
SciPost Phys. Lect. Notes 111 (2026)

Les Houches lecture notes on moduli spaces of Riemann surfaces

Alessandro Giacchetto1⋆ and Danilo Lewański2†
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Abstract

In these lecture notes, we provide an introduction to the moduli space of Riemann sur-
faces, a fundamental concept in the theories of 2D quantum gravity, topological string
theory, and matrix models. We begin by reviewing some basic results concerning the
recursive boundary structure of the moduli space and the associated cohomology the-
ory. We then present Witten’s celebrated conjecture and its generalisation, framing it as
a recursive computation of cohomological field theory correlators via topological recur-
sion. We conclude with a discussion of JT gravity in relation to hyperbolic geometry and
topological strings.
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1 Introduction

As a physical theory, 2D gravity is a rather trivial theory, as the Einstein–Hilbert action

S =
1

2κ

∫

Σ

d2 x R
p

−h , (1)

is a topological invariant of the surface Σ. Consequently, the Einstein equations are automati-
cally satisfied. In contrast, 2D quantum gravity is a rather rich theory, with deep connections
to the theory of integrable systems and algebraic geometry. In the quantum setting, what is
physically realised is not a fixed metric h on the surface Σ, but rather a dynamically fluctuating
metric. The quantity of interest, the path integral, is then an integral over the space of all such
metrics up to symmetry:

n

(Σ, h)
�

�

�

surface Σ
with metric h

o.

diffeomorphism
conformal transf. . (2)

In mathematical terms, we are interested in the space parametrising Riemann surfaces, and
more precisely in the calculation of integrals over such a moduli space.

A completely different approach to 2D quantum gravity builds upon the idea of discretis-
ing the surfaces and counting triangulations, which in turn is related to random matrix theory.
The “random matrix method” started with G. ’t Hooft’s discovery in 1974 [1] from the study of
strong nuclear interactions, that matrix integrals are naturally related to graphs drawn on sur-
faces, weighted by their topology. This first example by ’t Hooft was then turned into a general
paradigm for enumerating maps, by physicists E. Brezin, C. Itzykson, G. Parisi, and J.-B. Zu-
ber [2]. By their method, they recovered some results due to the mathematician W. T. Tutte in
the ’60s, about counting the numbers of triangulations of the sphere [3].
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In the continuum limit, one would expect the two approaches to coincide. The idea that
these two models of 2D quantum gravity are equivalent has striking consequences and led
E. Witten to formulate his famous conjecture about the geometry of moduli spaces of Riemann
surfaces [4]. The conjecture, later proved by M. Kontsevich [5], connects in a beautiful way
theoretical physics, algebraic geometry, and mathematical physics. Recently, the physics liter-
ature has seen a resurgence of such ideas in connection to Jackiw–Teitelboim gravity and its
holographic dual, the Sachdev–Ye–Kitaev model [6,7] (cf. C. Johnson’s and G. Turiaci’s lecture
notes [8,9]).

Another physical theory, presenting deep connections with the theory of Riemann surfaces,
is string theory. As a string travels through spacetime, it traces out a Riemann surface, the
worldsheet of the string. These are essentially stringy versions of Feynman diagrams. The
path integrals of the theory are mathematically described as integrals over the moduli spaces
of Riemann surfaces mapping to the spacetime (cf. M. Liu’s lecture notes [10]). The properties
satisfied by such integrals are mathematically described by the notion of cohomological field
theory.

sp
ac

e

time

Figure 1: A string travelling through spacetime.

The goal of these notes is to describe the mathematics related to such ideas, focusing par-
ticularly on the moduli space of Riemann surfaces, the concept of cohomological field theory,
and its recursive solution. The main references include:

[11] D. Zvonkine, “An introduction to moduli spaces of curves and their intersection theory”.
Not too technical notes on the moduli space of curves, its intersection theory, and Witten’s conjecture.

[12] R. Pandharipande, “Cohomological field theory calculations”.
Not too technical notes on cohomological field theories, focused on examples.

[13] J. Schmitt, “The moduli space of curves”.
Algebro-geometric oriented notes on the moduli space of curves and its cohomology.

[14] E. Arbarello, M. Cornalba, P. A. Griffiths, “Geometry of Algebraic Curves, Vol. II”.
A comprehensive text on Riemann surfaces and their moduli.

2 Moduli spaces of Riemann surfaces

In this section, we recall some facts about Riemann surfaces and their moduli space. The
latter has been a central object in mathematics since Riemann’s work in the mid-19th century,
and a compactification was defined more than 50 years ago by Deligne and Mumford [15]
by including stable curves. For a great one-hour introductory talk to the moduli spaces of
Riemann surfaces and their history, see [16].
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2.1 Definition of the moduli spaces

Terminology. The primary focus of our study is on smooth, connected, compact, complex 1-
dimensional manifolds, simply called curves or Riemann surfaces, which have n labelled distinct
points (see M. Bertola’s lecture notes [17]). These will be denoted as

(Σ, p1, . . . , pn) . (3)

Each compact complex curve has an underlying structure of a real 2-dimensional orientable
compact surface without boundary, uniquely characterised by its genus g.

· · · · · ·

Figure 2: Some examples of real 2-dimensional orientable compact surfaces.

Our primary examples will be the sphere (genus 0) and the torus (genus 1). The sphere
has a unique structure as a Riemann surface up to isomorphism, identified as the complex
projective line P1. A complex curve of genus 0 is called a rational curve. The automorphism
group of P1 is

PSL(2,C) =
��

a b
c d

� �

�

�

�

[a : b : c : d] ∈ P3

ad − bc ̸= 0

�

, (4)

acting as
�

a b
c d

�

.z =
az + b
cz + d

. (5)

As for genus 1, every Riemann surface structure on the torus is, up to isomorphism, obtained
as a quotient C/Λ. Here Λ is a lattice, that is an additive group of the form

Λ= { n1ω1 + n2ω2 | n1, n2 ∈ Z } , (6)

for ω1,ω2 ∈ C that are linearly independent over the reals. A complex curve of genus 1 is
referred to as an elliptic curve.

As discussed in the introduction, we are interested in the moduli space of Riemann surfaces
of a fixed genus g with n marked points (and in particular, we want to make sense of integrals
over such a space: the path integrals of 2D quantum gravity).

Definition 2.1. The moduli space Mg,n is the set of isomorphism classes of Riemann surfaces
of genus g with n marked points:

Mg,n =
n

Riemann surfaces
of genus g with n marked points

o.

iso . (7)

For isomorphism between two objects (Σ, p1, . . . , pn) and (Σ′, p′1, . . . , p′n) we mean a biholo-
morphism φ : Σ→ Σ′ that preserves the marked points: φ(pi) = p′i .

The above definition is perfectly well-posed, but we want to give it more structure. Recall
that our goal is to discuss integrals over the moduli space of Riemann surfaces, so a structure
like that of a manifold would be desirable. It turns out that there is a lot of geometry, but
it is not as nice as that of a manifold. The main reason is that Riemann surfaces have au-
tomorphisms. The simplest example is P1, whose automorphism group is the infinite group
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PSL(2,C). Since in the integration we want to quotient out by the group of symmetries, an
infinite group of automorphisms is bad news. In other words, M0,0 does not have a nice ge-
ometric structure. There is however a way to get rid of automorphism by marking (at least
three) points.

Exercise 2.1.

1. Consider a genus 0 curve with three marked points (P1, p1, p2, p3). Find the (unique)
g ∈ PSL(2,C) that maps (P1, p1, p2, p3) to (P1, 0, 1,∞).

2. Consider a genus 0 curve with four marked points (P1, p1, p2, p3, p4). The group element
g ∈ PSL(2,C) found in part (1) maps (P1, p1, p2, p3, p4) to (P1, 0, 1,∞, t). Find an ex-
pression for t as a function1 of p1, p2, p3, p4.

The above exercise shows that

M0,3 = { (P1, 0, 1,∞) }= {∗} ,

M0,4 = { (P1, 0, 1,∞, t) | t ̸= 0, 1,∞}= P1 \ {0, 1,∞} .
(8)

One can generalise the above analysis to show that, for n≥ 3,

M0,n =
�

(t1, . . . , tn−3) ∈ (P1 \ {0,1,∞})n−3
�

� t i ̸= t j

	

. (9)

This provides M0,n with a nice geometric structure.
Another bad example where the automorphism group is infinite is that of an elliptic curve

E, for which Aut(E) contains a subgroup isomorphic to E itself acting by translations. Again,
we can get rid of automorphisms (in this case, translations) by marking a point. If E = C/Λ,
a natural choice of marked point is the image of Λ ⊂ C, that is the identity element on the
torus. Thus, M1,1 = { lattices }/C∗, where C∗ acts by rescaling. To understand the quotient,
let us fix a basis (ω1,ω2) of Λ. Multiplying Λ by 1/ω1, we obtain an equivalent lattice with
basis (1,τ) for τ in the upper half-plane H. Choosing another basis of the same lattice, that
is acting by the group SL(2,Z) of lattice base changes, we obtain another point τ′ ∈ H. Thus,
we find that

M1,1 =H/SL(2,Z) . (10)

A fundamental domain for the quotient is shown in figure 3. After identifying the arcs AB ∼ AB′

and the half-lines BC ∼ B′C ′, we see that M1,1 is topologically P1 \ {∞}. However, lattices
have non-trivial automorphisms. Indeed, the matrix −Id acts trivially on H, so that the auto-
morphism group of each point on M1,1 contains at least Z2 as a subgroup. This involution is
called the hyperelliptic involution of a marked elliptic curve. If we write an elliptic curve as
(the compactification of) a degree 3 polynomial equation of the form

E : y2 = x3 + ax + b , (11)

then the hyperelliptic involution is simply the map y 7→ −y .
It is actually possible to completely characterise the automorphism group of each point τ

in the fundamental domain (see figure 4):

• for τ = eπi/3 = 1+i
p

3
2 corresponding to the hexagonal lattice, the automorphism group

is Z6;

• for τ= eπi/2 = i corresponding to the square lattice, the automorphism group is Z4;

• for any other τ in the fundamental domain, the automorphism group is Z2.

5
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0 1−1 1
2−1

2

BB′
A

CC ′

Figure 3: The moduli space M1,1. The arcs AB and AB′ and the half-lines BC and
B′C ′ are identified.

• •
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•

• •

•

•

•

•

•

•

τ= eπi/3

• •

•

•

•

••

• •

τ= eπi/2

• •

•

•

•

•

•

τ= e5πi/24

Figure 4: The automorphism groups of lattices.

A theorem by A. Hurwitz implies that the automorphism group of any Riemann surface
satisfying 2g−2+n> 0 is finite. Such a pair (g, n) is called stable. Conversely, every Riemann
surface with 2g − 2+ n≤ 0 has an infinite group of automorphisms that preserve the marked
points. In other words:

Aut(Σg , p1, . . . , pn) is finite ⇐⇒ −χ = 2g − 2+ n> 0 . (12)

This precludes defining the moduli spaces M0,0, M0,1, M0,2, and M1,0 as nice geometric
spaces. (While they can still be considered as sets, this is of limited use.)

From now on, we will always assume 2g − 2 + n > 0. In this case the situation is good,
but not as good as it can get: there are still curves with non-trivial automorphism group, as
the example of M1,1 showed. Nonetheless, finiteness of the automorphism groups allows us
to consider the moduli space of Riemann surfaces as an orbifold.

Theorem 2.2. For 2g − 2 + n > 0, the moduli space Mg,n is a connected, smooth, complex
orbifold of dimension

dim(Mg,n) = 3g − 3+ n . (13)

The definition of a smooth complex orbifold is somewhat technical, but it closely mirrors
that of a smooth complex manifold. The key difference is that, locally, an orbifold looks like
an open subset of Cd/G, where G is a finite group acting holomorphically. A simple example

1This is known as the cross-ratio, defined in deep antiquity (possibly already by Euclid) and considered by
Pappus who noted its key invariance property.
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to keep in mind is the global quotient C/Zm, where Zm acts by rotation through an angle
2π/m. In the theorem above, “smooth” is meant in this orbifold sense: the moduli space
Mg,n is locally modelled on quotients of smooth complex manifolds by finite group actions.
In practical terms, this means thatMg,n is a smooth manifold up to finite quotient singularities.

Exercise 2.2. For the reader familiar with Riemann–Roch and Riemann–Hurwitz, convince your-
self that the complex dimension of Mg = Mg,0 is 3g − 3. This result was already known to
Riemann himself, who also coined the term “moduli space” (from the Latin word modus, meaning
measure):

To this end, consider the moduli space of pairs (Σ, f ), where Σ is a genus g Riemann surface and
f is a degree d holomorphic map from Σ to P1 (i.e. a meromorphic function on Σ). Such a space
is sometimes called a Hurwitz space, denoted Hg,d . Compute its dimension in two different ways.

• The dimension of Hg,d equals the dimension of Mg , counting the “number of deformation
parameters” of the Riemann surface Σ, plus the “number of deformation parameters” of the
function f . Compute the latter via Riemann–Roch.

• Directly compute the dimension of Hg,d using Riemann–Hurwitz.

Conclude that dimMg = 3g − 3.
� Hint. Consider d ≫ 1.

One important consequence of this local description is that many differential-geometric
notions familiar from manifolds, such as differential forms and integration, extend naturally
to orbifolds. In particular, it makes sense to talk about integration over complex orbifolds. For
the example of C/Zm, given a function f : C → C that is invariant under rotation of 2π

m , we
can define

∫

C/Zm

f (z, z̄)dz dz̄ =
1
|Zm|

∫

C
f (z, z̄)dz dz̄ . (14)

Most of the results that hold for manifolds extend (with proper modifications) to orbifolds.
Here is an example of the Euler characteristic.

Exercise 2.3. The Euler characteristic of an orbifold X is defined as

χ(X ) =
∑

G

χ(XG)
|G|

, (15)

where XG is the locus of points with automorphism group G. Prove that χ(M1,1) = −
1
12 . The

formula generalises to the celebrated Harer–Zagier formula [18]:

χ(Mg,n) = (1− 2g)n−1 ζ(1− 2g) , (16)
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where (x)m denotes the Pochhammer symbol (or falling factorial) and ζ(x) is the Riemann zeta
function. Interestingly, the original computation by Harer and Zagier uses matrix model tech-
niques.

Although integrals over orbifolds are well-defined, there is another potential issue to deal
with: non-compactness. The non-compactness problem can be seen already from the examples
of M0,4 or M1,1. The latter is topologically P1 \{∞}, with the missing point at infinity being
the source of non-compactness. We can see how this limit point is realised geometrically by
considering the family of elliptic curves

Et : y2 = x(x − 1)(x − t) , t ∈ (0, 1) . (17)

In the limit t → 0 or 1, the Riemann surface Et becomes degenerate. For instance, as t → 0
we find y2 = x2(x − 1), which, locally around x = 0, looks like the union of the two complex
lines y = ±x . This means that at x = 0 we have two meeting components, also known as a
nodal singularity, and the surface E0 will look as follows.

•

Figure 5: A pinched torus.

In other words, the limit point of M1,1 is not a torus anymore, but rather a pinched torus.
To make sense of integration over non-compact spaces we have two possibilities. The first

one is to consider only functions or differential forms with a certain decay at limit points.
The second option is to properly compactify the space of interest, and only consider regular
functions or differential forms on such compactification. We will follow the second route. It
turns out that for Mg,n the addition of Riemann surfaces with nodes is sufficient to obtain a
nice compactification.

Definition 2.3. A stable Riemann surface of genus g with n labelled marked points p1, . . . , pn
is a possibly singular, compact, connected, complex curve Σ such that:

• the genus of the surface obtained from Σ by smoothening all its nodes is g (see figure 6),

• the only singularities of Σ are nodes,

• the marked points are distinct and do not coincide with the nodes, and

• (Σ, p1, . . . , pn) has a finite number of automorphisms.

We can then define a moduli space parametrising isomorphism classes of stable Riemann sur-
faces, often called the Deligne–Mumford moduli space [15]:

Mg,n =
n

stable Riemann surfaces
of genus g with n marked points

o.

iso. (18)

The last condition in the above definition can be reformulated as follows. Let Σ1, . . . ,Σk
be the connected components of the surface obtained by separating the branches at each node
(this process is called normalisation, see figure 6). Let g(v) be the genus of Σv and n(v) the
number of special points, i.e., marked points and preimages of the nodes on Σi . Then, the
“finite automorphisms” condition is satisfied if and only if 2g(v)− 2+ n(v)> 0 for all v.

The main result about the Deligne–Mumford moduli space is that it provides a compacti-
fication of the moduli space of Riemann surfaces.
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•
•

•
•

•
•

•
•

smoothening

•
•

•
•

••

•• •

••
•
•

normalisation

Figure 6: The smoothening and the normalisation of a singular Riemann surface.
From the smoothening, one reads (g, n); from the normalisation, one reads the sta-
bility condition.

Theorem 2.4. For 2g − 2+ n> 0, the moduli space Mg,n

• is a connected, smooth, complex, compact orbifold of dimension dim(Mg,n) = 3g − 3+ n;

• it contains Mg,n as an open dense subset.

The set ∂Mg,n =Mg,n \Mg,n is called the boundary of the moduli space.

Now that we have a compact space, we can safely talk about integration. More generally,
we have a nice (co)homology algebra

�

H•(Mg,n,Q),⌢
�

and
�

H•(Mg,n,Q),⌣
�

, (19)

where the algebra structure is with respect to the cap/cup product (corresponding to intersec-
tion of subvarieties/wedge of differential forms respectively). The Q coefficients are due to
the orbifold structure, and one can safely take C coefficients if they prefer. The two are dual
via Poincaré duality:

Hk(Mg,n,Q)∼= H2(3g−3+n)−k(Mg,n,Q) . (20)

Most importantly, we have a well-defined fundamental class against which we can integrate
cohomology classes to get a number:

∫

Mg,n

α ∈Q , α ∈ H2(3g−3+n)(Mg,n,Q) . (21)

Since taking cap products in cohomology (i.e. wedges of differential forms) corresponds to
taking cup products in homology (i.e. intersection of subvarieties), the theory of integration
on compact moduli spaces is often called intersection theory.

2.2 Stratification and tautological maps

Before discussing the cohomology of Mg,n and its intersection theory further, let us analyse the
compactification in more detail. The main picture to keep in mind is the following: most of the
points of Mg,n are smooth Riemann surfaces that live on Mg,n, but by contracting cycles we
produce stable singular Riemann surfaces that live on the boundary ∂Mg,n. By performing
this procedure once, we create a single node. By repeatedly performing this operation, we
create Riemann surfaces that are more and more singular. See figure 7 for an illustration.

As an example, consider the space M0,4. On the boundary ∂M0,4 we find the singular
Riemann surface made of two P1’s glued together to form a node and each with two marked
points. These arise from a smooth rational curve with four marked points by contracting a
cycle separating the marked points into two-plus-two. We have three possible configurations,

9
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×

×

×

×

×
•

•

•

•

•

•

•

•

•

•

Figure 7: An illustration of the compactified moduli space Mg,n.

corresponding to the three possible ways of splitting (p1, p2, p3, p4) into two disjoint sets con-
taining two points each.

•

p1

•

p2

•

p3

•

p4

•

p1

•

p3

•

p2

•

p4

•

p1

•

p4

•

p2

•

p3

Figure 8: The three points on the boundary ∂M0,4.

Notice that each of the above stable Riemann surface has no moduli: each rational compo-
nent of their normalisations has three special points (the two marked points and a branch of
the node), which can always be brought to (0,1,∞). Another way of saying it is that we can
realise each of the above stable Riemann surfaces as the point M0,3 ×M0,3. Recalling that
M0,4 = P1 \ {0, 1,∞}, we obtain that

M0,4 =M0,4 ⊔ (M0,3 ×M0,3)
⊔3 = P1 , (22)

which is indeed compact.
As for M1,1, the only element in the boundary ∂M1,1 is the pinched torus with a marked

point encountered before. Again, the pinched torus has no moduli, as its normalisation is a ra-
tional curve with three marked points. However, the pinched torus has Z2 as an automorphism
group. Another way of saying it is to realise it as M0,3/Z2. This gives

M1,1 =M1,1 ⊔ (M0,3/Z2) , (23)

which is topologically a P1 but with orbifold structure given by a point of automorphism Z6,
a point of automorphism Z4, and all other points of automorphism Z2.

It should be clear from the above examples that the compactification of Mg,n has a kind
of recursive structure, obtained by pinching cycles and reducing the topology of the Riemann
surface by breaking it up into pieces. We can keep track of this via certain graphs. Consider
figure 9 for an illustration.

Definition 2.5.
The stable graph associated with a stable Riemann surface (Σ, p1, . . . , pn) ∈Mg,n is the graph
Γ obtained by associating:

10
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•

•

•

p1

p2
p3

1

2 3

21

1

Figure 9: A stable Riemann surface and the associated stable graph.

• a vertex v to each component of the normalisation, decorated by the genus g(v) of the
component;

• a leaf to each marked point pi , labelled by i accordingly;

• an edge to each node.

The genus of a stable graph Γ is

g(Γ ) =
∑

v∈V (Γ )

g(v) + h1(Γ ) , (24)

where V (Γ ) is the set of the vertices of the graph and h1(Γ ) denotes the first Betti number (i.e.
the number of faces) of Γ . It coincides with the genus of Σ. We also denote by E(Γ ) the set
of edges and by n(v) the valency of the vertex v (that is, the number of leaves and half-edges
incident to v). The latter corresponds to the number of special points (that is, marked points
and branches of nodes) on the component corresponding to the vertex v.

We remark that the stability condition implies that 2g(v)− 2+ n(v) > 0 for all v ∈ V (Γ ).
This guarantees that for each (g, n), called the type, there are only finitely many stable graphs
of genus g with n leaves. Such stable graphs provide a stratification of Mg,n: for a given Γ of
type (g, n), set

MΓ =
§

(Σ, p1, . . . , pn) ∈Mg,n

�

�

�

�

Γ is the stable graph
associated with (Σ, p1, . . . , pn)

ª

. (25)

Then we get the stratification
Mg,n =

⊔

Γ of type (g,n)

MΓ . (26)

We have already analysed thoroughly the cases of M0,4 and M1,1, whose stable graphs are
given as follows.

(0,4):
1

2 3

4

0

1

2

3

4

0 0

1

3

2

4

0 0

1

4

2

3

0 0

(1,1): 1 1 1 0

Figure 10: All stable graphs of type (0, 4) and (1, 1).
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Another example is that of M2:

dim(MΓ )

32

1 21 1

0 10 1

0

0

0 0 0

Figure 11: All possible stable Riemann surfaces of genus 2, together with the associ-
ated stable graphs and the dimensions of the corresponding strata.

Here we drew the strata corresponding to the type of stable Riemann surface dual to the
graph and on different levels according to the number of edges. Note that contraction of cycles
is dual to contraction of edges.

Exercise 2.4.

1. List all strata of M2,1.

2. Consider a stable graph Γ of type (g, n). Show that the dimension of the stratum is given
by dim(MΓ ) = dim(Mg,n)− |EΓ |.

The fact that the strata of Mg,n are parametrised by smaller-dimensional spaces MΓ is
sometimes called the recursive boundary structure of Mg,n. It is one of the most important
features of the moduli space of Riemann surfaces and the proofs of many results about Mg,n
(including the computation of integrals) use it in a very essential way.

One way of taking advantage of it is by defining gluing maps. More precisely, for each
stable graph Γ of type (g, n) we define

ξΓ : MΓ =
∏

v∈V (Γ )

Mg(v),n(v) −→Mg,n , (27)

which sends the stable Riemann surface ((Σv)v∈V (Γ ), (qh, qh′)e=(h,h′)∈E(Γ ), p1, . . . , pn) to the sta-
ble Riemann surface (Σ, p1, . . . , pn) obtained by gluing all pairs (qh, qh′) of points corresponding
to pairs e = (h, h′) of half-edges forming an edge e of Γ . The image of MΓ under ξΓ coincides
with the closure of MΓ .

The easiest case is that of a stable graph Γ with a single edge e. We have two possible
cases: the edge is non-separating (i.e. a loop) or it is.

Non-separating edge. It corresponds to the following stable graph:

1

··
·

n

g − 1 (28)
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Thus, the gluing map, called the gluing map of non-separating kind, is given by

ρ : Mg−1,n+2 −→Mg,n , e.g.
••

•

p1 q

q′
7−→ •

p1

(29)

To be pedantic, ρ should depend on (g, n). We omit the dependence for lighter notation.

Separating edge. It corresponds to the following stable graph:

··
·I1 ··
· I2g1 g2 (30)

where g = g1 + g2 is a splitting of the genus and I1 ⊔ I2 = { p1, . . . , pn } is a splitting of the
marked points. Thus, the corresponding gluing map, called the gluing map of separating kind,
is given by

σ : Mg1,1+|I1| ×Mg2,1+|I2| −→Mg,n , e.g. •
•

p1 q

, •
•

•
q′

p2

p3

7−→
•

p1 •

•

p2

p3 .

(31)

To be pedantic, σ should depend on (g, n) and on the splitting of genus and marked points.
Notice how the above terms corresponds to the terms appearing in the topological recursion

formula (see V. Bouchard’s lecture notes [19]). This is not a coincidence, as we will see in
section 3.

We conclude this section with one more natural map between moduli spaces: the forgetful
map. This is the map that forgets the last marked point:

π: Mg,n+1 −→Mg,n , (Σ, p1, . . . , pn, pn+1) 7−→ (Σ, p1, . . . , pn)
stab . (32)

Again, to be pedantic, π should depend on (g, n). We omit the dependence for a lighter
notation. The suffix ‘stab’ stands for ‘stabilisation’. Indeed, it may happen that, when forgetting
a marked point, the resulting Riemann surface is not stable. This is the case of a marked point
pn+1 on a rational component with only three special points. The stabilisation process simply
contracts this component to a point. If the resulting Riemann surface is still not stable, we
keep contracting unstable components until we find a stable result. For example:

•
p1 •

•

p2

p3

7−→



 •
p1 •

p2





stab

= •
p1

• p2 . (33)

The gluing maps ρ,σ and the forgetful map π are sometimes referred to as the tautological
maps. We will see shortly that they play a crucial role in the intersection theory of the moduli
space of Riemann surfaces. The main takeaway is that, thanks to the compactification and the
introduction of the tautological maps, we can think about the moduli spaces as a collection
of spaces connected by maps (rather than “isolated” spaces). In particular, we can talk about
pullback and pushforward in cohomology.

Let us recall these operations for an arbitrary smooth map

φ : M −→ N , (34)

between smooth real orbifolds of real dimensions dimR(M) = m and dimR(N) = n.
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Pullback. The pullback is always a well-defined contravariant operation in cohomology cor-
responding to pre-composition. More precisely, it is a degree-preserving map

φ∗ : Hk(N) −→ Hk(M) . (35)

In terms of differential forms, write locally φ as (x1, . . . , xm) 7→ (y1(x), . . . , yn(x)) and let η be
a k-form on N locally expressed as η= ηµ1,...,µk(y)dyµ1

∧· · ·∧dyµk
(we use Einstein’s notation

for the summation over repeated indices). Then

φ∗η= ηµ1,...,µk(y(x))dyµ1
(x)∧ · · · ∧ dyµk

(x) . (36)

The pullback is compatible with both addition and cup product.

Pushforward. The pushforward is well-defined only for maps φ with compact fibres. In
this case, the pushforward defines a covariant operation in cohomology, which corresponds
to the geometric idea of “integration along fibres”. More precisely, if we denote by r the real
dimension of the fibres of φ, then

φ∗ : Hk(M) −→ Hk−r(N) . (37)

In terms of differential forms, write locallyφ as (x1, . . . , xr , y1, . . . , yn) 7→ (y1, . . . , yn) and letω
be a k-form on M locally expressed asω=ων1,...,νk−r (x , y)dx1∧· · ·∧dxr∧dyν1

∧· · ·∧dyνk−r
+. . .

The dots stand for terms with a lower number of dx ’s. Then

(φ∗ω)q =

�

∫

φ−1(q)
ων1,...,νk−r (x , q)dx1 ∧ · · · ∧ dxr

�

dq yν1
∧ · · · ∧ dq yνk−r

, (38)

for all q ∈ N . The pushforward is compatible with the addition, but it does not respect the cup
product.

The definition generalises via Poincaré duality whenever both M and N are compact. In this
case, the pushforward is simply the pre-composition and post-composition of the pushforward
in homology by Poincaré duality:

φ∗ : Hk(M)
PD∼= Hm−k(M) −→ Hm−k(N)

PD∼= Hk−(m−n)(N) . (39)

It coincides with the “integration along fibres” whenever φ has compact fibres of dimension
r = m− n.

Projection formula. In the case of compact fibres, there is a useful formula, known as pro-
jection formula, which expresses integrals over M as integrals over N . More precisely: if
ω ∈ Hk(M) and η ∈ Hm−k(N), then

∫

M
ω∧φ∗η=

∫

N
φ∗ω∧η . (40)

2.3 Intersection theory and Witten’s conjecture

Recall our main goal: to define and compute integrals over the moduli space of Riemann
surfaces. Since Mg,n is a compact orbifold, we can finally discuss integrals of top cohomology
classes. However, we do not yet have any natural classes to integrate. There are two natural
sources of cohomology classes.

• The Poincaré dual of natural (complex) subspaces.
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• Chern classes of natural complex vector bundles.

In both cases, cohomology classes of even degree are produced. For this reason, when multi-
plying classes in cohomology, we shall always omit the cap product since the cap product of
even-degree cohomology classes is commutative.

We have already encountered several subspaces of Mg,n, namely the boundary strata.
Recall that for a fixed stable graph Γ of type (g, n), the associated subspace MΓ has complex
dimension dim(Mg,n)− |E(Γ )|. We deduce that the Poincaré dual, denoted by brackets [ · ],
lives in

[Γ ] ∈ H2|E(Γ )|(Mg,n,Q) . (41)

It can be expressed as a pushforward along the gluing maps:

[Γ ] =
1

|Aut(Γ )|
ξΓ ,∗1 . (42)

The element 1 on the right-hand side is the unit in H•(MΓ ,Q). In particular, the Poincaré
dual of the entire space, corresponding to the stable graph with a single vertex of genus g, no
edges, and n leaves, is the unit in cohomology:

�

1

··
·

n
g

�

= 1 ∈ H0(Mg,n,Q) . (43)

Let us discuss now Chern classes of complex vector bundles. A complex vector bundle over
Mg,n is the assignment of a complex vector space to each isomorphism class of stable Riemann
surfaces so that, as the stable Riemann surface varies within the moduli space, the assigned
vector spaces vary smoothly and are coherently glued together. Once a complex vector bundle
V →Mg,n is given, we can consider its Chern classes:

ck(V) ∈ H2k(Mg,n,Q) , k = 0,1, . . . , rk(V) , (44)

where rk(V) denotes the complex rank of V , that is, the complex dimension of the fibres. The
zeroth Chern class is always the unit in cohomology: c0(V) = 1. Chern classes are topolog-
ical invariants associated with complex vector bundles and offer a simple test to determine
whether two vector bundles are not isomorphic: if the Chern classes of a pair of vector bun-
dles differ, then the vector bundles are distinct (the converse, however, is not necessarily true).
Geometrically, they provide information about the number of linearly independent sections a
vector bundle has and may be expressed as coefficients of the characteristic polynomial of the
curvature form of any Hermitian connection ∇ on V (the cohomology class does not depend
on the choice of connection):

c(V; t) =
rk(V)
∑

k=0

ck(V) tk = det
�

Id− t
F∇
2πi

�

. (45)

The first example of such a holomorphic vector bundle is the so-called i-th cotangent line
bundle: for each i ∈ {1, . . . , n }, set

Li −→Mg,n , Li|(Σ,p1,...,pn) = T ∗pi
Σ . (46)

In other words, the fibre over (Σ, p1, . . . , pn) is the holomorphic cotangent space at the i-th
marked point. Since T ∗pi

Σ is a complex vector space of dimension 1, the associated bundle Li
has complex rank 1: it is a line bundle. We then consider its first Chern class:

ψi = c1(Li) ∈ H2(Mg,n,Q) . (47)
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(Σ, p1, . . . , pn)
•

•

•

T ∗pi
Σ

•

•

•

•

•

•

Figure 12: An illustration of the cotangent line bundle Li .

These are called cotangent line classes, or simply ψ-classes. As usual, strictly speaking, ψ-
classes should depend on (g, n). We omit this dependence, that is hopefully clear from the
context. As we shall see shortly,ψ-classes appear in the seminal work of Witten on topological
2D gravity [4] and represent a cornerstone of all physical theories connected to the moduli
space of Riemann surfaces, such as JT gravity and topological string theory.

From theψ-classes, we can derive new cohomology classes that are projections of forgotten
points: the Morita–Miller–Mumford classes, or simply κ-classes, defined as

κm = π∗
�

ψm+1
n+1

�

∈ H2m(Mg,n,Q) , m= 0, . . . , 3g − 3+ n , (48)

where π: Mg,n+1→Mg,n is the forgetful map. Since the fibres of π are compact and one-
dimensional, the pushforward is well-defined in cohomology and decreases the complex co-
homological degree by 1. As we shall see shortly, the class 2π2κ1, called the Weil–Petersson
class, plays a fundamental role in JT theory and hyperbolic geometry.

A third collection of natural cohomology classes consists of those arising from the most
natural vector space associated with a Riemann surface: the space of holomorphic differentials.
More precisely, define the Hodge bundle

H −→Mg,n , H|(Σ,p1,...,pn) = Ω(Σ) . (49)

Here, Ω(Σ) denotes the space of holomorphic forms on Σ, which is a complex vector space of
dimension g. One should be cautious, however, regarding the definition of holomorphic forms
on Riemann surfaces with nodes (that is, the definition of H on the boundary of the moduli
space). In order to understand how holomorphic forms should be defined on nodal Riemann
surfaces, consider the example

Et : y2 = x(x − 1)(x − t) . (50)

For t ̸= 0, the space of holomorphic forms on Et is one dimensional and generated by

ωt =
dx
y
=

dx
p

x(x − 1)(x − t)
. (51)

As t → 0, the torus degenerates into a pinched torus, and the holomorphic form ωt limits to

ω0 =
dx

x
p

x − 1
. (52)
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One can verify in local coordinates that ω0 is no longer holomorphic, but is instead meromor-
phic with a simple pole at the node and opposite residues at the two branches of the node.
The presence of this simple pole is crucial. Indeed, the pinched torus is a P1 with two points
identified; on P1, there are no non-trivial holomorphic forms; however, there exists a one-
dimensional complex vector space of meromorphic forms with simple poles at the two special
points and opposite residues. In other words, the dimension of Ω(Et) is preserved even in the
limit t → 0.

The definition of Ω(Σ) is thus

Ω(Σ) =

¨

meromorphic form on Σ
with at most simple poles at the nodes, opposite residues

and holomorphic everywhere else

«

, (53)

which has constant dimension g asΣ varies in Mg,n (independently of the marked points). We
then define the Hodge classes, or simply λ-classes, as the Chern classes of the Hodge bundle:

λk = ck(H) ∈ H2k(Mg,n,Q) , k = 0, . . . , g . (54)

As we will briefly mention in section 4, the Hodge class plays a fundamental role in topological
string theory.

We conclude this section with a brief overview of Witten’s conjecture. We begin with two
facts regardingψ-class intersection numbers, also known as Witten’s correlators: the string and
dilaton equations. These equations relate integrals of ψ-classes over different moduli spaces.
Such integrals are conveniently written following Witten’s notation as

〈τd1
· · ·τdn

〉g =
∫

Mg,n

ψ
d1
1 · · ·ψ

dn
n , di ≥ 0 . (55)

The integral is set to be zero unless d1 + · · ·+ dn = 3g − 3+ n, in which case the integrand is
a top-dimensional cohomology class.

• Geometric string equation. The pullback of ψ-classes along the forgetful map is

π∗ψi =ψi − Di , Di =





1

··
·

n

bi

i

n+ 1

g 0



 , (56)

where as usual, a caret as in bi denotes omission. The ψ-class on the left-hand side lies
in Mg,n, while that on the right lies in Mg,n+1.

• Geometric dilaton equation. The 0-th κ-class on Mg,n is equal to (minus) the Euler
characteristic:

κ0 = (2g − 2+ n)1 ∈ H0(Mg,n,Q) . (57)

Exercise 2.5. Employ the geometric string and dilaton equations, together with the projection
formula and the expression (42) for the Poincaré dual of boundary strata, to prove the following
equations satisfied by Witten’s correlators.

• String equation. Integrals over Mg,n+1 with noψn+1 are reduced to integrals over Mg,n:

∫

Mg,n+1

ψ
d1
1 · · ·ψ

dn
n =

n
∑

i=1

∫

Mg,n

 

∏

j ̸=i

ψ
d j

j

!

ψ
di−1
i . (58)
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In Witten’s notation, the string equation amounts to the removal of a τ0:

〈τd1
· · ·τdn

τ0〉g =
n
∑

i=1

〈τd1
· · ·τdi−1 · · ·τdn

〉g . (59)

� Hints. Consider the following facts.

– By looking at cohomological degrees, what can you say about the integral
∫

Mg,n+1
π∗α for

α ∈ H2(3g−3+n)(Mg,n,Q)?

– Let Di as in equation (56). Interpreting it as a Poincaré dual, one can see that Di · Dj = 0 for
all i ̸= j.

• Dilaton equation. Integrals over Mg,n+1 with a single power of ψn+1 are reduced to
integrals over Mg,n:

∫

Mg,n+1

ψ
d1
1 · · ·ψ

dn
n ψn+1 = (2g − 2+ n)

∫

Mg,n

ψ
d1
1 · · ·ψ

dn
n . (60)

In Witten’s notation, the dilaton equation amounts to the removal of a τ1:

〈τd1
· · ·τdn

τ1〉g = (2g − 2+ n) 〈τd1
· · ·τdn

〉g . (61)

The string and dilaton equations allow for the computation of all Witten’s correlators in
genus 0 and 1.

Exercise 2.6. Knowing the string equation and the integral 〈τ3
0〉0 = 1, show that all genus 0,

ψ-class intersection numbers are determined. Can you prove the following closed formula:

〈τd1
· · ·τdn

〉0 =
�

n− 3
d1, . . . , dn

�

, (62)

where
� D

d1,...,dn

�

= D!
d1!···dn! is the multinomial coefficient?

Exercise 2.7. Knowing the string equation, the dilaton equation, and the integral 〈τ1〉1 =
1
24 ,

show that all genus 1, ψ-class intersection numbers are determined. Can you prove the following
closed formula:

〈τd1
· · ·τdn

〉1 =
1
24

 

�

n
d1, . . . , dn

�

−
∑

ε1,...,εn∈{0,1 }

�

n− |ε|
d1 − ε1, . . . , dn − εn

�

(|ε| − 2)!

!

, (63)

where |ε|= ε1 + · · ·+ εn?

While the genus 0 initial value 〈τ3
0〉0 = 1 is trivially satisfied, the genus 1 case 〈τ1〉1 =

1
24

is rather non-trivial. This can be computed using the geometry of the moduli space M1,1 and
its connection to modular forms.

Exercise 2.8. Prove that 〈τ1〉1 =
1
24 using the following facts.

1. The following identity holds for arbitrary line bundle L: c1(L) = 1
k c1(L⊗k).

2. For an arbitrary line bundle L, we have c1(L) = [Z − P], where Z and P are the divisors of
zeros and poles of a generic meromorphic section of L and [ · ] denotes the Poincaré dual.2

2Poincaré duality for orbifolds involves the automorphism group. More precisely, if Z is a sub-orbifold of X with
underlying topological space Ẑ , then [Z] = 1

|G| [Ẑ], where G is the automorphism group of a generic point in Ẑ .
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3. Consider the cotangent line bundle L⊗k
1 →M1,1. There is a canonical identification of the

vector space of holomorphic sections of L⊗k
1 and the vector space of weight k modular forms.

4. The following (combination of) Eisenstein series

G4(τ) =
∑

λ∈(Z+τZ)\{0 }

1
λ4

,

G6(τ) =
∑

λ∈(Z+τZ)\{0 }

1
λ6

,

G̃12(τ) =
�

G4(τ)
2ζ(4)

�3

−
�

G6(τ)
2ζ(6)

�2

,

(64)

are modular forms of weight 4, 6, and 12 respectively. Furthermore, they have a unique
simple zero at τ= 1+i

p
3

2 , τ= i, and τ= +i∞ respectively.

We can now state Witten’s conjecture. To start with, let us package Witten’s correlators in
a single generating series: let td (for d ≥ 0) be a set of formal variables and set

Z(t0, t1, t2, . . . ;ħh) = exp







∑

g≥0, n≥1
2g−2+n>0

ħh2g−2+n

n!

∑

d1,...,dn≥0

〈τd1
· · ·τdn

〉g

n
∏

i=1

tdi






. (65)

The generating series Z arises as a partition function in topological 2D quantum gravity. The
string and dilaton equations may be written as differential operators annihilating Z in the
following way.

Exercise 2.9. Define the differential operators

L−1 = ħh
∂

∂ t0
−ħh2

�

∑

k≥1

tk
∂

∂ tk−1
+

t2
0

2

�

, (66)

L0 = ħh
∂

∂ t1
−ħh2

�

∑

k≥0

2k+ 1
3

tk
∂

∂ tk
+

1
24

�

. (67)

Prove the following:

• The string equation and 〈τ3
0〉0 are equivalent to the equation L−1 Z = 0.

• The dilaton equation and 〈τ1〉1 =
1
24 are equivalent to the equation L0 Z = 0.

The operators L−1 and L0 may be viewed as the beginning of (a representation of a subal-
gebra of) the Virasoro algebra. More precisely, consider the Lie algebra Vir≥−1 of holomorphic
differential operators spanned by

Ln = − zn+1 ∂

∂ z
, n≥ −1 . (68)

The bracket is given by [Lm,Ln] = (m− n)Lm+n.
The collection (L−1, L0) of differential operators can be uniquely extended (under a certain

homogeneity restriction) to a complete representation of (an ħh-deformation of) Vir≥−1. For
n≥ 1, these are given by

Ln = ħh
∂

∂ tn+1
−ħh2







∑

k≥0

(2n+ 2k+ 1)!!
(2n+ 3)!!(2k− 1)!!

tk
∂

∂ tk+n
+

1
2

∑

a,b≥0
a+b=n−1

(2a+ 1)!!(2b+ 1)!!
(2n+ 3)!!

∂ 2

∂ ta∂ tb






.

(69)

19

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.111


SciPost Phys. Lect. Notes 111 (2026)

Here m!! denotes the double factorial, defined recursively as m!!= m·(m−2)!! with initial con-
ditions 0!! = 1!! = 1. These are precisely the differential constraints appearing in Bouchard’s
course [19]!!

Exercise 2.10. Prove that the collection (Ln := − (2n+3)!!
2 Ln)n≥−1 of differential operators defined

by equations (66), (67) and (69) is indeed a representation of Vir≥−1:

[Lm,Ln] = ħh2(m− n)Lm+n . (70)

This, together with the form (69) of the operators, proves that (Ln)n≥−1 form an Airy ideal [19].

Theorem 2.6 (Witten’s conjecture/Kontsevich’s theorem). The differential operators (Ln)n≥−1
annihilate the partition function Z:

Ln Z = 0 , ∀n≥ −1 . (71)

Moreover, the above system of equations (known as Virasoro constraints) uniquely determine all
intersection numbers.

We remark that Witten’s original formulation of his conjecture states that Z is the unique
tau-function of the Korteweg–de Vries (KdV) hierarchy satisfying the string equation L−1 Z = 0.
The KdV hierarchy is an infinite sequence of partial differential equations which extends in a
certain sense the KdV equation. The equivalent statement in terms of Virasoro constraints was
proved by R. Dijkgraaf, H. Verlinde, E. Verlinde [20].

Exercise 2.11. Show that the Virasoro constraints are equivalent to the following topological
recursion for Witten’s correlators:

〈τd1
· · ·τdn

〉g =
n
∑

m=2

(2d1 + 2dm − 1)!!
(2d1 + 1)!! (2dm − 1)!!

〈τd1+dm−1τd2
· · ·dτdm

· · ·τdn
〉g

+
1
2

∑

a+b=d1−2

(2a+ 1)!! (2b+ 1)!!
(2d1 + 1)!!

×






〈τaτbτd2

· · ·τdn
〉g−1 +

∑

g1+g2=g
I1⊔I2={ d2,...,dn }

〈τaτI1
〉g1
〈τbτI2

〉g2






.

(72)

Prove that the above recursion is equivalent to the Eynard–Orantin topological recursion formula
[21] (see [19]) on the Airy spectral curve (P1, x(z) = z2

2 , y(z) = z, ω0,2(z1, z2) =
dz1dz2
(z1−z2)2

):

ωg,n(z1, . . . , zn) = (−1)n
∑

d1,...,dn≥0
d1+···+dn=3g−3+n

〈τd1
· · ·τdn

〉g

n
∏

i=1

(2di + 1)!!

z2di+2
i

dzi . (73)

As mentioned in the introduction, Witten’s motivation for the above conjecture finds its
roots in 2D quantum gravity. In the classical setting, the spacetime is a surface while the
gravitational field is a Riemannian metric on the surface itself. In an attempt to quantise such
a theory, one should compute a certain path integral over the space of all possible Riemannian
metrics on all possible surfaces. The space of Riemannian metrics over a fixed topological
surface is infinite-dimensional, and there are two possible ways to give meaning to such an
ill-defined quantity.
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Table 1: Some ψ-classes intersection numbers, computed using the topological re-
cursion relation (72).

(g, n) 〈τd1
· · ·τdn

〉g ∗

(0, 3) 〈τ3
0〉0 1

(0, 4) 〈τ3
0τ1〉0 1

(0, 5)
〈τ4

0τ2〉0 1

〈τ3
0τ

2
1〉0 2

(0, 6)

〈τ5
0τ3〉0 1

〈τ4
0τ1τ2〉0 3

〈τ3
0τ

3
1〉0 6

(0, 7)

〈τ6
0τ4〉0 1

〈τ5
0τ1τ3〉0 4

〈τ5
0τ

2
2〉0 6

〈τ4
0τ

2
1τ2〉0 12

〈τ3
0τ

4
1〉0 24

(g, n) 〈τd1
· · ·τdn

〉g ∗

(1,1) 〈τ1〉1
1
24

(1,2)
〈τ0τ2〉1

1
24

〈τ2
1〉1

1
24

(1,3)

〈τ2
0τ3〉1

1
24

〈τ0τ1τ2〉1
1
12

〈τ3
1〉1

1
12

(1,4)

〈τ3
0τ4〉1

1
24

〈τ2
0τ1τ3〉1

1
8

〈τ2
0τ

2
2〉1

1
6

〈τ0τ
2
1τ2〉1

1
4

〈τ4
1〉1

1
4

(g, n) 〈τd1
· · ·τdn

〉g ∗

(2, 1) 〈τ4〉2
1

1152

(2, 2)

〈τ0τ5〉2
1

1152

〈τ1τ4〉2
1

384

〈τ2τ3〉2
29

5760

(3, 1) 〈τ7〉3
1

82944

(3, 2)

〈τ0τ8〉3
1

82944

〈τ1τ7〉3
5

82944

〈τ2τ6〉3
77

414720

〈τ3τ5〉3
503

1451520

〈τ2
4〉3

607
1451520

(4, 1) 〈τ10〉4
1

7962624

• The first way is to approximate the Riemann surface by small triangles. Thus, the integral
over all metrics is replaced by a sum over triangulations. This combinatorial problem can
be solved, and the Virasoro constraints appeared in works devoted to the enumeration
of triangulations on surfaces, which admit a matrix model formulation.

• Alternatively, one can compute the partition function by integrating first over all con-
formally equivalent metrics. Afterward, the remaining integral is performed over the
moduli space of Riemann surfaces, and, more precisely, one has to compute integrals of
the form 〈τd1

· · ·τdn
〉g .

Witten’s conjecture states that the partition functions resulting from the two approaches coin-
cide, based on the physical expectation that there is a unique theory of gravity.

Kontsevich’s proof follows the matrix model/discretisation idea (see [22] for a rigorous
proof). He started by considering the moduli space of metric ribbon graphs of genus g with n
faces of fixed length L1, . . . , Ln, which comes with a natural (symplectic) volume form. Inter-
preting metric ribbon graphs as a discretisation of Riemannian metrics, Kontsevich expressed
these volumes precisely as the ψ-class intersection numbers

Vg,n(L1, . . . , Ln) =

∫

Mg,n

exp

�

1
2

n
∑

i=1

L2
iψi

�

=
∑

d1,...,dn≥0
d1+···+dn=3g−3+n

〈τd1
· · ·τdn

〉g

n
∏

i=1

L2di
i

2di di!
.

(74)

Note that Vg,n(L1, . . . , Ln) is a symmetric polynomial in the boundary lengths squared. The
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Laplace transform of such a volume is computed as the rational function

bVg,n(λ1, . . . ,λn) =

� n
∏

i=1

∫ ∞

0

dLi e−λi Li

�

Vg,n(L1, . . . , Ln)

=
∑

d1,...,dn≥0
d1+···+dn=3g−3+n

〈τd1
· · ·τdn

〉g

n
∏

i=1

(2di − 1)!!

λ
2di+1
i

.
(75)

Notice that (dλ1
· · ·dλn

)bVg,n(λ) =ωg,n(λ) is precisely the topological recursion correlator from
(73) computed from the Airy spectral curve.

As Vg,n(L1, . . . , Ln) is the volume of the moduli space of metric ribbon graphs of genus g
with n faces of fixed length L1, . . . , Ln, he obtained an expression for the Laplace transform as
a sum over ribbon graphs:

bVg,n(λ1, . . . ,λn) = 22g−2+n
∑

G

1
|Aut(G)|

∏

e=(i, j)∈E(G)

1
λi +λ j

, (76)

where the sum is over all trivalent ribbon graphs of genus g with n faces labelled by 1, . . . , n
and e = (i, j) denotes the two (possibly equal) faces adjacent to the edge e in the graph G.

For example, take g = n= 1. In this case there is a single trivalent ribbon graph given by

•

•

(77)

Figure 13: The unique trivalent ribbon graph of type (1,1).

which has automorphism group Z6 (the cyclic permutations of the three edges and an addi-
tional Z2 symmetry swapping the vertices). Then Kontsevich’s formula (76) gives

bV1,1(λ1) = 2 ·
1
6
·
�

1
2λ1

�3

=
1
24

1

λ3
1

, (78)

which indeed gives 〈τ1〉1 =
1
24 , following (75).

On the one hand, Kontsevich’s theorem gives a sum of graphs, where each graph is
weighted by its symmetry factor and by a product of edge weights. This is the typical kind
of graph obtained from Wick’s theorem, and therefore it can be obtained with a perturbation
of a Gaussian Hermitian matrix integral. Specifically, trivalent ribbon graphs are generated by
a cubic formal matrix integral, the so-called Airy matrix integral:

Z(Λ) =
1

Z0(Λ)

∫

dX exp

�

N tr

�

X 3

3
−ΛX 2

��

, Λ= diag(λ1, . . . ,λN ) . (79)

Here Z0(Λ) = (π/N)N
2/2
∏

i, j(λi + λ j)−1/2 is a normalisation constant. By Wick’s theorem,
one can write the large N expansion of log Z(Λ) as a sum over trivalent ribbon graphs:

log Z(Λ) =
∑

g≥0, n≥1
2g−2+n>0

N−(2g−2+n)

n!

∑

G

1
|Aut(G)|

∏

e=(i, j)∈E(G)

1
λi +λ j

, (80)
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g

Figure 14: The 2-point correlators, normalised by their leading asymptotics: note
the convergence to 1+O(g−1). Also observe the differing convergence behaviour of
the correlators with a τ0 insertion (in green) versus without (in blue); this suggests
that the subleading terms do depend on the partition (d1, . . . , dn). This is indeed the
case, and it can be proved via resurgence.

where the sum is over all trivalent ribbon graphs of genus g with n labelled faces.
To conclude, integration by parts (also known as Schwinger–Dyson equations in this con-

text) shows that Z(Λ) satisfies the Virasoro constraints (71), upon identification ħh= 2/N and
the times with the normalised traces ofΛwhich appear naturally in the expansion of the matrix
model:

td =
tr(Λ−2d−1)
(2d − 1)!!

, d ≥ 0 . (81)

It is worth mentioning that, through resurgence techniques (see [23] or I. Aniceto’s and
M. Mariño’s lecture notes [24, 25]), one can compute the large genus asymptotic Witten’s
correlators [26], see figure 14:

〈τd1
· · ·τdn

〉g

n
∏

i=1

(2di + 1)!!=
2n−1

2π
Γ (2g − 2+ n)

(2
3)2g−2+n

�

1+O(g−1)
�

. (82)

The subleading asymptotics are also accessible using resurgence. The first proof of this result,
using combinatorial and probabilistic arguments, is due to A. Aggarwal [27]. Notice the Stokes
constant S = i and the instanton action A= 2/3, corresponding to those of the Airy function.
This is, naturally, not a coincidence!

3 Cohomological field theories

The Virasoro constraints satisfied by Witten’s correlators provide a recursive method to com-
pute all ψ-class intersection numbers. The main geometric property underpinning the con-
straints is the recursive nature of Mg,n. By looking at Witten’s correlators as the intersections
of the unit with ψ-classes, we can rephrase the recursive structure purely in cohomological
terms. The unit 1g,n ∈ H0(Mg,n,Q) is stable under pullback by all tautological maps, that is

ρ∗1g,n = 1g−1,n+2 , ρ : Mg−1,n+2→Mg,n , (83)

σ∗1g,n = 1g1,1+|I1| ⊗ 1g2,1+|I2| , σ : Mg1,1+|I1| ×Mg2,1+|I2|→Mg,n , (84)

π∗1g,n = 1g,n+1 , π: Mg,n+1→Mg,n . (85)
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The first two equations can be interpreted as a cohomological version of the locality axiom in
2D topological field theories (TQFT for short). Taking inspiration from TQFTs, we now define
their cohomological analogue based on the cohomology of Mg,n. The original definition, due
to M. Kontsevich and Y. Manin in the mid ’90s [28], was the first attempt at axiomatising
topological string theory and has deep connections with the seminal work of B. Dubrovin on
the geometry of 2D TQFTs [29].

3.1 Axioms

Fix once and for all a finite-dimensional Q-vector space V , called the phase space, equipped
with a non-degenerate pairing η: V × V → Q. For convenience, we work in a fixed basis
(e1, . . . , er) of V . We denote by (ηµ,ν) the matrix elements of the pairing, and by (ηµ,ν) the
inverse matrix.

Definition 3.1.
A cohomological field theory on (V,η) consists of a collection Ω= (Ωg,n)2g−2+n>0 of linear maps

Ωg,n : V⊗n −→ H2•(Mg,n,Q) , Ωg,n(eµ1
⊗ · · · ⊗ eµn

) = Ωg;µ1,...,µn
, (86)

satisfying the following axioms.

i) Symmetry. Each Ωg,n is Sn-invariant, where the action of the symmetric group Sn per-
mutes simultaneously the marked points of Mg,n and the copies of V⊗n.

ii) Gluing. Considering the gluing maps

ρ : Mg−1,n+2 −→Mg,n ,

σ : Mg1,1+|I1| ×Mg2,1+|I2| −→Mg,n , g1 + g2 = g, I1 ⊔ I2 = {1, . . . , n } ,
(87)

we require
ρ∗Ωg;µ1,...,µn

= ηα,β Ωg−1;α,β ,µ1,...,µn
,

σ∗Ωg;µ1,...,µn
= ηα,β Ωg1;α,µI1

⊗Ωg2;β ,µI2
.

(88)

If the vector space is equipped with a distinguished non-zero element (which may, without
loss of generality, be taken to be e1), we can also ask for a third axiom.

iii) Unit. Considering the forgetful map

π: Mg,n+1 −→Mg,n , (89)

we require
π∗Ωg;µ1,...,µn

= Ωg;µ1,...,µn,1 , and Ω0;µ,ν,1 = ηµ,ν . (90)

In this case, Ω is called a cohomological field theory with unit; the distinguished element is
called unit or vacuum.
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Pictorially, the axioms can be illustrated as follows.

µ1

··
·

µn

Ωg

ρ∗

7−→
µ1

··
·

µn

Ωg−1

α

β

η (91)

µ1

··
·

µn

Ωg

σ∗

7−→ ··
·µI1 ··
· µI2Ωg1 Ωg2

η

α β

(92)

µ1

··
·

µn

Ωg

π∗

7−→
µ1

··
·

µn

1Ωg (93)

µ

ν

1Ω0 =
µ

ν

. (94)

A cohomological field theory (CohFT for short) determines a product ⋆ on V , called the quan-
tum product:

eµ ⋆ eν = Ω0;µ,ν,α η
α,β eβ . (95)

Commutativity and associativity of ⋆ follow from (i) and (ii) respectively. If the CohFT comes
with a unit, the quantum product is unital, with e1 ∈ V being the identity by (iii).

Exercise 3.1. Prove that (V,η,⋆) forms a Frobenius algebra, that is, it satisfies

η(v1 ⋆ v2, v3) = η(v1, v2 ⋆ v3) . (96)

A Frobenius algebra (with unit e) is equivalent to a 2D topological field theory Z via the following
assignments: Z(S1) = V for the Hilbert space of states on the circle and

Z
� �

= η: V ⊗ V →Q ,

Z
� �

= ⋆: V ⊗ V → V ,

Z
� �

= e : Q→ V ,

(97)

for the morphisms. The partition function Z(Σg,n,m) of any genus g surface connecting n initial
states to m final states can be reconstructed from the above values using the TFT properties.

Associated to any CohFT Ω, we also have a collection of rational numbers called CohFT
correlators (or ancestor invariants), defined as




τµ1,d1
· · ·τµn,dn

�Ω

g =

∫

Mg,n

Ωg;µ1,...,µn

n
∏

i=1

ψ
di
i . (98)

Notice that, for degree reasons,
∑n

i=1 di ≤ 3g − 3+ n.

Example 3.2. Here are some examples of CohFTs in one dimension. Let us take V = Q · e1
and η(e1, e1) = 1. In this case, we use the simpler notation Ωg,n for Ωg,n(e⊗n

1 ) = Ωg;1,...,1.

• Setting Ωg,n = 1g,n, the unit element in cohomology, we get a CohFT with unit e1 con-
centrated in degree zero. It is called the trivial CohFT, discussed at the beginning of this
section. The associated correlators satisfy the Virasoro constraints (71), equivalent to
topological recursion on the Airy spectral curve 1

2 y2 − x = 0.
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• The classΩg,n = exp(2π2κ1) defines a CohFT, sometimes called the Weil–Petersson CohFT
due to its connection with hyperbolic geometry and JT gravity (cf. [8, 9]). It is not a
CohFT with unit. The associated correlators satisfy the Virasoro constraints (a dilaton-
shifted version (71)), equivalent to topological recursion on the sine spectral curve (see
exercise 3.2).

• The Hodge class Ωg,n = Λ(u) =
∑g

k=0λk uk defines a 1-parameter family of CohFTs with
unit e1. It arises as a vertex contribution in the localisation formula for the topological
string amplitudes of P1. A generalisation is provided by a product of Hodge classes:

Ωg,n =
D
∏

m=1

Λ(um) , (99)

which arises as a vertex term in the localisation formula for the topological string am-
plitudes of a D-dimensional spacetime. A particularly nice case is that of D = 3 and the
parameters (u1, u2, u3) subjected to the constraint

1
u1
+

1
u2
+

1
u3
= 0 . (100)

In the context of the localisation formulas, this constraint corresponds to the lo-
cal Calabi–Yau condition [30–32] (cf. [10]). The connection to Virasoro con-
straints/topological recursion is known only for D = 1 and D = 3 with the Calabi–Yau
condition (see exercise 3.5).

• In [33], Norbury defines a CohFT, denoted as Θg,n ∈ H2(2g−2+n)(Mg,n,Q) and known as
Θ-class, that satisfies a different version of the unit axiom, namely

ψn+1 ·π∗Θg,n = Θg,n+1 . (101)

It appears in super JT gravity in relation to the fermionic part of the Weil–Petersson vol-
umes [34]. Norbury conjectured that the associated partition function coincides with the
so-called Brézin–Gross–Witten tau-function of the KdV hierarchy [35, 36], now proved
in [37]. Equivalently, it satisfies Virasoro constraints equivalent to topological recursion
on the Bessel spectral curve 1

2 y2 x − 1= 0.

Here are some higher-dimensional CohFTs appearing in the literature.

• In [38], Witten studied a generalisation of his original work on 2D quantum gravity by
considering a Wess–Zumino–Witten model at level k, conveniently re-parametrised as
k = r − 2. Such a theory defines a CohFT of dimension r − 1, called the Witten r-spin
class, whose basic components are described as follows. Let V =

⊕r−1
µ=1Q·eµ with pairing

η(eµ, eν) = δµ+ν,r and unit e1. The Witten r-spin class is a CohFT

W r
g;µ1,...,µn

∈ H2Dr
g;µ(Mg,n,Q) , (102)

of pure complex degree

Dr
g;µ =

(r − 2)(g − 1)− n+
∑n

i=1µi

r
. (103)

If Dr
g;µ is not an integer, the corresponding Witten class vanishes. The case r = 2 gives

the trivial cohomological field theory: W 2
g;1,...,1 = 1g,n. In genus zero, the construction

was first carried out by Witten [39] using r-spin structures. The construction of Witten’s
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class in higher genera was first obtained by Polishchuk and Vaintrob [40]. The associated
partition function is an r-KdV tau function [41] and it satisfies W-constraints equivalent
to topological recursion on the r-Airy spectral curve 1

r y r − x = 0.

In [42] it was shown that all known relations in the so-called tautological ring of Mg,n
(the minimal subalgebra of the cohomology of Mg,n stable under pushforwards and
pullbacks by tautological maps) are deduced from the Witten r-spin class.

• In [37], the authors introduced an r-spin version of the Θ-class, denoted Θr
g,n and

satisfying properties analogous to those satisfied by Witten’s class. It was proved to
satisfy W-constraints, equivalent to the topological recursion on the r-Bessel spectral
curve 1

r y r x − 1 = 0. A further generalisation, Θr,s
g,n depending on a second integer

s ∈ {1, . . . , r − 1 }, was studied in [43] where W-constraints and a generalised version of
topological recursion were proved.

• In [44], Chiodo defined a generalisation of the Hodge class, called Ω-class, which de-
pends on two integers r ≥ 1 and s ∈ Z. Let V =

⊕r
µ=1Q · eµ with pairing given by

η(eµ, eν) =
1
rδµ+ν≡0 (mod r). The Ω-class is a CohFT of mixed cohomological degree:

Ωr,s
g;µ1,...,µn

∈ H2•(Mg,n,Q) . (104)

It is defined as the total Chern class of a (virtual) vector bundle over the moduli space
of Riemann surfaces. The case r = s = 1 retrieves the Hodge class. The cases r ≥ 2 and
s = ±1 are related to the Witten and Theta r-spin classes respectively.

• Let G be a complex, simple, simply-connected Lie group with Lie algebra g. Fix an integer
ℓ > 0 and define V to be theQ-vector space spanned by irreducible representations eµ of
g at level ℓ. Set η(eµ, eν) = δµ,ν⋆ , where ν⋆ denotes the dual representation, and let e1
be the vector associated with the trivial representation. The Verlinde bundle is the vector
bundle

Vg,ℓ
g;µ1,...,µn

−→Mg,n , (105)

whose fibres over a smooth Riemann surface are the spaces of non-abelian theta func-
tions. The Chern characters of the Verlinde bundle

V g,ℓ
g;µ1,...,µn

:= ch(Vg,ℓ
g;µ1,...,µn

) ∈ H2•(Mg,n,Q) , (106)

form a CohFT with unit [45]. The gluing axiom is a consequence of the fusion rules,
while the unit axiom is the propagation of vacua.

• Topological string amplitudes on a fixed target Kähler spacetime (X ,ω) are precisely the
CohFT correlators of a CohFT with underlying phase space the graded vector space

V =
⊕

β∈H2(X ,Z)
H•(X ,Z) · qβ , η(γ1,γ2) =

∫

X
γ1 ⌢γ2 . (107)

Here, q is a formal variable, known as the Novikov variable, defined as qβ = e−
∫

β
ω and

used to grade contributions by the curve class β ∈ H2(X ,Z) according to its symplectic
area. In this context, the phase space V is infinite-dimensional, but graded by H2(X ,Z),
with finite-dimensional components H•(X ,Z). The unit in cohomology 1 ∈ H0(X ,Z)
serves as the unit for the associated CohFT. This construction was the motivating example
for the axiomatic definition of cohomological field theories by Kontsevich and Manin,
see [28].
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3.2 Givental’s action

We have already seen how Mg,n exhibits a recursive boundary structure. A natural question
arises: can we exploit such a recursive structure to define or compute CohFTs? The answer
is affirmative, and finds its roots in A. Givental’s work [46, 47] on localisation computations
in topological string theory [48]. More precisely, Givental defined two actions on CohFTs, the
rotation and translation actions.

3.2.1 Rotation

For a fixed (g, n), we have a list of all possible stable graphs parametrising the boundary of
Mg,n. If we are given a CohFTΩ on (V,η), it is natural to decorate all vertices with cohomology
classes provided by Ω to obtain a cohomology class on MΓ . For instance:

2
ν1

ν2

α

β

⇝ Ω2;ν1,ν2,α,β . (108)

In order to produce a cohomology class on Mg,n, we must contract all indices at the edges
with a cohomology-valued matrix Eνh,νh′ (a priori arbitrary), the indices at the leaves with a
cohomology-valued matrix Lνi

µi
(a priori arbitrary), and pushforward the result via the gluing

map ξΓ . In the above example, we would get

Ω2;ν1,ν2,α,β Eα,β Lν1
µ1

Lν2
µ2

, (109)

where µi denotes a fixed decoration at the i-th leaf (i.e. the i-th marked point).
Dividing by the natural automorphism factor and summing over all possible stable graphs,

we obtain an expression of the form

∑

Γ of type (g,n)

1
|Aut(Γ )|

ξΓ ,∗

 

∏

v∈V (Γ )

Ωg(v);(νh)h⇝v

! 

∏

e=(h,h′)∈E(Γ )

Eνh,νh′

!

� n
∏

i=1

Lνi
µi

�

. (110)

Here h⇝ v denotes any half-edge h incident to the vertex v.
The natural question is: when is the collection of cohomology classes resulting from (110)

forming a CohFT? It turns out that (110) is too naive: the matrices Eµ,ν and Lνµ cannot be
arbitrary, but should involve specific combinations ψ-classes. This condition is captured by a
single element called the rotation matrix.

A rotation matrix on (V,η) is an End(V )-valued power series that is the identity in degree
0 and satisfying the symplectic condition with respect to η:

Rνµ(u) = δ
ν
µ +

∑

k≥1

(Rk)
ν
µ uk ∈Q⟦u⟧ , Rµα(u)η

α,β Rνβ(−u) = ηµ,ν . (111)

For a given rotation matrix, define the edge decoration as the following V⊗2-valued power
series in two variables:3

Eµ,ν(u, v) =
ηµ,ν − Rµα(u)ηα,β Rν

β
(v)

u+ v
∈Q⟦u, v⟧ . (112)

The symplectic condition guarantees that Eµ,ν(u, v) is regular along u + v = 0. Define the
scalars Eµ,ν

k,ℓ through the expansion Eµ,ν(u, v) =
∑

k,ℓ≥0 Eµ,ν
k,ℓ ukvℓ.

3Beware that several authors use R−1 instead of R. Here we follow Givental’s convention.
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Definition 3.3. Consider a CohFT Ω on (V,η) together with a rotation matrix R. We define a
new collection of cohomology-valued linear maps

RΩg,n : V⊗n −→ H2•(Mg,n,Q) , (113)

as follows. For each stable graph Γ of type (g, n), define a contribution through the following
construction:

• place Ωg(v);(νh)h⇝v
at each vertex v of Γ , with arbitrary decorations νh at the half-edges

connected to v;

• place Rνi
µi
(ψi) at the i-th leaf of Γ ;

• place Eνh,νh′ (ψh,ψh′) at every edge e = (h, h′) of Γ ;

• contract all the indices.

In other words, we get a cohomology class:

ContΓ ;µ1...,µn
=

 

∏

v∈V (Γ )

Ωg(v);(νh)h⇝v

! 

∏

e=(h,h′)∈E(Γ )

Eνh,νh′ (ψh,ψh′)

!

� n
∏

i=1

Rνi
µi
(ψi)

�

. (114)

Although the expressions Eνh,νh′ (ψh,ψh′) and Rνi
µi
(ψi) have, a priori, infinitely many terms,

they terminate due to cohomological degree reasons.
Define RΩg;µ1,...,µn

to be the sum of contributions of all stable graphs, after pushforward to
the moduli space weighted by automorphism factors:

RΩg;µ1,...,µn
=

∑

Γ of type (g,n)

1
|Aut(Γ )|

ξΓ ,∗ContΓ ;µ1...,µn
. (115)

Let us analyse some examples in low topologies.

• RΩ0,3. There is a single stable graph of type (0, 3), and for dimensional reasons, the
decoration R(ψi) at the leaves is simply the identity. Thus, we find

RΩ0,3 = Ω0,3 . (116)

• RΩ0,4. The stable graphs of type (0,4) are the following:

Γ0 =
1

2 3

4

0 Γi j|kℓ =
i

j

k

ℓ

0 0 (117)

for i j|kℓ ∈ {12|34, 13|24, 14|23}. The contribution of the stable graph Γ0 is given by

ContΓ0;µ1,µ2,µ3,µ4
= Ω0;µ1,µ2,µ3,µ4

+Ω0;α,µ2,µ3,µ4
(R1)

α
µ1
ψ1 +Ω0;α,µ1,µ3,µ4

(R1)
α
µ2
ψ2

+Ω0;α,µ1,µ2,µ4
(R1)

α
µ3
ψ3 +Ω0;α,µ1,µ2,µ3

(R1)
α
µ4
ψ4 .

(118)

The contribution of the stable graph Γi j|kℓ is given by

ContΓi j|kl ;µ1,µ2,µ3,µ4
= Ω0;µi ,µ j ,α Eα,β

0,0 Ω0;β ,µk ,µℓ . (119)

It can be shown that ξΓi j|kℓ,∗1= [Γi j|kℓ] = κ1, so that we find

RΩ0;µ1,µ2,µ3,µ4
= Ω0;µ1,µ2,µ3,µ4

+Ω0;α,µ2,µ3,µ4
(R1)

α
µ1
ψ1 +Ω0;α,µ1,µ3,µ4

(R1)
α
µ2
ψ2

+Ω0;α,µ1,µ2,µ4
(R1)

α
µ3
ψ3 +Ω0;α,µ1,µ2,µ3

(R1)
α
µ4
ψ4

+

 

∑

i j|kℓ

Ω0;µi ,µ j ,α Eα,β
0,0 Ω0;β ,µk ,µℓ

!

κ1 .

(120)
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• RΩ1,1. There are two stable graphs of type (1, 1):

Γ = 1 1 Γ ′ = 1 0 (121)

The contribution of Γ is

ContΓ ;µ = Ω1;µ +Ω1;ν (R1)
ν
µψ1 . (122)

For the one-loop diagram Γ ′, we find

ContΓ ′;µ = Ω0;µ,α,β Eα,β
0,0 . (123)

It can be shown that 1
2ξΓ ′,∗1= [Γ

′] = 12ψ1, so that

RΩ1;µ = Ω1;µ +
�

Ω1;ν (R1)
ν
µ + 12Ω0;µ,α,β Eα,β

0,0

�

ψ1 . (124)

The main point of this construction is that the resulting collection of cohomology-valued
maps RΩ forms a CohFT.

Proposition 3.4. The collection of cohomology-valued linear maps RΩ= (RΩg,n)2g−2+n>0 forms
a CohFT on (V,η). Moreover, rotations form a right group action.

3.2.2 Translation

The rotation action exploits the gluing map by attaching CohFTs through a sort of 2-point
correlator, the rotation matrix. There is one more tautological map we can take into account:
the forgetful map. Diagrammatically, the forgetful map prunes a leaf of the diagram, which can
be decorated (before forgetting it) with a sort of 1-point correlator. As in the case of rotations,
the correct approach is to decorate the forgotten leaf with a specific combination ofψ-classes.
This is taken into account by the translation.

A translation is a V -valued power series vanishing in degrees 0 and 1:

Tµ(u) =
∑

d≥1

(Td)
µud+1 ∈ u2Q⟦u⟧ . (125)

Definition 3.5. Consider a CohFT Ω on (V,η), together with a translation T . We define a
collection of cohomology-valued linear maps

TΩg,n : V⊗n→ H2•(Mg,n,Q) , (126)

by setting

TΩg;µ1,...,µn
=
∑

m≥0

1
m!
πm,∗Ωg;µ1,...,µn,ν1,...,νm

Tν1(ψn+1) · · · Tνm(ψn+m) . (127)

Here πm : Mg,n+m →Mg,n is the map forgetting the last m marked points. Notice that the
vanishing of T in degree 0 and 1 ensures that the above sum is actually finite.

Proposition 3.6. The collection of cohomology-valued linear maps TΩ= (TΩg,n)2g−2+n>0 forms
a CohFT on (V,η). Moreover, translations form an abelian group action.

One can also check the composition law for a combination of rotation and translation. The
result is parallel to the action of rotation and translation on the plane, hence the name.
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3.2.3 Examples and Teleman’s theorem

Several CohFTs are expressed through Givental’s action. We present here the cases of the
Weil–Petersson class and the Hodge class.

Exercise 3.2. Prove that exp(2π2κ1) is the CohFT obtained from the trivial one under the action
of the following translation:

T (u) = −
∑

k≥1

(−2π2)k

k!
uk+1 = u

�

1− e−2π2u
�

. (128)

Theorem 3.7 (Mumford’s formula). The Hodge class Λ(t) is the CohFT obtained from the trivial
one under the action of the following translation and rotation (in this order) [49]:

R(u) = exp

�

−
∑

m≥1

Bm+1

m(m+ 1)
(tu)m

�

,

T (u) = u
�

1− R(u)
�

,

(129)

where Bm is the m-th Bernoulli number. After re-summing the stable graphs sum, we deduce that

Λ(t) = exp

�

∑

m≥1

Bm+1

m(m+ 1)
tm

�

κm −
n
∑

i=1

ψm
i +δm

��

, (130)

where δm =
1
2 j∗
�∑

k+ℓ=m−1ψ
k(ψ′)ℓ

�

, and j is the inclusion of all codimension-one boundary
strata (i.e. stable graphs with a single edge). The classes ψ and ψ′ are the two ψ-classes at the
nodes.

Givental’s action is extremely powerful for two reasons. First, as we will see shortly, it
gives a recursive way of computing CohFT correlators. Secondly, it might produce relations in
cohomology! Take for instance Mumford’s formula. One knows from geometric reasons that
the Hodge class Λ(t) vanishes in degree d > g (it is the Chern polynomial of a rank g bundle).
On the other hand, Mumford’s formula for Λ(t) gives a certain class in any degree. Denoting
by Hd

g,n the component of Mumford’s formula in complex degree d (i.e. the coefficient of td

in the right-hand side of equation (130)), we obtain the following tautological relations: for
every d > g, Hd

g,n = 0 in H2d(Mg,n,Q). The first non-trivial example of such tautological
relations is the degree 1 relation in genus 0:

H1
0,n = κ1 −

n
∑

i=1

ψi +δ1 = 0 , in H2(M0,n,Q) . (131)

Pixton–Pandharipande–Zvonkine [42] exploited this argument in the case of Witten 3-spin
class to prove all known relations in cohomology.

Exercise 3.3. Prove, using Mumford’s formula, that Λ(t)Λ(−t) = 1. This is sometimes referred
to as Mumford’s relation. Deduce the relations λ2

g = 0.

Another reason why Givental’s action is extremely valuable is its range of applicability, a
result proved by Teleman [50]. Teleman proved that all CohFTs whose underlying quantum
product is semisimple are contained in the orbit of the trivial CohFT under the Givental action.
Under an additional homogeneity condition, he provided an algorithm to explicitly compute
the rotation and the translation matrix.
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Theorem 3.8 (Teleman’s classification). Let Ω be a CohFT on (V,η). If Ω is semisimple and
homogeneous, then there exist explicit R and T such that

Ωg,n = RTwg,n , (132)

where wg,n = Ωg,n|H0(Mg,n,Q) is the associated 2D TFT. If Ω is semisimple (but not homogeneous),
then there exist R and T such that the above equation holds, but they are defined up to a diagonal
ambiguity.

In other words, Teleman’s theorem classifies all semisimple, homogeneous CohFTs as the
orbit under the Givental action of semisimple 2D TFT. Pretty neat!

3.3 Connection to topological recursion

Givental’s action provides a recursive construction of CohFTs. As the correlators of the trivial
CohFT are computed recursively via topological recursion, a natural question arises: is it pos-
sible to recursively compute all correlators obtained in the Givental orbit of the trivial CohFT?
The answer is affirmative and it beautifully connects to the theory of topological recursion.

Consider a spectral curve S = (Σ, x , y, B) with r simple ramification points. Choose local
coordinates ζµ around a ramification point µ such that x = ζ2

µ + x(µ). Consider the auxiliary

functions ξµ and the associated meromorphic differentials dξµ,k, defined as

ξµ(z) =

∫ z
B(w, ·)
dζµ(w)

�

�

�

�

w=µ

, dξµ,k(z) = d
�

�

−
1
ζµ

d
dζµ

�k

ξµ(z)
�

. (133)

Set tµ = −2 dy(z)
dζµ(z)

�

�

z=µ. Define the (r-copies of the trivial) CohFT4 on V =
⊕r
µ=1C · eµ by

setting η(eµ, eν) = δµ,ν and

wg;µ1,...,µn
=

δµ1,...,µn

(tµi )2g−2+n
. (134)

Define the rotation matrix R and the translation T by setting

Rνµ(u) = −
s

u
2π

∫

γν

e−
x−x(ν)

2u dξµ , (135)

Tµ(u) =

�

u tµ +
1
p

2πu

∫

γµ

e−
x−x(µ)

2u ω0,1

�

. (136)

Here γµ is the formal steepest descent path for x(z) emanating from the ramification point
µ; locally it can be taken along the real axis in the ζµ-plane. Moreover, the equations are
intended as equalities between formal power series in u, where on the right-hand side we take
an asymptotic expansion as u→ 0.

Through the Givental action, we can then define a CohFT

Ωg,n = RTwg,n : V⊗n −→ H2•(Mg,n,C) , (137)

from the data (w, R, T ) through a sum over stable graphs as explained in subsection 3.2. The
connection with the topological recursion correlators is given by the following theorem [51,
52].

4In the remaining part of this section, we work over C rather than Q.
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Table 2: The correspondence between CohFT and topological recursion data.

CohFT Topological recursion

dim(V ) # ramification points

trivial CohFT dy
dζ

translation ω0,1

rotation dξ

edge contribution ω0,2

Theorem 3.9 (CohFT/TR correspondence). Fix a compact spectral curve S = (Σ, x , y,ω0,2)
and define the CohFT Ω as in (137). Then the topological recursion correlators compute the
CohFT correlators:

ωg,n(z1, . . . , zn) =



τµ1,d1
· · ·τµn,dn

�Ω

g dξµ1,d1(z1) · · ·dξµn,dn(zn) . (138)

Conversely, if we are given a CohFT in the Givental orbit of a semisimple 2D TFT, we can de-
fine a (local) spectral curve via equations (135) and (136) that computes the correlators as in
equation (138).

In a nutshell, the correspondence between CohFTs and topological recursion can be sum-
marised as in table 2.

Exercise 3.4. Show that the CohFT associated with the following spectral curve
�

P1, x(z) =
z2

2
, y(z) =

sin(2πz)
2π

, ω0,2(z1, z2) =
dz1dz2

(z1 − z2)2

�

, (139)

is the Weil–Petersson CohFT exp(2π2κ1). See also exercise 3.2; cf. [53, section 8.1] for a proof.

Exercise 3.5. Show that the CohFT associated with the following spectral curve
�

P1, x(z) = − f log(z)− log(1− z), y(z) = − log(z), ω0,2(z1, z2) =
dz1dz2

(z1 − z2)2

�

, (140)

is the triple Hodge Λ(1)Λ( f )Λ(− f − 1). See [53, section 7] for a proof. This is the CohFT
underlying the (framed) topological vertex [30–32], and the topological recursion formula for the
triple Hodge class is none other than the BKMP remodelling conjecture for the vertex. The large
framing limit recovers the so-called Lambert curve from [54] that computes Hurwitz numbers
(cf. [53, section 8.2]).

� Hint. Recall the integral representation of the Euler Beta function

B(p, q) =
Γ (p)Γ (q)
Γ (p+ q)

=

∫ 1

0

t p−1(1− t)q−1 d t , (141)

and the asymptotic expansion of the Euler Gamma function

e
1
v
p

2π
(−v)

1
v+a+ 1

2

Γ (a− v−1)
∼ exp

� ∞
∑

m=1

Bm+1(a)
m(m+ 1)

vm

�

. (142)

Here Bm+1(a) are Bernoulli polynomials, and specialise to Bernoulli numbers at both a = 0 and a = 1:
Bm+1(0) = Bm+1(1) = Bm+1.

We conclude by noting that the correspondence between topological recursion and co-
homological field theories has found recent applications across various areas of high-energy
physics, including gravity [55–58] and gauge theory [59].
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4 Further directions

4.1 Moduli of hyperbolic surfaces

In JT gravity, the path integral of the theory is over the space of hyperbolic metrics (rather
than the space of complex structures). In other words, the ‘correct’ moduli space is that of
hyperbolic structures:

Mhyp
g,n (L1, . . . , Ln) =

(

X

�

�

�

�

�

�

X is a hyperbolic surface of genus g
with n labelled geodesics boundaries

of lengths L1, . . . , Ln

),

∼ , (143)

where X ∼ X ′ if and only if there exists an isometry from X to X ′ preserving the labelling of
the boundary components.

How is that related to the moduli space of Riemann surfaces? A non-trivial result, which
is a consequence of the Riemann uniformisation theorem, is that Mhyp

g,n (L) is homeomorphic
to the moduli space of Riemann surfaces discussed in section 2.

Theorem 4.1. The space Mhyp
g,n (L) is a smooth real orbifold of dimension 2(3g−3+n). Moreover,

for all L ∈ Rn
+, it is homeomorphic (as a smooth real orbifold) to the moduli space of smooth

Riemann surfaces:
Mhyp

g,n (L)
∼=Mg,n . (144)

For any fixed L ∈ Rn
+, the moduli space Mhyp

g,n (L) is naturally equipped with a symplec-
tic form, called the Weil–Petersson form and denoted ωWP. In particular, we can define the
volumes

V WP
g,n (L) =

∫

Mhyp
g,n (L)

ω
3g−3+n
WP

(3g − 3+ n)!
. (145)

A toy example of such a structure is the fibration over R+ ∋ L by spheres S2(L) of radius L.
Although all fibres are homeomorphic to P1, each fibre carries a specific symplectic geometry
that depends on the point L on the base. For instance, the area of S2(L) is 4πL2. However,
we can transfer the particular geometry to P1 and get an L-dependent expression on P1. For
instance, under the isomorphism S2(L) ∼= P1 provided by stereographic projection, we find
that the symplectic form on S2(L) is mapped to the following polynomial in L:

4L2ℜ
dz dz̄

(1+ |z|2)2
. (146)

The analogous result for the Weil–Petersson form and the isomorphism Mhyp
g,n (L)∼=Mg,n is a

result due to Wolpert (for the case Li = 0) and Mirzakhani (for the general case) [60,61].

Theorem 4.2. Under the homeomorphism Mhyp
g,n (L)∼=Mg,n, the Weil–Petersson form extends as

a closed form to Mg,n and defines the cohomology class

2π2κ1 +
1
2

n
∑

i=1

L2
i ψi . (147)

An immediate consequence of the above result is that the Weil–Petersson volumes are
finite (this was not obvious because Mhyp

g,n (L) is not compact) and is a symmetric polynomial
in boundary lengths squared whose coefficients are intersection numbers involving ψ-classes
and exp(2π2κ1):

V WP
g,n (L) =

∑

d1,...,dn≥0
d1+···+dn≤3g−3+n

∫

Mg,n

e2π2κ1

n
∏

i=1

ψ
di
i

L2di
i

2di di!
. (148)
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∂mΣ

γ

γ

γ′

γ

γ′

Figure 15: The geodesic αp (in red) and some of its possible behaviour, together with
the simple closed curve(s) it determines (in green). On the left, the arc αp intersects
the boundary component ∂mΣ (Bm-type), and it determines a single simple closed
curve γ. In the two other cases, αp intersect ∂1Σ and itself respectively (C-type),
determining two simple closed curves (γ,γ′).

These intersection numbers are precisely in the form of CohFT correlators, and as such can be
computed by topological recursion!

Exercise 4.1. Consider the spectral curve
�

P1, x(z) =
z2

2
, y(z) =

sin(2πz)
2π

, ω0,2(z1, z2) =
dz1dz2

(z1 − z2)2

�

, (149)

see also exercise 3.4. Show that the topological recursion correlators associated with the above
spectral curve compute the differential of the Laplace transform of the Weil–Petersson volumes:

ωg,n(z1, . . . , zn) = dz1
· · ·dzn

� n
∏

i=1

∫ ∞

0

dLi e−zi Li

�

V WP
g,n (L1, . . . , Ln) . (150)

A statement equivalent to the topological recursion (for the volumes rather than their
Laplace transform) was proved by M. Mirzakhani in a remarkable series of papers [61, 62].
Her approach is entirely geometric (rather than algebraic) and is based on the following simple
idea due to McShane [63].

Consider a fixed hyperbolic surface (Σ, h) with geodesic boundaries. Pick a random (with
respect to the hyperbolic measure) point p ∈ ∂1Σ and consider the geodesic αp starting at p
orthogonally to ∂1Σ. Then one of the following mutually exclusive situations must arise (cf.
figure 15).

I) The geodesic αp intersects ∂mΣ for some m ∈ {2, . . . , n }, without intersecting itself.

II) The geodesic αp intersects ∂1Σ, without intersecting itself.

III) The geodesic αp intersects itself.

IV) The geodesic αp never intersects itself or a boundary component (it spirals indefinitely).

On the one hand, the probability of finding (IV) is zero by a result of Birman–Series. Thus, we
simply have that 1 (the total probability) is expressed as the sum of finding (I), (II), or (III):

1= PI + PII + PIII . (151)

In order to compute such probabilities, Mirzakhani proceeded as follows. Consider the union
of ∂1Σ, the geodesic αp, only for case (I), ∂mΣ. A sufficiently small neighbourhood of this
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union of curves is a topological pair of pants. By taking geodesic representatives of the bound-
ary components, we obtain an embedded hyperbolic pair of pants whose geodesic boundary
is (∂1Σ,∂mΣ,γ), which we call a Bm-case, or (∂1Σ,γ,γ′), which we call a C-case (see again
figure 15). In other words, we can write 1=

∑n
m=2 PBm

+PC. Mirzakhani computed the prob-
abilities PBm

and PC as functions of the hyperbolic lengths of the corresponding pairs of pants,
deriving her celebrated identity:

1=
n
∑

m=2

∑

γ

B
�

L1, Lm,ℓ(γ)
�

+ 1
2

∑

γ,γ′
C
�

L1,ℓ(γ),ℓ(γ′)
�

, (152)

where B and C are the explicit hyperbolic functions

B(L, L′,ℓ) = 1−
1
L

log

�

cosh( L′
2 ) + cosh( L+ℓ

2 )

cosh( L′
2 ) + cosh( L−ℓ

2 )

�

,

C(L,ℓ,ℓ′) =
2
L

log

 

e
L
2 + e

ℓ+ℓ′
2

e−
L
2 + e

ℓ+ℓ′
2

!

.

(153)

Integration of the constant function 1 over the moduli space gives the Weil–Petersson volumes
on the left-hand side, while the right-hand side can be expressed as a specific integration
formula involving volumes of lower topological complexity thanks to the removal of pairs of
pants.

Theorem 4.3 (Mirzakhani’s recursion). The Weil–Petersson volumes are uniquely determined by
the following recursion on 2g − 2+ n> 1

V WP
g,n (L1, . . . , Ln) =

n
∑

m=2

∫ ∞

0

dℓℓB(L1, Lm,ℓ)V WP
g,n−1(ℓ, L2 . . . ,ÓLm, . . . , Ln) (154)

+
1
2

∫ ∞

0

∫ ∞

0

dℓdℓ′ ℓℓ′ C(L1,ℓ,ℓ′)

×






V WP

g−1,n+2(ℓ,ℓ
′, L2, . . . , Ln) +

∑

g1+g2=g
I1⊔I2={2,...,n }

V WP
g1,1+|I1|

(ℓ, LI1
)V WP

g2,1+|I2|
(ℓ′, LI2

)






,

with the conventions V WP
0,1 = V WP

0,2 = 0 and the base cases V WP
0,3 (L1, L2, L3) = 1, V WP

1,1 (L) =
L2

48 +
π2

12 .

Topological recursion on the spectral curve given in (149) produces precisely the Laplace
transform of Mirzakhani’s recursion [64].

4.2 String theory and moduli of maps

As mentioned in the text, topological string theory is also intimately connected to the moduli
space of Riemann surfaces. Topological string theory (or, in mathematical terms, Gromov–
Witten theory) aims to compute worldsheets of the strings in a fixed target spacetime X as
parametrised Riemann surfaces, that is, maps

f : (Σ, p1, . . . , pn) −→ X . (155)

Here p1, . . . , pn are marked points on Σ and can be thought of as the initial/final states of the
worldsheet Σ. The path integral of the theory is then an integral over the moduli space of such
maps:

Mg,n(X ,β) =
§

(Σ, p1, . . . , pn, f )

�

�

�

�

f : (Σ, p1, . . . , pn)→ X
f∗[Σ] = β

ª

�

∼ , (156)
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Table 3: A list of Weil–Petersson polynomials V WP
g,n (L) computed via topological recur-

sion. Here mλ is the monomial symmetric polynomial associated with the partition
λ, evaluated at L2

1, . . . , L2
n.

(g, n) V WP
g,n (L1, . . . , Ln)

(0, 3) 1

(0, 4) 1
2 m(1) + 2π2

(0, 5) 1
8 m(2) +

1
2 m(12) + 3π2m(1) + 10π4

(0, 6) 1
48 m(3) +

3
16 m(2,1) +

3
4 m(13) +

3π2

2 m(2) + 6π2m(12) + 26π4m(1) +
244π6

3

(0, 7) 1
384 m(4) +

1
24 m(3,1) +

3
32 m(22) +

3
8 m(2,12) +

3
2 m(14) +

5π2

12 m(3) +
15π2

12 m(2,1)

+ 15π2m(13) + 20π4m(2) + 80π4m(12) +
910π6

3 m(1) +
2758π8

3

(1, 1) 1
48 m(1) +

π2

12

(1, 2) 1
192 m(2) +

1
96 m(12) +

π2

12 m(1) +
π4

4

(1, 3) 1
1152 m(3) +

1
192 m(2,1) +

1
96 m(13) +

π2

24 m(2) +
π2

8 m(12) +
13π4

24 m(1) +
14π6

9

(1, 4) 1
9216 m(4) +

1
768 m(3,1) +

1
384 m(22) +

1
128 m(2,12) +

1
64 m(14) +

7π2

576 m(3)

+ π2

12 m(2,1) +
π2

4 m(13) +
41π4

96 m(2) +
17π4

12 m(12) +
187π6

36 m(1) +
529π8

36

(2, 1) 1
442368 m(4) +

29π2

138240 m(3) +
139π4

23040 m(2) +
169π6

2880 m(1) +
29π8

192

(2, 2) 1
4423680 m(5) +

1
294912 m(4,1) +

29
2211840 m(3,2) +

11π2

276480 m(4) +
29π2

69120 m(3,1) +
7π2

7680 m(22)

+ 19π4

7680 m(3) +
181π4

11520 m(2,1) +
551π6

8640 m(2) +
7π6

36 m(12) +
1085π8

1728 m(1) +
787π10

480

(3, 1) 1
53508833280 m(7) +

77π2

9555148800 m(6) +
3781π4

2786918400 m(5) +
47209π6

418037760 m(4) +
127189π8

26127360 m(3)

+ 8983379π10

87091200 m(2) +
8497697π12

9331200 m(1) +
9292841π14

4082400

where β ∈ H2(X ,Z) is a fixed class (called the degree). The proper definition of Mg,n(X ,β)
and its compactification is a highly delicate mathematical problem (much more intricate than
the moduli space of Riemann surfaces). The computation of the associated correlators is even
more subtle.

Witten’s conjecture can be seen as the tip of the iceberg of this theory: it corresponds to
the case of X = {∗}, a zero-dimensional target. Eguchi, Hori, and Xiong [65] extended the
Virasoro constraints for the point and conjectured that the partition function of every target
obeys the Virasoro conditions. In a remarkable series of papers [66–68], Okounkov and Pand-
haripande gave a complete solution in the one-dimensional case, proving the conjecture of
Eguchi–Hori–Xiong. Beyond the case of a point and of complex curves, Virasoro constraints
have also been shown to hold for special classes of targets (of arbitrary dimension), namely:

• for toric Fano manifolds and manifolds satisfying a semisimplicity assumption, as shown
by Givental–Teleman [46,50],

• even more explicitly for toric Calabi–Yau threefolds following the Bouchard–Klemm–
Mariño–Pasquetti “remodelling conjecture” [69], now a theorem [70,71].
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Resurgent large genus asymptotics of intersection numbers, (arXiv preprint)
doi:10.48550/arXiv.2309.03143.

[27] A. Aggarwal, Large genus asymptotics for intersection numbers and principal strata vol-
umes of quadratic differentials, Invent. Math. 226, 897 (2021), doi:10.1007/s00222-021-
01059-9 [preprint doi:10.48550/arXiv.2004.05042].

39

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.111
https://doi.org/10.4171/103-1/12
https://doi.org/10.1142/9789813272880_0031
https://doi.org/10.48550/arXiv.1712.02528
https://www.math.uni-bonn.de/people/schmitt/ModCurves/Script.pdf
https://www.math.uni-bonn.de/people/schmitt/ModCurves/Script.pdf
https://doi.org/10.1007/978-3-540-69392-5
https://doi.org/10.1007/BF02684599
https://www.youtube.com/watch?v=LbNQHE2sJjk
https://www.youtube.com/watch?v=LbNQHE2sJjk
https://doi.org/10.1007/BF01390325
https://doi.org/10.48550/arXiv.2409.06657
https://doi.org/10.1016/0550-3213(91)90129-L
https://doi.org/10.4310/CNTP.2007.v1.n2.a4
https://doi.org/10.48550/arXiv.math-ph/0702045
https://doi.org/10.48550/arXiv.math/0209071
https://doi.org/10.1016/j.physrep.2019.02.003
https://doi.org/10.48550/arXiv.1802.10441
https://doi.org/10.48550/arXiv.2411.16211
https://doi.org/10.48550/arXiv.2309.03143
https://doi.org/10.1007/s00222-021-01059-9
https://doi.org/10.1007/s00222-021-01059-9
https://doi.org/10.48550/arXiv.2004.05042


SciPost Phys. Lect. Notes 111 (2026)

[28] M. Kontsevich and Y. Manin, Gromov-Witten classes, quantum cohomology, and enu-
merative geometry, Commun. Math. Phys. 164, 525 (1994), doi:10.1007/BF02101490
[preprint doi:10.48550/arXiv.hep-th/9402147].

[29] B. Dubrovin, Geometry of 2D topological field theories, in Integrable systems and quan-
tum groups, Springer, Berlin, Heidelberg, Germany, ISBN 9783540605423 (1996),
doi:10.1007/BFb0094793 [preprint doi:10.48550/arXiv.hep-th/9407018].

[30] M. Mariño and C. Vafa, Framed knots at large N, (arXiv preprint) doi:10.48550/arXiv.hep-
th/0108064.

[31] C.-C. Melissa Liu, K. Liu and J. Zhou, A proof of a conjecture of Mariño-Vafa on Hodge
integrals, J. Differ. Geom. 65, 289 (2003), doi:10.4310/jdg/1090511689 [preprint
doi:10.48550/arXiv.math/0306434].

[32] A. Okounkov and R. Pandharipande, Hodge integrals and invariants of the
unknot, Geom. Topol. 8, 675 (2004), doi:10.2140/gt.2004.8.675 [preprint
doi:10.48550/arXiv.math/0307209].

[33] P. Norbury, A new cohomology class on the moduli space of curves, Geom. Topol. 27, 2695
(2023), doi:10.2140/gt.2023.27.2695 [preprint doi:10.48550/arXiv.1712.03662].

[34] D. Stanford and E. Witten, JT gravity and the ensembles of random matrix theory,
Adv. Theor. Math. Phys. 24, 1475 (2020), doi:10.4310/ATMP.2020.v24.n6.a4 [preprint
doi:10.48550/arXiv.1907.03363].

[35] E. Brezin and D. J. Gross, The external field problem in the large N limit of QCD, Phys.
Lett. B 97, 120 (1980), doi:10.1016/0370-2693(80)90562-6.

[36] D. J. Gross and E. Witten, Possible third-order phase transition in the large-N lattice gauge
theory, Phys. Rev. D 21, 446 (1980), doi:10.1103/PhysRevD.21.446.

[37] N. K. Chidambaram, E. Garcia-Failde and A. Giacchetto, Relations on Mg,n and the neg-
ative r-spin Witten conjecture, Invent. Math. 241, 929 (2025), doi:10.1007/s00222-025-
01351-y [preprint doi:10.48550/arXiv.2205.15621].

[38] E. Witten, The N matrix model and gauged WZW models, Nucl. Phys. B 371, 191 (1992),
doi:10.1016/0550-3213(92)90235-4.

[39] E. Witten, Algebraic geometry associated with matrix models of two-dimensional gravity,
in Topological methods in modern mathematics: A symposium in honor of John Milnor’s
sixtieth birthday, Publish or Perish, Houston, USA, ISBN 9780914098263 (1993).

[40] A. Polishchuk and A. Vaintrob, Algebraic construction of Witten’s top Chern class, in
Advances in algebraic geometry motivated by physics, American Mathematical Soci-
ety, Providence, USA, ISBN 9780821878668 (2001), doi:10.1090/conm/276 [preprint
doi:10.48550/arXiv.math/0011032].

[41] C. Faber, S. Shadrin and D. Zvonkine, Tautological relations and the r-spin Witten con-
jecture, Ann. Sci. Éc. Norm. Supér. 43, 621 (2010), doi:10.24033/asens.2130 [preprint
doi:10.48550/arXiv.math/0612510].

[42] R. Pandharipande, A. Pixton and D. Zvonkine, Relations on Mg,n via 3-spin structures,
J. Am. Math. Soc. 28, 279 (2015), doi:10.1090/S0894-0347-2014-00808-0 [preprint
doi:10.48550/arXiv.1303.1043].

40

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.111
https://doi.org/10.1007/BF02101490
https://doi.org/10.48550/arXiv.hep-th/9402147
https://doi.org/10.1007/BFb0094793
https://doi.org/10.48550/arXiv.hep-th/9407018
https://doi.org/10.48550/arXiv.hep-th/0108064
https://doi.org/10.48550/arXiv.hep-th/0108064
https://doi.org/10.4310/jdg/1090511689
https://doi.org/10.48550/arXiv.math/0306434
https://doi.org/10.2140/gt.2004.8.675
https://doi.org/10.48550/arXiv.math/0307209
https://doi.org/10.2140/gt.2023.27.2695
https://doi.org/10.48550/arXiv.1712.03662
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://doi.org/10.48550/arXiv.1907.03363
https://doi.org/10.1016/0370-2693(80)90562-6
https://doi.org/10.1103/PhysRevD.21.446
https://doi.org/10.1007/s00222-025-01351-y
https://doi.org/10.1007/s00222-025-01351-y
https://doi.org/10.48550/arXiv.2205.15621
https://doi.org/10.1016/0550-3213(92)90235-4
https://doi.org/10.1090/conm/276
https://doi.org/10.48550/arXiv.math/0011032
https://doi.org/10.24033/asens.2130
https://doi.org/10.48550/arXiv.math/0612510
https://doi.org/10.1090/S0894-0347-2014-00808-0
https://doi.org/10.48550/arXiv.1303.1043


SciPost Phys. Lect. Notes 111 (2026)

[43] V. Bouchard, N. K. Chidambaram, A. Giacchetto and S. Shadrin, Theta classes:
Generalized topological recursion, integrability and W-constraints, (arXiv preprint)
doi:10.48550/arXiv.2505.11291.

[44] A. Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and rth
roots, Compos. Math. 144, 1461 (2008), doi:10.1112/S0010437X08003709 [preprint
doi:10.48550/arXiv.math/0607324].

[45] A. Marian, D. Oprea, R. Pandharipande, A. Pixton and D. Zvonkine, The Chern character
of the Verlinde bundle over Mg,n, J. Reine Angew. Math. 147 (2017), doi:10.1515/crelle-
2015-0003 [preprint doi:10.48550/arXiv.1311.3028].

[46] A. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians,
Mosc. Math. J. 1, 551 (2001), doi:10.17323/1609-4514-2001-1-4-551-568 [preprint
doi:10.48550/arXiv.math/0108100].

[47] A. Givental, Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. 1265
(2001), doi:10.1155/S1073792801000605.

[48] T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math.
135, 487 (1999), doi:10.1007/s002220050293 [preprint doi:10.48550/arXiv.alg-
geom/9708001].

[49] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in
Arithmetic and geometry, Birkhäuser, Boston, USA, ISBN 9780817631338 (1983),
doi:10.1007/978-1-4757-9286-7_12.

[50] C. Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188, 525 (2012),
doi:10.1007/s00222-011-0352-5 [preprint doi:10.48550/arXiv.0712.0160].

[51] B. Eynard, Invariants of spectral curves and intersection theory of moduli spaces of complex
curves, Commun. Number Theory Phys. 8, 541 (2014), doi:10.4310/CNTP.2014.v8.n3.a4
[preprint doi:10.48550/arXiv.1110.2949].

[52] P. Dunin-Barkowski, N. Orantin, S. Shadrin and L. Spitz, Identification of the
Givental formula with the spectral curve topological recursion procedure, Com-
mun. Math. Phys. 328, 669 (2014), doi:10.1007/s00220-014-1887-2 [preprint
doi:10.48550/arXiv.1211.4021].

[53] B. Eynard, Invariants of spectral curves and intersection theory of moduli spaces of complex
curves, Commun. Number Theory Phys. 8, 541 (2014), doi:10.4310/CNTP.2014.v8.n3.a4
[preprint doi:10.48550/arXiv.1104.0176].

[54] V. Bouchard and M. Mariño, Hurwitz numbers, matrix models and enumera-
tive geometry, in From Hodge theory to integrability and TQFT: t t∗-geometry,
American Mathematical Society, Providence, USA, ISBN 9780821893852 (2008)
doi:10.1090/pspum/078/2483754 [preprint doi:10.48550/arXiv.0709.1458].

[55] L. Eberhardt, Off-shell partition functions in 3d gravity, Commun. Math. Phys. 405, 76
(2024), doi:10.1007/s00220-024-04963-2 [preprint doi:10.48550/arXiv.2204.09789].

[56] S. Collier, L. Eberhardt, B. Mühlmann and V. A. Rodriguez, The Virasoro minimal
string, SciPost Phys. 16, 057 (2024), doi:10.21468/SciPostPhys.16.2.057 [preprint
doi:10.48550/arXiv.2309.10846].

41

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.111
https://doi.org/10.48550/arXiv.2505.11291
https://doi.org/10.1112/S0010437X08003709
https://doi.org/10.48550/arXiv.math/0607324
https://doi.org/10.1515/crelle-2015-0003
https://doi.org/10.1515/crelle-2015-0003
https://doi.org/10.48550/arXiv.1311.3028
https://doi.org/10.17323/1609-4514-2001-1-4-551-568
https://doi.org/10.48550/arXiv.math/0108100
https://doi.org/10.1155/S1073792801000605
https://doi.org/10.1007/s002220050293
https://doi.org/10.48550/arXiv.alg-geom/9708001
https://doi.org/10.48550/arXiv.alg-geom/9708001
https://doi.org/10.1007/978-1-4757-9286-7_12
https://doi.org/10.1007/s00222-011-0352-5
https://doi.org/10.48550/arXiv.0712.0160
https://doi.org/10.4310/CNTP.2014.v8.n3.a4
https://doi.org/10.48550/arXiv.1110.2949
https://doi.org/10.1007/s00220-014-1887-2
https://doi.org/10.48550/arXiv.1211.4021
https://doi.org/10.4310/CNTP.2014.v8.n3.a4
https://doi.org/10.48550/arXiv.1104.0176
https://doi.org/10.1090/pspum/078/2483754
https://doi.org/10.48550/arXiv.0709.1458
https://doi.org/10.1007/s00220-024-04963-2
https://doi.org/10.48550/arXiv.2204.09789
https://doi.org/10.21468/SciPostPhys.16.2.057
https://doi.org/10.48550/arXiv.2309.10846


SciPost Phys. Lect. Notes 111 (2026)

[57] S. Collier, L. Eberhardt, B. Mühlmann and V. A. Rodriguez, The complex Liouville string:
The matrix integral, SciPost Phys. 18, 154 (2025), doi:10.21468/SciPostPhys.18.5.154
[preprint doi:10.48550/arXiv.2410.07345].

[58] A. Artemev and I. Chaban, (2, 2p + 1) minimal string and intersection theory I,
J. High Energy Phys. 01, 151 (2025), doi:10.1007/JHEP01(2025)151 [preprint
doi:10.48550/arXiv.2403.02305].

[59] R. Gopakumar and E. A. Mazenc, Deriving the simplest gauge-string duality – I: Open-
closed-open triality, (arXiv preprint) doi:10.48550/arXiv.2212.05999.

[60] S. Wolpert, On the Weil-Petersson geometry of the moduli space of curves, Am. J. Math.
107, 969 (1985), doi:10.2307/2374363.

[61] M. Mirzakhani, Weil-Petersson volumes and intersection theory on the moduli space of
curves, J. Am. Math. Soc. 20, 1 (2006), doi:10.1090/S0894-0347-06-00526-1.

[62] M. Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered
Riemann surfaces, Invent. Math. 167, 179 (2007), doi:10.1007/s00222-006-0013-2.

[63] G. McShane, Simple geodesics and a series constant over Teichmuller space, Invent. Math.
132, 607 (1998), doi:10.1007/s002220050235.

[64] B. Eynard and N. Orantin, Weil-Petersson volume of moduli spaces, Mirzakhani’s recursion
and matrix models, (arXiv preprint) doi:10.48550/arXiv.0705.3600.

[65] T. Eguchi, K. Hori and C.-S. Xiong, Quantum cohomology and Virasoro alge-
bra, Phys. Lett. B 402, 71 (1997), doi:10.1016/S0370-2693(97)00401-2 [preprint
doi:10.48550/arXiv.hep-th/9703086].

[66] A. Okounkov and R. Pandharipande, Gromov–Witten theory, Hurwitz theory, and com-
pleted cycles, Ann. Math. 163, 517 (2006), doi:10.4007/annals.2006.163.517 [preprint
doi:10.48550/arXiv.math/0204305].

[67] A. Okounkov and R. Pandharipande, The equivariant Gromov–Witten theory of
P1, Ann. Math. 163, 561 (2006), doi:10.4007/annals.2006.163.561 [preprint
doi:10.48550/arXiv.math/0207233].

[68] A. Okounkov and R. Pandharipande, Virasoro constraints for target curves,
Invent. Math. 163, 47 (2006), doi:10.1007/s00222-005-0455-y [preprint
doi:10.48550/arXiv.math/0308097].

[69] V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remodeling the B-model,
Commun. Math. Phys. 287, 117 (2008), doi:10.1007/s00220-008-0620-4 [preprint
doi:10.48550/arXiv.0709.1453].

[70] B. Eynard and N. Orantin, Computation of open Gromov-Witten invariants for
toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture,
Commun. Math. Phys. 337, 483 (2015), doi:10.1007/s00220-015-2361-5 [preprint
doi:10.48550/arXiv.1205.1103].

[71] B. Fang, C.-C. Liu and Z. Zong, On the remodeling conjecture for toric Calabi-Yau
3-orbifolds, J. Am. Math. Soc. 33, 135 (2019), doi:10.1090/jams/934 [preprint
doi:10.48550/arXiv.1604.07123].

42

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.111
https://doi.org/10.21468/SciPostPhys.18.5.154
https://doi.org/10.48550/arXiv.2410.07345
https://doi.org/10.1007/JHEP01(2025)151
https://doi.org/10.48550/arXiv.2403.02305
https://doi.org/10.48550/arXiv.2212.05999
https://doi.org/10.2307/2374363
https://doi.org/10.1090/S0894-0347-06-00526-1
https://doi.org/10.1007/s00222-006-0013-2
https://doi.org/10.1007/s002220050235
https://doi.org/10.48550/arXiv.0705.3600
https://doi.org/10.1016/S0370-2693(97)00401-2
https://doi.org/10.48550/arXiv.hep-th/9703086
https://doi.org/10.4007/annals.2006.163.517
https://doi.org/10.48550/arXiv.math/0204305
https://doi.org/10.4007/annals.2006.163.561
https://doi.org/10.48550/arXiv.math/0207233
https://doi.org/10.1007/s00222-005-0455-y
https://doi.org/10.48550/arXiv.math/0308097
https://doi.org/10.1007/s00220-008-0620-4
https://doi.org/10.48550/arXiv.0709.1453
https://doi.org/10.1007/s00220-015-2361-5
https://doi.org/10.48550/arXiv.1205.1103
https://doi.org/10.1090/jams/934
https://doi.org/10.48550/arXiv.1604.07123

	Introduction
	Moduli spaces of Riemann surfaces
	Definition of the moduli spaces
	Stratification and tautological maps
	Intersection theory and Witten's conjecture

	Cohomological field theories
	Axioms
	Givental's action
	Rotation
	Translation
	Examples and Teleman's theorem

	Connection to topological recursion

	Further directions
	Moduli of hyperbolic surfaces
	String theory and moduli of maps

	References

