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0
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


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1
2
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0 0 1 0
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
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Figure 8: Generators of U(2NF ). On the left we have explicit, properly normalised
generators for SU(4). To the right their general structure is given for arbitrary values
of NF . The matrices H1,2 denote hermitian matrices. The matrix S = SR+ iSI denotes
a complex, traceful, symmetric matrix. The matrix A= AR + iAI denotes a complex,
anti-symmetric matrix. All matrices are defined with respect to the Nambu-Gorkov
basis (6).
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V on flavour space i.e. TF
N = V TM

N V †. The matrix V is given by

V = Ṽ ⊗ 1NF
, with Ṽ :=

1
p

2

�

1 i
1 −i

�

, (A.1)

and establishes the connection between the Weyl fermions ψ(k) of the Nambu-Gorkov formu-
lation and the Majorana basis q(k)M (no summation convention)

ψ(k) =
1+ γ5

2

�

V k
k q(k)M + V k

k+N q(k+N)
M

�

,

ψ(k+N) =
1+ γ5

2

�

V k+N
k q(k)M + V k+N

k+N q(k+N)
M

�

.

In the representation TM
N the matrices TM

10−15 become antisymmetric and hence span a so(4)
Lie-subalgebra of su(4). The matrices TM

1−9 are symmetric and span the 2-index symmetric
representation of SO(4), which is irreducible and substitutes the pion multiplet in the isolated
case. These statements generalize for arbitrary NF . It is interesting to note that the invariant
tensor ω transforms as a covariant rank two tensor under the change of basis i.e. V⊤ωV = 1.
Hence, the Lie-algebra automorphism 23 with respect to the Majorana fermions is given by
σ̂(A) = −A⊤, consistent with the anti-symmetric matrices substituting the unbroken genera-
tors. All the generators in figure 8 are hermitian. This requires for example the associated
dark pion fields to be real valued. Thus, they can only describe neutral fields or fields that
have no definite charge under the dark photon. Since not all the generators commute with the
charge assignment matrix Q, some dark pion states must be charged under U(1)D. This espe-
cially holds for the matrices parameterized by a symmetric or anti-symmetric complex matrix.
Let us see how we obtain generators that are associated with particles of definite charge. In
the following we choose the generators such that for each generator TF [S], parameterized
by a complex, symmetric matrix S, there exists another generator TF [iS], parameterized by
iS. This is always possible and for example satisfied by the matrices TF

4−9. Then the linear
combinations T̃F = TF [S]± iTF [iS] give matrices for which

�

Q, T̃F�∝ T̃F holds. Note that
the new matrices T̃F are not hermitian anymore. Hence, the associate pion fields associated
with these matrices must be complex and from the adjoint action of Q on the matrices T̃F one
can read of the U(1)D charge. The associated dark pion state thus has a definite charge under
U(1)D. The same procedure is applicable to generators parameterized by anti-symmetric ma-
trices A, which relate to the charge eigenstates of the vector mesons. If one wants to consider
an explicit mass splitting of the fermions, yet another basis of fermions, and thus another rep-
resentation of the SU(2NF ) generators, is best suited. For the mass split case it is advantageous
to organise the degrees of freedom in Ψ not by collecting first all left-handed Weyl-fermions
related to left-handed dark quarks and then anti-quarks, but to collect pairwise the degrees
of freedom of each Dirac fermion. The Nambu-Gorkov parametrization (6) of a Dirac spinor
hence becomes

q( j) =

�

ψ(2 j−1)

ESψ(2 j)∗

�

. (A.2)

This means that the new basis TP
N is related to the one given in figure 8 via TP

N = PTF
N P† with

P a permutation matrix. All entries of P are zero, except for

P j
2 j−1 = 1 , P j+NF

2 j = 1 ,

with j = 1, . . . , NF . In the representation TP
N , one explicitly checks that in the case of NF = 2

the only generators, satisfying the invariance condition (12), are given by TF
10 and TF

13. It also
becomes obvious, in this basis, that these are the generators of the group SO(2)×SO(2). The
Z2 extension of negative determinant matrices from SO(2) to O(2) are not anomalous and
also satisfy (12). Hence, the breaking pattern discussing in section 2 is established.
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Table 2: Homotopy groups of SO(4) and SU(4) [106, Appendix A, Table 6.VII].

π3 π4 π5

SO(4) Z⊕Z Z2 ⊕Z2 Z2 ⊕Z2

SU(4) Z 0 Z

B Fourth homotopy group of SU(4)/SO(4)

Wittens construction of the Wess-Zumino term in QCD [3], as well as several generalizations
of it [29,30,72] have the preliminary assumption that the forth homotopy group28 π4 (G/H)
of the corresponding coset space is trivial. We will show that in the case of our theory, where
G/H = SU(4)/SO(4), this preliminary assumption is violated. Hence, the geometrical con-
struction by Witten is not applicable in this case and the classifications based on it are inconclu-
sive [73]. Unfortunately, SU(4)/SO(4) is out of the range of Bott’s periodicity theorem [105],
which can be used to prove the trivially of the fourth homotopy group of SU(2k)/SO(2k) for
k > 2. However, the homotopy groups of SO(4) and SU(4) are known and summarised in
table 2. For the case at hand, SO(4) is an embedded Lie-subgroup of SU(4). Results from dif-
ferential geometry and Lie-theory [107] tell us that SU(4)/SO(4) then has a uniquely defined
manifold structure and the projection map Π : SU(4)→ SU(4)/SO(4) defines a fiber bundle

SO(4)→ SU(4)
Π
−→ SU(4)/SO(4). In Algebraic Topology [108] such a fibration gives rise to a

long exact sequence,

→ π4 (SU(4))
h1−→ π4 (SU(4)/SO(4))

h2−→ π3 (SO(4))
h3−→ π3 (SU(4)) →

→ 0
h1−→ ?

h2−→ Z⊕Z
h3−→ Z →

,

of group homomorphism between the homotopy groups. From this sequence we can extract
a lot of information. First we observe that {0} = h1({0}) = Img h1 = Ker h2. This lets us
conclude that h2 is injective. Henceforth, π4 (SU(4)/SO(4)) ∼= Img h2 = Ker h3. But h3 is
a group homomorphism mapping the rank two group Z ⊕ Z on the smaller rank one group
Z. This means that Ker h3 cannot be trivial and conclusively π4 (SU(4)/SO(4)) is non-trivial.
This answers a footnote remark in [72], concerning the applicability of their methods to this
coset space: They never seem to be applicable, independent of how SO(4) sits inside SU(4).

C Topological charge, instantons and Dynkin index

Instantons, being gauge field configurations Aµ of finite action that satisfy the classical equation
of motion, can be classified by the fact that at the “boundary‘” of ∂M ∼= S3 they may be
characterised by the fact that they approach pure gauge field configuration.

A−−−→
r→∞

U−1( x̂)dU( x̂) +O
�

r−1
�

. (C.1)

Here x̂ is the unit vector, specifying points on S3 and U : S3 → R(G). Again, R denotes the
representation of the gauge-group G, in which we put the matrix valued 1-form A = Aµdxµ.
Using (C.1) and fixing a point on the sphere that must always be mapped to the neutral element
of the group, one may establish a one-to-one correspondence between a distinct instanton

28A good explanation of what homotopy groups are can be found in [104]. Also, don’t confuse the symbol of
the homotopy group with the pion field. These are completely different things.
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configuration and the third homotpy group of the gauge group π3(G) [109]. For the classical
groups π3(G) = Z, allowing to assign a unique integer ν, called the “instanton number” or
“topological charge”, to each configuration. Following [38, Chpt. 23.4], this number is given
by

QTopo[A] = −
1

64π2N

∫

M
TrR

�

FR ∧ FR	 , (C.2)

where FR = dA+A2 is the matrix valued field-strength 2-form in some representation R. The
trace contracts all indices related to the representation space of R. The quantity QTopo[A]
assigns a unique real number to each instanton. However, the normalisation N must still be
chosen such that QTopo[A] gives an integer and that the absolute value of the smallest possible
integer is unity. This choice depends on the representation R and the chosen basis of the Lie-
algebra g. In order to obtain the correct normalisation for the classical groups, one may use a
result, first obtained by Bott [110], that any map U : S3 → G may be continuously deformed
to a map Ũ : S3→ Std(SU(2)) ⊂ G, where Std : SU(2)→ G denotes a standard embedding of
SU(2) into G. Since the integral (C.2) depends only on the equivalence class [U]π3(G) all the
information on the normalisation N is given by the standard embedding and the normalisation
of the correct su(2) generators within g. The standard embedding Std : SU(2) → G may be
defined for the classical groups [111] as follows:

SU(N) : Std(SU(2)) is corresponds to the SU(2) subgroup of SU(N) acting only
N ≥ 3 on the first two components in the defining representation.

Sp(2N) : Std(SU(2)) corresponds to the Sp(2)∼= SU(2) subgroup of Sp(2N),
N ≥ 2 acting only on the first two components in the defining representation.

SO(N) : Using that SO(4)∼= SU(2)× SU(2), Std(SU(2)) corresponds to either
N ≥ 5 SU(2) subgroup in the SO(4) subgroup of SO(N), acting on the first

four components in the defining vector representation.

Following [38, Chpt. 23.4], the normalisation is given determined by the following relations
�

TR
α , TR

β

�

=
p

λ εαβγδ
γγ′ TR

γ′ , (C.3)

t rR
¦

TR
α TR

β

©

= λN δαβ , (C.4)

where λ > 0 is some free parameter, determining the normalisation of the generator basis and
εαβγ is the Levi-Civita symbol. The first relation (C.3) is independent of the representation
and metric on the Lie-algebra. Hence, for explicit calculations, we may choose a basis such
that λ = 1. In doing so, we obtain the normalisation N = TR to be the Dynkin index of
the generators in the representation R. Under the assumptions of always adopting such a
properly normalised basis, we obtain a formula for the topological charge, agnostic to the
(matter) representation R.

QTopo = g2
D

εµνρσδαβ

64π2

∫

dx4AαµνA
β
ρσ . (C.5)

Note that for FR we used a convention such that the coupling constant gD is absorb within
the gauge-connection 1-form i.e. that the Yang-Mills Lagrangian is normalised as in (1).

FR = −i gD

Aαµν
2
(dxµ ∧ dxν)⊗ TR

α . (C.6)

In order to calculate the Dynkin index TR in an arbitrary representation, one has to fix a
metric κ on g. The common choice adopted in physics is given by the trace of the generators
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Table 3: Dimension, Casimir number and Dynkin index of various representations
R of the classical matrix groups [52, 112]. TR denotes the Dynkin index, cR de-
notes the quadratic Casimir number. In the description of the representation “(anti-
)symmetric” always refers to the 2-index representations.

G R dimR TR cR complex or real

SU(N) fundamental N 1
2

N2−1
2N complex

SU(N) adjoint N2 − 1 N N real

SO(N) vector N 1 N−1
2 real

SO(N) adjoint N(N−1)
2 N − 2 N − 2 real

SO(N) symmetric N(N+1)
2 − 1 N + 2 N(N−1)(N+2)

N(N+1)−2 real

Sp(2N) fundamental 2N 1
2

2N+1
4 pseudo real

Sp(2N) adjoint 2N2 + N N + 1 N + 1 real

Sp(2N) anti-symmetric N(2N − 1)− 1 N − 1 N real

represented in the adjoined representation normalised by a constant cadj.

καβ =
1

cadj.
Tr
¦

T adj
α T adj

β

©

. (C.7)

By definition, cadj determines the quadratic Casmir number of the adjoint representation. All
the relevant group invariants for this work, calculated within the conventions described above,
are summarised in table 3.

D Technical details on the kinematic perturbative expansion

In what follows we replace the pNGb fields ξ→ τξ, to also make contact with the expressions
used in section 3.2. The parameter can be used to count the number of pNGbs ξ in the vertex
and may be set to 1 at the end of the calculation. We use the quantity eD to count how
many fields Bµ are in the vertices and adopt a language of differential forms, which might
be translated back easily. For example the exterior derivative is given by d := ∂µdxµ and
the connection 1-form B = Bµdxµ. The perturbative kinematic expansion can be performed
most conveniently by taking into account the commutator properties (22) for the symmetric
splitting of gF and the formulas

exp (X )Y exp (−X ) =
∞
∑

k=0

[X , Y ]k
k!

, (D.1)

exp (X )dexp (−X ) = −
∞
∑

k=0

[X , dX ]k
(k+ 1)!

. (D.2)
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Here [X , Y ]k := [X , [X , Y ]k−1] is recursively defined and [X , Y ]0 := Y . This allows to obtain
compact expansions of the projected quantities like Ω̂τ,h = Ωτ,h + B̂τ,h and Ω̂τ,k = Ωτ,k + B̂τ,k.

Ωτ,h = −
τ2

2
[ξ, dξ]−

τ4

24
[ξ, dξ]3 +O(τ6) , (D.3)

Ωτ,k = −τdξ−
τ3

6
[ξ, dξ]2 +O(τ5) , (D.4)

B̂τ,h = B +
τ2

2
[ξ, B]2 +

τ4

24
[ξ, B]4 +O(τ6eD) , (D.5)

B̂τ,k = τ [ξ, B] +
τ3

6
[ξ, B]3 +O(τ5eD) . (D.6)

The convenience lies in the fact that the perturbative expansion is formulated solely in terms
of commutators and all coefficients can be expressed easily in terms of the structure constants
of the Lie-algebra gF . Relations like

Tr{X [Y, Z]}= −Tr{Z [Y, X ]} , (D.7)

Tr{[X , Y ] [X , Z]}= −Tr{Y [X , Z]2} , (D.8)

Tr{[X , Y ]n+1 [X , Z]m+1}= −Tr{[X , Y ]n [X , Z]m+2} , (D.9)

become handy in explicit calculations. Another important quantity is Fτ = dΩ̂τ + Ω̂2
τ. Using

dΩ = −Ω2 we can proof (D.10), relating Fτ with FB = dB + B2 and use it to perform the
perturbative expansion.

Fτ = γ
†FBγ= exp (τξ) FB exp (−τξ) , (D.10)

Fτ,h = FB +
τ2

2
[ξ, FB]2 +O(τ4eD) , (D.11)

Fτ,k = τ [ξ, FB] +
τ3

6
[ξ, FB]3 +O(τ5eD) . (D.12)

E Interpolating operators for composite states

We discuss how to construct all the interpolating operators build from two quark fields for
scalar and vector states. Alternative constructions of such operators for (pseudo-)real theories
can be found in [113]. We list explicit expressions for NF = 2 in table 4, which we could not
find in the literature.

Scalar operators

There are 2× (2NF )2 bilinear operator

ψ(k)⊤E∗S∗ψ(l) , and ψ(k)†ESψ(l)∗ , (E.1)

of which only 2NF (2NF + 1) are linearly independent due to the fact that the pairings are
symmetric.

ψ(k)⊤E∗S∗ψ(l) =ψ(l)⊤E∗S∗ψ(k) . (E.2)

Under spatial parity (21), these operators transform according to

�

ψ(k)⊤E∗S∗ψ(l)
�

(t, x⃗)
P
7−→ −δkn′ωn′nδ

lm′ωm′m

�

ψ(n)†ESψ(m)∗
�

(t,− x⃗) . (E.3)
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In order to construct 2 × NF (2NF + 1) linearly independent operators, that transform either
as proper scalar or pseudo-scalar under parity, one may take linear combinations with the
coefficients Okl =ωkn

�

TF
a

	n
l , where TF

a are the broken generators of u(2NF ). This gives

OS
a = Ψ

⊤E∗S∗ωTF
a Ψ −Ψ

†ESω∗TF∗
a Ψ

∗ , (E.4)

OPS
a = Ψ

⊤E∗S∗ωTF
a Ψ +Ψ

†ESω∗TF∗
a Ψ

∗ . (E.5)

For practical applications, like lattice calculations, it is useful to express these operators via
Dirac fermions. For this one might either follow the strategy in appendix F of [113] or use the
relations

−q(i)Γ(∓)q
( j) =ψ(i+NF )⊤E∗S∗ψ( j) ∓ψ(i)†ESψ( j+NF )∗ , (E.6)

−q(i)Γ(∓)q
( j)
C =ψ

(i+NF )⊤E∗S∗ψ( j+NF ) ∓ψ(i)†ESψ( j)∗ , (E.7)

−q(i)C Γ(∓)q
( j) =ψ(i)⊤E∗S∗ψ( j) ∓ψ(i+NF )†ESψ( j+NF )∗ , (E.8)

with Γ(+) = γ5 and Γ(−) = 1. For these one can easily see that for example

q(i)Γ(∓)q
( j)
C = q( j)Γ(∓)q

(i)
C .

Vector operators

There are (2NF )2 linearly independent operators

ψ(k)†σµψ(l) = −
�

ψ(l)†σµψ(k)
�∗

, (E.9)

which transform as vectors under Lorentz transformations. Due to (2.1.4), we know that the
linear combinations

OV
A = Ψ

†σµTF
A Ψ , (E.10)

OAV
a = Ψ

†σµTF
a Ψ , (E.11)

transform as proper vectors or as axial vectors, depending on whether TF
a is a broken or

unbroken generator of u(2NF ). In order to relate them to a basis expressed in terms of Dirac
fermions, one may use

q(i)Γµ(∓)q
( j) =ψ(i)†σµψ( j) ∓ψ( j+NF )†σµψ(i+NF ) , (E.12)

q(i)Γµ(∓)q
( j)
C =ψ

(i)†σµψ( j+NF ) ∓ψ( j)†σµψ(i+NF ) , (E.13)

q(i)C Γ
µ

(∓)q
( j) =ψ(i+NF )†σµψ( j) ∓ψ( j+NF )†σµψ(i) . (E.14)

Here Γµ(−) = γ
µ and Γµ(+) = γ

µγ5. Alternatively, one may use the strategy presented in appendix
F of [113].

F Connection to SU(NC)-QCD

The standard literature on SU(NC) gauge theories typically uses a different but confusingly
similar formalism for the description of the low energy effective description. Since we used
the general language of Bando et al. [55], the special syntax of SU(NC) QCD must be con-
tained. We would like to explicitly demonstrate how this comes about, since this is useful to
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Table 4: Summary of all interpolating operators for the composite states relevant for
DM in the IR. JP denotes their angular momentum quantum number, while B de-
notes their dark Baryon number charge or equivalently their charge under the dark
photon. The latter can only be assigned for the charge eigenbasis. Solid vertical lines
separate multiplets under SO(2NF ), dashed line multiplets under SU(NF )× U(1)B.
We borrowed the notation from QCD e.g. here u := q(1) and d := q(2). The construc-
tion of the matrices T̃F

a has been explained in appendix A.

Ψ⊤E∗S∗ωTF
a Ψ + h.c. JP Ψ⊤E∗S∗ωT̃F

a Ψ + h.c. B

π1
1p
2

�

dγ5d − uγ5u
�

0− π̃1
1p
2

�

dγ5d − uγ5u
�

0

π2
−1p

2

�

uγ5d + dγ5u
�

0− π̃2
−1p

2

�

uγ5d + dγ5u
�

0

π3
ip
2

�

uγ5d − dγ5u
�

0− π̃3
ip
2

�

uγ5d − dγ5u
�

0

π4
−1
2 (uγ5uC + uCγ5u) 0− π̃4

−1p
2

uγ5uC -1

π5
−1p

2
(uγ5dC + uCγ5d) 0− π̃5 −uγ5dC -1

π6
−1
2

�

dγ5dC + dCγ5d
�

0− π̃6
−1p

2
dγ5dC -1

π7
i
2 (uCγ5u− uγ5uC) 0− π̃7

−1p
2

uCγ5u 1

π8
ip
2
(uCγ5d − uγ5dC) 0− π̃8 −uCγ5d 1

π9
i
2

�

dCγ5d − dγ5dC
�

0− π̃9
−1p

2
dCγ5d 1

η′ 1p
2

�

dγ5d + uγ5u
�

0− η′ 1p
2

�

dγ5d + uγ5u
�

0

Ψ†σµTF
a Ψ JP Ψ†σµ T̃F

a Ψ B

ρ10
1p
8

�

uγµu− dγµd
�

1− ρ̃10
1p
8

�

uγµu− dγµd
�

0

ρ11
1p
8

�

uγµd + dγµu
�

1− ρ̃11
1p
8

�

uγµd + dγµu
�

0

ρ12
ip
8

�

uγµd − dγµu
�

1− ρ̃12
ip
8

�

uγµd − dγµu
�

0

ω13
1p
8

�

uγµu+ dγµd
�

1− ω̃13
1p
8

�

uγµu+ dγµd
�

0

ω14
1p
8
(uγµdC + uCγ

µd) 1− ω̃14
1
2uCγ

µd 1

ω15
ip
8
(uγµdC − uCγ

µd) 1− ω̃15
1
2uγµdC -1

compare results with the existing literature. In the SU(NC) case, the generators of the chiral
SU(NF )L × SU(NF )R have the following structure

TF
n =

�

h1 + h2 0
0 −(h1 − h2)⊤

�

, where

�

h1 = 0 ⇒ T F
N ∈ k ,

h2 = 0 ⇒ T F
N ∈ h ,

(F.1)

if we work in a basis of only left-handed fermions and anti-fermions, analog to the Nambu-
Gorkov formalism. The invariant tensor ω in this basis is given by (8). Then one may decom-
pose all the building blocks of the HLS approach as follows.

γ=

�

γL 0
0 γ∗R

�

, Ω=

�

L 0
0 −R⊤

�

, Σ=

�

0 U
U⊤ 0

�

, B =

�

L 0
0 −R⊤

�

,

B̂ =

�

L̂ 0
0 −R̂⊤

�

, V =

�

V 0
0 −V⊤

�

, F̂B =

�

F̂L 0
0 −F̂⊤R

�

, FV =

�

FV 0
0 −F⊤V

�

,
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where γ ∈ SU(NF )L × SU(NF )R is the coset representative and L,R are the gauge connection
1-forms of SU(NF )L and SU(NF )R respectively. The HLS gauge fields are collected in V .

L = γ†
LdγL , R= γ†

RdγR , U = γLγ
†
R , FV = dV +V2 ,

L̂= γ†
LLγL , R̂= γ†

RRγR , F̂L = γ
†
L(dL+L2)γL , F̂R = γ

†
R(dR+R2)γR .

Note that γ transforms according to table 1, while U transforms as U 7→ ULUU†
R, with

UL ∈ SU(NF )L and UR ∈ SU(NF )R. The quantity U is the one used to construct the chiral
Lagrangian in the standard literature like [42, 54]. The HLS gauge fixing condition (38),
translates into

γL = e−i πa
fπ

T L
a eiσa T L

a , and γR = ei πa
fπ

TR
a eiσa TR

a , (F.2)

with T L/R
a ∈ su(NF )L/R represented as hermitian NF×NF matrices. Some simple manipulations

on the Lagrangian (43) allow to obtain back the results from SU(NC)-QCD as for example
given in [54]. We demonstrate this explicitly for the homogeneous part (91)-(94) of the WZW
action. By application of the automorphism σ̂, we may decompose Ω+ B̂−V = (Ω̂h−V )+ Ω̂k,
where

Ω̂h − V =

� 1
2(α̂L + α̂R) 0

0 −1
2(α̂L + α̂R)⊤

�

, Ω̂k =

� 1
2(α̂L − α̂R) 0

0 1
2(α̂L − α̂R)⊤

�

,

and

α̂L = L +L−V , (F.3)

α̂R = R+R−V . (F.4)

For the homogeneous part of the WZW one may verify that

Tr
�

(Ω̂h − V )Ω̂3
k + (Ω̂h − V )3Ω̂k

	

=
1
2

Tr
�

α̂Rα̂
3
L − α̂Lα̂

3
R

	

, (F.5)

Tr
�

(Ω̂h − V )Ω̂3
k − (Ω̂h − V )3Ω̂k

	

=
1
2

Tr{α̂Lα̂Rα̂Lα̂R} , (F.6)

Tr
�

FV (Ω̂h − V )Ω̂k

	

=
1
2

Tr{FV(α̂Rα̂L − α̂Lα̂R)} , (F.7)

Tr
�

F̂B(Ω̂h − V )Ω̂k

	

=
1
4

Tr
�

(F̂L + F̂R)(α̂Rα̂L − α̂Lα̂R)
	

. (F.8)

These results are in agreement with [54].

G Conventions on spacetime signature, indices and γ-matrices

We use the spacetime metric gµν of signature (+−−−). Otherwise then explicitly noted, the
position of the indices matter and the transformation behaviour of upper and lower indices in
general differs.29 The Einstein summation convention is only assumed for pairs of an upper
and a lower index. The Pauli matrices we define

σ0 =

�

1 0
0 1

�

, σ1 =

�

0 1
1 0

�

, σ2 =

�

0 −i
i 0

�

, σ3 =

�

1 0
0 −1

�

. (G.1)

Further we define σµ = gµνσ
ν and spacetime indices are pulled with the metric σµ = gµµσµ.

For the γ-matrices we can choose a special basis as the chiral basis given by

γµ =

�

0 σµ

σµ 0

�

, (G.2)

29Typically, they are inverse to each other so that contracted quantities are invariant.
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where again γµ = gµνγ
ν. The charge conjugation of a Dirac fermion q is defined as C q∗ with

the charge conjugation matrix C = iγ2 = −iγ2. The chiral element γ5 = γ5 = iγ0γ1γ2γ3 is
defined in the standard way. In the chiral basis both are represented as

C =

�

0 −iσ2

iσ2 0

�

, γ5 =

�

1 0
0 −1

�

. (G.3)

Typically µ,ν,ρ,σ denote spacetime indices. The indices α,β ,γ are related to the basis of the
colour algebra gC i.e. colour-gauge-indices. The indices N , M , K relate to the flavour algebra
gF = hF + k, while a, b, c indicate broken generators in k and A, B, C correspond to unbroken
generators in hF . The indices k, l, m, n count the basis elements of the representation space of
the fundamental representation of gF i.e. flavour indices.
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