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Abstract

We give a detailed description of the nested algebraic Bethe ansatz. We consider in-
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1 Introduction

Algebraic Bethe ansatz (ABA) is a part of the Quantum Inverse Scattering Method (QISM), that
emerged in the late 70’s in the works of the Leningrad School [1, 2]. Almost simultaneously
with this method, a nested algebraic Bethe ansatz (NABA) was developed in [3–6]. The NABA
is a method that allows us to find the spectrum of quantum integrable models describing
systems with several types of excitations. It is an algebraic interpretation of the approach
proposed in the works [7–9].

These notes are based on a series of lectures given by the author at the Les Houches summer
school 2018 Integrability in Atomic and Condensed Matter Physics. We introduce the reader to
the basic principles of the NABA. The presentation follows the classical scheme described in
the papers [3–6]. However, we give much more details and illustrate the general principles
with concrete calculations. To simplify the discussion, we will mainly confine ourselves to
the case of models, which are described by a gl3-invariant R-matrix. A number of statements,
however, are formulated for a fairly general case. Besides, we give a number of comments on
how one can generalize the results obtained for the gl3 case to the models with symmetries of
higher ranks.

We also describe a method developed in the works [10–12]. In contrast to the classical
NABA scheme, which allows to construct Bethe vectors recursively, this approach immediately
sets explicit formulas for these vectors. We present a proof of the equivalence of this approach
to the NABA.

In these notes, we focus on the mathematical aspects of NABA and do not consider the
physical applications of models solvable by this method. Note, however, that these physi-
cal applications are very wide, since the NABA models provide a more realistic description
of strongly interacting systems. The reason is that in the NABA we are dealing with several
creation operators. This allows us to consider systems where several degrees of freedom of fun-
damental particles interact, for example, the spin and the charge of the electrons. Therefore,
the NABA solvable models have found wide application primarily in the physics of strongly
correlated electronic systems (Yang–Gaudin model [7, 13–15], t-J model and Hubbard model
[16–19]). We can also consider systems consisting of several types of particles, such as systems
with impurities (Kondo model) [20–23]. For a more detailed description of the application of
NABA to Fermi gases and ultracold atom systems, we refer the reader to review [24]. It is also
worth mentioning that the Hamiltonians of integrable systems with a large number of degrees
of freedom arise in supersymmetric gauge theories [25].

To conclude this short introduction, we would like to mention that the NABA is a general-
ization of the ABA and uses basically the same concepts. Some techniques are also borrowed
from the ABA. Therefore, to understand the stuff, the reader must possess the basic principles
and techniques of the ABA. In addition to the original works mentioned above, they can be
found in [26–29].

1.1 Reminder of the algebraic Bethe ansatz

A key equation of the ABA is an RT T -relation [1, 2, 26–29]

R(u, v)
�

T (u)⊗ I
��

I ⊗ T (v)
�

=
�

I ⊗ T (v)
��

T (u)⊗ I
�

R(u, v). (1.1)
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Here T (u) is a monodromy matrix

T (u) =

�

A(u) B(u)
C(u) D(u)

�

, (1.2)

whose matrix elements act in some Hilbert space H. The monodromy matrix also acts in the
space C2 which is called an auxiliary space. The R-matrix R(u, v) acts in C2 ⊗ C2. Another
commonly used form of equation (1.1) is

R12(u, v)T1(u)T2(v) = T2(v)T1(u)R12(u, v). (1.3)

Here the subscripts show in which of the two auxiliary spacesC2 the T -matrices act nontrivially.
The R-matrix R12(u, v) acts in both spaces C2.

The RT T -relation immediately yields

[tr T (u), tr T (v)] = 0, tr T (u) = A(u) + D(u). (1.4)

Thus, the trace of the monodromy matrix in the auxiliary space (transfer matrix) is a generating
function of commuting operators

tr T (u) =
∑

k

(u− u0)
k Ik, [Ik, In] = 0. (1.5)

Choosing one of Ik as a Hamiltonian of a quantum model we automatically obtain many (gener-
ically, infinitely many) integrals of motion. Thus, we have a chance to build an integrable
model.

It is assumed within the framework of the ABA that the Hilbert space H of the model
contains a vacuum vector |0〉 with the following properties:

A(u)|0〉= a(u)|0〉, D(u)|0〉= d(u)|0〉, C(u)|0〉= 0. (1.6)

Here a(u) and d(u) are some functions that depend on the particular model. Common eigen-
states of the Hamiltonian and other integrals of motion are eigenstates of the transfer matrix
for arbitrary complex z:

tr T (z)|Ψ〉= Λ(z)|Ψ〉, (1.7)

where Λ(z) is the transfer matrix eigenvalue. Within the framework of the ABA they can be
obtained by the successive action of the operators B(u) on the vacuum vector:

|Ψ〉= B(u1) . . . B(un)|0〉, (1.8)

provided parameters u1, . . . , un satisfy a system of Bethe equations (see below). In this case, we
call the vector (1.8) an on-shell Bethe vector. Otherwise, if parameters u1, . . . , un are arbitrary
complex numbers, we call the vector (1.8) an off-shell Bethe vector or simply the Bethe vector.

1.2 Possible generalization

A question arises: can we generalize this construction to the case of the N × N monodromy
matrix whose auxiliary space would be CN ? Namely, we still want to have the RT T -relation
(1.1). Then, the transfer matrix

tr T (u) =
N
∑

i=1

Tii(u) (1.9)
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satisfies the commutation relation (1.4). Thus, we can obtain a Hamiltonian and other inte-
grals of motion via (1.5). In order to construct the Hamiltonian eigenstates we assume that
the Hilbert space of the model has a vacuum vector |0〉 with the properties analogous to (1.6):

Tii(u)|0〉= λi(u)|0〉, i = 1, . . . , N ,

Ti j(u)|0〉= 0, i > j.
(1.10)

Here λi(u) are some functions dependent on the particular model.

1.3 Examples of R-matrices

The first problem is to find an R-matrix acting in CN ⊗ CN . The R-matrix should satisfy the
Yang–Baxter equation

R12(u1, u2)R13(u1, u3)R23(u2, u3) = R23(u2, u3)R13(u1, u3)R12(u1, u2), (1.11)

in order to provide compatibility of the RT T -relation. The first example of the non-trivial
R-matrix has exactly the same form as in the case of the C2 auxiliary space:

R(u, v) = I+ g(u, v)P, g(u, v) =
c

u− v
. (1.12)

Here I is the identity operator in CN ⊗CN , P is the permutation operator in the same space,
and c is a constant. The permutation operator has the form

P =
N
∑

i, j=1

Ei j ⊗ E ji , (1.13)

where (Ei j)lk = δilδ jk, i, j, l, k = 1, ..., N are N × N matrices with unit at the intersection of
ith row and jth column and zeros elsewhere (the standard basis matrices).

Another solution to the Yang–Baxter equation is given by the q-deformation of the R-matrix
(1.12) [4, 30, 31]:

R(q)(u, v) = fq(u, v)
∑

1≤i≤N

Eii ⊗ Eii +
∑

1≤i< j≤N

(Eii ⊗ E j j + E j j ⊗ Eii)

+
∑

1≤i< j≤N

�

ugq(u, v)Ei j ⊗ E ji + vgq(u, v)E ji ⊗ Ei j

�

,
(1.14)

where

fq(u, v) =
qu− q−1v

u− v
, gq(u, v) =

q− q−1

u− v
. (1.15)

Pay attention that this R-matrix is not a complete analog of the well known 4× 4 trigono-
metric R-matrix acting in C2 ⊗C2. Indeed, the latter has the following form1:

Rtrig(u, v) =









fq(u, v) 0 0 0
0 1

p
uvgq(u, v) 0

0
p

uvgq(u, v) 1 0
0 0 0 fq(u, v)









. (1.16)

1For those who are used to write this matrix in terms of trigonometric (hyperbolic) functions, it is enough to
substitute u= e2x , v = e2y , and q = eη in (1.15).
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One would expect that an analog of Rtrig(u, v) in the case CN ⊗CN is

Rtrig(u, v) = fq(u, v)
∑

1≤i≤N

Eii ⊗ Eii +
∑

1≤i< j≤N

(Eii ⊗ E j j + E j j ⊗ Eii)

+
∑

1≤i< j≤N

p
uv gq(u, v)

�

Ei j ⊗ E ji + E ji ⊗ Ei j

�

.
(1.17)

However, the R-matrix (1.17) satisfies the Yang–Baxter equation for N = 2 only. The point is
that the R-matrix (1.14) can be transformed as follows:

R̃(q)12 (u, v) = K1

�u
v

�

R(q)12 (u, v)K1

� v
u

�

, (1.18)

where

K
�u

v

�

=
N
∑

j=1

�u
v

�(N+1)/4− j/2
E j j . (1.19)

Then the new matrix R̃(q)(u, v) is also a solution of the Yang–Baxter equation (see appendix A).
It is easy to check that for N = 2 the matrix R̃(q)(u, v) (1.18) coincides with Rtrig(u, v) (1.16),
but this is not true for N > 2.

There exist, of course, other R-matrices acting in CN ⊗CN and satisfying the Yang–Baxter
equation, for example, Belavin elliptic R-matrix [32–35]. However, we will restrict our selves
with consideration of the simplest R-matrix (1.12) only. Furthermore, the main part of these
lectures will be devoted to the case N = 3. We will see that even in this simplest case one
should solve several non-trivial problems.

The R-matrix (1.12) is called glN -invariant due to the property

[R12(u, v), G1G2] = 0, (1.20)

for any G ∈ glN .

1.4 Examples of monodromy matrices

The first example of the monodromy matrix is completely analogous to the gl2 case

T (u) = R0L(u,ξL) . . . R01(u,ξ1). (1.21)

This is the monodromy matrix of the SU(N)-invariant inhomogeneous X X X Heisenberg chain.
The parameters ξi are inhomogeneities. Each R-matrix R0i(u,ξi) acts in the tensor product
V0 ⊗ Vi , where every Vi is CN . The auxiliary space of the monodromy matrix is V0 ∼ CN . The
quantum space is

H = V1 ⊗ · · · ⊗ VL = CN ⊗ · · · ⊗CN
︸ ︷︷ ︸

L times

. (1.22)

This quantum space has a vacuum vector of the form

|0〉=





1
0
...
0



⊗ · · · ⊗





1
0
...
0





︸ ︷︷ ︸

L times

. (1.23)
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Another example describes a system of bosons. For simplicity we give explicit formulas for
the gl3 case [4] (generalization to glN is quite obvious). An L-operator of this system has the
following form:

L(a)(u) = u1− cL, (1.24)

where 1 is the identity operator and

L=





a†
1a1 a†

1a2 ia†
1
p

m+ρ
a†

2a1 a†
2a2 ia†

2
p

m+ρ
i
p

m+ρ a1 i
p

m+ρ a2 −m−ρ



 . (1.25)

Here m is a complex number and ρ = a†
1a1+ a†

2a2. The operators ak and a†
k (k = 1,2) act in a

Fock space with the Fock vacuum |0〉: ak|0〉 = 0. They have standard commutation relations
of the Heisenberg algebra [ai , a†

k] = δik.
In order to construct the monodromy matrix we replace the original ak and a†

k operators
with ak(n) and a†

k(n) so that [ai(n), a†
k(m)] = δikδnm. Then

T (u) = LM (u) . . . L1(u), where Li(u) = L(a)(u)
�

�

�ak=ak(i)
a†

k=a†
k(i)

. (1.26)

This monodromy matrix describes a chain in each site of which there may be a particle of
one of two sorts. The vacuum vector coincides with the Fock vacuum. This system admits the
continuum limit. Then it turns into the system of the two-component Bose-gas with δ-function
interaction [7–9, 36].

1.5 Remark about RT T -algebra

RT T -algebra (1.1) with the R-matrix (1.12) is closely related to the concept of Yangian Y (glN )
(see [37, 38] and references therein). Sometimes in the literature it is called the Yangian.
In fact, the RT T -algebra with the glN -invariant R-matrix is somewhat wider. In the case of
the Yangian, we must impose an additional condition on the asymptotic behavior of the mon-
odromy matrix elements Ti j(u) at u→∞

Ti j(u) = δi j +
∞
∑

k=0

� c
u

�k+1
Ti j[k], u→∞, (1.27)

where Ti j[k] are generators of the Yangian Y (glN ). Note that the examples of the monodromy
matrices considered in section 1.4 enjoy this condition after appropriate normalization. How-
ever, if we pass from the monodromy matrix T (u) satisfying condition (1.27) to a matrix
KT (u), where K is a diagonal c-number matrix, then the new matrix KT (u) will also sat-
isfy the RT T -relation. The properties of the vacuum vector will also be preserved. However,
the KT (u) matrix no longer has expansion (1.27), since it does not begin with the identity
operator. This type of transformation (twist transformation) can be done with any of the L-
operators entering the definition of the monodromy matrix. As a result, in some cases the
monodromy matrix satisfying the RT T -relation may have essential singularity at infinity (see
e.g. continuum models of one-dimensional Bose and Fermi gases [26, 36]).

Below we denote by RN the RT T -algebra with the glN -invariant R-matrix (1.12), where N
indicates the size of the monodromy matrix. Starting from this point, we consider only such
algebras, unless otherwise specified.
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1.6 Automorphism

Let us define a linear mapping ϕ : T → T̃ such that

T̃i j = ϕ
�

Ti j(u)
�

= T j̃,ĩ(−u), where ĩ = N + 1− i,

ϕ
�

Ti j(u)Tkl(v)
�

= ϕ
�

Ti j(u)
�

ϕ
�

Tkl(v)
�

.
(1.28)

Proposition 1.1. [38] Mapping (1.28) is an automorphism of the RN algebra .

To prove this proposition we need an auxiliary lemma.

Lemma 1.1. The RT T-relation (1.3) with the R-matrix (1.12) implies

[Ti j(u), Tkl(v)] = g(u, v)
�

Tk j(v)Til(u)− Tk j(u)Til(v)
�

,

= g(u, v)
�

Til(u)Tk j(v)− Til(v)Tk j(u)
�

.
(1.29)

Proof. Observe that the second equation (1.29) can be obtained from the first one via
simultaneous replacements i ↔ k, j ↔ l, and u↔ v. Thus, it is enough to prove the first
equation (1.29).

Let us write down the RT T -relation (1.3) in the form

[T1(u), T2(v)] = g(u, v)
�

T2(v)T1(u)P12 − P12T1(u)T2(v)
�

. (1.30)

Here we used representation (1.12) for the R-matrix.
The monodromy matrices T1(u) and T2(v) can be written as

T1(u) =
N
∑

i, j=1

Ti j(u)E
i j
1 , T2(v) =

N
∑

k,l=1

Tkl(v)E
kl
2 . (1.31)

Here we used superscripts to denote different standard basis matrices, since the subscripts are
already occupied for the designation of auxiliary spaces. The matrix elements Ti j (or Tkl) act
in the Hilbert space H only, while the standard basis matrices act in the auxiliary spaces CN .
Recall also that

P12 =
N
∑

a,b=1

Eab
1 E ba

2 . (1.32)

Now we simply substitute (1.31) and (1.32) into (1.30). Then we obtain in the l.h.s.

[T1(u), T2(v)] =
N
∑

i, j,k,l=1

[Ti j(u), Tkl(v)]E
i j
1 Ekl

2 . (1.33)

In the r.h.s., we have

g(u, v)
�

T2(v)T1(u)P12 − P12T1(u)T2(v)
�

= g(u, v)
N
∑

i, j,k,l,a,b=1

�

Tkl(v)Ti j(u)E
i j
1 Ekl

2 Eab
1 E ba

2 − Ti j(u)Tkl(v)E
ab
1 E ba

2 E i j
1 Ekl

2

�

. (1.34)

Multiplying the standard basis matrices via Eλµ
`

Eρσ
`
= δµρEλσ

`
(for `= 1,2) we obtain

g(u, v)
�

T2(v)T1(u)P12 − P12T1(u)T2(v)
�

= g(u, v)
N
∑

i, j,k,l,a,b=1

�

Tkl(v)Ti j(u)E
i b
1 Eka

2 δ jaδl b − Ti j(u)Tkl(v)E
a j
1 E bl

2 δbiδka

�

= g(u, v)
N
∑

i, j,k,l=1

�

Tkl(v)Ti j(u)E
il
1 Ek j

2 − Ti j(u)Tkl(v)E
k j
1 E il

2

�

. (1.35)
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Replacing the subscripts l ↔ j in the first term and the subscripts k↔ i in the second term
we arrive at

g(u, v)
�

T2(v)T1(u)P12 − P12T1(u)T2(v)
�

= g(u, v)
N
∑

i, j,k,l=1

�

Tk j(v)Til(u)− Tk j(u)Til(v)
�

E i j
1 Ekl

2 . (1.36)

Comparing the coefficients of E i j
1 Ekl

2 in (1.33) and (1.36) we immediately obtain (1.29).

Proof of proposition 1.1. Consider commutation relations of the operators T̃i j . We have

[T̃i j(u), T̃kl(v)] = [T j̃,ĩ(−u), Tl̃,k̃(−v)] = g(−u,−v)
�

Tl̃,ĩ(−v)T j̃,k̃(−u)− Tl̃,ĩ(−u)T j̃,k̃(−v)
�

= g(v, u)
�

T̃il(v)T̃k j(u)− T̃il(u)T̃k j(v)
�

= g(u, v)
�

T̃il(u)T̃k j(v)− T̃il(v)T̃k j(u)
�

. (1.37)

Thus, the matrix elements T̃i j(u) satisfy the same commutation relations as Ti j(u).

1.7 Coloring

In physical models, the vectors of the space H describe states with different types of particles
(excitations). We now introduce a notion of coloring, in which particles of different types also
appear. To distinguish them from physical particles, we will call them quasiparticles, and their
different types are colors.

The space H is generated by the states of the form

|Ψ〉=
n
∏

p=1

Tip , jp(up)|0〉, (1.38)

where ip < jp for p = 1, . . . , n. This means that Tip , jp(up) are creation operators. We say that
an operator Ti j with i < j creates quasiparticles with the colors i, . . . , j − 1, one quasiparticle
of each color. In particular, the operator Ti,i+1 creates one quasiparticle of the color i, the
operator T1N creates N − 1 quasiparticles of N − 1 different colors.

Thus, in glN based models quasiparticles may have N−1 colors. Let {a1, . . . , aN−1} be a set
of non-negative integers. We say that a state has coloring {ak} ≡ {a1, . . . , aN−1}, if it contains
ak quasiparticles of the color k. In other words, we introduce a mapping Col(|Ψ〉) that maps
|Ψ〉 to its coloring {ak}:

Col(|Ψ〉) = {ak}, where ak =
n
∑

p=1

�

θ ( jp − k)− θ (ip − k)
�

. (1.39)

Here θ (k) is a step function of integer argument such that θ (k) = 1 for k > 0 and θ (k) = 0
otherwise. Let us give several examples. Consider gl4 based models. Then we deal with three
colors. We have

Col(|0〉) = {0,0, 0}, (by definition),

Col(T23(u)|0〉) = {0, 1,0},

Col(T13(u1)T14(u2)|0〉) = {2,2, 1},

Col(T12(u1)T23(v1)T12(u2)T24(v2)T14(w)|0〉) = {3, 3,2}.

(1.40)
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Observe that the coloring does not depend on the arguments of the operators Ti j(u) and on
the order of these operators.

Assuming that the null-vector2 has arbitrary coloring we extend the mapping (1.39) to
some linear combinations of the states (1.38) as well as to the states containing neutral opera-
tors (i.e. Tii(u)) and annihilation operators (i.e. Ti j(u) with i > j). Namely, if
Col(|Ψ1〉) = Col(|Ψ2〉), then linear combinations of these states have the same coloring:

Col(α|Ψ1〉+ β |Ψ2〉) = Col(|Ψ1〉), if Col(|Ψ1〉) = Col(|Ψ2〉), (1.41)

where α and β are complex numbers. Then the states with the same coloring generate a sub-
space H{ak} of the space H. The latter then can be presented as a direct sum of the subspaces
with fixed coloring:

H = ⊕H{ak}. (1.42)

Let us consider the states of the form (1.38), but now suppose that among Tip , jp(up) there
can be neutral operators and annihilation operators. The coloring of these states is defined by
the same formula (1.39). Then the integers ak may take negative values.

Proposition 1.2. Let Col(|Ψ〉) = {ak}, where at least one a j < 0. Then |Ψ〉= 0.

Proof. Suppose that |Ψ〉 6= 0. Then we can normal order all the operators Ti j , that is, we can
move all neutral and annihilation operators to the extreme right position using commutation
relations (1.29). Observe that the coloring mapping is compatible with these commutation
relations. Thus, at any step of the normal ordering we deal with the state of the initial coloring.
After the normal ordering is completed, the state |Ψ〉 depends on creation operators only. Then
due to (1.39) ak ≥ 0 for all k = 1, . . . , N−1. We arrive at the contradiction, hence, |Ψ〉= 0.

Proposition 1.2 allows us in some cases to quickly calculate the action of annihilation
operators on the states without use of commutation relations (1.29). For example, we can
immediately say that

T41(z)T13(u1)T13(u2)T12(v1)T13(u3)T12(v2)|0〉= 0, (1.43)

because
Col
�

T41(z)T13(u1)T13(u2)T12(v1)T13(u3)T12(v2)
�

= {4,2,−1, . . . }. (1.44)

The reader can convince himself that the use of commutation relations (1.29) gives the same
result, however it takes much more time and efforts. Generically, if j − 1 < k < i, and the
annihilation operator Ti j acts on a state in which there is no quasiparticles of the color k, then
this action vanishes, like in (1.43).

Proposition 1.3. Let a state |Ψ〉 do not contain quasiparticles of the color 1. Then

T11(z)|Ψ〉= λ1(z)|Ψ〉. (1.45)

Proof. Obviously, it is enough to consider monomials (1.38) consisting of creation op-
erators only. Otherwise, we always can get rid of the neutral and annihilation operators by
normal ordering them. Since this monomial does not contain quasiparticles of the color 1, we
conclude that ip > 1 and jp > 1. Then, due to commutation relations (1.29) we have

T11(z)Tip , jp(up) = Tip , jp(up)T11(z) + g(z, up)
�

T1, jp(z)Tip ,1(up)− T1, jp(up)Tip ,1(z)
�

. (1.46)

2Do not confuse the null-vector 0 with the vacuum vector |0〉.
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There are two terms here. In the first term, the operators T11(z) and Tip , jp(up) are simply
rearranged. In the second term, we have the annihilation operator Tip ,1 on the right. The
action of the latter on a state without quasiparticles of the first color gives zero. Thus, the
operator T11(z) goes through all the creation operators Tip , jp(up) to the extreme right position,
where it acts on the vacuum vector and gives λ1(z).

Applying the automorphism (1.28) to (1.45) we find that in the RN algebra

TNN (z)|Ψ〉= λN (z)|Ψ〉, (1.47)

provided the state |Ψ〉 does not contain quasiparticles of the last color N − 1. This property
also can be checked via direct calculation similar to (1.46). However, an analogous property
is not valid for the quasiparticles of the intermediate colors 2, . . . , N − 2. For example, if
|Ψ〉 = T12(u1)T34(u2)|0〉, then this state does not contain quasiparticles of the color 2. At the
same time,

T22(z)|Ψ〉= T22(z) T12(u1)T34(u2)|0〉= T12(u1)T22(z)T34(u2)|0〉

+ g(z, u1)
�

T12(u1)T22(z)− T12(z)T22(u1)
�

T34(u2)|0〉

= λ2(z)
�

1+ g(z, u1)
�

|Ψ〉+ g(u1, z)λ2(u1)T12(z)T34(u2)|0〉. (1.48)

In conclusion, we note that the coloring mapping can also be introduced for models with
the q-deformed R-matrix (1.14).

2 Bethe vectors

We have already introduced in section 1.1 notions of Bethe vector and on-shell Bethe vector
in gl2 based models. Recall that on-shell Bethe vectors are eigenvectors of the transfer matrix.
To solve the spectral problem, they are only needed. However, in computing the correlation
functions, we also have to deal with off-shell Bethe vectors. Indeed, a typical problem arising
in calculating correlation functions is to compute a matrix element of an operator Ô of the
following form:

OΨ′Ψ = 〈Ψ′|Ô|Ψ〉. (2.1)

Here |Ψ〉 is an on-shell Bethe vector, and 〈Ψ′| is an on-shell Bethe vector in the dual space
(dual on-shell Bethe vector). If the operator Ô does not commute with the transfer matrix,
then Ô|Ψ〉= |Φ〉, where |Φ〉 is no longer on-shell Bethe vector.

In many cases, it is possible to express this vector as a linear combination of off-shell Bethe
vectors. In particular, if an explicit solution of the quantum inverse problem is known for the
model under consideration, then we can express local operators in terms of the elements of
the monodromy matrix [39–41]. Let us give an example. The solution of the quantum inverse
problem in the models with the monodromy matrix (1.21) has the form

E i j
k =

�k−1
∏

`=1

tr T (ξ`)

�

T ji(ξk)

� k
∏

`=1

tr T (ξ`)

�−1

. (2.2)

Here E i j
k is the standard basis matrix acting in the local space Vk. Then the matrix element

(2.1) of this local operator reduces to

〈Ψ′|E i j
k |Ψ〉=

∏k−1
`=1Λ

′(ξ`)
∏k
`=1Λ(ξ`)

〈Ψ′|T ji(ξk)|Ψ〉. (2.3)
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Here Λ′(ξ`) and Λ(ξ`) respectively are the transfer matrix eigenvalues on the on-shell vectors
〈Ψ′| and |Ψ〉. Thus, we have to calculate the action of the matrix element T ji(ξk) on the vector
|Ψ〉 and then calculate the resulting scalar product. In gl2 based models, such action obviously
gives a linear combination of off-shell Bethe vectors. For instance, if

|Ψ〉=
n
∏

`=1

B(u`)|0〉, (2.4)

then

T11(ξk)|Ψ〉= a(ξk)
n
∏

i=1

f (ui ,ξk)|Ψ〉+
n
∑

j=1

a(u j)g(u j ,ξk)







n
∏

i=1
i 6= j

f (ui , u j)






|Φ j〉, (2.5)

where f (u, v) = 1+ g(u, v), and

|Φ j〉= B(ξk)
n
∏

`=1
6̀= j

B(u`)|0〉, (2.6)

(see [1, 26, 27, 29]). The set of variables u1, . . . , un satisfies Bethe equations, because the
original vector |Ψ〉 is on-shell. However, the new sets {ξk, u1, . . . , un} \ u j , j = 1, . . . , n, are
no longer solutions to these equations3. Therefore, we have a linear combination of off-shell
Bethe vectors |Φ j〉 in (2.5).

Similarly, in models with higher rank symmetries, the actions of the monodromy matrix
elements on Bethe vectors generate linear combinations of off-shell vectors [42–44]. As a re-
sult, matrix elements of local operators are reduced to scalar products of Bethe vectors, in
which one of the vectors is on-shell, while another one, generally speaking, is off-shell. Com-
pact determinant formulas for such scalar products are known in the case of the R2 algebra
and its q-deformation [29, 39, 45]. Partially similar results were recently obtained in the case
of the R3 algebra [46–50]. These determinant representations allow us to study correlation
functions analytically and numerically [51–58].

Thus, despite the fact that the off-shell Bethe vectors themselves have no physical meaning,
they play a very important role in calculating the correlation functions. It is for this reason
that we pay so much attention to these vectors below.

2.1 Bethe vectors in gl2 based models

In the gl2 based models the on-shell Bethe vectors have the form (1.8), provided the parameters
ū= {u1, . . . , un} satisfy a system of Bethe equations [1, 2, 26–29]

a(u j)

d(u j)
=

n
∏

k=1
k 6= j

f (u j , uk)

f (uk, u j)
, j = 1, . . . , n, (2.7)

and we recall that
f (u, v) = 1+ g(u, v) =

u− v + c
u− v

. (2.8)

3Recall that the inhomogeneities ξk are arbitrary complex numbers.
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Complex variables ū = {u1, . . . , un} are called Bethe parameters. Generic Bethe vectors (off-
shell Bethe vectors) also have the form (1.8), however, the Bethe parameters are arbitrary
complex numbers.

Equation (1.8) can be taken as the definition of off-shell Bethe vectors. However, this is not
the only possible definition. The point is that the main property of the off-shell Bethe vectors
is that they become on-shell, if the system of Bethe equations is fulfilled. Then the original
definition can be modified in various ways. Namely, we can add to the vector B(u1) . . . B(un)|0〉
any other vector that vanishes on the system of Bethe equations. For example, let

|Ψ〉= B(u1) . . . B(un)|0〉+

 

n
∏

j=1

a(u j)−
n
∏

j=1

d(u j)

!

|Φ〉, (2.9)

where |Φ〉 is an arbitrary vector. It is easy to see that if the set ū enjoys the Bethe equations
(2.7), then

n
∏

j=1

a(u j) =
n
∏

j=1

d(u j). (2.10)

Hence, the coefficient of the vector |Φ〉 vanishes, and the vector (2.9) becomes on-shell.
Thus, the combination (2.9) can also be called the Bethe vector, because it turns into the

on-shell Bethe vector as soon as the Bethe parameters satisfy Bethe equations. It is clear that
we can invent plenty of combinations of this type. Therefore, strictly speaking, the definition
of the off-shell Bethe vector is ambiguous.

Among possible definitions, equation (1.8) looks the most simple. However, there exist
other presentations for the Bethe vectors, which also have rather simple form. For instance,
let

T̃ = KT K−1 =

�

Ã(u) B̃(u)
C̃(u) D̃(u)

�

, (2.11)

where K is a 2 × 2 c-number invertible matrix such that K11 6= 0. It is clear that the new
operator B̃(u) is a linear combination of the original A, B, C , and D. Nevertheless, a state

|eΨ〉= B̃(u1) . . . B̃(un)|0〉 (2.12)

is the on-shell Bethe vector provided the system (2.7) is fulfilled [59, 60]. We suggest the
reader to check this statement. Anyway, presentation (2.12) looks as simple as the original
formula (1.8).

Thus, we have a big freedom in the definition of the Bethe vectors. Nevertheless, following
the tradition we define them by equation (1.8), in particular, for the reasons of simplicity.

2.2 Bethe vectors in gl3 based models

The problem of Bethe vectors in the gl3 (and higher rank) based models is much more sophisti-
cated than in the case considered above. The ambiguity of their definition still exists, however,
now the form of the on-shell Bethe vectors is much more complex than (1.8). Therefore, we
cannot use even the reasons of simplicity for choosing an appropriate definition. The matter
is that there is only one creation operator in the gl2 case (T12), while there are three creation
operators in the gl3 case (T12, T13, T23).

Consider a simple example that will allow us to feel the difference between the Bethe
vectors in the gl2 and gl3 based models. For this we will try to construct simple on-shell Bethe
vectors in these two cases.
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Consider the commutation relations (1.29). We see that generically we have different
operators in the l.h.s. (Ti j and Tkl) and in the r.h.s. (Til and Tk j). However, if the operators
in the l.h.s. belong to the same row (column), then we obtain the same operators in the r.h.s.
In particular, we have

T11(u)T12(v) = f (v, u)T12(v)T11(u) + g(u, v)T12(u)T11(v),

T22(u)T12(v) = f (u, v)T12(v)T22(u) + g(v, u)T12(u)T22(v).
(2.13)

Let us try to find an on-shell Bethe vector in a model described by the R2 algebra. This means
that we are looking for the eigenvectors of the transfer matrix T11(z) + T22(z). Let us test a
vector T12(u)|0〉. Then due to (2.13) we obtain
�

T11(z) + T22(z)
�

T12(u)|0〉= T12(u)
�

f (u, z)T11(z) + f (z, u)T22(z)
�

|0〉

+ g(z, u)T12(z)
�

T11(u)− T22(u)
�

|0〉. (2.14)

We see that we still deal with the vectors of the type T12(·)|0〉. Indeed, using Tii(u)|0〉= λi(u)|0〉
(where λ1(u) = a(u) and λ2(u) = d(u) (1.6)) we obtain
�

T11(z) + T22(z)
�

T12(u)|0〉=
�

f (u, z)a(z) + f (z, u)d(z)
�

T12(u)|0〉

+ g(z, u)
�

a(u)− d(u)
�

T12(z)|0〉. (2.15)

Thus, the result of the action of the transfer matrix T11(z)+T22(z) gives two vectors: T12(u)|0〉
and T12(z)|0〉. The first one is the same as in the l.h.s., while the second is different. Tradi-
tionally this second term is called unwanted term. We will call it unwanted term of the first
type. It is still given as the action of T12 on the vacuum (as in the l.h.s.), but the operator T12

has new argument. This unwanted term can be killed, if we choose an appropriate u = u0,
namely, such that a(u0) = d(u0). Observe that this condition coincides with Bethe equations
(2.7) at n= 1. Then the vector T12(u0)|0〉 becomes the eigenvector of the transfer matrix.

It is easy to see that generically, if we test a vector of the form T12(u1) . . . T12(un)|0〉, then
the action of the transfer matrix produces unwanted terms of the first type only: we still obtain
the products of the operators T12 applied to |0〉, but some of these operators may have new
arguments.

Now let us consider the R3 algebra. Let us test the vector T13(u)|0〉. We should act with
the transfer matrix onto this vector

�

T11(z) + T22(z) + T33(z)
�

T13(u)|0〉. (2.16)

We see immediately a principle difference with the case considered above. Namely, the opera-
tors T22 and T13 do not belong to the same row or column. Due to the commutation relations
we have

T22(z)T13(u)|0〉=
�

T13(u)T22(z) + g(z, u)
�

T12(u)T23(z)− T12(z)T23(u)
�

�

|0〉

= λ2(z)T13(u)|0〉+ g(z, u)
�

T12(u)T23(z)− T12(z)T23(u)
�

|0〉, (2.17)

and the action of the transfer matrix is

tr T (z)T13(u)|0〉=
�

f (u, z)λ1(z) +λ2(z) + f (z, u)λ3(z)
�

T13(u)|0〉

+ g(z, u)
�

λ1(u)−λ3(u)
�

T13(z)|0〉

+ g(z, u)
�

T12(u)T23(z)− T12(z)T23(u)
�

|0〉. (2.18)
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We obtain the vectors of a new type T12(u)T23(z)|0〉 and T12(z)T23(u)|0〉, that we call unwanted
terms of the second type. These unwanted terms generically cannot be killed by an appropriate
choice of the original argument u.

Remark 1. Strictly speaking, the term in the third line of (2.18) vanishes at u →∞. In
some models (for example, SU(3)-invariant X X X chain) Bethe equations have infinite roots,
and then the corresponding contribution in (2.18) vanishes.

Remark 2. In some models the operator T23(u) actually plays the role of the annihilation
operator: T23(u)|0〉= 0 for all u. A typical example of such a monodromy matrix is the matrix
(1.21). We will consider this example in more detail in section 3.2. Then, for this type of
models, the unwanted terms of the second type in (2.18) automatically vanish. The vector
T13(u)|0〉 thus becomes the on-shell Bethe vector for u = u0 such that λ1(u0) = λ3(u0). We
emphasize, however, that this is true only for the special case of models with the R3 algebra.
Generically T23(u)|0〉 6= 0, therefore, we obtain the unwanted terms of the second type in
(2.18).

Summarizing the above considerations we conclude that we deal with unwanted terms of
two types:

• first type: the operators are the same as in the l.h.s., but some of them accept new
arguments;

• second type: the operators in the r.h.s. are different form the ones in the l.h.s. In this
case, they can either keep their original arguments or accept new arguments.

In the case of the R2 algebra we obtain the first type of unwanted terms only. For the
R3 algebra (and higher) we necessarily obtain both types of unwanted terms. Therefore the
structure of the Bethe vectors in the gl3 case generically cannot be so simple as in the gl2
case. The above example shows that not every combination of the creation operators applied
to the vacuum has a chance to become an eigenvector of the transfer matrix even for some
specific values of the Bethe parameters. In particular, in the general case, the vector T13(u)|0〉
cannot be an on-shell Bethe vector for any values of u. We will see below, that in order to
obtain a Bethe vector, one should take the following combination of the terms T13(u)|0〉 and
T12(u)T23(v)|0〉:

g(v, u)λ2(v)T13(u)|0〉+ T12(u)T23(v)|0〉. (2.19)

If the parameters u and v enjoy the system of equations

λ1(u)
λ2(u)

=
λ3(v)
λ2(v)

= f (v, u), (2.20)

then the state (2.19) is the on-shell Bethe vector. Thus, the state (2.19) can be called the
off-shell Bethe vector, if u and v are generic complex numbers. We see, however, that even
in this simple example, the form of the off-shell Bethe vector is highly non-trivial. This is a
very special polynomial in the creation operators acting on the vacuum vector. Of course, the
modification of the vector (2.19) in the same spirit as in (2.9) remains possible, and hence,
representation (2.19) for this off-shell Bethe vector is not unique. It is not clear, however,
which among these representations is the simplest.

There are several ways to construct on-shell Bethe vectors in the models with the glN -
invariant R-matrix. In addition to the NABA, it is also worth mentioning the approach asso-
ciated with the so called trace formula [10–12], as well as the method based on the use of a
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special current algebra to describe the RT T -relation [61–64]. It is remarkable that all the three
methods listed above give eventually the same expression, not only for on-shell, but also for
off-shell Bethe vectors. And this is despite the initial ambiguity in defining the off-shell Bethe
vectors. Therefore, we will adopt this formula as the definition of the Bethe vector. Details
will be described later.

Remark. Recently a new presentation for on-shell Bethe vectors in terms of Sklyanin’s
B-operators [65] was conjectured in [59] for the models with glN -invariant R-matrix. The
proof of this presentation was given in [66] in the framework of the quantum separation of
variables developed in [67]. Within this approach, the on-shell Bethe vectors have the form
(1.8) provided the Bethe parameters satisfy Bethe equations. However, it was shown in [68]
that if the Bethe parameters remain arbitrary complex numbers, then at least in the case of the
R3 algebra, the corresponding vectors coincide with the special case of off-shell Bethe vectors
constructed within the NABA framework.

2.3 Notation

We now fix some notation and conventions that will be used throughout all the notes.

• Rational functions. We have introduced already two rational functions g(x , y) and
f (x , y). Recall that

g(x , y) =
c

x − y
, f (x , y) = 1+ g(x , y) =

x − y + c
x − y

. (2.21)

Observe that g(x , y) = −g(y, x). Below we will permanently use these functions.

• Sets of variables. We denote sets of variables by a bar: x̄ , ū, v̄ etc. Individual elements
of the sets are denoted by the subscripts: v j , uk etc. A notation ūi , means ū \ ui etc.
Instead of the standard notation ū∪ v̄ we use braces {ū, v̄} for the union of sets.

• Shorthand notation for products.

In order to make formulas more compact we use a shorthand notation for the products
of commuting operators or functions depending on one or two variables. Namely, if the
functions λi , g, f , as well as the operators Ti j depend on sets of variables, this means
that one should take the product over the corresponding set. For example,

Ti j(ū) =
∏

uk∈ū

Ti j(uk); g(z, w̄i) =
∏

w j∈w̄
w j 6=wi

g(z, w j); f (ū, v̄) =
∏

u j∈ū

∏

vk∈v̄

f (u j , vk). (2.22)

Observe that [Ti j(u), Ti j(v)] = 0 due to the commutation relations (1.29). Therefore,
the product Ti j(ū) is well defined. By definition, any product over the empty set is equal
to 1. A double product is equal to 1 if at least one of the sets is empty.

The use of this shorthand notation is not a whim, but a necessity. Even within the
framework of the usual ABA, we often have to deal with rather cumbersome formulas.
In the NABA, this bulkiness drastically increases. The shorthand notation for products
allows us to reduce the size of formulas to some extent. Therefore, we will constantly
use them despite some disadvantages (for example, the lack of information about the
cardinalities of the sets in which the product is taken).
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We will extend this convention for new functions that will appear later on. For the
moment, let us show how this convention works in particular examples. Equation (1.8)
takes the following form

|Ψ〉= B(ū)|0〉. (2.23)

If necessary, we should add a special comment on the cardinality of the set ū. The system
of Bethe equations (2.7) reads

a(u j)

d(u j)
=

f (u j , ū j)

f (ū j , u j)
, j = 1, . . . , n. (2.24)

3 Nested algebraic Bethe ansatz

In this section, we directly proceed to the description of the NABA method. This method allows
us to obtain a representation for on-shell and off-shell Bethe vectors in the models with the
gl3-invariant R-matrix. In addition, we obtain a system of Bethe equations, whose solutions
determine the spectrum of the transfer matrix. The presentation follows the works [3–6].

3.1 Basic notions

Consider a model with the gl3-invariant R-matrix (1.12)

R(u, v) = I+ g(u, v)P, (3.1)

where the identity matrix I and the permutation matrix P are 9× 9 matrices:

Ikl
i j = δi jδkl , Pkl

i j = δilδ jk, i, j, k, l = 1,2, 3. (3.2)

Recall that the R-matrix acts in the tensor product C3⊗C3. The lower indices i and j in (3.2)
refer to the first space, the upper indices k and l in refer to the second space.

We will need also the gl2-invariant R-matrix, which we denote by r(u, v):

r(u, v) = 1+ g(u, v)p. (3.3)

Here the identity matrix 1 and the permutation matrix p are 4×4 matrices acting in C2⊗C2:

1ρµ
αβ
= δαβδρµ, pρµ

αβ
= δαµδβρ, α,β ,ρ,µ= 1,2. (3.4)

The indices of the matrices are arranged similarly to equation (3.2).
A monodromy matrix is

T (u) =





T11(u) T12(u) T13(u)
T21(u) T22(u) T23(u)
T31(u) T32(u) T33(u)



 . (3.5)

It satisfies RT T -relation (1.1). This relation implies the set of commutation relations (1.29)
for the operators Ti j .

We will also use one more parametrization of the monodromy matrix

T (u) =

�

A(u) B(u)
C(u) D(u)

�

=





A(u) B1(u) B2(u)
C1(u) D11(u) D12(u)
C2(u) D21(u) D22(u)



 . (3.6)
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Here in the intermediate formula the T -matrix is presented as a 2×2 block-matrix. The block
A has the size 1×1, the block B has the size 1×2, the block C has the size 2×1, and the block
D has the size 2× 2.

Remark. One can also consider another embedding

T (u) =

�

A′(u) B′(u)
C′(u) D′(u)

�

=





A′11(u) A′12(u) B′1(u)
A′21(u) A′22(u) B′2(u)
C ′1(u) C ′2(u) D′(u)



 , (3.7)

where now the block A′ is a 2 × 2 matrix, while the block D′ has the size 1 × 1. These two
embeddings are equivalent due to the automorphism (1.28). For definiteness, we consider in
details parametrization (3.6) and give short comments about parametrization (3.7).

3.2 Particular case of gl3 invariant models

In this section we consider a particular case of the Bethe vectors. It will give us an idea of their
construction in the general case.

Generically, the operators Ti j with i < j are the creation operators. However, as we already
mentioned, in some models the operator T23 annihilates the vacuum vector4: T23(u)|0〉 = 0.
Actually, we very often deal with this situation in the models of physical application (SU(3)-
invariant Heisenberg chain, two-component Bose gas, t-J model). Therefore this particular
case is rather important.

Consider the simplest example of such monodromy matrix: T (u) = R(u,ξ), where ξ is a
fixed complex number. This is the monodromy matrix of the X X X chain consisting of one site.
Then T23(u) = g(u,ξ)E32. Obviously

T23(u)|0〉= g(u,ξ)E32|0〉= g(u,ξ)E32

� 1
0
0

�

= 0. (3.8)

Consider now the chain with L sites. Then the monodromy matrix is given by (1.21)

T (L)(u) = T (L−1)(u)T (1)(u), (3.9)

where
T (L−1)(u) = R0L(u,ξL) . . . R02(u,ξ2), T (1)(u) = R01(u,ξ1). (3.10)

Hence, the operator T (L)23 (u) of the whole chain has the following representation

T (L)23 (u) = T (L−1)
21 (u)T (1)13 (u) + T (L−1)

22 (u)T (1)23 (u) + T (L−1)
23 (u)T (1)33 (u), (3.11)

where T (L−1)
i j (u) and T (1)i j (u) are the entries of the monodromy matrices respectively corre-

sponding to the sub-chains of the lengths L − 1 and 1. Since T (L−1)
i j (u) and T (1)kl (v) act in

different spaces, they commute: [T (L−1)
i j (u), T (1)kl (v)] = 0 for arbitrary subscripts and arbitrary

arguments.
We know that T (L−1)

23 (u)|0〉 = 0 for L = 2, since in this case we again deal with the mon-

odromy matrix of the X X X chain with one site. Assume that T (L−1)
23 (u)|0〉= 0 for some L > 1.

Then it follows from (3.11) that T (L)23 (u)|0〉 = 0. Indeed, T (L−1)
21 (u)|0〉 = 0 by definition,

T (1)23 (u)|0〉= 0 due to (3.8), and T (L−1)
23 (u)|0〉= 0 due to the induction assumption.

4Another possibility is that T12 annihilates the vacuum. Due to the automorphism (1.28) the cases T23(u)|0〉= 0
and T12(u)|0〉= 0 are equivalent.
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This method also allows us to find the vacuum eigenvalues λi(u) of the diagonal entries
Tii(u):

λ1(u) = f (u, ξ̄) =
L
∏

k=1

f (u,ξk), λ2(u) = λ3(u) = 1. (3.12)

Observe that we have λ2(u) = λ3(u). This is the direct consequence of the property
T23(u)|0〉 = 0. More precisely, if T23(u)|0〉 = 0, then λ2(u) = κλ3(u), where κ is a constant.
Indeed, it follows from (1.29) that

[T23(u), T32(v)] = g(u, v)
�

T22(u)T33(v)− T22(v)T33(u)
�

. (3.13)

Applying this equation to |0〉 we obtain

0= g(u, v)
�

λ2(u)λ3(v)−λ2(v)λ3(u)
�

|0〉. (3.14)

Hence, the ratio λ2(u)/λ3(u) does not depend on u.

3.3 Action of the operators Dξα

Consider a model in which T23(u)|0〉= 0 without specifying the Hilbert space H in which the
operators Ti j(u) act. Let the monodromy matrix be normalized in such a way that λ3(u) = 1.
Then λ2(u) must be a constant. For simplicity we assume that λ2(u) = 1, like in (3.12). More
general case will be considered later.

In the case under consideration we have only two creation operators: T12(u)≡ B1(u) and
T13(u)≡ B2(u) (see (3.6)). We can try to check a monomial

Bβ1
(u1) . . . Bβa

(ua)|0〉, a = 0, 1, . . . , (3.15)

as a candidate for the transfer matrix eigenvector. Here every βi is equal to either 1 or 2. We
should act with the transfer matrix

tr T (z) = A(z) + D11(z) + D22(z) (3.16)

onto this vector. We start our consideration with the action of the operators Dαα(z).
It follows from (1.29) that

Dξα(z)Bβ(u) = Bβ(u)Dξα(z) + g(z, u)Bα(u)Dξβ(z) + g(u, z)Bα(z)Dξβ(u). (3.17)

We see that acting with Dξα(z) onto the vector (3.15) we may have unwanted terms of the
second type. Indeed, the operator D11 acting on B2 gives contributions with B1, and the oper-
ator D22 acting on B1 gives contributions with B2. Thus, the operator structure in the vector
(3.15) is not invariant under the action of D11(z) + D22(z). At the same time the action of the
operator A(z) does not produce unwanted terms of the second type (see section 3.4).

Thus, the monomial (3.15) generically is not invariant under the action of tr T (z). There-
fore, it is quite natural to replace the monomial (3.15) by a polynomial

|Ψa(ū)〉=
∑

β1,...,βa

Bβ1
(u1) . . . Bβa

(ua)Fβ1,...,βa
|0〉, a = 0,1, . . . . (3.18)

Here Fβ1,...,βa
are some numerical coefficients. The sum is taken over every βi ∈ {β1, . . . ,βa}.

Each βi takes the values βi = 1,2.
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Let us write down (3.18) in the form of a scalar product. For this we introduce a two-
component vector-row B(u) =

�

B1(u), B2(u)
�

with operator-valued components. Consider a
tensor product

B1(u1)B2(u2) . . .Ba(ua) = B(u1)⊗B(u2)⊗ · · · ⊗B(ua). (3.19)

This is a 2a-component vector-row. Then we can write down the vector |Ψa(ū)〉 as the scalar
product

|Ψa(ū)〉= B1(u1)B2(u2) . . .Ba(ua)F(ū)|0〉, (3.20)

where F(ū) is a vector belonging to the space

C2 ⊗ · · · ⊗C2
︸ ︷︷ ︸

a times

. (3.21)

The commutation relations (3.17) can be written as follows

D0(z)B1(u) = B1(u)D0(z)r01(z, u) + g(u, z)B1(z)D0(u)p01, (3.22)

where p01 is 4×4 permutation matrix. Here the matrix D0 acts in the auxiliary space V0 ∼ C2

and the vector B belongs to the auxiliary space V1 ∼ C2. The r-matrix r01(z, u) and the matrix
p01 act in the tensor product V0 ⊗ V1. We call the first term in the r.h.s. of (3.22) the first
scheme of commutation. The second term in the r.h.s. of (3.22) is called the second scheme of
commutation.

It follows from the commutation relations (1.29) that

[Dαβ(u), Dγδ(v)] = g(u, v)
�

Dγβ(v)Dαδ(u)− Dγβ(u)Dαδ(v)
�

. (3.23)

Hence, the matrix D(u) satisfies the RT T -relation with the R-matrix r(u, v)

r12(u, v)D1(u)D2(v) = D2(v)D1(u)r12(u, v). (3.24)

Therefore, D(u) can be treated as the monodromy matrix of a model with the gl2-invariant
R-matrix.

Let us act with trD(z) onto |Ψa(ū)〉. We have

tr0D0(z)|Ψa(ū)〉= tr0D0(z)B1(u1)B2(u2) . . .Ba(ua)F(ū)|0〉. (3.25)

Here we have stressed that D(z) acts in V0, which is different from V1, . . . , Va. Permuting D0(z)
and B1(u1) we obtain

tr0D0(z)|Ψa(ū)〉= tr0

�

B1(u1)D0(z)r01(z, u1) + g(u1, z)B1(z)D0(u1)p01

�

×B2(u2) . . .Ba(ua)F(ū)|0〉. (3.26)

We have two contributions. The second one definitely is unwanted, as it contains the operators
Bβ(z) (in the vector-row B1(z)). Let us leave this term for some time and only deal with the
wanted contributions. In other words, we use the first scheme of commutation only. In the
case of the R2 algebra the use of the first scheme would necessarily give us wanted terms only.
However, in the case of the R3 algebra we still may have unwanted terms of the second type.
Our first goal is to get rid of them.
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We have

tr0D0(z)|Ψa(ū)〉= tr0B1(u1)D0(z)r01(z, u1)B2(u2) . . .Ba(ua)F(ū)|0〉+Z, (3.27)

where Z denotes unwanted contributions. Clearly, the R-matrix r01(z, u1) can be moved to the
right

tr0D0(z)|Ψa(ū)〉= tr0B1(u1)D0(z)B2(u2) . . .Ba(ua)r01(z, u1)F(ū)|0〉+Z. (3.28)

Then we repeat the procedure and finally we arrive at

tr0D0(z)|Ψa(ū)〉= tr0B1(u1)B2(u2) . . .Ba(ua)D0(z)r0a(z, ua) . . . r01(z, u1)F(ū)|0〉+Z. (3.29)

We have obtained a matrix ÒT (a)(z)

ÒT (a)0 (z) = D0(z)T
(a)

0 (z), where T (a)0 (z) = r0a(z, ua) . . . r01(z, u1), (3.30)

and the subscript 0 stresses that the auxiliary space of this matrix is V0. Recall that the matrix
D0(z) can be treated is the monodromy matrix satisfying the R2 algebra due to (3.24). Its
matrix elements act in the original Hilbert space H as follows:

D11(z)|0〉= T22(z)|0〉= 1, D22(z)|0〉= T33(z)|0〉= 1,

D12(z)|0〉= T23(z)|0〉= 0, D21(z)|0〉= T32(z)|0〉= 0.
(3.31)

The matrix T (a)0 (z) is the monodromy matrix of the inhomogeneous gl2-invariant X X X
chain of the length a. The role of the inhomogeneity parameters is played by the parameters
ū= {u1, . . . , ua}. The quantum space H(a) of this model is the tensor product

H(a) = V1 ⊗ · · · ⊗ Va, where Vj ∼ C2. (3.32)

This is exactly the space containing the vector F(ū): F(ū) ∈H(a).
A vacuum vector in the space H(a) has the form

|Ω(a)〉=
�

1
0

�

⊗ · · · ⊗
�

1
0

�

︸ ︷︷ ︸

a times

. (3.33)

If we present T (a)(z) as

T (a)(z) =
�

A(a)(z) B(a)(z)
C(a)(z) D(a)(z)

�

, (3.34)

then
A(a)(z)|Ω(a)〉= f (z, ū)|Ω(a)〉, D(a)(z)|Ω(a)〉= |Ω(a)〉. (3.35)

Thus, ÒT (a)0 (z) is the monodromy matrix of the R2 algebra, being the product of two mon-

odromy matrices whose entries act in different spaces. It remains to act with tr0
ÒT (a)0 (z) on the

vector F(ū)|0〉. Due to (3.31) we have

tr0
ÒT (a)0 (z)F(ū)|0〉

=
�

D11(z)A(a)(z) + D12(z)C(a)(z) + D21(z)B(a)(z) + D22(z)D(a)(z)
�

F(ū)|0〉

=
�

A(a)(z) +D(a)(z)
�

F(ū)|0〉= trT (a)(z)F(ū)|0〉. (3.36)
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Thus, if we do not want to have unwanted terms of the second type in the action of trD(z),
we should require that F(ū) be an eigenvector of the transfer matrix trT (a)(z). Hence, F(ū)
has the form

F(ū) = B(a)(v1) . . .B(a)(vb)|Ω(a)〉, (3.37)

and the set v̄ = {v1, . . . , vb} satisfies Bethe equations

f (v j , ū) =
f (v j , v̄ j)

f (v̄ j , v j)
, j = 1, . . . , b. (3.38)

Recall that here we use the shorthand notation (2.22) for the products of the f -functions.
Observe also that the number of the operators B(a)(vb) cannot exceed the number of the sites
of the chain a. Hence, b ≤ a.

Thus, we have conclude that the vector F(ū) should be the eigenvector of the transfer
matrix of the inhomogeneous X X X chain with the inhomogeneities ū. This is the main idea
of the nested algebraic Bethe ansatz. Namely, the on-shell Bethe vector of the model with the
gl3-invariant R-matrix is expressed in terms of the on-shell Bethe vector of the model with the
gl2-invariant R-matrix.

We see that F(ū) depends on the set of auxiliary parameters v̄, that is F(ū) = F(ū; v̄).
Hence, the vector |Ψa(ū)〉 also depends on these parameters: |Ψa(ū)〉 = |Ψa,b(ū; v̄)〉. By con-
struction, this vector is symmetric over the variables v̄. It turns out that it is also symmetric
over the variables ū, however, this symmetry is far from the evident. We postpone the corre-
sponding proof till section 4.2. For the moment we assume that |Ψa,b(ū; v̄)〉 is symmetric over
ū.

Thus, we obtain

tr0D0(z)|Ψa,b(ū; v̄)〉= τD(z|ū; v̄)|Ψa,b(ū; v̄)〉+Z, (3.39)

where
τD(z|ū; v̄) = f (z, ū) f (v̄, z) + f (z, v̄). (3.40)

Up to now we used the first scheme of commutation only. Let us take into account the
second scheme.

It is clear that if we use at least once the second scheme, then the operators Di j(z) and
Bβk
(ul) exchange their arguments. Therefore, after moving the matrix D0(z) through the

product of B j(u j) to the right it will have an argument uk ∈ ū. At the same time one of
the operator-valued vectors B j0 will have the argument z. Other operator-valued vectors will
have arguments u j such that u j 6= uk.

Further arguments closely resemble those used in computing unwanted terms in R2 alge-
bra. Due to the symmetry of |Ψa,b(ū; v̄)〉 over ū it is enough to consider the case when B1(u1)
looses its argument and absorbs the argument z, while D0(z) arrives at the extreme right posi-
tion with the argument u1. Then at the first step we should use the second scheme in (3.26),
otherwise D0(z) never absorbs the argument u1. We have

tr0D0(z)|Ψa,b(ū; v̄)〉= g(u1, z) tr0B1(z)D0(u1)p01B2(u2) . . .Ba(ua)F(ū; v̄)|0〉+Z, (3.41)

where Z now denotes all the terms which do not give contributions to the desired result.
Obviously, we can move p01 to the right

tr0D0(z)|Ψa,b(ū; v̄)〉= g(u1, z) tr0B1(z)D0(u1)B2(u2) . . .Ba(ua)p01F(ū; v̄)|0〉+Z. (3.42)
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Moving further D0(u1) to the right we should keep its argument, therefore, now we can use
only the first scheme. Then we obtain

tr0D0(z)|Ψa,b(ū; v̄)〉= g(u1, z) tr0B1(z)B2(u2) . . .Ba(ua)

×D0(u1)r0a(u1, ua) . . . r02(u1, u2)p01F(ū; v̄)|0〉+Z. (3.43)

It is easy to see that

D0(u1)r0a(u1, ua) . . . r02(u1, u2)p01 =
1
c ResD0(z)r0a(z, ua) . . . r02(z, u2)r01(z, u1)

�

�

�

z=u1

= 1
c ResD0(z)T

(a)
0 (z)

�

�

�

z=u1

= 1
c ResÒT (a)0 (z)

�

�

�

z=u1

. (3.44)

Hence, we obtain

tr0D0(z)|Ψa,b(ū; v̄)〉= g(u1, z)B1(z)B2(u2) . . .Ba(ua)
1
c Res tr0

ÒT (a)0 (z)F(ū; v̄)|0〉
�

�

�

z=u1

+Z

= g(u1, z)B1(z)B2(u2) . . .Ba(ua)
1
c Res tr0 T

(a)
0 (z)F(ū; v̄)|0〉

�

�

�

z=u1

+Z, (3.45)

where we used (3.36). Since F(ū; v̄) is the eigenvector of trT (a)0 (z) for any z we find

tr0D0(z)|Ψa,b(ū; v̄)〉= g(u1, z)1
c ResτD(z|ū; v̄)

�

�

�

z=u1

B1(z)B2(u2) . . .Ba(ua)F(ū; v̄)|0〉+Z,

(3.46)
where the eigenvalue τD(z|ū; v̄) is given by (3.40). Substituting this eigenvalue into (3.46)
we eventually arrive at

tr0D0(z)|Ψa,b(ū; v̄)〉= g(u1, z) f (u1, ū1) f (v̄, u1)|Φa,b(z, u1; ū; v̄)〉+Z, (3.47)

where
|Φa,b(z, u1; ū; v̄)〉= B1(z)B2(u2) . . .Ba(ua)F(ū; v̄)|0〉. (3.48)

Thus, using the symmetry of |Ψa,b(ū; v̄)〉 over ū we find the total action of
trD(z) = T22(z) + T33(z) on the vector |Ψa,b(ū; v̄)〉. It is given by

trD(z)|Ψa,b(ū; v̄)〉= τD(z|ū; v̄)|Ψa,b(ū; v̄)〉+
a
∑

k=1

g(uk, z) f (uk, ūk) f (v̄, uk)|Φa,b(z, uk; ū; v̄)〉,

(3.49)
where

|Φa,b(z, uk; ū; v̄)〉= |Φa,b(z, u1; ū; v̄)〉
�

�

�

u1↔uk

. (3.50)

3.4 Action of A(z)

We did not consider yet the action of the operator T11(z) = A(z) on the vector |Ψa,b(ū; v̄)〉.
This action is relatively simple and reminds the action of the operator A in the case of the R2

algebra. Indeed, the commutation relation of A(z) and Bβ(u) is

A(z)Bβ(u) = f (u, z)Bβ(u)A(z) + g(z, u)Bβ(z)A(u), β = 1,2. (3.51)

Therefore, the action of A(z) does not produce unwanted terms of the second type. It is easy
to see that the result should have the following form:

A(z)|Ψa,b(ū; v̄)〉= τA(z|ū; v̄)|Ψa,b(ū; v̄)〉+
a
∑

k=1

Λk|Φa,b(z, uk; ū; v̄)〉, (3.52)
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where τA(z|ū; v̄) and Λk are some numerical coefficients. They can be found exactly in the
same manner as in the R2 case. Recall this procedure. As usual, let us call the first term in
the r.h.s. of (3.51) the first scheme of commutation. Respectively, the second term in the r.h.s.
of (3.51) is called the second scheme of commutation. In the first scheme both A and Bβ keep
their original arguments, while in the second scheme they exchange them.

Obviously, in order to obtain the contribution proportional to τA(z|ū; v̄) we should use the
first scheme of commutation only. We obtain

A(z)|Ψa,b(ū; v̄)〉= f (ū, z)B1(u1)B2(u2) . . .Ba(ua)A(z)F(ū; v̄)|0〉+Z, (3.53)

where Z denotes all unwanted terms. Acting with A(z) on |0〉 we immediately obtain

τA(z|ū; v̄) = λ1(z) f (ū, z), (3.54)

and thus, this coefficient actually does not depend on the set v̄.
In order to find the coefficients Λk it is enough to find one of them, say, Λ1. Here we use

the symmetry of |Ψa,b(ū; v̄)〉 over ū. Then at the first step we must use the second scheme of
commutation, and after this we must use only the first scheme of commutation. This gives us

A(z)|Ψa,b(ū; v̄)〉= g(z, u1) f (ū1, u1)B1(z)B2(u2) . . .Ba(ua)A(u1)F(ū; v̄)|0〉+Z, (3.55)

where now Z denotes all the terms that do not give contributions to the desired result. From
this, we find

Λ1 = λ1(u1)g(z, u1) f (ū1, u1). (3.56)

Thus, we have computed the action of the transfer matrix tr T (z) on the vector |Ψa,b(ū; v̄)〉.
It is given by the sum of (3.49) and (3.52):

tr T (z)|Ψa,b(ū; v̄)〉= τ(z|ū; v̄)|Ψa,b(ū; v̄)〉+
a
∑

k=1

Mk|Φa,b(z, uk; ū; v̄)〉. (3.57)

Here

τ(z|ū; v̄) = τA(z|ū; v̄) +τD(z|ū; v̄) = λ1(z) f (ū, z) + f (z, ū) f (v̄, z) + f (z, v̄). (3.58)

The coefficients Mk are

Mk = λ1(uk)g(z, uk) f (ūk, uk) + g(uk, z) f (uk, ūk) f (v̄, uk). (3.59)

It is clear that |Ψa,b(ū; v̄)〉 becomes on-shell Bethe vector, if we set Mk = 0 for k = 1, . . . , a, and
for all complex z. This leads us to a new system of equations

λ1(uk) =
f (uk, ūk)
f (ūk, uk)

f (v̄, uk), k = 1, . . . , a. (3.60)

Together with the already obtained equations (3.38)

f (v j , ū) =
f (v j , v̄ j)

f (v̄ j , v j)
, j = 1, . . . , b, (3.61)

equations (3.60) form a system of a+ b equations on a+ b variables ū and v̄. This system is a
particular case (corresponding to λ2(v) = λ3(v)) of Bethe equations for the models with the
gl3-invariant R-matrix.

Thus, the on-shell Bethe vectors have the form (3.20) with F(ū; v̄) given by (3.37). The
parameters ū and v̄ should satisfy the systems of equations (3.60) and (3.61).
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3.5 General case

All the consideration above concerned the particular case T23(u)|0〉= 0. What should be done
in the general case? Remarkably, almost the entire scheme remains the same. We should only
assume that the vector F(ū; v̄) in the expression

|Ψa(ū; v̄)〉= B1(u1)B2(u2) . . .Ba(ua)F(ū; v̄)|0〉 (3.62)

has operator-valued components, which depend on the operators Dαβ (in particular, on T23).
In other words, the vector F(ū; v̄)|0〉 belongs to the tensor product H⊗H(a) (because the action
of T23 on the vacuum |0〉 gives a vector in the space H).

We also should take into account that

D11(z)|0〉= T22(z)|0〉= λ2(z)|0〉,

D22(z)|0〉= T33(z)|0〉= λ3(z)|0〉,
(3.63)

and now we have no the restriction λ2(z)/λ3(z) = const.
We start with representation (3.62) and act on this vector with trD(z). Using the first

scheme of commutation only we arrive at (3.29):

tr0D0(z)|Ψa(ū)〉= B1(u1)B2(u2) . . .Ba(ua) tr0
ÒT (a)0 (z)F(ū; v̄)|0〉+Z. (3.64)

We see that F(ū; v̄)|0〉 should be an eigenvector of the transfer matrix trÒT (a)(z) (3.30).
The form of equation (3.64) coincides with the form of (3.29) in which the monodromy

matrix ÒT (a)(z) (3.30) first appeared. The vector F(ū; v̄)|0〉 also still belongs to the tensor
product H⊗H(a). However, in the case considered above, we had a factorization: the vacuum
vector |0〉 belonged to the space H, while the vector F(ū; v̄) belonged to the space H(a). Now
there is no such factorization, and we must consider the vector F(ū; v̄)|0〉 as a whole.

Despite this difference, we can follow the same scheme as before. Let

ÒT (a)(z) =
�

ÒA(a)(z) bB(a)(z)
bC(a)(z) ÒD(a)(z)

�

. (3.65)

The entries of this matrix act in H ⊗H(a) with the vacuum vector |0〉 ⊗ |Ω(a)〉. The vacuum
eigenvalues of the diagonal entries ÒT (a)ii (z) (i.e. of ÒA(a)(z) and ÒD(a)(z)) are given by the prod-

ucts of the vacuum eigenvalues of Dii(z) and T (a)ii (z):

ÒA(a)(z)|0〉 ⊗ |Ω(a)〉= λ2(z) f (z, ū)|0〉 ⊗ |Ω(a)〉,
ÒD(a)(z)|0〉 ⊗ |Ω(a)〉= λ3(z)|0〉 ⊗ |Ω(a)〉.

(3.66)

Thus, the eigenvectors of trÒT (a)(z) have the form similar to (3.37)

F(ū; v̄) = bB(a)(v1) . . . bB(a)(vb)|0〉 ⊗ |Ω(a)〉, (3.67)

provided the set v̄ satisfies Bethe equations

λ2(v j)

λ3(v j)
=

f (v j , v̄ j)

f (v̄ j , v j)
1

f (v j , ū)
, j = 1, . . . , b. (3.68)

Observe that now the matrix ÒT (a)(z) is no longer the monodromy matrix of the X X X chain.
It is the product of two monodromy matrices D(z) and T (a)(z). Therefore, there is no restric-
tion on the number of the operators bB(a) in (3.67). Thus, we do not have the constraint b ≤ a
as it was previously.
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Thus, we obtain

trD(z)|Ψa,b(ū; v̄)〉= bτD(z|ū; v̄)|Ψa,b(ū; v̄)〉+Z, (3.69)

where now
bτD(z|ū; v̄) = λ2(z) f (z, ū) f (v̄, z) +λ3(z) f (z, v̄). (3.70)

Consideration of the unwanted terms of the first type produced by the action of trD(z) can
be done exactly in the same manner as before. This leads us to the analog of (3.47)

trD(z)|Ψa,b(ū; v̄)〉= λ2(u1)g(u1, z) f (u1, ū1) f (v̄, u1)|Φa,b(z, u1; ū; v̄)〉+Z, (3.71)

where |Φa,b(z, u1; ū; v̄)〉 is still given by (3.48). The only natural difference between (3.71)
and (3.47) is that we have the additional factor λ2(u1). Previously this factor was equal to 1.
Thus, the total action of trD(z) on the vector |Ψa,b(ū; v̄)〉 has the form

trD(z)|Ψa,b(ū; v̄)〉= bτD(z|ū; v̄)|Ψa,b(ū; v̄)〉

+
a
∑

k=1

λ2(uk)g(uk, z) f (uk, ūk) f (v̄, uk)|Φa,b(z, uk; ū; v̄)〉, (3.72)

where |Φa,b(z, uk; ū; v̄)〉 is given by (3.50). Recall that this result is obtained under assumption
that |Ψa,b(ū; v̄)〉 is symmetric over the set ū. This symmetry still should be proved.

Considering the action of A(z) on |Ψa,b(ū; v̄)〉we deal with only one new problem. Namely,
we should prove that

A(z)F(ū; v̄)|0〉= λ1(z)F(ū; v̄)|0〉. (3.73)

This property was obvious in the previous case, because F(ū; v̄) did not belong to the space H,
in which the operator A(z) acted. Now F(ū; v̄)|0〉 ∈ H ⊗H(a), therefore, the property (3.73)
should be proved. However, the proof immediately follows from proposition 1.3. Indeed,
since the components of F(ū; v̄)|0〉 depend on the operators Dαβ , they only contain quasipar-
ticles of the second color. Thus, the action of A(z) on each of these components reduces to
multiplication by λ1(z).

In all other respects the action of A(z) on |Ψa,b(ū; v̄)〉 can be derived via the same lines
leading eventually to equation (3.52), where τA(z|ū; v̄) andΛk respectively are given by (3.54)
and (3.56).

Thus, the action of the transfer matrix tr T (z) on the vector |Ψa,b(ū; v̄)〉 reads

tr T (z)|Ψa,b(ū; v̄)〉= bτ(z|ū; v̄)|Ψa,b(ū; v̄)〉+
a
∑

k=1

ÒMk|Φa,b(z, uk; ū; v̄)〉. (3.74)

Here
bτ(z|ū; v̄) = λ1(z) f (ū, z) +λ2(z) f (z, ū) f (v̄, z) +λ3(z) f (z, v̄), (3.75)

and the coefficients ÒMk have the form

ÒMk = λ1(uk)g(z, uk) f (ūk, uk) +λ2(uk)g(uk, z) f (uk, ūk) f (v̄, uk). (3.76)

Setting ÒMk = 0 for k = 1, . . . , a we obtain a system of equations

λ1(uk)
λ2(uk)

=
f (uk, ūk)
f (ūk, uk)

f (v̄, uk), k = 1, . . . , a. (3.77)

If the sets ū and v̄ satisfy the systems (3.68) and (3.77), then |Ψa,b(ū; v̄)〉 becomes the on-shell
Bethe vector.
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3.6 Definition of Bethe vectors

At this point we can turn back to the problem of off-shell Bethe vectors (or simply Bethe
vectors). Now we are able to give their definition at least for the gl3 based models.

Definition 3.1. We call a state |Ψa,b(ū; v̄)〉 an off-shell Bethe vector of the R3 algebra, if it has
the form (3.62), where the vector F(ū; v̄)|0〉 has the form (3.67). In other words,

|Ψa,b(ū; v̄)〉= B1(u1)B2(u2) . . .Ba(ua) bB(a)(v1) . . . bB(a)(vb)|0〉 ⊗ |Ω(a)〉. (3.78)

Here B(ui) are the operator-valued vector rows of the original monodromy matrix (3.6), and
bB(a)(vk) are the creation operators of the auxiliary monodromy matrix (3.65). The Bethe param-
eters ū and v̄ are arbitrary complex numbers. The cardinalities of the sets ū and v̄ respectively are
#ū= a and #v̄ = b, where a, b = 0,1, . . . .

Remark. Note that when we looked for the on-shell Bethe vectors we required the vector
F(ū; v̄)|0〉 to be the eigenvector of the transfer matrix trÒT (a)(z) (3.65). This requirement led
us to the set of equations (3.68). Now we do not impose this constraint. Thus, F(ū; v̄)|0〉 is
not necessarily the eigenvector of trÒT (a)(z), but it has the form (3.67).

If the parameters ū and v̄ satisfy the system of Bethe equations (3.68) and (3.77), that is

λ1(uk)
λ2(uk)

=
f (uk, ūk)
f (ūk, uk)

f (v̄, uk), k = 1, . . . , a,

λ2(v j)

λ3(v j)
=

f (v j , v̄ j)

f (v̄ j , v j)
1

f (v j , ū)
, j = 1, . . . , b,

(3.79)

then the vector (3.78) becomes an on-shell Bethe vector.
Formally, definition 3.1 uniquely fixes the Bethe vector as a polynomial in the creation

operators5 Ti j with i < j acting on the vacuum vector. However, these operators, generally
speaking, do not commute with each other. Therefore, their reordering leads to new represen-
tations for the Bethe vectors. Formula (3.78) is one of such representations.

Unfortunately, equation (3.78) does not give an explicit dependence of the Bethe vector
on the creation operators. We will derive such explicit dependence later. In the meantime, as
a example, consider a couple of the simplest cases.

The most simple case is a = 0, that is ū = ;. Then
ÒT (a)(z) = D(z), and hence, bB(a)(z) = T23(z). We obtain

|Ψ0,b(;; v̄)〉= T23(v̄)|0〉. (3.80)

We see that in this case the R3 Bethe vector reduces to the R2 Bethe vector. This is not
surprising, because the state |Ψ0,b(;; v̄)〉 has quasiparticles of the color 2 only. Thus, it should
coincide with the Bethe vector of the gl2 based models.

Let now a = b = 1. Then

|Ψ1,1(u; v)〉= B(u) bB(1)(v)|0〉 ⊗ |Ω(1)〉, (3.81)

where |Ω(1)〉=
�

1
0

�

. The matrix ÒT (1)(v) is given by (3.30) at z = v and a = 1, that is

ÒT (1)0 (v) = D0(v)T
(1)

0 (v), (3.82)

5Strictly speaking, equation (3.78) also contains the neutral operators Tii . However, their action on the vacuum
vector can be replaced by the corresponding eigenvalues.
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where

T (1)0 (v) = r01(v, u) =

�

1 0
0 1

�

0

+ g(v, u)

�

E11 E21

E12 E22

�

0

, (3.83)

and we stressed by the subscript 0 that the auxiliary space of this matrix is V0. Thus,

bB(1)(v) = g(v, u)D11(v)E21 + D12(v)
�

1+ g(v, u)E22

�

, (3.84)

and hence, the action of bB(1)(v) on |Ω(1)〉 is given by

bB(1)(v)
�

1
0

�

= g(v, u)D11(v)
�

0
1

�

+ D12(v)
�

1
0

�

. (3.85)

Equation (3.85) gives us the components of the vector F(u; v)|0〉 in the space H(1):

F1(u; v)|0〉= D12(v)|0〉= T23(v)|0〉,

F2(u; v)|0〉= g(v, u)D11(v)|0〉= g(v, u)T22(v)|0〉= g(v, u)λ2(v)|0〉.
(3.86)

Thus, we obtain the explicit expression for the Bethe vector |Ψ1,1(u; v)〉:

|Ψ1,1(u; v)〉= B1(u)F1(u; v)|0〉+ B2(u)F2(u; v)|0〉

= T12(u)T23(v)|0〉+ g(v, u)λ2(v)T13(u)|0〉, (3.87)

what coincides with (2.19). This Bethe vector becomes on-shell, if u and v satisfy the system
(3.79). It is easy to see that for a = b = 1 this system turns into (2.20).

3.7 Remarks about different embedding

Let us say few words about parametrization (3.7). This parametrization also can be used for
constructing the Bethe vectors. The general strategy is the same in this case, however, several
minor details are different. We recommend that the reader obtain himself the formula for the
Bethe vector using parametrization (3.7). We restrict ourselves with several comments.

In the case of embedding (3.7) we deal with a 2 × 2 matrix A′ and a two-component
vector-column

B′(v) =
�

B′1(v)
B′2(v)

�

=

�

T13(v)
T23(v)

�

. (3.88)

Instead of (3.62) we use the following ansatz for the Bethe vectors:

|Ψa,b(ū; v̄)〉=
�

B′1(v1)B′2(v2) . . .B′b(vb)
�T
F′(ū; v̄)|0〉. (3.89)

Here the superscript T means transposition in the space V1 ⊗ · · · ⊗ Vb (where each Vk ∼ C2).
The commutation relations between the operator-valued matrix A′ and the operator-valued
vector-column B′ have the form

A′0(z)B
′
1(v) = r01(v, z)B′1(v)A

′
0(z) + g(z, v)p01B′1(z)A

′
0(v). (3.90)

Here, in distinction of (3.22), the R-matrix r01(v, z) and the permutation matrix p01 act on
other matrices from the left. Therefore, moving A′0(z) through the product of B′j(v j)we obtain
the product of the R-matrices in the extreme left position. However, after the transposition we
obtain the product of the R-matrices to the right from the product of the B′j(v j)-operators.

28

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.19


SciPost Phys. Lect. Notes 19 (2020)

Then we require that the vector F′(ū; v̄)|0〉 would be an eigenvector of the monodromy
matrix eT (b)(z):

eT (b)0 (z) = r ′01(z, v1) . . . r ′0b(z, vb)A′0(z). (3.91)

Here r ′0k(u, v) = r tk
0k(−u,−v), where tk means the transposition in the space Vk. These matrices

appear when we take the transposition of the product r01 . . . r0b in the space V1⊗ · · · ⊗ Vb. We
leave to the reader to prove that r ′(u, v) satisfies the RT T -relation with the R-matrix r(u, v):

r12(u, v)r ′13(u, w)r ′23(v, w) = r ′23(v, w)r ′13(u, w)r12(u, v). (3.92)

Thus, the product r ′01(z, v1) . . . r ′0b(z, vb) also satisfies the RT T -relation with the R-matrix r(u, v).
The entries of eT (b)(z) act in the space H(b)⊗H, where H(b) = V1⊗· · ·⊗Vb has the following

vacuum vector:
|eΩ(b)〉=

�

0
1

�

⊗ · · · ⊗
�

0
1

�

︸ ︷︷ ︸

b times

. (3.93)

If we set

eT (b)(z) =
�

eA(b)(z) eB(b)(z)
eC(b)(z) eD(b)(z)

�

, (3.94)

then the vector F′(ū; v̄)|0〉 has the following form:

F′(ū; v̄)|0〉= eB(b)(u1) . . . eB(b)(ua)|eΩ(b)〉 ⊗ |0〉. (3.95)

We will see below that formulas for the Bethe vectors based on the embeddings (3.6) and
(3.7) look very different. First, they have different ordering of the creation operators. Second,
some of those operators have different arguments. Nevertheless, these different representa-
tions describe the same Bethe vector |Ψa,b(ū; v̄)〉.

3.8 Remarks about glN Bethe vectors

The scheme described above does not change in the case of the models with glN -invariant R-
matrix or its q-deformed analog (1.14). We present the N × N monodromy matrix as a 2× 2
block-matrix

T (u) =

�

A(u) B(u)
C(u) D(u)

�

. (3.96)

Now the blockD has the size (N−1)×(N−1). Respectively, B is the operator-valued vector-row
with N − 1 components

B(u) =
�

B1(u), . . . , BN−1(u)
�

=
�

T12(u), . . . , T1,N (u)
�

. (3.97)

Then we look for the on-shell Bethe vectors in the form similar to (3.62)

|Ψ〉= B1(u1) . . .Ba(ua)F|0〉. (3.98)

The vector F|0〉 belongs to the space H⊗H(a), where H(a) is the tensor product

H(a) = V1 ⊗ · · · ⊗ Va, where Vj ∼ CN−1. (3.99)

Otherwise, all the arguments remain unchanged. They lead us to the conclusion that the vector
F|0〉must be an eigenvector of the transfer matrix of the model with glN−1-invariant R-matrix.
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Of course, an explicit expression for this vector is no longer given by (3.67), but is much more
complicated.

It is clear that using this method we obtain Bethe vectors depending on N − 1 sets of vari-
ables6 t̄ = { t̄1, . . . , t̄N−1}. In its turn, every set t̄k consists of individual elements
t̄k = {tk

1, . . . , tk
ak
}, where ak = # t̄k. Then we can refine formula (3.98) as

|Ψā( t̄)〉= B1(t
1
1) . . .Ba1

(t1
a1
)F( t̄)|0〉, (3.100)

where ā is a multi-index consisting of the cardinalities ā = {a1, . . . , aN−1}. In this formula,
F( t̄)|0〉 is the Bethe vector of the monodromy matrix

ÒT (a1)
0 (z) = D0(z)r0,a1

(z, t1
a1
) . . . r01(z, t1

1), (3.101)

where now the R-matrix r(u, v) acts in CN−1 ⊗ CN−1. Equation (3.100) can be taken as the
definition of the off-shell Bethe vector.

This vector becomes on-shell if the Bethe parameters t̄ satisfy a system of Bethe equations.
It has the following form:

λk(tk
j )

λk+1(tk
j )
=

f (tk
j , t̄k

j ) f ( t̄
k+1, tk

j )

f ( t̄k
j , tk

j ) f (t
k
j , t̄k−1)

,
k = 1, . . . , N − 1,
j = 1, . . . , ak.

(3.102)

Here we set by definition t̄0 = t̄N = ; and used the shorthand notation for the products of the
f -functions over the sets t̄k.

4 Trace formula

4.1 Bethe vector via trace formula

The resulting formulas for Bethe vectors depend to a large extent on the embedding of the R2

algebra in the R3 algebra. Depending on the embedding the roles of the parameters ū and
v̄ also are very different. In this section, we consider one more representation for the Bethe
vectors [10–12]. The main advantage of this representation is that it can be easily generalized
to the case of models with glN -invariant R-matrix (although we will still restrict ourselves to
the case gl3). Besides, the Bethe parameters ū and v̄ are included in this representation in
a more symmetric way. Finally, the new formula for Bethe vectors will allow us to prove the
symmetry of these vectors with respect to the parameters ū, which has not yet been proved.

Consider a tensor product Vk1
⊗ · · · ⊗ Vka

⊗ Vn1
⊗ · · · ⊗ Vnb

, where each Vj ∼ C3. Let

Tk̄(ū) = Tk1
(u1) . . . Tka

(ua), Tn̄(v̄) = Tn1
(v1) . . . Tnb

(vb), (4.1)

and

Rn̄,k̄(v̄, ū) =
b
∏

i=1

1
∏

j=a

Rni ,k j
(vi , u j). (4.2)

Here every T j acts in Vj⊗H. Each R-matrix Ri, j acts in Vi⊗Vj . We would like to draw attention
of the reader to the ordering of the R-matrices in the double product (4.2). There the index

6In the gl3-based models we have two sets of variables ū= t̄1 and v̄ = t̄2.

30

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.19


SciPost Phys. Lect. Notes 19 (2020)

i changes in the standard increasing direction, while the index j changes in the decreasing
direction. For example, for a = b = 2, the product (4.2) reads

Rn̄,k̄(v̄, ū) = Rn1,k2
(v1, u2)Rn1,k1

(v1, u1)Rn2,k2
(v2, u2)Rn2,k1

(v2, u1). (4.3)

Proposition 4.1. The off-shell Bethe vectors of the gl3-invariant models have the following form:

|Ψa,b(ū; v̄)〉= trk̄,n̄

�

Tk̄(ū)Tn̄(v̄)Rn̄,k̄(v̄, ū)E21
k1

. . . E21
ka

E32
n1

. . . E32
nb

�

|0〉. (4.4)

The trace is taken over all the spaces Vk1
, . . . , Vka

, Vn1
, . . . , Vnb

. The matrices E21
k j

and E32
n j

are
the standard basis matrices that respectively act in the spaces Vk j

and Vn j
. In distinction of the

previous section we use here superscripts for the different standard basis matrices.

Equation (4.4) is known as a trace formula. We will prove that the trace formula is equiv-
alent to the representation obtained in the previous section.

Proof. Let us present all the monodromy matrices in (4.4) as

Tks
(us) =

3
∑

i, j=1

Ti, j(us)E
i, j
ks

, Tnp
(vp) =

3
∑

α,β=1

Tα,β(vp)E
α,β
np

. (4.5)

Substituting this into the trace formula we obtain

|Ψa,b(ū; v̄)〉=
3
∑

ī, j̄=1

3
∑

ᾱ,β̄=1

Ti1, j1(u1) . . . Tia , ja(ua)Tα1,β1
(v1) . . . Tαb ,βb

(vb)

× trk̄,n̄

�

Rn̄,k̄(v̄, ū)E21
k1

. . . E21
ka

E32
n1

. . . E32
nb

E i1, j1
k1

. . . E ia , ja
ka

Eα1,β1
n1

. . . Eαb ,βb
nb

�

|0〉, (4.6)

where we have used cyclicity of the trace. The sum is taken over all is, js (with s = 1, . . . , a)
and all αp, βp (with p = 1, . . . , b). Taking the product of the E-matrices via EabEcd = δbc Ead

we obtain that all is = 1 and all αp = 2. Then

|Ψa,b(ū; v̄)〉=
3
∑

j̄=1

3
∑

β̄=1

T1, j1(u1) . . . T1, ja(ua)T2,β1
(v1) . . . T2,βb

(vb)

× trk̄,n̄

�

Rn̄,k̄(v̄, ū)E2, j1
k1

. . . E2, ja
ka

E3,β1
n1

. . . E3,βb
nb

�

|0〉. (4.7)

To calculate the remaining trace we present the product of the R-matrices Rn̄,k̄(v̄, ū) as

Rn̄,k̄(v̄, ū) =
3
∑

λ̄,µ̄,p̄,q̄=1

rλ1µ1,...,λbµb;p1,q1,...,pa ,qa(v̄, ū)Eλ1,µ1
n1

. . . Eλb ,µb
nb

Ep1,q1
k1

. . . Epa ,qa
ka

, (4.8)

where rλ1µ1,...,pa ,qa(v̄, ū) are numeric coefficients, and the sum is taken over all λ̄= {λ1, . . . ,λb},
µ̄ = {µ1, . . . ,µb}, p̄ = {p1, . . . , pa}, and q̄ = {q1, . . . , qa}. Then we obtain (see appendix B for
more details)

trk̄,n̄

�

Rn̄,k̄(v̄, ū)E2, j1
k1

. . . E2, ja
ka

E3,β1
n1

. . . E3,βb
nb

�

= rβ13,...,βb3; j1,2,..., ja2(v̄, ū)≡ r β̄ , j̄(v̄, ū). (4.9)

Now we should compute the coefficients r β̄ , j̄(v̄, ū). For this, it is convenient to use a
diagram technique [29, 69]. We present a single R-matrix as a vertex (see Fig. 1). Observe
that Rαβ;i j(v, u) 6= 0, if either α = β and i = j or α = j and i = β . Thus, the index, which
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α
β

i

j

v

u

Rαβ;i j(v, u) = Vnp

Vks

v

u

Rnp ,ks
(v, u) =

Figure 1: R-matrix as a vertex. Horizontal edge is associated with the parameter v
and the space Vnp

. Vertical edge is associated with the parameter u and the space Vks
.

β
β

j

j

v

u
??

��

(a)

j
β

β

j

v

u

�

?

(b)
Figure 2: Two moves of the indices.

enters the vertex from the north, can go further to the south or turn to the west. Respectively,
the index, which enters the vertex from the east, can go further to the west or turn to the south
(see Fig. 2).

The product of the R-matrices

Rnp ,ka
(vp, ua) . . . Rnp ,k1

(vp, u1) (4.10)

is given by the horizontal line (see Fig. 3). Respectively, the total product Rn̄,k̄(v̄, ū) looks as

α
ia

ja

Vka

ua

β Vnp
vp

ia−1

ja−1

Vka−1

ua−1

i2

j2

Vk2

u2

i1

j1

Vk1

u1

Figure 3: Product of the R-matrices.

it is shown on the Fig 4. Finally, the matrix element r β̄ , j̄(v̄, ū) has a graphical representation

Vka Vk1
Vk2

ua u1u2

vb

v2

v1

Vnb

Vn2

Vn1

Rn̄,k̄(v̄, ū) =

Figure 4: Graphical interpretation of Rn̄,k̄(v̄, ū)

shown on Fig. 5.

32

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.19


SciPost Phys. Lect. Notes 19 (2020)

2 2 2 2 2 2

3

3

3

3

3

Vka Vk1
Vk2

ua u1u2

ja j2 j1
vb

v2

v1

βb

β2

β1

Vnb

Vn2

Vn1

r β̄ , j̄(v̄, ū) =

Figure 5: Graphical interpretation of the matrix element r β̄ , j̄(v̄, ū).

Generically, the indices on the edges of the lattice on Fig. 4 can take three values: 1,2, 3.
However, in the case of the lattice on Fig. 5 the value 1 is forbidden. Indeed, we have seen that
moving through any vertex, every index goes in the direction from the north-east to the south-
west. Thus, any index of an arbitrary edge has its source either on the northern or eastern

2 2 2 2 2 2

3

3

3

3

3

Vka Vk1
Vk2

ua u1u2

ja j2 j1
vb

v2

v1

βb

β2

β1

Vnb

Vn2

Vn1

��

Figure 6: Line of the constant index

lattice boundary. But all the indices on those boundaries take the values 2 or 3. Thus, there is
no the index 1 on the edges of the lattice on the Fig. 6.

The above consideration shows that the original gl3-invariant R-matrix Rαβ;i j(u, v) turns
into the gl2-invariant R-matrix rαβ;i j(u, v), where all the indices take values 2 and 3.

Let
T (a)(vp|ū) = rnp ,ka

(vp, ua) . . . rnp ,k1
(vp, u1). (4.11)

It is easy to see that T (a)(vp|ū) coincides with the monodromy matrix introduced by (3.30).
Then

r β̄ , j̄(v̄, ū) =
b
∏

p=1

T (a)
βp ,3(vp|ū), (4.12)

and we obtain

|Ψa,b(ū; v̄)〉=
3
∑

j̄=2

3
∑

β̄=2

T1, j1(u1) . . . T1, ja(ua)T2,β1
(v1) . . . T2,βb

(vb)
b
∏

p=1

T (a)
βp ,3(vp|ū)|0〉. (4.13)

Observe that here we have changed the summation limits for j̄ and β̄ . When taking the sum
over j̄ one should remember that the monodromy matrix T (a)

βp ,3(vp|ū) acts in the tensor product

of Vks
, s = 1, . . . , a, where it has indices js. These indices are not shown explicitly in (4.13).
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If we introduce

D(v) =
�

T22(v) T23(v)
T32(v) T33(v)

�

, (4.14)

and
ÒT (a)(vp|ū) = D(vp)T (a)(vp|ū), (4.15)

then (4.13) takes the form

|Ψa,b(ū; v̄)〉=
3
∑

j̄=2

T1, j1(u1) . . . T1, ja(ua)
b
∏

p=1

ÒT (a)2,3 (vp|ū)|0〉. (4.16)

Now it becomes obvious that this formula coincides with (3.62), where F(ū; v̄)|0〉 is given by
(3.67).

Concluding this section, we note that the trace formula has a fairly obvious generalization
to the case of models with glN -invariant R-matrix. We do not give the explicit formula, since
this would require the introduction of a large number of new notations. The reader, however,
can find this formula in [11].

4.2 Symmetry over ū

Trace formula (4.4) allows us to prove the long standing problem of the symmetry of the Bethe
vectors over the set ū. For this we first consider some properties of the matrix R(u, v)P:

R(u, v)P =
3
∑

a,b=1

Ea,b ⊗ E b,a + g(u, v)I. (4.17)

Let j < 3. Then

f (u, v)E j+1, j ⊗ E j+1, j = R(u, v)PE j+1, j ⊗ E j+1, j = E j+1, j ⊗ E j+1, jR(u, v)P. (4.18)

Indeed, using (4.17) we have, for example,

E j+1, j ⊗ E j+1, jR(u, v)P =
3
∑

a,b=1

(E j+1, j ⊗ E j+1, j)(Ea,b ⊗ E b,a) + g(u, v)E j+1, j ⊗ E j+1, j

= g(u, v)E j+1, j ⊗ E j+1, j +
3
∑

a,b=1

E j+1,b ⊗ E j+1,aδ jaδ j b = f (u, v)E j+1, j ⊗ E j+1, j . (4.19)

Consider now the right action of the matrix R2,1(u2, u1)P2,1 on the product of the R-matrices
Rn,2(v, u2)Rn,1(v, u1), where the subscript n refers to some space Vn which is different from V1

and V2. Due to the Yang–Baxter equation we have

Rn,2(v, u2)Rn,1(v, u1) R2,1(u2, u1)P2,1 = R2,1(u2, u1) Rn,1(v, u1)Rn,2(v, u2) P2,1. (4.20)

Then moving the permutation matrix to the left we exchange the spaces V1 and V2:

Rn,2(v, u2)Rn,1(v, u1) R2,1(u2, u1)P2,1 = R2,1(u2, u1)P2,1 Rn,2(v, u1)Rn,1(v, u2). (4.21)

Thus, acting form the right on Rn,2(v, u2)Rn,1(v, u1), the matrix R2,1(u2, u1)P2,1 in fact makes
the replacement u1↔ u2.
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Similarly R2,1(u2, u1)P2,1 acts on the product T1(u1)T2(u2). For this we first write down
the RT T -relation

R1,2(u1, u2)T1(u1)T2(u2) = T2(u2)T1(u1)R1,2(u1, u2), (4.22)

and multiply it from both sides by R2,1(u2, u1):

T1(u1)T2(u2)R2,1(u2, u1) = R2,1(u2, u1)T2(u2)T1(u1). (4.23)

Here we used the fact that R1,2(u1, u2)R2,1(u2, u1) = f (u1, u2) f (u2, u1)I.
Consider now how the permutation matrix acts on T1(u1)T2(u2). We have

T1(u1)T2(u2) =
∑

i, j,k,l

Ti j(u1)Tkl(u2)E
i j
1 Ekl

2 . (4.24)

Then

P1,2T1(u1)T2(u2)P1,2 =
∑

a,b,c,d

∑

i, j,k,l

Ti j(u1)Tkl(u2)E
ab
1 E ba

2 E i j
1 Ekl

2 Ecd
1 Edc

2

=
∑

a,b,c,d

∑

i, j,k,l

Ti j(u1)Tkl(u2)E
ab
1 E id

1 δ jc E ba
2 Ekc

2 δld

=
∑

a,b,c,d

∑

i, j,k,l

Ti j(u1)Tkl(u2)E
ad
1 δbiδ jc E bc

2 δakδld

=
∑

i, j,k,l

Ti j(u1)Tkl(u2)E
kl
1 E i j

2 = T2(u1)T1(u2). (4.25)

Thus, using (4.23) and (4.25) we obtain

T1(u1)T2(u2) R2,1(u2, u1)P1,2 = R2,1(u2, u1) T2(u2)T1(u1) P1,2 = R2,1(u2, u1)P1,2 T1(u2)T2(u1).
(4.26)

Hence, here we also deal with the replacement u1↔ u2.
Now everything is ready for the proof of the symmetry of the Bethe vector |Ψa,b(ū; v̄)〉 over

the parameters ū. Consider a vector

f (ui+1, ui)|Ψa,b(ū; v̄)〉= f (ui+1, ui) trk̄,n̄

�

Tk̄(ū)Tn̄(v̄)Rn̄,k̄(v̄, ū)E21
k1

. . . E21
ka

E32
n1

. . . E32
nb

�

|0〉,
(4.27)

for some i = 1, . . . , a− 1. Due to (4.18) we have

f (ui+1, ui)|Ψa,b(ū; v̄)〉= trk̄,n̄

�

Tk̄(ū)Tn̄(v̄)Rn̄,k̄(v̄, ū)E21
k1

. . . E21
ka

E32
n1

. . . E32
nb

× Rki+1,ki
(ui+1, ui)Pki+1,ki

�

|0〉. (4.28)

The matrix Rki+1,ki
(ui+1, ui)Pki+1,ki

first can be moved to the left through the products of the
matrices E32

n1
. . . E32

nb
and E21

k1
. . . E21

ka
. Then, moving through the R-matrices Rn̄,k̄ we should

exchange it with the combinations Rns ,ki+1
(vns

, ui+1)Rns ,ki
(vns

, ui). Due to (4.21) this leads to
the replacement ui ↔ ui+1 in Rn̄,k̄. After this we should move Rki+1,ki

(ui+1, ui)Pki+1,ki
through

the product of the T -matrices Tk̄(ū). Here we meat a combination Tki
(ui)Tki+1

(ui+1). And
again we obtain the replacement ui ↔ ui+1 in Tk̄(ū). Thus, we arrive at

f (ui+1, ui)|Ψa,b(ū; v̄)〉= trk̄,n̄

�

Rki+1,ki
(ui+1, ui)Pki+1,ki

Tk̄(ū)
�

�

�

ui↔ui+1

×Tn̄(v̄)Rn̄,k̄(v̄, ū)
�

�

�

ui↔ui+1

E21
k1

. . . E21
ka

E32
n1

. . . E32
nb

�

|0〉. (4.29)
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Using cyclicity of the trace we move Rki+1,ki
(ui+1, ui)Pki+1,ki

to its original position

f (ui+1, ui)|Ψa,b(ū; v̄)〉= trk̄,n̄

�

Tk̄(ū)
�

�

�

ui↔ui+1

Tn̄(v̄)Rn̄,k̄(v̄, ū)
�

�

�

ui↔ui+1

× E21
k1

. . . E21
ka

E32
n1

. . . E32
nb

Rki+1,ki
(ui+1, ui)Pki+1,ki

�

|0〉

= f (ui+1, ui) trk̄,n̄

�

Tk̄(ū)
�

�

�

ui↔ui+1

Tn̄(v̄)Rn̄,k̄(v̄, ū)
�

�

�

ui↔ui+1

E21
k1

. . . E21
ka

E32
n1

. . . E32
nb

�

|0〉. (4.30)

Thus, we obtain

|Ψa,b(ū; v̄)〉= |Ψa,b(ū; v̄)〉
�

�

�

ui↔ui+1

. (4.31)

Formally, one can prove the symmetry over the set v̄ using exactly the same way. However,
this symmetry is obvious in the representations (3.62), (3.67).

5 Recursion for the Bethe vectors

If we restrict ourselves to the problem of the spectrum of the transfer matrix (and hence,
the Hamiltonian and other integrals of motion), then this problem is solved. We constructed
eigenvectors of the transfer matrix and found the corresponding eigenvalues. However, if
we expect to use the NABA for calculating correlation functions, the results obtained are still
insufficient. As we have already mentioned, in this case, one has to calculate scalar products
containing off-shell Bethe vectors. The representation (3.78) and the trace formula (4.4) are
not very convenient for these purposes. Therefore, we need to get other representations for
Bethe vectors, with a view to their further application to the calculation of scalar products. One
of the steps on this way is recursive formulas. These formulas, in particular, make it possible
to prove by induction many statements concerning scalar products.

In this section we derive a relation between Bethe vectors |Ψa,b〉, |Ψa−1,b〉, and |Ψa−1,b−1〉.
To do this, we will use some formulas for the composite model in the R2 algebra. Therefore,
we begin this section with a brief description of the composite model. More details can be
found in [26, 28, 29, 70].

5.1 Composite model in R2 algebra

Let we have two 2× 2 monodromy matrices T (1)(v) and T (2)(v):

T ( j)(v) =

�

A( j)(v) B( j)(v)
C ( j)(v) D( j)(v)

�

, j = 1,2. (5.1)

We assume that both of them satisfy the RT T -relation (1.1) with the R-matrix (1.12). We
also assume the entries of T (1)(v) and T (2)(v) act in different Hilbert spaces and each of these
matrices possesses a vacuum vector |0〉( j) with the standard properties

A( j)(v)|0〉( j) = a( j)(v)|0〉( j), D( j)(v)|0〉( j) = d( j)(v)|0〉( j), C ( j)(v)|0〉( j) = 0, (5.2)

where a( j)(v) and d( j)(v) are some complex valued functions. Then we can define off-shell
Bethe vectors

B( j)(v̄)|0〉( j) = B( j)(v1) . . . B( j)(vn)|0〉( j), (5.3)

for each T ( j)(v). Here we used the shorthand notation for the product of the operators B( j).
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Obviously, under these conditions, a matrix T (v)

T (v) = T (2)(v)T (1)(v) =

�

A(v) B(v)
C(v) D(v)

�

(5.4)

satisfies the RT T -relation and has a vacuum vector |0〉 = |0〉(2) ⊗ |0〉(1). We also can define
off-shell Bethe vectors corresponding to the matrix T (v):

B(v̄)|0〉= B(v1) . . . B(vn)|0〉. (5.5)

A model in which the monodromy matrix is defined in the form (5.4) is called composite.
The matrix T (u) is called a full monodromy matrix, and the matrices T ( j)(v) are called partial
monodromy matrices. Similarly, vectors (5.5) are called full Bethe vectors, and vectors (5.3)
are called partial.

In fact, we have already dealt with the composite model in section 3. Indeed, the matrix
ÒT (a)(z) (3.30) is the product of two partial monodromy matrices D(z) and T (a)0 (z). However,
so far we have needed fairly simple statements about the composite model. For example, we
used the fact that the functions a(v) and d(v) of the full matrix T (v) are respectively products
of the functions a( j)(v) and d( j)(v). This statement immediately follows from representations

A(v) = A(2)(v)A(1)(v) + B(2)(v)C (1)(v),

D(v) = D(2)(v)D(1)(v) + C (2)(v)B(1)(v).
(5.6)

Now we need to express the full Bethe vectors in terms of the partial ones. Using

B(v) = A(2)(v)B(1)(v) + B(2)(v)D(1)(v), (5.7)

we easily find

B(v)|0〉= a(2)(v)|0〉(2) ⊗ B(1)(v)|0〉(1) + d(1)(v)B(2)(v)|0〉(2) ⊗ |0〉(1). (5.8)

However, if the cardinality of the set v̄ is more than 1, then the problem to express B(v̄)|0〉 in
terms of B( j)(v̄)|0〉( j) becomes more sophisticated. It was solved in [70]:

B(v̄)|0〉=
∑

v̄ 7→{v̄I ,v̄II}

a(2)(v̄I)d
(1)(v̄II)B

(2)(v̄II)|0〉(2) ⊗ B(1)(v̄I)|0〉(1) · f (v̄II, v̄I). (5.9)

Here the sum is taken over all possible partitions of the set v̄ into two subsets v̄I and v̄II. We
have also extended our convention on the shorthand notation to the products of the functions
a( j) and d( j). For example, d(1)(v̄II)means the product of d(1)(vi) over vi ∈ v̄II. A detailed proof
of (5.9) can be found in [29].

5.2 First recursion for Bethe vectors

We now proceed to the derivation of recursion for Bethe vectors in the R3 algebra. For this,
we use representation (3.62)

|Ψa,b(ū; v̄)〉= B1(u1)B2(u2) . . .Ba(ua)F(a)(ū; v̄)|0〉, (5.10)

where we equipped the vector F(a) with the additional superscript (a). This superscript stresses
that F(a)|0〉 belongs to the space H ⊗H(a), where H(a) is the tensor product of a spaces C2
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(see (3.32)). Our goal is to express this vector in terms of vectors F(a−1)|0〉, which belong to
the space H⊗H(a−1), where H(a−1) is the tensor product of a− 1 spaces C2. This is a typical
problem of a composite model [26, 28, 29, 70].

Recall that representation (5.10) is equivalent to the following sum:

|Ψa,b(ū; v̄)〉=
∑

β1,...,βa

Bβ1
(u1)Bβ2

(u2) . . . Bβa
(ua)F

(a)
β1,...,βa

(ū; v̄)|0〉, (5.11)

where every βi ∈ {β1, . . . ,βa} takes two values βi = 1,2. Let us write explicitly the sum over
β1:

|Ψa,b(ū; v̄)〉= B1(u1)
∑

β2,...,βa

Bβ2
(u2) . . . Bβa

(ua)F
(a)
1,β2,...,βa

(ū; v̄)|0〉

+ B2(u1)
∑

β2,...,βa

Bβ2
(u2) . . . Bβa

(ua)F
(a)
2,β2,...,βa

(ū; v̄)|0〉, (5.12)

where the remaining sums are taken over {β2, . . . ,βa}. Thus, we should find explicit rep-
resentations for the components F (a)1,β2,...,βa

(ū; v̄)|0〉 and F (a)2,β2,...,βa
(ū; v̄)|0〉 in terms of vectors

belonging to the space of lower dimension.
We know that the vector F(a)|0〉 has the form (3.67), where the operator bB(a) is the matrix

element of the monodromy matrix ÒT (a) (3.65). We can present this monodromy matrix as
follows:

ÒT (a)(z) = ÒT (a−1)(z)r01(z, u1), (5.13)

where

ÒT (a−1)
0 (z) = D0(z)r0a(z, ua) . . . r02(z, u2) =

�

ÒA(a−1)(z) bB(a−1)(z)
bC(a−1)(z) ÒD(a−1)(z)

�

0

. (5.14)

The entries of ÒT (a−1)
i j (z) act in the space H⊗H(a−1). The space H(a−1) has a natural vacuum

˜|0〉= |0〉 ⊗ |Ω(a−1)〉, where
|Ω(a−1)〉=

�

1
0

�

⊗ · · · ⊗
�

1
0

�

︸ ︷︷ ︸

a−1 times

. (5.15)

It is easy to see that
ÒA(a−1)(z) ˜|0〉= λ2(z) f (z, ū1) ˜|0〉,
ÒD(a−1)(z) ˜|0〉= λ3(z) ˜|0〉,

(5.16)

and we recall that ū1 = ū \ u1.
In its turn, the matrix r01(z, u1) can be considered as the monodromy matrix of the X X X

chain consisting of one site. We dealt already with this monodromy matrix in section 3.6 (see
(3.83)). Recall that the auxiliary space of this matrix is V0 ∼ C2, the quantum space is V1 ∼ C2.
It can be presented as a 2× 2 matrix in the space V0

r01(z, u1) =

�

a(z) b(z)
c(z) d(z)

�

=

�

1 0
0 1

�

+ g(z, u1)

�

E11
1 E21

1
E12

1 E22
1

�

, (5.17)

where the entries act in the space V1 ∼ C2 with the vacuum vector
�

1
0

�

. Obviously

a(z)
�

1
0

�

= f (z, u1)
�

1
0

�

,

d(z)
�

1
0

�

=
�

1
0

�

.
(5.18)
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A peculiarity of this monodromy matrix is that bn(z) = 0 for n> 1, because b(z) = g(z, u1)E21
1 .

We can treat ÒT (a)(z) as the monodromy matrix of the composite model with
T (2)(z) = ÒT (a−1)(z) and T (1)(z) = r01(z, u1). In this model

a(2)(z) = λ2(z) f (z, ū1), d(1)(z) = 1, (5.19)

due to (5.16) and (5.18). Hence, in the case under consideration equation (5.9) takes the
form

bB(a)(v̄)|0〉=
∑

v̄ 7→{v̄I ,v̄II}

λ2(v̄I) f (v̄I, ū1) f (v̄II, v̄I) bB(a−1)(v̄II)|0̃〉 ⊗ b(v̄I)
�

1
0

�

. (5.20)

Here we have extended the convention on the shorthand notation (2.22) to the products of
the commuting operators bB(a)(v̄), bB(a−1)(v̄), and b(v̄).

Formally, the sum in (5.20) is taken over all possible partitions of the set v̄ into two disjoint
subsets v̄I and v̄II. However, due to the property bn(z) = 0 for n > 1 we conclude that either
#v̄I = 0 or #v̄I = 1. In the first case we have v̄I = ; and v̄II = v̄. In the second case we can set
v̄I = v` and v̄II = v̄`, where `= 1, . . . , b. Thus, we find

bB(a)(v̄)|0〉= bB(a−1)(v̄) ˜|0〉 ⊗
�

1
0

�

+
b
∑

`=1

λ2(v`)g(v`, u1) f (v`, ū1) f (v̄`, v`) bB(a−1)(v̄`) ˜|0〉 ⊗
�

0
1

�

,

(5.21)
where the first term corresponds to v̄I = ; and the sum over ` corresponds to the partitions
v̄I = v`. From this equation we find the components F (a)1,β2,...,βa

and F (a)2,β2,...,βa
in terms of com-

ponents F (a−1)
β2,...,βa

:

F (a)1,β2,...,βa
(ū; v̄)|0〉= F (a−1)

β2,...,βa
(ū1; v̄)|0̃〉,

F (a)2,β2,...,βa
(ū; v̄)|0〉=

b
∑

`=1

λ2(v`)g(v`, u1) f (v`, ū1) f (v̄`, v`)F
(a−1)
β2,...,βa

(ū1; v̄`)|0̃〉.
(5.22)

Substituting this into (5.12) we arrive at

|Ψa,b(ū; v̄)〉= B1(u1)
∑

β2,...,βa

Bβ2
(u2) . . . Bβa

(ua)F
(a−1)
β2,...,βa

(ū1; v̄)|0̃〉

+ B2(u1)
b
∑

`=1

λ2(v`)g(v`, u1) f (v`, ū1) f (v̄`, v`)
∑

β2,...,βa

Bβ2
(u2) . . . Bβa

(ua)F
(a−1)
β2,...,βa

(ū1; v̄`)|0̃〉.

(5.23)

Then we recognise the Bethe vector |Ψa−1,b(ū1; v̄)〉 in the first line of (5.23) and the sum of
the Bethe vectors |Ψa−1,b−1(ū1; v̄`)〉 in the second line:

|Ψa,b(ū; v̄)〉= B1(u1)|Ψa−1,b(ū1; v̄)〉

+ B2(u1)
b
∑

`=1

λ2(v`)g(v`, u1) f (v`, ū1) f (v̄`, v`)|Ψa−1,b−1(ū1; v̄`)〉. (5.24)

Since B1(u) = T12(u) and B2(u) = T13(u), we recast (5.24) as follows:

|Ψa,b(ū; v̄)〉= T12(u1)|Ψa−1,b(ū1; v̄)〉

+ T13(u1)
b
∑

`=1

λ2(v`)g(v`, u1) f (v`, ū1) f (v̄`, v`)|Ψa−1,b−1(ū1; v̄`)〉. (5.25)
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Recursion (5.25) allows one to build the Bethe vectors successively, starting from the case
a = 0. Indeed, for a = 0 we have |Ψ0,b(;; v̄)〉 = T23(v̄)|0〉 (see (3.80)). Then we immediately
find an explicit expression for the Bethe vector |Ψ1,b(u; v̄)〉:

|Ψ1,b(u; v̄)〉= T12(u)T23(v̄)|0〉+
b
∑

`=1

λ2(v`)g(v`, u) f (v̄`, v`)T13(u)T23(v̄`)|0〉. (5.26)

To conclude this section we note that it follows from recursion (5.25) and initial condition
(3.80) that the Bethe vectors are the states of fixed coloring

Col
�

|Ψa,b(ū; v̄)〉
�

= {a, b}. (5.27)

This statement can be easily proved via induction over a.

5.3 Second recursion for Bethe vectors

Using representation for the Bethe vectors described in section 3.7 one can obtain another
recursion

|Ψa,b(ū; v̄)〉= T23(vb)|Ψa,b−1(ū; v̄b)〉

+ T13(vb)
a
∑

j=1

λ2(u j)g(vb, u j) f (v̄b, u j) f (u j , ū j)|Ψa−1,b−1(ū j; v̄b)〉. (5.28)

This recursion is derived via the composite model in the same way as recursion (5.25). We
provide the readers with the opportunity to do this themselves.

Recursion (5.28) allows one to build the Bethe vectors starting from

|Ψa,0(ū;;)〉= T12(ū)|0〉. (5.29)

6 Explicit form of Bethe vector

Successive application of recursion (5.25) allows us to guess a general explicit formula for the
Bethe vector. In other words, we can now represent the off-shell Bethe vector as a polynomial
in the creation operators T12, T13, and T23 applied to the vacuum vector 0〉 and explicitly
specify the coefficients of this polynomial. The proof of this formula relies on the recursion
(5.25), but it is rather long, therefore, we do not give it here. Nevertheless, we consider it
necessary to give this explicit representation, since it plays an important role in calculating
scalar products.

In the explicit formula for the Bethe vector, a partition function of the six-vertex model with
domain wall boundary conditions (DWPF) appears. Therefore, we give its brief description
(see [26, 28, 29, 71] for more details).

6.1 Partition function with domain wall boundary conditions

We denote the DWPF by Kn(v̄|ū). It depends on two sets of variables v̄ and ū; the subscript
indicates that #v̄ = #ū= n. The function Kn has the following determinant representation

Kn(v̄|ū) =∆′n(v̄)∆n(ū)
f (v̄, ū)
g(v̄, ū)

det
n

�

g2(v j , uk)

f (v j , uk)

�

, (6.1)
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where ∆′n(v̄) and ∆n(ū) are

∆′n(v̄) =
n
∏

j<k

g(v j , vk), ∆n(ū) =
n
∏

j>k

g(u j , uk). (6.2)

More explicitly

Kn(v̄|ū) =

∏n
j,k=1(v j − uk + c)

∏n
j<k(v j − vk)(uk − u j)

det
n

�

c
(v j − uk)(v j − uk + c)

�

. (6.3)

Obviously, Kn(v̄|ū) is a symmetric function of v̄ and a symmetric function of ū. It decreases
as 1/v1 (resp. as 1/u1), if v1 →∞ (resp. u1 →∞) and all other variables are fixed. It has
simple poles at v j = uk, j, k = 1, . . . , n. The residues in the poles are proportional to Kn−1:

Kn(v̄|ū)
�

�

�

un→vn

= g(vn, un) f (v̄n, vn) f (vn, ūn)Kn−1(v̄n|ūn) + reg, (6.4)

where reg stays for the terms which remain regular at un→ vn. To prove (6.4) it is enough to
observe that the determinant in (6.3) becomes singular at vn→ un due to the pole of the matrix
element at the intersection of the nth row and the nth column. Then the determinant (6.3)
reduces to the product of this matrix element and the corresponding minor, leading eventually
to (6.4).

Using this property one can decompose Kn(v̄|ū) over the poles at un = vi , i = 1, . . . , n, as
follows:

Kn(v̄|ū) =
n
∑

i=1

g(vi , un) f (v̄i , vi) f (vi , ūn)Kn−1(v̄i|ūn). (6.5)

In particular,

K2(v̄|ū) = g(v1, u2)g(v2, u1) f (v2, v1) f (v1, u1) + g(v2, u2)g(v1, u1) f (v1, v2) f (v2, u1), (6.6)

where we used
K1(v|u) = g(v, u). (6.7)

6.2 Bethe vector as a sum over partitions

Proposition 6.1. [42] Bethe vectors of the R3 algebra have the following form:

|Ψa,b(ū; v̄)〉=
∑

ū7→{ūI ,ūII}
v̄ 7→{v̄I ,v̄II}

Kn(v̄I|ūI) f (ūI, ūII) f (v̄II, v̄I)T13(ūI)T12(ūII)T23(v̄II)λ2(v̄I)|0〉. (6.8)

Here Kn(v̄I|ūI) is the DWPF (6.1). The sum is taken over partitions ū 7→ {ūI, ūII} and v̄ 7→ {v̄I, v̄II}
such that #ūI = #v̄I = n and n= 0,1, . . . , min(a, b). Everywhere the convention on the shorthand
notation (2.22) is used.

Remark. Note that the r.h.s. of (6.8) is obviously symmetric over ū and symmetric over v̄.
The proof of proposition 6.1 can be found in [42]. Actually, it is enough to show that (6.8)

satisfies recursion (5.25). However, as we have mentioned in the beginning of this section,
this proof is rather bulky, and we do not give it here. Instead we illustrate representation (6.8)
by several examples for a small and b arbitrary.
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First of all, it follows form (6.8) that for a = 0 we have

|Ψ0,b(;; v̄)〉= T23(v̄)|0〉, (6.9)

what coincides with (3.80).
Let a = 1. Then either #ūI = #v̄I = 0 or #ūI = #v̄I = 1. In both cases the product f (ūI, ūII)

disappears from equation (6.8), because one of the subsets of ū is empty. We obtain

|Ψ1,b(u; v̄)〉= T12(u)T23(v̄)|0〉+
∑

v̄ 7→{v̄I ,v̄II}

g(v̄I, u) f (v̄II, v̄I)T13(u)T23(v̄II)λ2(v̄I)|0〉, (6.10)

where we used (6.7), and the sum over partitions of the set v̄ is taken under restriction #v̄I = 1.
Setting in this sum v̄I = v` and v̄II = v̄`, `= 1, . . . , b, we immediately arrive at (5.26).

Let now a = 2. Then either #ūI = #v̄I = 0, or #ūI = #v̄I = 1, or #ūI = #v̄I = 2.
Respectively, we have three contributions to the Bethe vector (6.8):

|Ψ2,b(ū; v̄)〉= |Ψ(0)〉+ |Ψ(1)〉+ |Ψ(2)〉. (6.11)

The contribution |Ψ(0)〉 corresponds to the case #ūI = #v̄I = 0. It is quite obvious that

|Ψ(0)〉= T12(ū)T23(v̄)|0〉. (6.12)

The next contribution |Ψ(1)〉 has the form

|Ψ(1)〉=
∑

ū7→{ūI ,ūII}
v̄ 7→{v̄I ,v̄II}

g(v̄I, ūI) f (ūI, ūII) f (v̄II, v̄I)T13(ūI)T12(ūII)T23(v̄II)λ2(v̄I)|0〉, (6.13)

where the sum over partitions is taken under restriction #ūI = #v̄I = 1. Taking explicitly the
sum over partitions ū 7→ {ūI, ūII} we obtain

|Ψ(1)〉=
∑

v̄ 7→{v̄I ,v̄II}

�

g(v̄I, u1) f (u1, u2)T13(u1)T12(u2) + g(v̄I, u2) f (u2, u1)T13(u2)T12(u1)
�

×λ2(v̄I) f (v̄II, v̄I)T23(v̄II)|0〉. (6.14)

Finally, setting here v̄I = v` and v̄II = v̄`, `= 1, . . . , b, we arrive at

|Ψ(1)〉=
b
∑

`=1

�

g(v`, u1) f (u1, u2)T13(u1)T12(u2) + g(v`, u2) f (u2, u1)T13(u2)T12(u1)
�

×λ2(v`) f (v̄`, v`)T23(v̄`)|0〉. (6.15)

The last contribution |Ψ(2)〉 in (6.11) has the form:

|Ψ(2)〉=
∑

v̄ 7→{v̄I ,v̄II}

K2(v̄I|ū) f (v̄II, v̄I)T13(ū)T23(v̄II)λ2(v̄I)|0〉, (6.16)

where #v̄I = 2. Setting here v̄I = {vk, v`} and v̄II = v̄k,` ≡ v̄ \ {vk, v`} we find

|Ψ(2)〉=
∑

1≤`<k≤b

λ2(vk)λ2(v`)K2({vk, v`}|ū) f (v̄k,`, v`) f (v̄k,`, vk)T13(ū)T23(v̄k,`)|0〉. (6.17)
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Let us reproduce all the contributions |Ψ( j)〉 for j = 0,1, 2 via recursion (5.25). For a = 2,
recursion (5.25) has the form

|Ψ2,b(ū; v̄)〉= T12(u2)|Ψ1,b(u1; v̄)〉

+ T13(u2)
b
∑

`=1

λ2(v`)g(v`, u2) f (v`, u1) f (v̄`, v`)|Ψ1,b−1(u1; v̄`)〉 , (6.18)

where we replaced u1 ↔ u2 due to the symmetry of the Bethe vector over the set ū. Using
(5.26) for |Ψ1,b(u1; v̄)〉 and |Ψ1,b−1(u1; v̄`)〉 we find

|Ψ2,b(ū; v̄)〉= T12(u2)
�

T12(u1)T23(v̄)|0〉+
b
∑

`=1

λ2(v`)g(v`, u1) f (v̄`, v`)T13(u1)T23(v̄`)|0〉
�

+ T13(u2)
b
∑

k=1

λ2(vk)g(vk, u2) f (vk, u1) f (v̄k, vk)
�

T12(u1)T23(v̄k)|0〉

+
b
∑

`=1
6̀=k

λ2(v`)g(v`, u1) f (v̄`,k, v`)T13(u1)T23(v̄`,k)|0〉
�

. (6.19)

One can easily see the contribution |Ψ(0)〉 = T12(ū)T23(v̄)|0〉. The contribution |Ψ(2)〉 comes
from the double sum

|Ψ(2)〉= T13(ū)
b
∑

k=1

b
∑

`=1
6̀=k

λ2(vk)λ2(v`)g(vk, u2)g(v`, u1)

× f (vk, u1) f (v̄k, vk) f (v̄`,k, v`)T23(v̄`,k)|0〉. (6.20)

Indeed, using
b
∑

k=1

b
∑

`=1
6̀=k

Xk` =
∑

1≤`<k≤b

(Xk` + X`k), (6.21)

we recast (6.20) as follows:

|Ψ(2)〉= T13(ū)
∑

1≤`<k≤b

λ2(vk)λ2(v`) f (v̄k,`, vk) f (v̄`,k, v`)T23(v̄`,k)|0〉

×
¦

g(vk, u2)g(v`, u1) f (vk, u1) f (v`, vk) + g(v`, u2)g(vk, u1) f (v`, u1) f (vk, v`)
©

. (6.22)

Comparing the expression in braces with (6.6) we see that

g(vk, u2)g(v`, u1) f (v`, vk) f (vk, u1) + g(v`, u2)g(vk, u1) f (vk, v`) f (v`, u1) = K2({vk, v`}|ū),
(6.23)

and we do reproduce (6.17).
It remains to check that

|Ψ(1)〉=
b
∑

`=1

W` T23(v̄`)|0〉, (6.24)

where

W` = λ2(v`) f (v̄`, v`)
�

T12(u2)T13(u1)g(v`, u1) + T13(u2)T12(u1)g(v`, u2) f (v`, u1)
�

. (6.25)
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Using commutation relations (1.29) we find

T12(u2)T13(u1) = f (u1, u2)T13(u1)T12(u2) + g(u2, u1)T13(u2)T12(u1). (6.26)

Substituting this into (6.25) we arrive at

W` = λ2(v`) f (v̄`, v`)
�

T13(u1)T12(u2) f (u1, u2)g(v`, u1)

+ T13(u2)T12(u1)
�

g(v`, u2) f (v`, u1) + g(u2, u1)g(v`, u1)
�

�

. (6.27)

Simple straightforward calculation shows that

g(v`, u2) f (v`, u1) + g(u2, u1)g(v`, u1) = f (u2, u1)g(v`, u2). (6.28)

Substituting this into (6.27) we obtain (6.15). Thus, we have convinced our selves that recur-
sion (5.25) does give the Bethe vector (6.8) for a = 2.

In concluding this section, we note that explicit formulas for the RN Bethe vectors in terms
of polynomials in the creation operators acting on the vacuum vector were obtained in [43].

6.3 Alternative representation for Bethe vectors

Along with the representation (6.8), there is another representation for the Bethe vectors:

|Ψa,b(ū; v̄)〉=
∑

ū7→{ūI ,ūII}
v̄ 7→{v̄I ,v̄II}

Kn(v̄I|ūI) f (ūI, ūII) f (v̄II, v̄I)T13(v̄I)T23(v̄II)T12(ūII)λ2(ūI)|0〉. (6.29)

Here the sum is taken over partitions ū 7→ {ūI, ūII} and v̄ 7→ {v̄I, v̄II} like in (6.8).
In order to prove (6.29) we first prove the following proposition.

Proposition 6.2. Let us extend the action of the automorphism (1.28) on the vectors by

ϕ
�

|0〉) = |0〉,

ϕ
�

Ti j(u)|0〉
�

= ϕ
�

Ti j(u)
�

|0〉, ϕ
�

λi(u)) = λ4−i(−u).
(6.30)

Then
ϕ
�

|Ψa,b(ū; v̄)〉
�

= |eΨb,a(−v̄;−ū)〉, (6.31)

where |eΨb,a(−v̄;−ū)〉 is the Bethe vector corresponding to the monodromy matrix T̃ (z).

Proof. We use induction over a. We have for a = 0 and b arbitrary

ϕ
�

|Ψ0,b(;; v̄)〉
�

= ϕ
�

T23(v̄)|0〉
�

= T̃12(−v̄)|0〉= |eΨb,0(−v̄;;)〉, (6.32)

where we used (3.80) and (5.29).
Assume that (6.31) holds for some a− 1≥ 0 and b arbitrary. Applying the automorphism

ϕ to the recursion (5.25) we obtain

ϕ
�

|Ψa,b(ū; v̄)〉
�

= ϕ
�

T12(u1)
�

ϕ
�

|Ψa−1,b(ū1; v̄)〉
�

+ϕ
�

T13(u1)
�

b
∑

`=1

ϕ
�

λ2(v`)
�

g(v`, u1) f (v`, ū1) f (v̄`, v`)ϕ
�

|Ψa−1,b−1(ū1; v̄`)〉
�

. (6.33)
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Due to induction assumption we find

ϕ
�

|Ψa,b(ū; v̄)〉
�

= T23(−u1)|eΨb,a−1(−v̄,−ū1)〉

+ T13(−u1)
b
∑

`=1

λ2(−v`)g(v`, u1) f (v`, ū1) f (v̄`, v`)|eΨb−1,a−1(−v̄`,−ū1)〉. (6.34)

Setting a′ = b, b′ = a, ū′ = −v̄, and v̄′ = −ū, one obtains

ϕ
�

|Ψa,b(ū; v̄)〉
�

= T23(v
′
1)|eΨa′,b′−1(ū

′, v̄′1)〉

+ T13(v
′
1)

a′
∑

`=1

λ2(u
′
`)g(−u′`,−v′1) f (−u′`,−v̄′1) f (−ū′`,−u′`)|eΨa′−1,b′−1(ū

′
`, v̄′1)〉. (6.35)

Using g(−v,−u) = g(u, v) and f (−v,−u) = f (u, v) we arrive at

ϕ
�

|Ψa,b(ū; v̄)〉
�

= T23(v
′
1)|eΨa′,b′−1(ū

′, v̄′1)〉

+ T13(v
′
1)

a′
∑

`=1

λ2(u
′
`)g(v

′
1, u′`) f (v̄

′
1, u′`) f (u

′
`, ū′`)|eΨa′−1,b′−1(ū

′
`, v̄′1)〉. (6.36)

One recognizes in the r.h.s. of (6.36) the recursion formula7 (5.28) for |eΨa′,b′(ū′; v̄′)〉. Hence,

ϕ
�

|Ψa,b(ū; v̄)〉
�

= |eΨa′,b′(ū
′; v̄′)〉= |eΨb,a(−v̄;−ū)〉. (6.37)

Now we are ready to prove representation (6.29). We start with equation (6.8) for the
Bethe vector |eΨb,a(v̄; ū)〉:

|eΨb,a(v̄; ū)〉=
∑

ū7→{ūI ,ūII}
v̄ 7→{v̄I ,v̄II}

Kn(ūI|v̄I) f (v̄I, v̄II) f (ūII, ūI)T̃13(v̄I)T̃12(v̄II)T̃23(ūII)λ̃2(ūI)|0〉. (6.38)

It is easy to see that equations (1.28), (6.30) imply ϕ2 = 1, and hence,

ϕ(|eΨb,a(v̄; ū)〉) = ϕ2(|Ψa,b(−ū;−v̄)〉) = |Ψa,b(−ū;−v̄)〉. (6.39)

Thus, acting with ϕ on (6.38) we obtain

|Ψa,b(−ū;−v̄)〉=
∑

ū 7→{ūI ,ūII}
v̄ 7→{v̄I ,v̄II}

Kn(ūI|v̄I) f (v̄I, v̄II) f (ūII, ūI)T13(−v̄I)T23(−v̄II)T12(−ūII)λ2(−ūI)|0〉.

(6.40)
It follows form g(−u,−v) = g(v, u) and f (−u,−v) = f (v, u) that Kn(−v̄|− ū) = Kn(ū|v̄). Thus,
changing ū→−ū and v̄→−v̄ in (6.40) we immediately arrive at (6.29).

6.4 Commutation relations and Bethe vectors

Comparing representations (6.8) and (6.29) we see that we deal with different ordering of the
operators in these formulas. Nevertheless, these formulas are equivalent.

7One can replace vb in (5.28) by any other vk due to the symmetry of Bethe vectors over v̄.
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Let us consider a simple but non-trivial example of the Bethe vector |Ψ1,1(u; v)〉. Using
(6.8) and (6.29) we respectively obtain

|Ψ1,1(u; v)〉= T12(u)T23(v)|0〉+ g(v, u)T13(u)λ2(v)|0〉, (6.41)

and
|Ψ1,1(u; v)〉= T23(v)T12(u)|0〉+ g(v, u)T13(v)λ2(u)|0〉. (6.42)

It is easy to see that (6.41) and (6.42) do coincide. Indeed, due to the commutation relations
(1.29) we have

[T12(u), T23(v)] = g(u, v)
�

T13(u)T22(v)− T13(v)T22(u)
�

, (6.43)

or equivalently

T12(u)T23(v) + g(v, u)T13(u)T22(v) = T23(v)T12(u) + g(v, u)T13(v)T22(u). (6.44)

Applying (6.44) to the vacuum vector we obtain

T12(u)T23(v)|0〉+ g(v, u)T13(u)λ2(v)|0〉= T23(v)T12(u)|0〉+ g(v, u)T13(v)λ2(u)|0〉. (6.45)

A similar effect takes place in the case of general Bethe vectors |Ψa,b(ū; v̄)〉. Namely, one
can prove [72] that

∑

ū7→{ūI ,ūII}
v̄ 7→{v̄I ,v̄II}

Kn(v̄I|ūI) f (ūI, ūII) f (v̄II, v̄I)

×
�

T13(ūI) T12(ūII) T23(v̄II) T22(v̄I)− T13(v̄I) T23(v̄II) T12(ūII) T22(ūI)
�

= 0. (6.46)

Here the sum is taken over partitions ū 7→ {ūI, ūII} and v̄ 7→ {v̄I, v̄II} such that #ūI = #v̄I = n
and n= 0, 1, . . . ,min(a, b), where a = #ū and b = #v̄.

On the one hand, acting with (6.46) on |0〉 we immediately prove the equivalence of the
representations (6.8) and (6.29). On the other hand, (6.46) can be considered as a multiple
commutation relation between the products T23(v̄) and T12(ū). Indeed, extracting explicitly
the term n= 0 we recast (6.46) as follows:

[T23(v̄), T12(ū)] =
∑

ū7→{ūI ,ūII}
v̄ 7→{v̄I ,v̄II}

n>0

Kn(v̄I|ūI) f (ūI, ūII) f (v̄II, v̄I)

×
�

T13(ūI) T12(ūII) T23(v̄II) T22(v̄I)− T13(v̄I) T23(v̄II) T12(ūII) T22(ūI)
�

. (6.47)

Thus, we see that the explicit representations for the Bethe vectors in the gl3 based models are
closely related to the multiple commutation relations. Whether this correspondence exists in
the models with higher rank of symmetry is an open question.

Summary

We have considered the basic principles of NABA. The main example for us were models with
the gl3-invariant R-matrix. However, in more general cases, the principle scheme for obtaining
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off-shell and on-shell Bethe vectors persists. In particular, this scheme works in models with the
q-deformed R-matrix (1.14), as well as in the models based on graded algebras [12, 43, 73, 74].

Further development of NABA is associated with the application of this method to the cal-
culation of the matrix elements of local operators and correlation functions. In these matters,
however, there are still many unsolved problems. Basically these problems are of a techni-
cal nature and involve very non-trivial representations for the Bethe vectors. Partially these
problems are solved in the models with the gl3-invariant R-matrix, as well as its graded and
q-deformed analogues [50, 75, 76].
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A Transformation of R-matrices

Proposition A.1. Let K
�u

v

�

be given by (1.19) and let R(u, v) be a solution to the Yang–Baxter
equation such that [R12(u, v), K1

�u
v

�

K2

�u
v

�

] = 0. Then matrices

R̃12(u, v) =

(

K1

�u
v

�

R12(u, v)K1

� v
u

�

,

K1

� v
u

�

R12(u, v)K1

�u
v

�

,
(A.1)

also solve the Yang–Baxter equation.

Proof. Define
R̃12(u, v) = K1

�u
v

�

R12(u, v)K1

� v
u

�

. (A.2)

Let us show that R̃12(u, v) satisfies the Yang–Baxter equation. Let

Λ≡ R̃12(u, v)R̃13(u, w)R̃23(v, w)

= K1

�u
v

�

R12(u, v)K1

� v
u

�

K1

� u
w

�

R13(u, w)K1

�w
u

�

K2

� v
w

�

R23(v, w)K2

�w
v

�

. (A.3)

Obviously K1

� v
u

�

K1

� u
w

�

= K1

� v
w

�

. We also have

[K1

�w
u

�

, K2

� v
w

�

] = 0,

[K1

�w
u

�

, R23(v, w)] = 0,

[R13(u, w), K2

� v
w

�

] = 0,

(A.4)

since in all these commutation relations we deal with matrices acting in different spaces. Then
we obtain

Λ= K1

�u
v

�

R12(u, v)K1

� v
w

�

K2

� v
w

�

R13(u, w)R23(v, w)K1

�w
u

�

K2

�w
v

�

. (A.5)

The product K1

� v
w

�

K2

� v
w

�

can be moved further to the left due to
�

R12(u, v), K1

� v
w

�

K2

� v
w

��

= 0, (A.6)
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and we arrive at

Λ= K1

� u
w

�

K2

� v
w

�

R12(u, v)R13(u, w)R23(v, w)K1

�w
u

�

K2

�w
v

�

. (A.7)

Now we use the Yang–Baxter equation for R:

Λ= K1

� u
w

�

K2

� v
w

�

R23(v, w)R13(u, w)R12(u, v)K1

�w
u

�

K2

�w
v

�

. (A.8)

We present K1

�w
u

�

= K1

�w
v

�

K1

� v
u

�

and move the combination K1

�w
v

�

K2

�w
v

�

to the left

Λ= K1

� u
w

�

K2

� v
w

�

R23(v, w)R13(u, w)K1

�w
v

�

K2

�w
v

�

R12(u, v)K1

� v
u

�

. (A.9)

Moving K1

� u
w

�

to the right and K2

�w
v

�

to the left we obtain

Λ= K2

� v
w

�

R23(v, w)K2

�w
v

�

K1

� u
w

�

R13(u, w)K1

�w
v

�

R12(u, v)K1

� v
u

�

. (A.10)

It remains to present K1

�w
v

�

= K1

�w
u

�

K1

�u
v

�

and we finally arrive at

Λ= R̃23(v, w)R̃13(u, w)R̃12(u, v). (A.11)

Thus, R̃(u, v) solves the Yang–Baxter equation. Using the fact that

K−1
�u

v

�

= K
� v

u

�

, (A.12)

we obtain that
R̂12(u, v) = K1

� v
u

�

R12(u, v)K1

�u
v

�

(A.13)

also satisfies the Yang–Baxter equation.

B Calculation of traces

Let X be a matrix acting in Cn. Then

tr(X E i, j) =
n
∑

k,l=1

X k,l tr(Ek,l E i, j) =
n
∑

k,l=1

X k,l tr(δil E
k, j) =

n
∑

k=1

X k,i tr(Ek, j) = X j,i , (B.1)

because tr Ek, j = δk j .
Now let X be a matrix acting in the tensor product V1 ⊗ · · · ⊗ Vm, where Vj ∼ Cn. Then

tr1,...,m(X E i1, j1
1 . . . E im, jm

m )

=
n
∑

k1,...,km=1
l1,...,lm=1

X k1,l1...km,lm tr1,...,m(E
k1,l1
1 . . . Ekm,lm

m E i1, j1
1 . . . E im, jm

m )

=
n
∑

k1,...,km=1
l1,...,lm=1

X k1,l1...km,lm tr1,...,m(E
k1, j1
1 . . . Ekm, jm

m )δi1,l1 . . .δim,lm

=
n
∑

k1,...,km=1

X k1,i1...km,im tr1,...,m(E
k1, j1
1 . . . Ekm, jm

m ) = X j1,i1... jm,im . (B.2)
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