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Abstract

We introduce the multispecies totally asymmetric simple exclusion process (mTASEP)
with long-range swap, a new interacting particle system combining the backward-push
rule with the forward-jump rule. Although governed by local dynamics, the model in-
duces effective long-range particle exchanges. We establish its integrability by proving
two-particle reducibility and showing that the associated scattering matrix satisfies the
Yang-Baxter equation. In addition, we derive explicit contour integral formulas for tran-
sition probabilities. These results position the long-range swap model as a novel exactly
solvable multispecies process, characterized by distinctive algebraic features and open-
ing new directions for further study in integrable probability and statistical mechanics.
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1 Introduction

Interacting particle systems have long served as fundamental models in probability theory
and statistical mechanics, providing both exactly solvable examples and rich universality phe-
nomena. Among them, the totally asymmetric simple exclusion process (TASEP) occupies a
central role, being one of the simplest nontrivial stochastic models of transport with broad con-
nections to combinatorics, integrable systems, and the Kardar-Parisi-Zhang (KPZ) universality
class [5, 7, 9, 10, 19, 23, 25]. Over the past decades, various generalizations have been pro-
posed to capture more complex interaction rules, including multispecies extensions [12, 27],
inhomogeneous jumping rates [4, 28], particle/species-dependent rates [16, 22] and families
with one- or two-parameter deformations [2,3,21]. These variants not only broaden the fam-
ily of integrable stochastic models but also reveal novel algebraic structures and probabilistic
behaviors. In this work, we introduce and analyze a new integrable multispecies model with
long-range swap dynamics, and place it within the broader landscape of TASEP-type and drop-
push-type dynamics [24].

We adopt the convention used in [15–18] to describe the state of the multispecies interact-
ing particle system on Z with the exclusion rule. A state of the n-particle system is represented
by a pair (X ,π) = (x1, . . . , xn,π1 · · ·πn), where X = (x1, . . . , xn) ∈ Zn denotes the positions of
the particles, ordered such that x1 < · · · < xn. Thus, x i is the position of the ith leftmost par-
ticle. The sequence π= π1π2 · · ·πn is a word of length n with entries in {1, . . . , N}, indicating
that πi denotes the species of the ith leftmost particle.

In the classical multispecies totally asymmetric simple exclusion process (mTASEP), parti-
cles evolve in continuous time. Each particle at x waits an exponential time with rate 1 before
attempting a rightward move to x + 1. If the target site is vacant, the particle occupies it. If
the site is occupied by another particle, the interaction depends on their species labels. When
a particle of species i attempts to move into a site occupied by species j, the move succeeds
with an exchange of positions if i > j, while it is suppressed if i ≤ j.

2 1 1 2

1 2 1 2

1 1 1 1

Figure 1: Illustration of the mTASEP dynamics. In the second and third figures, the
configuration remains unchanged.
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1 2 1 2 1 2 1 2
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Figure 2: Hidden-state representation of the mTASEP dynamics shown in Figure 1.
Dashed arrows denote an instantaneous transition.

The notion of hidden states, introduced in [18], provides a convenient reformulation of the
mTASEP dynamics. A hidden state is a transient configuration in which a site momentarily
accommodates two particles side by side before immediately transitioning to another state. If
site x holds particles of species i (left) and j (right), we denote this hidden state by (x , x , i j).
Since hidden states vanish instantaneously, they are not in the Markov state space. Using
this perspective, the dynamics of the mTASEP can be described as follows: when a particle
of species i at site x − 1 attempts to move onto a particle of species j at site x , the particle
i jumps to site x and occupies the left position there, creating the hidden state (x , x , i j). A
position adjustment then occurs: the particle of species min(i, j) remains on the left at x , and
then it immediately jumps back to site x −1. This hidden state formalism enables a fully local
description of the update rules and greatly facilitates algebraic treatment of the model.

From the particle’s perspective, the mTASEP rules may be summarized as follows: a
stronger particle entering a site occupied by a weaker one displaces the weaker one back-
ward, while a weaker particle entering a site occupied by a stronger particle jumps back to the
original site. This pair of interactions, “backward push” and “backward jump”, characterizes
the mTASEP.

A different variant of the multispecies model, the long-range push model, introduced in
[17], is defined by the rule that a particle of species i jumps to the nearest site to its right
that is occupied by a weaker particle j < i (with j = 0 denoting a vacancy), whereupon i
pushes j forward. (Its single-species version is known as the drop-push model [24].) The
displaced particle j then follows the same rule, which can trigger a cascade of displacements.
Interpreted in terms of hidden states, this mechanism may be reformulated as a sequence of
local updates: if a particle of species i at site x −1 attempts to move onto a particle of species
j at site x , then i jumps to site x and occupies the left position, forming the hidden state
(x , x , i j). A position adjustment then occurs: the particle of species min(i, j) is placed on the
right at x and immediately jumps forward to x +1. If x +1 is already occupied, the same rule
applies recursively, producing a chain of displacements. In this model, therefore, a stronger
particle entering a site occupied by a weaker particle pushes the weaker one forward, while a
weaker particle entering a site occupied by a stronger particle jumps forward over the stronger
particle. This pairing of “forward push” and “forward jump” yields another exactly solvable
interacting particle system.

These two established dynamics naturally raise the question of what happens when the
interaction rules are combined in a hybrid fashion. For example, one may consider a system
where stronger particles push weaker ones backward while weaker particles jump forward
over stronger ones, or, conversely, a system where stronger particles push weaker ones forward
while weaker ones jump backward when they encounter stronger ones. As we demonstrate,
the first hybrid leads precisely to the long-range swap model studied in this paper, which turns
out to be integrable and structurally rich, whereas the second fails to yield a consistent multi-
particle dynamics and is therefore non-integrable.
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1 1 1 1 1 1 1 1

2 1 2 1 2 1 2 1
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Figure 3: Illustration of the dynamics of the long-range push model.

Integrability of an interacting particle system in one dimension requires two key ingre-
dients. First, the system must satisfy two-particle reducibility: the master equation for any
configuration can be reduced to the evolution equation not involving the particle interaction,
supplemented by boundary conditions involving only two-particle interactions. For our model,
verifying this reducibility is significantly more intricate than in the mTASEP or in the long-range
push model [15,17]. Second, the associated scattering matrix must obey the Yang-Baxter rela-
tion, ensuring the consistency of multi-particle scattering and thus the solvability of the model
via the Bethe ansatz.

One of the motivations for introducing the present model is to explore whether effective
long-range interactions, even when generated by purely local update rules, can lead to new
large-scale dynamical behavior beyond that of standard exclusion processes. This question
has recently attracted attention in the context of integrable driven lattice gases. For instance,
Karevski and Schütz [11] showed that the TASEP with local moves but effective long-range
interactions exhibits conformal invariance at high currents and undergoes a dynamical phase
transition. In a related direction, Lazarescu [13] argued that long-range effects in bulk-driven
exclusion processes can lead to generic dynamical phase transitions in current fluctuations.
The long-range swap dynamics introduced here provides a new exactly solvable setting in
which such questions can be addressed rigorously. While the present work focuses on es-
tablishing integrability and deriving exact transition probabilities, it opens the door to future
investigations of large-time asymptotics and possible departures from KPZ-type behavior in-
duced by effective long-range interactions.

The remainder of the paper is organized as follows. In Section 2 we define the model pre-
cisely and present its nearest-neighbor formulation, which realizes long-range swaps through
local moves. Section 3 establishes the model’s integrability, proving two-particle reducibility
and Yang-Baxter consistency, and derives contour-integral formulas for the transition proba-
bilities. Section 4 provides a discussion of structural features, followed by a summary and
outlook in Section 5.

2 Definition of the model

2.1 Notations

We follow the conventions of [15, 17, 18]. For an initial configuration (Y,ν) and terminal
configuration (X ,π) after time t, let

P(Y,ν)(X ,π; t) ,

denote the transition probability. We write P(t) for the infinite matrix whose columns are
indexed by initial states (Y,ν) and rows by terminal states (X ,π) at time t. The ((X ,π), (Y,ν))-
entry of P(t) is exactly P(Y,ν)(X ,π; t).
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For fixed X and Y , let PY (X ; t) be the N n × N n submatrix of P(t) obtained by restricting
to rows indexed (X ,π) and columns indexed (Y,ν), with π,ν ranging over all words of length
n with letters in {1, . . . , N}. Unless otherwise specified, the rows and columns of all N n × N n

matrices in this paper are ordered lexicographically, from 11 · · ·1 to NN · · ·N .
When the initial state (Y,ν) is clear from context or immaterial to the discussion, we ab-

breviate PY (X ; t) as P(X ; t), and similarly P(Y,ν)(X ,π; t) as Pν(X ,π; t) or simply P(X ,π; t). For
such matrices, derivatives are taken entrywise

�

d
d t

P(X ; t)
�

π,ν
:=

d
d t

Pν(X ,π; t) .

2.2 Definition of the dynamics

Definition 2.1. Consider a continuous-time interacting particle system on Z with species la-
bels in {1, . . . , N}. Each particle of species i waits an exponential time with rate 1, and then
exchanges positions with the nearest weaker particle j < i to its right (with the convention that
an empty site is treated as a particle of species 0). We call this process the multispecies totally
asymmetric simple exclusion process with long-range swap (abbreviated as mTASEP with
long-range swap, or simply the long-range swap model).

Although phrased in terms of long-range exchanges, this dynamics can be realized entirely
through local nearest-neighbor updates. Indeed, combining the backward push rule (from the
mTASEP) with the forward jump rule (from the long-range push model) allows long-range
swaps to be decomposed into consecutive local interactions..

Here are the descriptions of the two local rules with illustrations through hidden states for
the mTASEP with long-range swap:

• Backward push by a stronger particle: If a particle of species i jumps into a site occu-
pied by a weaker species j with j < i, then the weaker particle is displaced back to the
site vacated by i, producing an exchange of positions.

• Forward jump by a weaker particle: If a particle of species i jumps into a site occupied
by a stronger species j with j ≥ i, then i immediately skips over j to the next site in the
same direction. (If a weaker particle is pushed leftward to a site occupied by a stronger
particle, the same “jump-over” rule applies to the left as well).

2 1 2 1 1 2 1 2

Figure 4: Particle of species 2 pushes particle of species 1 backward.

1 2 1 2 2 1 2 1

1 1 1 1 1 1 1 1

Figure 5: Particle of species i jumps over particle of species j ≥ i to the next site in
the direction of motion.
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Example 2.1. Suppose that the particle of species 2 jumps in the state (x , x+1, x+2, 231). By
Definition 2.1, the particle of species 2 performs a long-range swap with the particle of species
1,

(x , x + 1, x + 2,231)→ (x , x + 1, x + 2, 132) .

This transition can be decomposed into a sequence of local nearest-neighbor updates as fol-
lows:

(1) The particle of species 2 first jumps forward over the particle of species 3 at x + 1,
reaching x + 2.

2 3 1 2 3 1 3 2 1 3 2 1

Figure 6: Illustration of transition (x , x + 1, x + 2, 231)→ (x + 1, x + 2, x + 2,321).

(2) There it meets the particle of species 1, which is pushed backward to x + 1.

3 2 1 3 2 1 3 1 2 3 1 2

Figure 7: Illustration of transition (x+1, x+1, x+2, 321)→ (x+1, x+1, x+2, 312).

(3) The displaced particle of species 1 then encounters the particle of species 3 at x +1 and
jumps over it to x .

3 1 2 3 1 2 1 3 2 1 3 2

Figure 8: Illustration of transition (x + 1, x + 2, x + 2,312)→ (x , x + 1, x + 2,132).

This chain of local updates realizes a long-range swap.

Remark 2.1. In this formulation, two particles of the same species interact as if one were
stronger: the arriving particle treats the other as a stronger species as in the drop-push model.

2.3 Two-particle interaction matrices

In the case of the mTASEP, the interaction of two particles at a common site x as illustrated in
the boxes in Figure 2, can be encoded in a 4× 4 matrix whose rows and columns are labelled
11, 12,21, 22:







11 12 21 22

11 1 0 0 0
12 0 1 1 0
21 0 0 0 0
22 0 0 0 1






, (1)

where the (i j, kl)-entry represents the probability of the transition from the hidden state
(x , x , kl) to (x , x , i j). This interaction rule at a common site, combined with the rule for
the backward move of a weaker particle is expressed in the Bethe ansatz formulation by the
boundary condition

U(x , x; t) =







1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 1






U(x , x + 1; t) ,
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as detailed in [14]. Here, U(x1, x2; t) = (uπ,ν) denotes a 4×4 matrix where uπ,ν is a function
Uν(x1, x2,π; t) defined for all (x1, x2) ∈ Z2 and t ≥ 0.

For the mTASEP with long-range push, in which a weaker particle jumps forward from a
common site, the boundary condition is given by

U(x , x; t) =







1 0 0 0
0 0 0 0
0 1 1 0
0 0 0 1






U(x − 1, x; t) .

(See [17] for the details.)
We now derive the boundary condition for the mTASEP with long-range swap, which mixes

the mTASEP rule and the long-range push rules. The local transition rules between hidden
states at a common state, shown in the boxes in Figure 4 and 5, can be encoded by the matrix







11 12 21 22

11 1 0 0 0
12 0 0 1 0
21 0 1 0 0
22 0 0 0 1






. (2)

However, this matrix splits into two parts in the boundary condition, as we now demonstrate.
For example, the master equations of P(x , x + 1, 12; t) and P(x , x + 1,21; t) are

d
d t

P(x , x + 1, 12; t) = P(x − 1, x + 1,12; t) + P(x , x + 1,21; t)− 2P(x , x + 1, 12; t) ,

and

d
d t

P(x , x + 1, 21; t) = P(x − 1, x + 1,21; t) + P(x − 1, x , 12; t)− 2P(x , x + 1, 21; t) ,

respectively. Encoding the master equations of Pν(x , x + 1,π; t) for all π,ν ∈ {11, 12,21, 22}
in a 4× 4 matrix form yields

d
d t

P(x , x + 1; t) = P(x − 1, x + 1; t) +







1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1






P(x − 1, x; t)

+







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






P(x , x + 1; t)− 2P(x , x + 1; t) .

(3)

Similarly, for x1 < x2 − 1, we have

d
d t

P(x1, x2; t) = P(x1 − 1, x2; t) + P(x1, x2 − 1; t)− 2P(x1, x2; t) . (4)

Let U(x1, x2; t) = (uπ,ν) denotes a 4× 4 matrix, where each entry uπ,ν is given by a function
Uν(x1, x2,π; t), defined for all (x1, x2) ∈ Z2 and t ≥ 0. Suppose that U(x1, x2; t) satisfies

d
d t

U(x1, x2; t) = U(x1 − 1, x2; t) +U(x1, x2 − 1; t)− 2U(x1, x2; t) , (5)
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for all (x1, x2) ∈ Z2 together with the boundary condition

U(x , x; t) =







1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1






U(x − 1, x; t) +







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






U(x , x + 1; t) , (6)

for all x ∈ Z. Then, it is straightforward that U(x1, x2; t) satisfies the master equation (3) and
(4) for X = (x , x + 1) and X = (x1, x2) with x1 < x2 − 1, respectively.

Definition 2.2. Let B = (bπ,ν) and B′ = (b′π,ν) be the N2 × N2 matrices whose rows and
columns are indexed lexicographically by words π = π1π2 and ν = ν1ν2, respectively, from
11 to NN . Their entries are defined by

bπ,ν =

¨

1 , if π= ν and ν1 = ν2, or π1 = ν2,π2 = ν1 and ν1 < ν2 ,

0 , otherwise,

b′π,ν =

¨

1 , if π1 = ν2,π2 = ν1 and ν1 > ν2 ,

0 , otherwise,

respectively.

Thus, the first and second matrices in (6) correspond precisely to B and B′ with N = 2,
respectively. Here, bπ,ν describes the rate of a transition from state (x − 1, x ,ν1ν2) to
(x , x + 1,π1π2) caused by the jump of particle ν1, while b′π,ν describes the rate of a tran-
sition from state (x , x + 1,ν1ν2) to (x , x + 1,π1π2) caused by the jump of particle ν1.

2.4 Left-right symmetry of the boundary condition

At the outset, we assumed that particles move to the right after their waiting times, and that
when entering a site occupied by another particle of the same species, the incoming particle
treats the resident as stronger. If instead we assume leftward motion and that an incoming
particle treats a same-species resident as weaker, we obtain the same boundary condition as
in (6)

In the right-moving system, the first matrix in (6) corresponds to the forward jump of a
weaker particle over a stronger particle, while the second matrix corresponds to a stronger par-
ticle pushing a weaker particle backward. In the left-moving system, the roles are reversed: the
second matrix corresponds to the forward jump of a weaker particle over a stronger particle,
and the first matrix corresponds to a stronger particle pushing a weaker particle backward.

We also note that in the right-moving system, a particle may be forced to jump over a
stronger particle to the left due to the backward push rule. This situation is naturally captured
by the second matrix in (6).

3 Integrability

3.1 Two-particle interaction reducibility

3.1.1 Master equations for three-particle system

For solvability via the Bethe ansatz, the master equation of an n-particle system must reduce to
a combination of the evolution equation for non-interacting particles together with boundary
conditions that depend only on pairwise interactions. This property is often referred to as two-
particle reducibility. In the case n= N = 2, we already observed in Section 2.3 that the master
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equation for two particles can be expressed as the evolution equation (5), which governs free
particle motion (i.e., without interactions), together with the boundary condition (6).

To test whether the same principle extends to larger systems, we now examine the case
n= N = 3. Compared to the mTASEP and the long-range push model [15,17,18], the mTASEP
with long-range swap requires more intricate analysis. We analyze each configuration system-
atically, distinguishing situations where particles are well separated from those where they
occupy adjacent sites.

(i) First, it is clear that for X = (x1, x2, x3) with x i < x i+1 − 1, (i = 1, 2),

d
d t

P(X ; t) = P(x1−1, x2, x3; t)+P(x1, x2−1, x3; t)+P(x1, x2, x3−1; t)−3P(X ; t) , (7)

where we recall that the matrices P are 27× 27 matrices.

(ii) For X = (x , x +1, x3) with x +1< x3−1, the master equation of P(X ; t) takes the form

d
d t

P(X ; t) = P(x − 1, x + 1, x3; t) + P(x , x + 1, x3 − 1; t)

+MP(x − 1, x , x3; t) +M′ P(x , x + 1, x3; t)− 3P(X ; t) ,
(8)

where M= (mπ,ν) and M′ = (m′π,ν) are 27× 27 matrices.

Following the arguments in [17,18], we claim that

M= B⊗ I , M′ = B′ ⊗ I ,

where I is the 3×3 identity matrix,⊗ denotes the tensor (Kronecker) product of matrices,
and B,B′ are the 32 × 32 matrices defined in Definition 2.2.

Indeed, mπ,ν gives the rate of the transition

(x − 1, x , x3,ν1ν2ν3) −→ (x , x + 1, x3,π1π2π3) ,

while m′π,ν gives the rate of the transition

(x , x + 1, x3,ν1ν2ν3) −→ (x , x + 1, x3,π1π2π3) .

In the first case, the third particle neither moves nor interacts, considering the change in
the position configuration, so π3 = ν3 and the transition rate depends only on the first
two particles, exactly as in the two-particle system. Hence, using the relation

(B⊗ I)π1π2π3,ν1ν2ν3
=

¨

(B)π1π2,ν1ν2
, if π3 = ν3 ,

0 , if π3 ̸= ν3 ,

we conclude that M= B⊗ I. Analogous arguments give M′ = B′ ⊗ I.

(iii) By the same reasoning as in the case X = (x , x + 1, x3) above, the master equation for
P(X ; t) in the case X = (x1, x , x + 1) with x1 < x − 1 is

d
d t

P(X ; t) = P(x1 − 1, x , x + 1; t) + P(x1, x − 1, x + 1; t)

+ (I⊗B)P(x1, x − 1, x; t) + (I⊗B′)P(x1, x , x + 1; t)− 3P(X ; t) .
(9)
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ν1 ν2 ν3 ν1ν2 ν3 ν2ν1 ν3

ν2 ν1ν3 ν2 ν3ν1 ν2 ν3 ν1

Figure 9: This transition occurs when ν1 ≤ ν2,ν3.

(iv) Finally, consider the case X = (x , x + 1, x + 2). In this case, the master equation for
P(X ; t) takes the form

d
d t

P(X ; t) = P(x − 1, x + 1, x + 2; t) +MP(x − 1, x , x + 2; t) +M′ P(x − 1, x , x + 1; t)

+M′′ P(x , x + 1, x + 2; t)− 3P(X ; t) , (10)

for some 27 × 27 matrices M,M′,M′′. By the same reasoning as in case (ii), we have
M= B⊗ I. To determine M′ = (m′π,ν), note that m′π,ν is the rate of the transition

(x − 1, x , x + 1,ν1ν2ν3) −→ (x , x + 1, x + 2,π1π2π3) ,

caused by the forward jump of particle ν1 over the stronger particles ν2 and ν3. This
occurs through two consecutive forward jumps: first ν1 over ν2, and then over ν3, as
illustrated in Figure 9. Therefore,

M′ = (I⊗B)(B⊗ I) . (11)

To determine M′′ = (m′′π,ν), note that m′′π,ν is the rate of the transition

(x , x + 1, x + 2,ν1ν2ν3) −→ (x , x + 1, x + 2,π1π2π3) ,

which corresponds to an interchange of particle species without altering the position
configuration. This can occur in three distinct ways:

• Interchange of the first two particles, leaving the third unchanged. This occurs
when ν1 > ν2 and the particle of species ν1 attempts to jump. It is represented by
B′ ⊗ I.

• Interchange of the second and third particles, leaving the first unchanged. This oc-
curs when ν2 > ν3 and the particle of species ν2 attempts to jump. It is represented
by I⊗B′.

• Interchange of the first and third particles, leaving the second unchanged. This
occurs when ν3 < ν1 ≤ ν2 and the particle of species ν1 attempts to jump. The
interchange proceeds through three consecutive moves (see Example 2.1):

(1) ν1 jumps forward over ν2;
(2) ν1 pushes ν3 backward;
(3) ν3 jumps forward over ν2 to the left.

This sequence is represented by

(B′ ⊗ I)
︸ ︷︷ ︸

(3)

(I⊗B′)
︸ ︷︷ ︸

(2)

(B⊗ I)
︸ ︷︷ ︸

(1)

. (12)

Combining these contributions, we obtain

M′′ = (B′ ⊗ I) + (I⊗B′) + (B′ ⊗ I)(I⊗B′)(B⊗ I) . (13)
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The last term in (13) can be expressed in an alternative form, as stated in the following lemma.

Lemma 3.1. Let I denote the N×N identity matrix, and let B,B′ be the N2×N2 matrices from
Definition 2.2. Then, for each N ≥ 2,

(B′ ⊗ I)(I⊗B′)(B⊗ I) = (I⊗B)(B′ ⊗ I)(I⊗B′) . (14)

While the identity (14) can be verified directly by matrix computation, its validity for gen-
eral N follows naturally from the braid relation. The product

(B′ ⊗ I)(I⊗B′)(B⊗ I) , (15)

represents three consecutive interchanges of neighboring species labels in ν1ν2ν3 with
ν3 < ν1 ≤ ν2, namely,

ν1ν2ν3 −→ ν2ν1ν3 −→ ν2ν3ν1 −→ ν3ν2ν1 .

By the braid relation, the same final configuration can also be obtained via

ν1ν2ν3 −→ ν1ν3ν2 −→ ν3ν1ν2 −→ ν3ν2ν1 ,

which corresponds precisely to the right-hand side of (14).

Lemma 3.2. Let I denote the N×N identity matrix, and let B,B′ be the N2×N2 matrices from
Definition 2.2. Then, for each N ≥ 2,

�

I⊗3 − (I⊗B)(B′ ⊗ I)
�−1
= I⊗3 + (I⊗B)(B′ ⊗ I) , (16)

where
I⊗k := I ⊗ · · · ⊗ I
︸ ︷︷ ︸

k times

.

Proof. It suffices to show that

(I⊗B)(B′ ⊗ I)(I⊗B)(B′ ⊗ I) = 0 . (17)

View (I⊗ B) and (B′ ⊗ I) as operators on the N3-dimensional real vector space with standard
basis

{|ν1ν2ν3〉 : νi ∈ {1, . . . , N}} ,

ordered lexicographically from 111 to NNN . We must show that for all bra vectors 〈π1π2π3|
and ket vectors |ν1ν2ν3〉,

〈π1π2π3| (I⊗B)(B′ ⊗ I)(I⊗B)(B′ ⊗ I) |ν1ν2ν3〉= 0 . (18)

From Definition 2.2,

(B′ ⊗ I) |ν1ν2ν3〉=

¨

|ν2ν1ν3〉 , if ν1 > ν2 ,

|0〉 , if ν1 ≤ ν2 ,

(I⊗B) |ν1ν2ν3〉=

¨

|ν1ν3ν2〉 , if ν2 ≤ ν3 ,

|0〉 , if ν2 > ν3 ,

(19)

where |0〉 denotes the zero vector. We now check that

(B′ ⊗ I)(I⊗B)(B′ ⊗ I) |ν1ν2ν3〉= |0〉 ,

11
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for all |ν1ν2ν3〉:

• If ν1 ≤ ν2, then the first application of (B′ ⊗ I) yields |0〉.

• If ν2 < ν1 and ν3 < ν1, then

(I⊗B)(B′ ⊗ I) |ν1ν2ν3〉= (I⊗B) |ν2ν1ν3〉= |0〉 .

• If ν2 < ν1 ≤ ν3, then

(B′ ⊗ I)(I⊗B)(B′ ⊗ I) |ν1ν2ν3〉= (B′ ⊗ I)(I⊗B) |ν2ν1ν3〉= (B′ ⊗ I) |ν2ν3ν1〉= |0〉 .

This completes the proof.

Corollary 3.3. Let I denote the N × N identity matrix, and let B,B′ be the N2 × N2 matrices
from Definition 2.2. Then, for each N ≥ 2,

0= (I⊗B)(B′ ⊗ I)(I⊗B) = (I⊗B′)(B⊗ I)(I⊗B′)

= (B′ ⊗ I)(I⊗B)(B′ ⊗ I) = (B⊗ I)(I⊗B′)(B⊗ I) .

Proof. The result follows by an argument analogous to that used in the proof of (17).

Let U(x1, x2, x3; t) = (uπ,ν) denote a 27×27 matrix, where each entry uπ,ν is given by the
function Uν(x1, x2, x3,π; t), defined for all (x1, x2, x3) ∈ Z3 and t ≥ 0.

Proposition 3.4. Suppose that U(x1, x2, x3; t) satisfies

d
d t

U(x1, x2, x3; t) = U(x1 − 1, x2, x3; t) +U(x1, x2 − 1, x3; t) +U(x1, x2, x3 − 1; t)

− 3U(x1, x2, x3; t) ,
(20)

for all (x1, x2, x3) ∈ Z3, together with the boundary conditions

U(x , x , x ′; t) = (B⊗ I)U(x − 1, x , x ′; t) + (B′ ⊗ I)U(x , x + 1, x ′; t) , (21)

U(x ′, x , x; t) = (I⊗B)U(x ′, x − 1, x; t) + (I⊗B′)U(x ′, x , x + 1; t) , (22)

for all x , x ′ ∈ Z. Then U(x1, x2, x3; t) satisfies all of the master equations (7), (8), (9), and
(10), for their respective position configurations (x1, x2, x3).

Proof. It is immediate that U(x1, x2, x3; t) satisfies (7) for the corresponding configurations.
For the cases corresponding to (8) and (9), the result follows directly from (20) together with
the boundary conditions (21) and (22).

It remains to treat the configuration (x , x + 1, x + 2). In this case, (20) becomes

d
d t

U(x , x + 1, x + 2; t) = U(x − 1, x + 1, x + 2; t) +U(x , x , x + 2; t)

+U(x , x + 1, x + 1; t)− 3U(x , x + 1, x + 2; t) .
(23)

From (21) we obtain

U(x , x , x + 2; t) = (B⊗ I)U(x − 1, x , x + 2; t) + (B′ ⊗ I)U(x , x + 1, x + 2; t) . (24)

Next, applying (22) to U(x , x + 1, x + 1; t) yields

U(x , x + 1, x + 1; t) = (I⊗B)U(x , x , x + 1; t) + (I⊗B′)U(x , x + 1, x + 2; t) . (25)
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Substituting (21) into the first term on the right-hand side of (25), we get

U(x , x + 1, x + 1; t) = (I⊗B)
�

(B⊗ I)U(x − 1, x , x + 1; t) + (B′ ⊗ I)U(x , x + 1, x + 1; t)
�

+ (I⊗B′)U(x , x + 1, x + 2; t) .
(26)

Rearranging terms and using Lemmas 3.1, 3.2, and Corollary 3.3, we obtain

U(x , x + 1, x + 1; t) = (I⊗B)(B⊗ I)U(x − 1, x , x + 1; t)

+ (I⊗B′)U(x , x + 1, x + 2; t)

+ (B′ ⊗ I)(I⊗B′)(B⊗ I)U(x , x + 1, x + 2; t) .
(27)

Finally, substituting (24) and (27) into (23) verifies that U(x , x + 1, x + 2; t) satisfies (10).
This completes the proof.

The outcome of this section can be summarized as follows: for the three-particle system,
all master equations reduce to the evolution equation for free motion plus boundary conditions
depending only on the two-particle matrices B and B′. This establishes two-particle reducibility
at the three-particle level.

3.1.2 Extension to general n

We now generalize to arbitrary n≥ 2. For an n-particle system, let

U(x1, . . . , xn; t) = (uπ,ν) ,

denote the N n × N n matrix, where each entry uπ,ν is the function Uν(x1, . . . , xn,π; t) defined
for all (x1, . . . , xn) ∈ Zn and t ≥ 0.

For the N2 × N2 matrices B and B′ from Definition 2.2, define for i = 1, . . . , n− 1,

Bi := I⊗(i−1) ⊗B⊗ I⊗(n−i−1) ,

B′i := I⊗(i−1) ⊗B′ ⊗ I⊗(n−i−1) ,
(28)

where I denotes the N × N identity matrix, and define B0 = B′0 := I⊗n which is denoted by I.
Proposition 3.5 below shows that for arbitrary n, the master equation of the system reduces

to the evolution equation for non-interacting particles together with boundary conditions de-
pending only on pairwise interactions. Hence the model satisfies two-particle reducibility.

Proposition 3.5. Suppose that U(x1, . . . , xn; t) satisfies

d
d t

U(x1, . . . , xn; t) = U(x1 − 1, x2, . . . , xn; t) +U(x1, x2 − 1, x3, . . . , xn; t)

+ · · ·+U(x1, x2, . . . , xn−1, xn − 1; t)− nU(x1, . . . , xn; t) ,
(29)

for all (x1, . . . , xn) ∈ Zn, together with the boundary conditions

U(x1, . . . , x i−1, x i , x i , x i+2, . . . , xn; t) = Bi U(x1, . . . , x i−1, x i − 1, x i , x i+2, . . . , xn; t)

+B′i U(x1, . . . , x i−1, x i , x i + 1, x i+2, . . . , xn; t) ,
(30)

for i = 1, . . . , n−1. Then U(x1, . . . , xn; t) satisfies the master equations corresponding to each
configuration (x1, . . . , xn) with x1 < · · ·< xn.
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To prove Proposition 3.5, it suffices to verify that U(x1, . . . , xn; t) satisfies the master equa-
tion for position configurations of the form

(x1, . . . , xn) = ( x1, . . . , x i−1
︸ ︷︷ ︸

non-neighboring

, x i , x i + 1, . . . , x i + l − 1
︸ ︷︷ ︸

neighboring

, x i+l , . . . , xn
︸ ︷︷ ︸

non-neighboring

) ,

for each i = 1, . . . , n− 1 and l = 2, . . . , n− i + 1, subject to

xk < xk+1 − 1 , for k = 1, . . . , i − 1 , and k = i + l − 1, . . . , n− 1 .

Equivalently, it is enough to treat the fully consecutive case

(x1, . . . , xn) = (x , x + 1, . . . , x + n− 1) ,

for each n= 2, 3, . . . .
Before proving Proposition 3.5, we collect several preliminary results that will be used in

the argument. These include generalizations of the lemmas established earlier for the case
n= 3.

Matrices for long-range interactions Consider the transition

(x , x + 1, . . . , x + n− 1,ν1 · · ·νn) −→ (x + 1, . . . , x + n,π1 · · ·πn) , (31)

which occurs only when ν1 ≤ νi for all i = 2, . . . , n, and π1 · · ·πn = ν2 · · ·νnν1. This jump of
the particle ν1 from x to x + n can be viewed as a sequence of forward jumps of ν1 over each
stronger particle ahead. Consequently, the rate of the transition (31) is

〈π1 · · ·πn|Bn−1 · · ·B2B1 |ν1 · · ·νn〉 ,

which generalizes (11).
Next, consider the transition

(x , x + 1, . . . , x + n− 1,ν1 · · ·νn) −→ (x , x + 1, . . . , x + n− 1,π1 · · ·πn) , (32)

which occurs when two particles exchange their positions. In particular, let us consider the
case where the first and last particles exchange positions. This swap occurs when νn < ν1 ≤ νi
for all i = 2, . . . , n − 1 (see Example 2.1 for a special case). Such a long-range swap can be
realized in the following order:

1. ν1 jumps forward over each stronger particle ν2, . . . ,νn−1 sequentially;

2. ν1 pushes νn backward;

3. νn jumps forward (to the left) over each stronger particle νn−1, . . . ,ν2 sequentially.

The corresponding transition rate is

〈π1 · · ·πn|B′1 · · ·B
′
n−2B′n−1 Bn−2 · · ·B1 |ν1 · · ·νn〉 , (33)

and
B′1 · · ·B

′
n−2B′n−1 Bn−2 · · ·B1 ,

generalizes (12).
The swap of ν1 and νn can also be realized in an alternative order:

1. νn jumps forward (to the left) over the stronger particles νn−1, . . . ,ν1 sequentially;
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2. ν1 then jumps forward over the stronger particles ν2, . . . ,νn−1 sequentially.

The corresponding transition rate is

〈π1 · · ·πn|Bn−1 · · ·B2B′1B′2 · · ·B
′
n−1 |ν1 · · ·νn〉 , (34)

and
Bn−1 · · ·B2B′1B′2 · · ·B

′
n−1 , (35)

generalizes the right-hand side of (14). Hence, we obtain the identity

B′1 · · ·B
′
n−2B′n−1 Bn−2 · · ·B1 = Bn−1 · · ·B2B′1B′2 · · ·B

′
n−1 , (36)

which generalizes the identity (14).

Master equation for X = (x , x +1, . . . , x +n−1) Let X−i denote the configuration obtained
from

X = (x , x + 1, . . . , x + n− 1) ,

by shifting the first i coordinates one step to the left, that is,

X−i = (x − 1, x , x + 1, . . . , x + i − 2, x + i, x + i + 1, . . . , x + n− 1) .

Then the master equation for P(X ; t) takes the form

d
d t

P(X ; t) = P(X−1 ; t) +M2 P(X−2 ; t) + · · ·+Mn P(X−n ; t) +M0 P(X ; t)− nP(X ; t) . (37)

Using the same reasoning as in the derivation of (11), we obtain

Mi = Bi−1 · · ·B2B1 , i = 2, . . . , n .

The entries of the matrix M0 describe transitions of the form

(X ,ν1 · · ·νn) −→ (X ,π1 · · ·πn) , (38)

that is, swaps of two particles within the same configuration X .
More precisely, let Mi j with i < j denote the matrix describing the interchange of the ith

and jth leftmost particles. As in (35), one has

Mi j = B j−1 · · ·Bi+1 B′i B′i+1 · · ·B
′
j−1 , (39)

from which it follows that
B j Mi j B′j =Mi( j+1) . (40)

This identity will be used later. There are n(n− 1)/2 possible swaps of two particles, and the
matrix M0 can be expressed as the sum of Mi j ,

M0 =
n−1
∑

i=1

n
∑

j=i+1

Mi j .
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Lemmas We now provide some technical results used to prove Proposition 3.5 for
X = (x , x + 1, . . . , x + n− 1). The following result is a direct generalization of (17).

Lemma 3.6. Let Bi and B′i be the N n × N n matrices defined in (28). Then, for each
k = 1,2, . . . , n− 2,

�

Bk+1 · · ·B2B′1 · · ·B
′
k

�2
= 0 .

Proof. We will show that

(B′1 · · ·B
′
k)(Bk+1 · · ·B2)(B

′
1 · · ·B

′
k) |ν1 · · ·νn〉= |0〉 , (41)

for every basis vector |ν1 · · ·νn〉.
From the definition of B′i , we have

(B′1 · · ·B
′
k) |ν1 · · ·νn〉=

¨

|νk+1ν1 · · ·νkνk+2 · · ·νn〉 , if νk+1 < νi , for all i = 1, . . . , k ,

|0〉 , otherwise.
(42)

From the definition of Bi , applying (Bk+1 · · ·B2) to the resulting vector in (42) yields

(Bk+1 · · ·B2) |νk+1ν1 · · ·νkνk+2 · · ·νn〉

=











|νk+1ν2 · · ·νkνk+2ν1νk+3 · · ·νn〉 , if ν1 ≤ νi ,

for all i = 2, . . . , k+ 2 ,

|0〉 , otherwise.

(43)

Finally, applying (B′1 · · ·B
′
k) again to the resulting vector in (43), and recalling the require-

ment for non-vanishing action in (42), we see that the inequality

νk+1 < ν1 ≤ νk+2 ,

implied by (42) and (43) contradicts the condition for

(B′1 · · ·B
′
k) |νk+1ν2 · · ·νkνk+2ν1νk+3 · · ·νn〉 , (44)

to be nonzero, namely νk+2 < ν2, . . . ,νk+1. Hence (44) must equal |0〉, completing the proof.

Corollary 3.7 below generalizes Corollary 3.3, and its proof follows the same reasoning as
in Lemma 3.6.

Corollary 3.7. We have

0= (Bk+1 · · ·Bl) (B
′
l−1 · · ·B

′
k) (Bk+1 · · ·Bl)

= (B′l−1 · · ·B
′
k) (Bk+1 · · ·Bl) (B

′
l−1 · · ·B

′
k)

= (B′k+1 · · ·B
′
l) (Bl−1 · · ·Bk) (B

′
k+1 · · ·B

′
l)

= (Bl−1 · · ·Bk) (B
′
k+1 · · ·B

′
l) (Bl−1 · · ·Bk) ,

for each k, l with l ≤ k+ 1.

Lemma 3.8. Define matrices A0,A1, . . . ,An−2 by

A0 = I , Ak = Bk+1

�

I+Ak−1

�

B′k (k ≥ 1) . (45)

Then (Ak)2 = 0 for each k = 1, 2, . . . , n− 2.
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Proof. Expanding (Ak)2 gives

(Ak)
2 = (Bk+1B′k)

2 + (Bk+1B′k)(Bk+1Ak−1B′k) + (Bk+1Ak−1B′k)(Bk+1B′k) + (Bk+1Ak−1B′k)
2 .

By Corollary 3.7 with l = k+ 1, we have

Bk+1B′kBk+1 = 0 , and B′kBk+1B′k = 0 ,

which imply

(Bk+1B′k)
2 = 0 , (Bk+1B′k)(Bk+1Ak−1B′k) = 0 , (Bk+1Ak−1B′k)(Bk+1B′k) = 0 .

Thus it remains to show (Bk+1Ak−1B′k)
2 = 0.

Using the recursion (45),

Bk+1Ak−1B′k = Bk+1

�

Bk(I+Ak−2)B
′
k−1

�

B′k = Bk+1BkB′k−1B′k
︸ ︷︷ ︸

=:X

+Bk+1BkAk−2B′k−1B′k
︸ ︷︷ ︸

=:Y

. (46)

Squaring and applying Corollary 3.7 (now with l = k) yields X 2 = X Y = Y X = 0, so

(Bk+1Ak−1B′k)
2 = Y 2 =
�

Bk+1BkAk−2B′k−1B′k
�2

.

Repeating this reduction step k− 1 times gives

(Bk+1Ak−1B′k)
2 =
�

Bk+1Bk · · ·B2 B′1 · · ·B
′
k

�2
,

which is the zero matrix by Lemma 3.6. Hence (Ak)2 = 0.

Corollary 3.9. Define matrices A0,A1, . . . ,An−2 by

A0 = I , Ak =
�

I−Bk+1Ak−1B′k
�−1

(k ≥ 1) . (47)

Then, for each k = 1, 2, . . . , n− 2,

Ak = I+Bk+1Ak−1B′k . (48)

Proof. It suffices to show that, for every k = 1, . . . , n− 2,
�

Bk+1Ak−1B′k
�2
= 0 .

Let Xk := Bk+1Ak−1B′k. We prove X2
k = 0 by induction on k.

Base case k = 1. Here A0 = I, so X1 = B2B′1. By Corollary 3.7, we have (B2B′1)
2 = 0.

Induction step. Assume X2
k−1 = 0 for some k ≥ 2. By the induction hypothesis and (48) at

level k− 1, we may write
Ak−1 = I+BkAk−2B′k−1 .

Hence
Xk = Bk+1Ak−1B′k = Bk+1B′k

︸ ︷︷ ︸

=:U

+Bk+1BkAk−2B′k−1B′k
︸ ︷︷ ︸

=:V

.

Expanding X2
k = (U + V )2 gives U2+UV + V U + V 2. By Corollary 3.7, the terms U2, UV , and

V U vanish. Thus
X2

k = V 2 =
�

Bk+1BkAk−2B′k−1B′k
�2

.

Repeating this reduction (as in the proof of Lemma 3.8) collapses the middle A· recursively
until

X2
k =
�

Bk+1Bk · · ·B2 B′1 · · ·B
′
k

�2
,

which equals 0 by Lemma 3.6. This completes the proof.
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Lemma 3.10. With Ak as in Corollary 3.9 and Mi j as in (39), one has, for each k = 1, . . . , n−1,

Ak−1B′k =M1(k+1) + · · ·+Mk(k+1) .

Proof. We argue by induction on k. For k = 1, since A0 = I we have A0B′1 = B′1 = M12, as
desired.

Assume the statement holds for k = l with 1≤ l ≤ n− 2, i.e.

Al−1B′l =M1(l+1) + · · ·+Ml(l+1) .

Using Corollary 3.9 and (40), and noting that B′l+1 =M(l+1)(l+2) (the case i = l + 1, j = l + 2
of (39)), we compute

AlB
′
l+1 =
�

I+Bl+1Al−1B′l
�

B′l+1

= B′l+1 +Bl+1

�

M1(l+1) + · · ·+Ml(l+1)
�

B′l+1

=M(l+1)(l+2) +M1(l+2) + · · ·+Ml(l+2)

=M1(l+2) + · · ·+M(l+1)(l+2) ,

which is exactly the claim for k = l + 1. This completes the induction.

The following lemma, which generalizes (27), plays a crucial role in the proof of Proposi-
tion 3.5.

Lemma 3.11. If the boundary condition (30) holds, then for each l = 1, . . . , n− 1,

U(x , x + 1, . . . , x + l − 1, x + l − 1, x l+2, . . . , xn; t)

= (Bl · · ·B1)U(x − 1, x , . . . , x + l − 1, x l+2, . . . , xn; t)

+
l
∑

i=1

Mi(l+1)U(x , x + 1, . . . , x + l − 1, x + l, x l+2, . . . , xn; t) .

(49)

Proof. We argue by induction on l. For l = 1 this is precisely the boundary condition (30) with
i = 1.

Assume (49) holds for l = k. Then

U(x , x + 1, . . . , x + k− 1, x + k− 1, xk+2, . . . , xn; t)

= (Bk · · ·B1)U(x − 1, x , . . . , x + k− 1, xk+2, . . . , xn; t)

+
k
∑

i=1

Mi(k+1)U(x , x + 1, . . . , x + k− 1, x + k, xk+2, . . . , xn; t) .

(50)

Apply (30) with i = k+ 1 to

U(x , x + 1, . . . , x + k− 1, x + k, x + k, xk+3, . . . , xn; t) ,

to get
U(x , x + 1, . . . , x + k− 1, x + k, x + k, xk+3, . . . , xn; t)

= Bk+1 U(x , x + 1, . . . , x + k− 1, x + k− 1, x + k, xk+3, . . . , xn; t)

+B′k+1 U(x , x + 1, . . . , x + k− 1, x + k, x + k+ 1, xk+3, . . . , xn; t) .
(51)

Substituting (50) into (51) and collecting terms yields

�

I−Bk+1

�

k
∑

i=1

Mi(k+1)

��

U(x , . . . , x + k, x + k, xk+3, . . . , xn; t)

= (Bk+1 · · ·B1)U(x − 1, x , . . . , x + k, xk+3, . . . , xn; t)

+B′k+1 U(x , . . . , x + k, x + k+ 1, xk+3, . . . , xn; t) ,

(52)
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with I the N n × N n identity. By Lemma 3.10 and Corollary 3.9,

�

I−Bk+1

�

k
∑

i=1

Mi(k+1)

��−1
= I+Bk+1

�

k
∑

i=1

Mi(k+1)

�

= I+Bk+1Ak−1B′k .

Multiplying (52) by this inverse gives

U(x , . . . , x + k, x + k, xk+3, . . . , xn; t)

=
�

I+Bk+1Ak−1B′k
�

(Bk+1 · · ·B1)U(x − 1, x , . . . , x + k, xk+3, . . . , xn; t)

+
�

I+Bk+1Ak−1B′k
�

B′k+1U(x , . . . , x + k, x + k+ 1, xk+3, . . . , xn; t) .

(53)

By repeated use of Corollaries 3.7 and 3.9,

(Bk+1Ak−1B′k)(Bk+1 · · ·B1) = 0 .

Moreover, Lemma 3.10 and (40) give

(Bk+1Ak−1B′k)B
′
k+1 =

k
∑

i=1

Mi(k+2) , B′k+1 =M(k+1)(k+2) .

Substituting into (53) yields

U(x , . . . , x + k, x + k, xk+3, . . . , xn; t)

= (Bk+1 · · ·B1)U(x − 1, x , . . . , x + k, xk+3, . . . , xn; t)

+
�

M1(k+2) + · · ·+M(k+1)(k+2)
�

U(x , . . . , x + k, x + k+ 1, xk+3, . . . , xn; t) ,

which is exactly (49) with l = k+ 1. The completes the proof.

Proof of Proposition 3.5 X = (x , x + 1, . . . , x + n − 1) Define

X i− := (x , x + 1, . . . , x + n− 1)− (0, . . . , 0, 1
ith

, 0, . . . , 0 ) ,

and recall the notation

X−i = (x − 1, x , x + 1, . . . , x + i − 2, x + i, x + i + 1, . . . , x + n− 1) ,

with X−1 = X1−.
By assumption, U(X ; t) satisfies

d
d t

U(X ; t) = U(X1−; t) +U(X2−; t) + · · ·+U(Xn−; t)− nU(X ; t) . (54)

Lemma 3.11 implies that, for each l = 2, . . . , n,

U(X l−; t) = (Bl−1 · · ·B1)U(X
−
l ; t) +

l−1
∑

i=1

Mil U(X ; t) . (55)

Substituting (55) into (54), we recover exactly equation (37). This completes the proof.

3.2 Yang-Baxter integrability

The second requirement for integrability is that multi-particle scattering be consistent, i.e.,
that the two-body scattering matrices satisfy the Yang-Baxter relation. In earlier models such
as the mTASEP and the long-range push model [15, 17, 18], this property follows from the
specific form of the two-particle matrices. In our model, the scattering matrix takes a new
algebraic form, reflecting the combined structure of B and B′.
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3.2.1 Scattering matrix

In Section 2.3, where we analyzed the two-particle system with up to two different species,
we observed that if U(x1, x2; t) satisfies (5) together with the boundary condition (6), then it
also satisfies the master equation for each (x1, x2) with x1 < x2.

Applying the Bethe ansatz yields a solution of (5) of the form, for any nonzero complex
numbers ξ1,ξ2,

�

A12 ξ
x1
1 ξ

x2
2 +A21 ξ

x2
1 ξ

x1
2

�

eϵ(ξ1,ξ2)t , (56)

where A12 and A21 are 4× 4 constant matrices (independent of x1, x2, t), and

ϵ(ξ1,ξ2) =
1
ξ1
+

1
ξ2
− 2 .

To enforce the boundary condition (6), substituting (56) yields

A21 =





















−
(1− ξ1)ξ2

(1− ξ2)ξ1
0 0 0

0 0 ξ2 0

0
1
ξ1

0 0

0 0 0 −
(1− ξ1)ξ2

(1− ξ2)ξ1





















︸ ︷︷ ︸

:=R21

A12 .

The matrix R21 can thus be interpreted as the two-particle scattering matrix with up to two
species.

Remark 3.1. For comparison, the corresponding two-particle scattering matrix for the usual
multispecies TASEP is





















−
1− ξ2

1− ξ1
0 0 0

0 −
1− ξ2

1− ξ1

ξ2 − ξ1

1− ξ1
0

0 0 −1 0

0 0 0 −
(1− ξ1)ξ2

(1− ξ2)ξ1





















.

We now extend this construction to the n-particle system with up to N species.

Definition 3.1. Let B and B′ be the N2 × N2 matrices introduced in Definition 2.2. For any
pair (α,β) with α ̸= β , we define the two-particle scattering matrix (with up to N species)

Rβα := −
�

I⊗ I− B
ξβ
−B′ξα
�−1�

I⊗ I− B
ξα
−B′ξβ
�

, (57)

where I denotes the N×N identity matrix, and we further set the two-particle scattering matrix
(with up to N species) in the n-particle system,

Ti,βα := I ⊗ · · · ⊗ I
︸ ︷︷ ︸

(i − 1) factors

⊗ Rβα ⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

(n− i − 1) factors

= −
�

I− Bi
ξβ
−B′iξα
�−1�
I− Bi

ξα
−B′iξβ
�

,

(58)

for each i = 1, . . . , n− 1.
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3.2.2 Yang-Baxter equation

Applying the Bethe ansatz, one obtains a solution of (29) of the form

U(x1, . . . , xn; t) =
∑

σ∈Sn

Aσ

n
∏

i=1

ξ
x i
σ(i)e

ϵ(ξi)t , (59)

valid for any nonzero complex numbers ξ1, . . . ,ξn, where the Aσ are constant N n×N n matrices
(independent of x1, . . . , xn, t), Sn is the symmetric group on {1, . . . , n}, and

ϵ(ξi) =
1
ξi
− 1 .

Remark 3.2. Although the model involves multiple species, the Bethe ansatz formula for the
propagator (59) involves only a single set of spectral parameters {ξ1, . . . ,ξn}. This is because
the Bethe ansatz is applied here to the evolution in the spatial variables, rather than to a spec-
tral diagonalization of the generator. The dependence on particle species is encoded in the
matrix-valued coefficients Aσ, which are constructed from the two-particle scattering matrices
Rβα and Ti,βα. The details of this construction are given below. The consistency of this con-
struction is ensured by two-particle reducibility and by the Yang–Baxter relations satisfied by
the scattering matrices.

The requirement that (59) also satisfies the boundary condition (30) can be derived in the
same way as for other integrable multi-species particle systems [15,17,18], as follows.

Let Ti ∈ Sn (i = 1, . . . , n − 1) denote the adjacent transposition exchanging the ith and
(i+1)th elements while leaving all others fixed. Any permutationσ ∈ Sn can then be expressed
as a product of adjacent transpositions,

σ = Tik · · · Ti1 , (60)

for some sequence i1, . . . , ik with each i j ∈ {1, . . . , n− 1}.
For each j = 1, . . . , k, let (β j ,α j) denote the ordered pair of elements swapped by Ti j

, so
that

Ti j
( · · · α j β j · · · ) = ( · · · β j α j · · · ) .

Proposition 3.12. For a permutation σ = Tik · · · Ti1 , define the multi-particle scattering matrix

Aσ := Tik ,βkαk
· · ·Ti1,β1α1

. (61)

Then Aσ is well defined, that is, the product in (61) is independent of the chosen decomposi-
tion (60).

Proof. It suffices to show that the two-particle scattering matrices Ti,βα satisfies

(C1) Ti,βα T j,δγ = T j,δγ Ti,βα , if |i − j|> 1 ,

(C2) Ti,βα Ti,αβ = I ,
(C3) Ti+1,γβ Ti,γα Ti+1,βα = Ti,βα Ti+1,γα Ti,γβ .

The identities (C1) and (C2) are immediate from (58). For (C3), the required relation is
precisely the Yang-Baxter equation for the two-particle scattering matrices,

(Rγβ ⊗ I)(I⊗Rγα)(Rβα ⊗ I) = (I⊗Rβα)(Rγα ⊗ I)(I⊗Rγβ) , (62)

for distinct labels α,β ,γ.
Since only the three labels α,β ,γ are involved, the general N case reduces to checking

(62) for N = 3, that is, a 27 × 27 matrix identity. This is the same reduction as detailed in
Lemma A.2 of [17], and the verification can be done directly.
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The proof of Proposition 3.13 below is essentially the same as that of Proposition 3.1
in [18], with our two-particle scattering matrix Rβα from (57) replacing the one used there.
For completeness and self-containedness, however, we provide the proof in a concise way.

Proposition 3.13. Let Aσ be defined as in (61). Then the Bethe ansatz solution (59) satisfies
the boundary conditions (30).

Proof. Fix i ∈ {1, . . . , n−1} and consider the boundary condition (30). Substituting the Bethe
ansatz solution (59) into (30) and collecting monomials in the spectral variables yields

∑

σ∈Sn

�

I− Bi
ξσ(i)
−B′i ξσ(i+1)

�

Aσ = 0 . (63)

Partition Sn into disjoint pairs {σ, Tiσ}. For each such pair, set α= σ(i) and β = σ(i+1). By
construction of Aσ and (58), we have

ATiσ
= Ti,βαAσ = −
�

I− Bi
ξβ
−B′i ξα
�−1�
I− Bi

ξα
−B′i ξβ
�

Aσ .

Consequently,
�

I− Bi
ξα
−B′i ξβ
�

Aσ +
�

I− Bi
ξβ
−B′i ξα
�

ATiσ
= 0 .

Summing this identity over all pairs {σ, Tiσ} establishes (63). Hence the Bethe ansatz solution
satisfies the boundary condition for each i, as required.

Remark 3.3. We emphasize that the coefficients Aσ arising in the present model differ both in
their matrix structure and in their matrix elements from those of the usual multispecies TASEP.
In the classical multispecies TASEP, the two-particle scattering matrices are triangular (see Re-
mark 3.1 for N = 2) and reflect simple priority-based interactions between species. In contrast,
the long-range swap dynamics combines backward-push and forward-jump mechanisms, re-
sulting in scattering matrices involving both B and B′ defined in Definition 2.2. Consequently,
the coefficients Aσ encode nontrivial long-range swap processes and differ qualitatively from
those appearing in earlier multispecies exclusion processes.

3.3 Transition probabilities

We now derive explicit formulas for the transition probabilities. Up to this point, we have
shown that the Bethe ansatz solution (59), with Aσ defined as in (61), satisfies the master
equation governing PY (X ; t) for every physical configuration X . However, the expression (59)
does not yet coincide with the transition probability matrix PY (X ; t), since the initial condition
has not been enforced. This initial condition is given by

PY (X ; 0) =

¨

I , if X = Y ,

0 , otherwise,
(64)

where 0 denotes the N n × N n zero matrix.
As in earlier works on integrable models (see, e.g., [15, 25]), we impose the initial con-

dition by taking contour integrals of the Bethe ansatz solution (59), multiplied by
∏

i ξ
−yi−1
i ,

over suitable contours. This standard procedure ensures that the required initial condition is
satisfied and yields an explicit integral representation of the transition probabilities. The re-
sulting formula has the same overall structure as in earlier models such as the mTASEP, though
the entries of Aσ take a different algebraic form in the present case. We now state the result
precisely.
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Theorem 3.14 (Transition probability of the mTASEP with long-range swap). Let Aσ be de-
fined as in (61). Then the matrix of transition probabilities PY (X ; t) admits the contour-
integral representation

PY (X ; t) = −
∫

C
· · ·−
∫

C

∑

σ∈Sn

Aσ

n
∏

i=1

�

ξ
x i−yσ(i)−1
σ(i) eϵ(ξi)t
�

dξ1 · · · dξn , (65)

where C is a positively oriented circle centered at the origin of radius larger than 1,
−
∫

= (1/2πi)
∫

, and the integrals are taken entrywise. Here ϵ(ξ) = ξ−1−1, as in (59). Hence,
the formula of transition probability P(Y,ν)(X ,π; t) is given by

P(Y,ν)(X ,π; t) = −
∫

C
· · ·−
∫

C

∑

σ∈Sn

�

Aσ)π,ν

n
∏

i=1

�

ξ
x i−yσ(i)−1
σ(i) eϵ(ξi)t
�

dξ1 · · · dξn .

Proof sketch. Since the Bethe ansatz solution—which appears as the integrand of (65)—
already satisfies the master equation for each physical configuration X by construction, the
contour integral does so as well. Thus, it remains only to verify the initial condition. At t = 0,
the contribution from the identity permutation is

−
∫

C
· · ·−
∫

C
Aid

n
∏

i=1

ξ
x i−yi−1
i dξ1 · · · dξn =

¨

I , if X = Y ,

0 , otherwise,

since Aid = I for the identity permutation and by the residue theorem. Hence, it remains to
show

−
∫

C
· · ·−
∫

C

∑

σ ̸=id

Aσ

n
∏

i=1

ξ
x i−yi−1
i dξ1 · · · dξn = 0 ,

for any X = (x1, . . . , xn) and Y = (y1, . . . , yn) with x i < x i+1, yi < yi+1 and yi ≤ x i for all i.
Indeed, we can show that the integral is zero for each non-identity permutation. The detailed
argument is provided in Appendix.

4 Discussion

Our study reveals several structural features of the long-range swap model and its connections
to other integrable multispecies exclusion processes.

Coupling perspective

Both the mTASEP and the TASEP with long-range push [17] can be realized as couplings of
single-species models with different initial conditions, where discrepancies evolve as lower-
ranked particles. For the long-range swap dynamics, however, no such coupling representation
appears to exist. This absence of a natural single-species coupling highlights a key distinction
from earlier models.

Symmetry in boundary conditions and two integrable types

In the formulation studied in Section 2, we have seen that when two particles of the same
species meet, their interaction follows the drop–push rule, leading to the boundary relation

U(x , x; t) =







1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1






U(x − 1, x; t) +







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






U(x , x + 1; t) . (66)
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Table 1: Classification of multispecies extensions of TASEP and the drop–push model.

TASEP

Multi-species version I mTASEP (short-range swap)

Multi-species version II mTASEP with long-range swap (TASEP type)

Drop–push model

Multi-species version I mTASEP with long-range push

Multi-species version II mTASEP with long-range swap (drop–push type)

If instead we assume that identical species interact as in the ordinary TASEP when they meet,
the boundary condition becomes

U(x , x; t) =







0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0






U(x − 1, x; t) +







1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1






U(x , x + 1; t) . (67)

The symmetry between the matrices in (66) and (67) suggests a flexible framework in which
the interaction of identical species can be tuned. Importantly, integrability of the model with
the boundary condition (67) can be established in essentially the same way as in the present
work: both the two-body reducibility and the Yang-Baxter equation can be verified by analo-
gous arguments. For clarity, we therefore refer to the first case as the mTASEP with long-range
swap (drop-push type) and to the second as the mTASEP with long-range swap (TASEP type).
(The classical mTASEP may be referred to as the short-range swap model.)

Connections with classical models

If all particles belong to the same species, the TASEP-type long-range swap reduces to the
classical TASEP, while the drop–push-type long-range swap reduces to the drop–push model.
Thus the TASEP has two multi-species extensions: the mTASEP with short-range swap (that
is, the classical mTASEP) and the mTASEP with long-range swap (TASEP type). Similarly, the
drop–push model has two multi-species extensions: the mTASEP with long-range push [17]
and the mTASEP with long-range swap (drop–push type).

Non-integrable alternative

The dynamics studied in this work were defined by the rule that stronger particles push weaker
ones backward, while weaker particles may jump forward over stronger ones. By contrast, if
one reverses this interaction rule—so that stronger particles push weaker ones forward while
weaker particles are pushed backward—the resulting process fails to define a consistent dy-
namics due to the emergence of infinite loops.

For example, consider particles of species 2, 1, and 3 occupying sites x , x + 1, and x + 2,
respectively. If the particle of species 2 jumps to x + 1, it pushes the particle of species 1
forward to x+2. But once at x+2, the particle of species 1 encounters the stronger particle of
species 3 and is forced to jump backward to x + 1. Since x + 1 is still occupied by the particle
of species 2, this cycle repeats indefinitely, producing an endless back-and-forth motion. Such
loops prevent the construction of a well-defined n-particle Markovian dynamics.
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In this case, the corresponding boundary condition takes the form

U(x , x; t) =







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






U(x − 1, x; t) +







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1






U(x , x + 1; t) . (68)

Interestingly, the two-particle scattering matrix derived from (68) still satisfies the Yang-Baxter
equation. However, for n-particle systems with n ≥ 3, the key reducibility property (Proposi-
tion 3.5) fails, and thus the model cannot be regarded as integrable.

5 Summary and outlook

In this work, we introduced and analyzed the multispecies totally asymmetric simple exclusion
process with long-range swap, a new interacting particle system that combines the backward-
push rule of the mTASEP with the forward-jump rule of the long-range push model. Although
the dynamics appear at first glance to involve only local interactions, they naturally gener-
ate effective long-range exchanges of particles. We established integrability of the model by
proving two-particle reducibility and showing that the associated scattering matrix satisfies
the Yang-Baxter equation. In addition, we derived explicit contour-integral formulas for the
transition probabilities, thereby placing this model as a new member of the class of exactly
solvable multispecies processes.

Our analysis highlighted several distinctive features. In particular, the boundary conditions
display a symmetry that leads naturally to two types of long-range swap models. Unlike the
mTASEP and the long-range push model, however, the dynamics introduced here do not admit
a straightforward coupling interpretation in terms of single-species systems, underscoring their
novelty.

This study also raises a number of open problems and potential directions for future work.
From a probabilistic perspective, one may investigate asymptotic properties such as current
fluctuations and scaling limits within the KPZ universality class, especially for the TASEP-type
long-range swap model under special initial conditions. For example, one can ask how the
behavior of species-1 particles deviates from that in the short-range swap setting (that is, the
classical mTASEP), and how it compares with known results for the classical mTASEP [1,6,20,
26]. From a modeling standpoint, it is natural to ask whether interpolations between the two
types of long-range swap introduced here, or extensions to partially asymmetric dynamics,
preserve integrability. More broadly, it remains open whether alternative choices of B and B′

could yield additional integrable models. On the algebraic side, it would be valuable to clarify
the relation of the scattering matrices derived here to the stochastic six-vertex model [8]. More
generally, it is an open problem to systematically characterize which hybrid interaction rules
lead to solvable dynamics, and to determine whether additional families of integrable models
exist beyond the known extremes of backward-push and forward-push interactions.

In summary, the long-range swap model broadens the family of integrable interacting parti-
cle systems and opens new directions at the intersection of integrable probability and statistical
mechanics.
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A Appendix: Proof of theorem 3.14

We complete the proof of Theorem 3.14 by proving Proposition A.1 below.

Definition A.1. An inversion of a permutation σ = σ(1)σ(2) · · ·σ(n) is a pair (σ(i),σ( j))
such that σ(i)> σ( j) and i < j. Let Inv(σ) denote the set of all inversions in σ.

Proposition A.1. Suppose that X = (x1, . . . , xn) and Y = (y1, . . . , yn) satisfy x i < x i+1,
yi < yi+1, and yi ≤ x i for all i. Then, for any non-identity permutation σ,

−
∫

C
· · ·−
∫

C
Aσ

n
∏

i=1

ξ
x i−yσ(i)−1
σ(i) dξ1 · · · dξn = 0 ,

where C is a positively oriented circle centered at the origin with radius larger than 1.

Proof. Fix σ ̸= id. From the definition (61), each entry (Aσ)π,ν is a finite sum of terms of the
form

∏

(β ,α)∈Inv(σ)

Rβα , (A.1)

and for each inversion (β ,α) one factor Rβα is chosen from

−
(1− ξα)ξβ
(1− ξβ)ξα

,
1
ξα

, ξβ , 0 .

Any term with a zero factor vanishes. Assume henceforth that all selected Rβα ̸= 0. We will
show that in every such case the integral is zero.
Case 1: X ̸=Y . Pick i0 with x i0 ̸= yi0 . Choose i so thatσ(i)≤ i0 ≤ i andσ(i)=min{σ(k):k ≥ i}.
Then all elements smaller than σ(i) lie to the left of σ(i). Thus there are exactly i−σ(i) inver-
sions of the form (β ,σ(i)) and none of the form (σ(i),α). Consequently, no factor (1−ξσ(i))−1

appears in (A.1), and the exponent of ξσ(i) in the full integrand is bounded below by

x i − yσ(i) − 1+σ(i)− i ≥ 0 ,

since x i − yσ(i) ≥ i −σ(i) + 1 from yσ(i) ≤ yi0 < x i0 ≤ x i . Hence the integrand is analytic in
ξσ(i), and the ξσ(i)-integral over C vanishes by Cauchy’s theorem.
Case 2: X = Y . Choose i such that σ(i) > i and σ(i) =max{σ(k) : k ≤ i}. Then all elements
larger than σ(i) lie to the right of σ(i). Thus there are σ(i)− i inversions of the form (σ(i),α)
and none of the form (β ,σ(i)). Consequently, the factor involving ξσ(i) in (A.1) multiplied by

ξ
yi−yσ(i)−1
σ(i) is of the form

�

−
ξσ(i)

1− ξσ(i)

�a
· (ξσ(i)) b+yi−yσ(i)−1 , a+ b ≤ σ(i)− i , (A.2)

for some nonnegative integers a, b. Thus the ξσ(i)-dependence of the integrand is a rational
function P(ξσ(i))/Q(ξσ(i)) with

degQ− deg P = yσ(i) − yi + 1− b ≥ σ(i)− i + 1− (σ(i)− i) ≥ 1 .

If b < σ(i)− i, then degQ− deg P ≥ 2, so the integrand is O(1/ξ2
σ(i)) as |ξσ(i)| →∞ and the

contour integral over C vanishes.
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It remains to consider the borderline case b = σ(i) − i, i.e. when every factor Rσ(i)α
contributes only ξσ(i). In this situation, select j > i such that σ( j) < j, σ(i) > σ( j), and
σ( j) = min{σ(k) : k ≥ j}. (This is possible since σ ̸= id.) Then all elements smaller than
σ( j) lie to the left of σ( j), so there are j −σ( j) inversions of the form (β ,σ( j)) and none of
the form (σ( j),α). Consequently, the factor involving ξσ( j) in (A.1) multiplied by ξ

y j−yσ( j)−1
σ( j)

is of the form
�

−
1− ξσ( j)
ξσ( j)

�a� 1
ξσ( j)

�b
, a+ b ≤ j −σ( j)− 1 , (A.3)

where −1 in j − σ( j) − 1 is due to that for the inversion (σ(i),σ( j)), Rσ(i)σ( j) takes ξσ(i).
Hence the exponent of ξσ( j) in the full integrand is bounded below by

y j − yσ( j) − 1− ( j −σ( j)− 1) ≥ ( j −σ( j))− 1− ( j −σ( j)− 1) ≥ 0 ,

so ξσ( j) has no pole. Therefore the contour integral in ξσ( j) also vanishes.
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