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Abstract

These notes are intended as a detailed discussion on how to implement the diagrammatic
Monte Carlo method for a physical system which is technically simple and where it works
extremely well, namely the Fröhlich polaron problem. Sampling schemes for the Green
function as well as the self-energy in the bare and skeleton (bold) expansion are disclosed
in full detail. We discuss the Monte Carlo updates, possible implementations in terms of
common data structures, as well as techniques on how to perform the Fourier transforms
for functions with discontinuities. Control over the variety of parameters, especially
in the bold scheme, is demonstrated. Sample codes are made available online along
with extensive documentation. Towards the end, we discuss various extensions of the
method and their applications. After working through these notes, the reader will be well
equipped to explore the richness of the diagrammatic Monte Carlo method for quantum
many-body systems.
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1 Introduction

These notes originate from a series of lectures taught at international summer schools intended
for researchers interested in numerical methods and strongly correlated systems. They intro-
duce the diagrammatic Monte Carlo (DiagMC) method, a quantum Monte Carlo method for
strongly correlated systems in which one, simply put, samples over all Feynman diagrams.
Feynman diagrams are versatile and employ a universal language used in high-energy as well
as in condensed matter physics. DiagMC is one of the most promising methods still under
active development to deal with generic fermionic models in high dimensions. The goal is to
give an introduction and flavor of this method.

Prerequisities for a thorough understanding of this text are familiarity with the basics of
quantum mechanics and elementary quantum field theory (notions such as the interaction pic-
ture, Wick’s theorem, Green function formalism, etc.), statistical mechanics (partition function,
solving two-level systems, etc.), and undergraduate computational physics (curve fitting, root
solving, interpolation techniques, etc.) including classical Monte Carlo methods (notion of
detailed balance, Markov chain Monte Carlo, Metropolis algorithm, etc.).

Let us summarize the main idea of the method, and how it differs from other quantum
Monte Carlo schemes – admittedly, different researchers use the notion of diagrammatic Monte

2

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.2


SciPost Phys. Lect. Notes 2 (2018)

Carlo in quite different contexts. To this end, we must discuss the type of expansion, the
sampling space, and the nature of the sampled series. Newcomers may skip the remainder of
this paragraph in a first reading.

The starting point is a very general perturbative expansion of the form,

F(y) =
∑

n

∑

x1,...xn

D(x1, . . . , xn; y). (1)

We compute a function F depending on external coordinates y (for example, the Green func-
tion G(k,τ) with momentum k and imaginary time τ) which has a perturbative expansion. At
every order n there are internal coordinates x1, . . . , xn (these are the internal momenta and
imaginary times) which can be discrete or continuous, and are summed or integrated over.
The different topologies have different kernels D (cf. Fig. 5 below). The starting point in Di-
agMC is a weak coupling expansion, i.e., an expansion in the interaction. Let us decompose
the Hamiltonian as H = H0+H1 where H0 contains all one-body terms (and constitutes hence
a quadratic Hamiltonian) and H1 the interactions. Our basis states are the eigenstates of H0.
Similar choices are made in (lattice) determinant Monte Carlo simulations for fermions, and
in fermionic impurity solvers such CT-INT and CT-AUX (see Ref. [1] for a recent review). By
contrast, a “strong-coupling” expansion is used in path-integral Monte Carlo simulations [2],
in the worm algorithm [3] and the fermionic impurity solver CT-HYB [1]. In these schemes
one perturbs in the kinetic hopping term whereas the solvable system (the potential energy
term) is diagonal in the chosen Fock or real-space basis but not quadratic – it corresponds to
the atomic limit.

An expansion of the partition function Z at inverse temperature β = 1/T and volume V in
the sense of a weak-coupling expansion and in the spirit of Eq. 1 reads

Z = Tr e−βH = TrTτ e−βH0 exp

�

−
∫ β

0

dτH1(τ)

�

=
∑

k

(−1)k
∫ β

0

dτ1 . . .

∫ β

τk−1

dτkTr
�

e−βH0 H1(τk) . . . H1(τ1)
�

, (2)

where in the second line we worked out the time-ordering operator Tτ of the first line. This
expansion leads to nothing but a Taylor expansion in the interaction H1, namely Z =

∑

k ck gk

with g the coupling strength amplitude of H1 and ck the coefficients that can be determined
by evaluating all the integrals in Eq. 2 order by order, and which remain independent of g.
Methods such as lattice determinant Monte Carlo and the impurity solvers CT-INT and CT-
AUX (but also the Monte Carlo methods referred to as strong-coupling expansions) evaluate
physical quantities in thermodynamic equilibrium as

〈Q〉=
TrQe−βH

Z
, (3)

and give it the following statistical meaning: Sample configurations c are obtained, which are
distributed according to the partition function Z with respective weights pc , and in which the
quantity Q is evaluated. Hence,

〈Q〉=
∑

c Qc pc
∑

c pc
. (4)

The unbiased estimator for the expectation value of the quantity Q is then to sum up Qc over
all independent configurations and divide by the number of independent measurements. The
normalization through the partition function is here manifest. As long as the system volume
V and its inverse temperature β are finite, the Eq. 2 is an expansion in an entire function and
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hence always convergent (with the finiteness of the system we explicitly exclude all possible
UV divergences that may still arise as e.g. in Sec. 8.2). The finiteness of the system ensures
that no true spontaneous symmetry breaking can occur, which is at the heart of such methods
as finite size scaling.

When physicists use the term DiagMC in the sense of the expression “sampling over all
Feynman diagrams” it implies a number of differences compared to the previous paragraph:
The thermodynamic limit is taken from the start, the partition function is usually not used for
normalization (instead, the lowest order diagram is often chosen (see below)), nor does the
sampling necessarily take place in the space of the partition function diagrams: The method
(usually) relies on the cancellation of disconnected diagrams when computing correlation
functions as can be found in standard textbooks [4–8]. This can equivalently be considered
an expansion of the free energy F ∼ log Z .

These differences allow us to sketch some of the key properties of Feynman diagrams,
which can be considered its advantages: All diagrams are topologically distinct and the mag-
nitude of the prefactor is always 1 [6]. The language of Feynman diagrams is universal in all
fields of physics. Feynman diagrams factorize over internal building blocks, such as particle
propagators (single particle Green functions), interactions, and vertices. Consequently, the
diagram weight also factorizes, which is a prerequisite for successfully developing a Markov
chain Monte Carlo method. Analytical treatments of low orders or limiting cases can be built
in analytically. In DiagMC one does not attempt to write down all diagrams explicitly (since
the number of diagrams grows factorially with expansion order, this is only possible for the
lowest expansion orders anyway) but one instead develops algorithmic rules that allow one
to sample over all diagrams. This implies changing the internal integration variables, but also
the topology and the expansion order. Non-perturbative features are accessible via skeleton
series [9] and (partial) resummations of a certain class of diagrams. This takes us away from
the bare expansion, and we will also see how this works for the Fröhlich polaron. In fact, any
analytical treatment known from the literature can be built in. Ideally, the Monte Carlo sam-
pling should only deal with featureless functions originating from high-dimensional integrals
whereas any intricacy related to the field theory is dealt with analytically a priori.

The aforementioned differences bring us at the same time to the first main difficulty in the
development of the DiagMC method, which is the series convergence: It is usually unknown
whether a series converges or not. The series is guaranteed to diverge at a phase transition, but
it may happen sooner. In fact, most series in physics are asymptotic, which can be established
rigorously in a number of cases. A well known argument, first formulated in the context
of quantum electrodynamics, is Dyson’s collapse argument [10]: When rotating the electric
charge from e to ie in the complex plane around the origin, one sees that the system is unstable
to collapse (the potential energy scales quadratically with the number of particles, which is
faster than the kinetic energy), rendering the convergence radius zero. The same holds for
any interacting bosonic field theory: No matter how small in magnitude the attraction in the
potential energy is, it beats the kinetic energy for large enough particle numbers, leading to a
collapse. The asymptotic nature of the series can sometimes be dealt with using resummation
methods [8], but, in general, the issue of a non-convergent series is an open problem and in
our view the most difficult one that DiagMC faces.

The second main difficulty in the development of DiagMC is the sign problem. Sign alterna-
tions are often inherent (and necessary) to the issue of convergence – without sign alternations
the factorial growth in the number of diagrams could never lead to a meaningful result for an
asymptotic series. Nor is the sign extensive in the system volume, as in path integral Monte
Carlo simulations, which would prohibits us from finding the full solution [11]. Nevertheless,
the sign problem puts in practice a limit on the expansion orders that can be reached. Di-
agMC features hence a tacit assumption that the sign problem is sufficiently weak such that
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sufficiently high expansion orders can be reached in order to extrapolate in a reliable way to
infinite expansion orders (often in combination with a resummation scheme that is powerful
enough). Unfortunately, this assumption can only a posteriori be checked.

The third difficulty is dealing with multi-dimensional objects such as a multi-legged vertex
in the Bethe-Salpeter equation. Despite active research in the fields of self-adaptive grids and
concise data storage formats, this is equally an unsolved problem. However, only in cases that
an explicit expression for the whole object (or a high-dimensional subpart) is required (such as
in self-consistency schemes) can this be considered a problem; otherwise one can just sample
over such an object without ever evaluating it in full.

In these notes we consider a model where these three problems do not occur: the Fröhlich
polaron model is sign-positive in the imaginary time formalism and the Green function conver-
gent for all finite values of the imaginary time. Due to the rotational symmetry of free space
can the Green function be stored as a two-dimensional object, which is easy to histogram and
manipulate. There are other simplifying factors, which are related to the absence of vacuum
polarization diagrams, or, equivalently, the observation that Feynman diagrams for polaron
(and impurity) problems can be mapped onto path integrals (cf. the structure of a backbone
line in Fig. 5 below). Indeed, the analytical properties of mesoscopic systems such as polarons
and impurity systems appear to be much simpler than those of true many-body problems.
Furthermore, for almost all problems of this type very accurate variational approaches (and
wavefunctions) are known. The Fröhlich polaron is hence ideal to get acquainted with the
DiagMC method. Not suprisingly, it was also the first model to which the method was applied
20 years ago [12,13].

This text is structured as follows. After discussing perturbative expansions with continu-
ous variables in Sec. 2, the main body of this text deals with the Fröhlich polaron problem,
whose Green function is obtained from a bare expansion in Sec. 3, the self-energy from a bare
expansion in Sec. 4 and from a bold expansion in Sec. 5. The source codes are made publicly
available as discussed in Sec. 6. In Sec. 8 some related physical systems (of the polaron or
impurity type) are listed where the acquired techniques can (and have been) applied with-
out going into detail about the physics. For completeness, we mention that the method has
also been successfully applied to a number of problems that cannot be considered of the po-
laron or impurity-type leading to deeper insight in notoriously hard problems. We mention
resonant fermions [14–16], frustrated magnetism [17–19], and physics found in the Hubbard
model [20–23], among others.

2 Continuous-time Monte Carlo

It is quite common to have discrete as well as continuous variables in quantum field theory.
In this first section we explain, by means of the celebrated two-level system, how continuous
variables and variable expansion orders can be dealt with in a Monte Carlo sampling. We
employ the path integral representation here.

2.1 Model

Consider a two-level system with Hamiltonian,

H = H0 +H1 = hσz + Γσx h, Γ > 0, (5)

where σx =

�

0 1
1 0

�

and σz =

�

1 0
0 −1

�

are the usual Pauli matrices in the z-basis with basis

states |↑〉=
�

1
0

�

and |↓〉=
�

0
1

�

. The h-field tries to orient the spin along the −z-axis which is
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Figure 1: Magnetization along the x and the z axis for β = 10, h= 0.05 and variable Γ .

countered by the Γ -field which tries to orient the spin along the −x-axis. This system can be
solved exactly, with the solutions (shown in Fig, 1)

〈σx〉 =
−Γ

p
Γ 2 + h2

tanh
�

β
p

Γ 2 + h2
�

,

〈σz〉 =
−h

p
Γ 2 + h2

tanh
�

β
p

Γ 2 + h2
�

, (6)

(7)

which makes this system a good model to get acquainted with continuous-time Monte Carlo.
From the symmetry of the Hamiltonian we see that we can swap x ↔ z if we also swap Γ↔ h.

2.2 Perturbative expansion

Starting from the partition function

Z = Tre−βH =
∑

|α〉=|↑〉,|↓〉




α
�

�e−β(Γσx+hσz)
�

�α
�

, (8)

we notice that the σz operator is diagonal in this basis. In order to prepare for a perturbative
expansion in the Γσx term, we introduce the Heisenberg operators

σx(τ) = ehσzτσx e−hσzτ, (9)

and rewrite the partition function as

Z =
∑

|α〉=|↑〉,|↓〉

∞
∑

n=0

(−Γ )n

n!

∫ β

0

dτ1 . . .

∫ β

0

dτn




α
�

�e−βhσzTτ[σx(τ1) . . .σx(τn)]
�

�α
�

. (10)

This is an explicit formulation of Eq. 2, Z = TrTτ exp(−βH0)exp(−
∫ β

0 H1(τ)dτ).
To lowest order (n = 0) there are just 2 contributions, Z0 = exp(−βh) + exp(βh). Graph-

ically, this can be depicted as a continuous worldline from τ = 0 to τ = β (see panel (a) in
Fig. 2). We use a full line for spin-up and a dashed line for spin-down. Note that worldlines are
continuous and periodic in β because of the cyclical properties of the trace. For this reason,
there are no non-zero contributions for n= 1, nor for any odd value of n. This means that the
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Figure 2: (a) The 0th order contributions to the partition function of the two-level system.
Spin-up worldlines are represented by a full line, spin-down worldlines by a dashed line. (b)
The second order contributions, and (c) the general structure. Worldlines are periodic over
the imaginary time period β .

term (−Γ )n in Eq. 10 is always positive and we do not have to worry about a sign problem. In
second order (n= 2) (see panel (b) in Fig. 2) we have

Z2 = Γ
2

∑

|α〉=|↑〉,|↓〉
|α1〉=|↑〉,|↓〉

∫ β

0

dτ1

∫ τ1

0

dτ2




α
�

�e−(β−τ1+τ2)hσzσx

�

�α1

� 


α1

�

�e−(τ1−τ2)hσzσx

�

�α
�

. (11)

Note that there is no factor of 1/2 because it cancelled with the number of equivalent contribu-
tions from the time ordering operator and the corresponding changes in the time integration
boundaries [6]. Although the higher order terms can be written in the same fashion, the inte-
grals quickly become too complicated to evaluate explicitly. We therefore switch to a stochastic
approach, for which it is easiest to think in terms of a graphical depiction, as shown in panel
(c) of Fig. 2. To a vertex we attribute a factor Γ , and to each segment of length τ (measured
taking the periodic boundary conditions in β into account) we attribute a weight exp(±τh)
with the sign depending on the spin state.

Analyzing the limiting cases, we expect to find, with almost equal probability, worldlines
that are dominated by one of the spin states with few vertices at high temperatures. At low
temperatures, we expect a dashed line with few kinks for Γ � h, whereas for h� Γ the spin
wants to orient along the−x-direction, which graphically translates into having many vertices,
and for which our chosen basis along the z-direction is a poor choice. Our main task when
designing a Monte Carlo scheme is hence to reach high expansion orders at low temperature
with good efficiency.

2.3 Monte Carlo updates

There exist many equivalent ways to sample this system. The choice we make here resembles
the updates later used in the Fröhlich polaron code, with similar design criteria. A minimal er-
godic set of updates consists of the pair INSERT/REMOVE. If the INSERT update is chosen, we
attempt to insert a new pair of vertices as shown in Fig. 3. We therefore select a random time τ1
chosen uniformly over τ1 ∈ [0,β[. Looking in the direction of positive imaginary times, we de-
termine the time interval∆ counted from τ1 over which the spin occupation does not change.
The second vertex is placed at a time chosen uniformly over the interval∆. For the reverse up-
date, the pair to be removed consists of randomly selecting a vertex and taking the subsequent
one in the direction of positive time. The weight of the diagram segment between τ1 and τ2
in the old (i.e., before the INSERT update) configuration X is W (X ) = e−(τ2−τ1)hn0 , with n0 the
spin occupation at time τ1 in the old configuration. The weight of the corresponding segment
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Figure 3: Illustration of the INSERT/REMOVE pair of updates for the two-level system.

in the new configuration Y is W (Y ) = Γ 2e(τ2−τ1)hn0dτ1dτ2. With equal probabilities of se-
lecting the INSERT and REMOVE updates, the probability factors are P(X → Y ) = 1

β∆dτ1dτ2

and P(Y → X ) = 1
NV+2 with NV the number of vertices present in the old configuration. The

update INSERT is accepted according to the Metropolis algorithm with probability min(1, r)
where the acceptance factor r is given by r = W (Y )P(Y→X )

W (X )P(X→Y ) . For the REMOVE update the accep-
tance factor is 1/r. The differentials dτ1 and dτ2 enter the formulas for W (Y ) and P(X → Y )
as a consequence of working with a continuous variable τ but they drop out in the acceptance
factor r.

2.4 Estimators

The observables of interest are the expectation value of the spin magnetization along the x-
and the z-axis. There are two ways to measure the magnetization along the z-axis (up to an
irrelevant minus sign). The first one consists of evaluating the magnetization at a fixed time

τ= 0, which is an integer number. The second one evaluates the integral 1
β

∫ β

0 σz(τ)dτ, which
is a floating point number. Perhaps the reader thinks that the second way is far superior because
it contains information from all times, but we will see that this is not true: the second way of
measuring has only slightly lower error bars for the same runtime, whereas it is a considerably
more expensive operation to perform, scaling linearly in the number of interaction vertices
(even if done “on the fly” after every update). The magnetization along the x-direction can be
measured as 〈σx〉 = −

〈NV 〉
βΓ as can be seen from Eq. 10. It is equally straightforward to obtain

estimators for quantities such as 〈σx(τ)σ(0)〉, but we will not discuss this further.

2.5 Results

Let us start at low temperature with a strong magnetic field in the x-direction. We take as
parameters β = 10, Γ = 0.4, h = 0.05. After an initial thermalization phase of one million
updates, we perform 10,000,000 updates, measuring after each one. After just a few seconds
we see that we reproduce the exact result with error bars between 0.0001 and 0.001. The
integrated autocorrelation times are about 3. We spend about 4% of the time in the zeroth
order diagram, and close to 40% of the time in fourth order, although the code has occasionally
gone to 16th order. So we sampled over quite a large Hilbert space and the code performed
very well. There is no reason to optimize further.

At low temperature and strong magnetic field in the z-direction ( β = 10, Γ = 0.05, h= 0.4
and same runtime parameters as before) the autocorrelation times are also about 3. The error
bars on 〈σz〉 are typically an order of magnitude smaller than in the case Γ � h, which is
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explained by the fact that our basis is better suited. The error bars on 〈σx〉 are only slightly
larger than before. In other words, the code is still behaving as expected.

At high temperature ( β = 0.1, Γ = 0.2, h = 0.2 and same runtime parameters as before)
the magnetization along either direction is about −0.08 and hence very weak. Perhaps sur-
prisingly, we see that the error bar on 〈σz〉 is of the order of 0.04, which is 50 times larger
than the error bar on 〈σx〉 and one to two orders of magnitude larger than what we had at low
temperatures – whereas low temperatures should be much more difficult to simulate. This is
also reflected in the integrated autocorrelation times, which are about 8,000 (it could well be
worse because it is not clear if the code has converged) for the magnetization along the z-axis
and only∼ 1 along the x-axis. Physically, the system has rotational symmetry in spin space, but
this is clearly not respected in our updating procedure. As expected, the code spends 99.98%
of the time in the zeroth order diagram and the acceptance ratio for our INSERT-REMOVE up-
dates is 0.02%. What could be the reason for such bad autocorrelation times in an essentially
non-interesting regime? The world-lines are 99.98% of the time straight world-lines but the
up and down orientations are almost equally probable because of the high temperature. Our
current update scheme only allows one to change the orientation of the magnetization via the
insertion of kinks, which is highly inefficient at high temperature. To cure this problem, we
add another update SPIN-FLIP which, for simplicity, is only allowed in the zero-vertex sector
and which attempts to swap between the up and down orientations of the spin. Adding this
update cures the problem. It is good practice to keep the code as simple (and local) as possible,
and to optimize or write extra updates only in case problems pop up.

With this we close the discussion on sampling continuous variables and different expansion
orders and proceed to the main part.

3 Fröhlich polaron: bare expansion for the Green function

The Fröhlich polaron problem describes the interaction between an itinerant electron and
longitudinal, optical phonons. Historically, it was the first problem to which diagrammatic
Monte Carlo was applied [12, 13, 24] for which it could provide definite answers regarding
the polaron spectrum and arbitrarily precise polaron energies for any coupling strength. The
Hamiltonian for a system in a volume V is given by

H = Hel +Hph +Hel−ph ,

Hel =
∑

k

(ħhk)2

2m
a†

kak ,

Hph =
∑

q

ħhωqb†
qbq = ħhωph

∑

q

b†
qbq ,

Hel−ph =
∑

k,q

V (q)(b†
q − bq)a

†
k−qak ,

V (q) = i
ħhωph

q

�

4πα
V

�1/2
�

ħh
2mωph

�1/4

. (12)

The operators ak and bq are annihilation operators for electrons of mass m with momentum
k and phonons with momentum q, respectively. The phonon frequency ωq = ωph can be
taken momentum-independent for optical, longitudinal phonons. The dimensionless coupling
constant is α. Typical values for α vary from 0.023 for InSb over 0.29 for CdTe to 1.84 for
AgCl (and are thus rather weak) [25]. We will work in units ħh = m = ωph = 1 and take the

continuum limit 1
V

∑

q→
∫ d3q
(2π)3 .
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It is not the purpose of these notes to give an overview of the physics of the Fröhlich
polaron, whose thermodynamics is now well understood (but questions remain for transport).
We refer to the lecture notes by J. Devreese [25] for a pedagogical introduction. The basic
competition in the model is between the electron kinetic energy trying to delocalize the particle
and the phonons trying to localize it. The system can lower its energy by dressing the electron
with phonons, resulting in the formation of a polaron. Its residue can be very low and the
effective mass very high, but the polaron is never fully localized or fully self-trapped; there is
hence no transition in this model.

For historical importance and to illustrate the connection with path integrals, let us remark
that the Hamiltonian is quadratic in the phonon propagators, which can hence be integrated
out. This results in a retarded one-particle propagator for the electron,

〈0,0|0,β〉=
∫

Dr(τ)exp

�

−
1
2

∫ β

0

ṙ(τ)2dτ+
α

23/2

∫ β

0

∫ β

0

e−|τ−σ|

|r(τ)− r(σ)|
dτdσ

�

, (13)

where |r,τ〉 is in the basis of position and imaginary time. Thus, Eq. 13 conveys the intuitive
idea of obtaining the probability amplitude for an electron to return to its initial position
after an imaginary time evolution up to inverse temperature β by integrating over all possible
trajectories (‘paths’) through imaginary time.

This path integral expression served as the basis of Feynman’s variational ansatz [26]which
is remarkably accurate for the polaron energy for all coupling strengths. This path integral is,
because of the retarded self-interaction, not as easy to simulate as the two-level system of the
previous section, and will hence not be used for actual computations.

The structure of this section is as follows: We start with reviewing the necessary field-
theoretical formulas to study quasi-particle properties, followed by the description of the al-
gorithm used to simulate the polaronic Green function using a bare expansion. Next, we show
some results that can be obtained with this code. In the following section the self-energy is
computed using the bare expansion, with special emphasis on Fourier transforms and an illus-
tration for the first-order diagram. Finally, the bold expansion of the self-energy is introduced,
again splitting the discussion between the first-order diagram and higher order ones.

3.1 Digest of many-body theory

The central object of our analysis is the full single-particle Green function, which is related to
the bare Green function G0 and the self-energy Σ via the Dyson equation as

G−1(k,ωn) = G−1
0 (k,ωn)−Σ(k,ωn). (14)

For the polaron problem, we will work at zero temperature. To avoid instabilities due to poles,
it is more convenient to work in imaginary time than with Matsubara frequencies ωn in the
sampling. For impurity problems, the bare Green function is just

G0(k,τ) = −θ (τ)e−(εk−µ)τ, (15)

with θ (·) the Heaviside function, εk =
k2

2m the dispersion, and µ an energy shift which is used
as a tuning parameter (see below). In Matsubara representation the bare Green function takes
the form

G0(k,ωn) =
1

iωn − (εk −µ)
. (16)

The full Green function will have a pole at iωn = Ek−µwhere Ek is the self-consistent solution
to

Ek = εk +Σ(k, Ek −µ) = εk +

∫ ∞

0

Σ(k,τ)e(Ek−µ)τdτ, (17)
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G0(k,τ)

k0 τ

D(q,τ)
q

0 τ

V (q)

k k− q

q
V ∗(q)
−q

k k− q

Figure 4: Bare diagrammatic elements for the Fröhlich polaron. From left to right, shown are
the bare Green function, the phonon propagator, and the 2 vertices where a phonon is emitted
(absorbed) causing a shift of the electron momentum.

given that the imaginary part of Σ(k, Ek − µ) vanishes. We may then expand the self-energy
around the pole position,

Σ(k,ωn) = Σ(k, Ek −µ) + ∂iωn
Σ(k, Ek −µ) (iωn − Ek +µ) +O (|iωn − Ek +µ|2), (18)

allowing us to rewrite the full Green function approximately as

G(k,ωn) =
1

iωn − (εk −µ)−Σ(k,ωn)
≈

Zk

iωn − (Ek −µ)
(19)

with the quasi-particle residue

Zk =
1

1− ∂iωn
Σ(k, Ek −µ)

=

�

1−
∫ ∞

0

τΣ(k,τ)e(Ek−µ)τdτ

�−1

. (20)

The approximation Eq. 19 holds as long as the quasi-particle pole is sufficiently far away from
the dissipative continuum, the separation to which we call∆. Transforming back to imaginary
time, the quasi-particle energy Ek and residue Zk (which is the modulus squared of the overlap
between the quasi-particle state and the free electron state) can be extracted from the large τ
behavior of the full Green function under the same assumptions,

G(k,τ)→−θ (τ)Zke−(Ek−µ)τ for τ�∆−1. (21)

We will solve the problem of obtaining Σ(k,τ) for fixed µ by diagrammatic Monte Carlo
and are left with the task of finding Ek such that Eq. 17 is satisfied. This can be done by a
root-solving algorithm in combination with one-dimensional integration. When Ek is found
self-consistently, Eq. 20 determines the corresponding residue. The dispersion of the quasi-
particle is given by analyzing E(k) as a function of k.

3.2 Algorithm

The simplest way to solve the Fröhlich polaron problem is by considering the bare expansion
of the full green function by using the expansion elements shown in Fig. 4. This was also
presented in the original solution by Prokof’ev and Svistunov [12]. Wick’s theorem tells us
that there can be no unpaired phonon creation and annihiliation operators, i.e., all phonon
operators pair into ‘arcs’, the number of vertices is always even and V (q) in Eq. 12 only enters
as a product with its complex conjugate. Graphically, the expansion is illustrated in Fig. 5. We
can label the expansion order by counting the number of phonon propagators. In order n there
are n phonon propagators, 2n vertices and 2n+1 impurity Green functions. Our task consists
of sampling over all possible diagrams for the Green function G(k,τ), i.e., sample over all
possible expansion orders n, all allowed topologies, and integrate over all internal momenta
qi , i = 1, . . . , n, and vertex times τ j , j = 1, . . . , 2n.
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k k0 τ

Figure 5: Bare expansion of the full Green function G(k,τ) for the Fröhlich polaron. A non-
interacting Green function is denoted by a thin full ‘backbone’-line, a phonon propagator by
a dashed arc and a vertex by a dot. The expansion order n is given by counting the number
of arcs (here, n = 4). Only connected diagrams are considered. This diagram is a typical
example of a ‘configuration’ whose weight is the product of the weights of the composing
Green functions, vertices and phonon propagators.

Every Feynman diagram is a valid Monte Carlo configuration, with a weight that factorizes
into the product of the individual electron propagators G0(k,τ), phonon propagators

D(q,τ) = exp(−ωphτ) (22)

and vertices. It is convenient to absorb the 1/q vertex dependence into the phonon propagators
D̃(q,τ) = D(q,τ)/q2 and constants into the coupling constant α̃2 = 2πα

p
2, see Eq. 12 and

our choice of units.
As an example, the full expression for the weight W (2)

c of the second order diagram with
crossing phonon lines (one of the three possible topologies in second order) reads

W (2)
c (p,τ) = −

p p1

q1

p2

q2

p3 p0 ττ1 τ2 τ3 τ4

(23)

= −α̃4

∫ τ

0

dτ1

∫ τ

τ1

dτ2

∫ τ

τ2

dτ3

∫ τ

τ3

dτ4

∫

d3p1

(2π)3

∫

d3p2

(2π)3

× G0(p,τ1)G0(p1,τ2 −τ1)G0(p2,τ3 −τ2)G0(p3,τ4 −τ3)G0(p,τ−τ4)

× D̃(q1,τ3 −τ1) D̃(q2,τ4 −τ2). (24)

Here p and τ are the external momentum and time, respectively. The independent momenta
are chosen as p1 and p2, whereas q1 = p−p1, q2 = p1−p2, and p3 = p2+p−p1 = p−q2 follow
through momentum conservation. The factorization of the weight into bare Green functions
and phonon propagators is now manifest. The extension of such explicit analytical formulas
to higher order is however cumbersome in comparison to drawing the Feynman diagrams.

We proceed therefore to how the diagrammatic Monte Carlo sampling can be performed.
The updating scheme discussed below differs from the one introduced originally by Prokof’ev
and Svistunov. Using the freedom which every designer of a Monte Carlo procedure has, we
seek the simplest set of updates that is ergodic and remains as local as possible. By locality we
mean that the number of changes to the current configuration is minimal and only involves
one diagrammatic element plus its adjacent elements.

External variables – Because of the spherical symmetry of the Hamiltonian, we can choose
the orientation of the external momentum k to be along the x-axis as (k, 0, 0), in which case
the full Green function is a two-dimensional object in (k,τ) space. We can predefine a set of
external momenta k j for which we compute G. The simplest choice is a uniform grid, k j = j∆k
with∆k = kmax/Nk where kmax the momentum cutoff and Nk the number of momentum points.
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kτL τR

REMOVE
(−−−−−−−−+

INSERT k k− q

q

kτL τRτ1 τ2

Figure 6: Illustration of the INSERT-REMOVE pair of updates.

Other choices for the grid are possible and perhaps even better because for low momenta we
expect a dispersion akin to k2/(2m∗)with m∗ the effective mass of the polaron, which suggests
that a quadratic grid might be better. We will not go into further detail. The same procedure
can be applied for the external time τ. Let us follow here another approach and consider τ to
be a continuous coordinate between 0 and τmax, which we bin into a uniform grid of bin length
∆τ at the expense of a small systematic discretization error O (∆2

τ) if we use the discretized
τ j = ( j + 1/2)∆τ. A logarithmic grid might be a better choice given Eq. 21 (from experience
we know that it does not really matter at this stage).

Normalization – We choose the zeroth order diagram for normalization, which is just the
bare propagator G0. Because of the updates CHANGE-P and CHANGE-TAU (see below) the
total normalization integral isN = −

∑

p j

∫ τmax

0 G0(p j ,τ)dτ. All quantities in the Monte Carlo
sampling can be normalized by multiplying with N /C0 where C0 counts how often we are in
the zeroth order diagram. This can be seen as follows: The estimator for the normalization
diagram is

〈δnorm〉MC∝−
∑

{p j}

∫ τmax

0

G0(p j ,τ)dτ. (25)

The estimator for the full Green function is



EG(p j ,τi)
�

MC∝ δτ∈bini
δp j ,pk

, (26)

where we used that G(p j ,τi) =
∑

pk

∫ τmax

0 G(pk,τ)δ(τ− τi)δp j ,pk
dτ and all τ residing in the

bin i are taken together in entry τi (it is possible to improve on this by computing the ratio
G(p j ,τi)/G(p j ,τ) , although there is seldomly a need for that). The proportionality constant
drops out when normalizing

G(p j ,τi) = −




EG(p j ,τi)
�

MC

〈δnorm〉MC
N /∆τi , (27)

with ∆i the volume of the time-bin i. The same normalization can be applied to other quan-
tities of interest such as the bare Green function and the first-order Green function.

CHANGE-P – This update is only allowed if the expansion order is 0. In this update,
which is its own reverse, we uniformly select a new p j from the set of allowed external mo-
menta and accept it according to the Metropolis algorithm as min[1, r] with acceptance factor
r = G0(pnew

j ,τ)/G0(pold
j ,τ). We can also opt to keep the external momentum fixed in a single

run.
CHANGE-TAU – This update is only allowed if the expansion order is 0. In this update,

which is its own reverse, we select a new external time τ using an exponential distribution. If
the dispersion is ξp = εp−µwith p the external momentum and u a random number uniformly
chosen between [0, 1[, then we construct τ= − ln u/abs(ξp) and accept it as the new external
time of the diagram if τ < τmax.

INSERT – This update attempts to increase the number of phonon propagators by one
(its reverse is REMOVE, see below and Fig. 6) and is constructed as follows: Select a ran-
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k− q1

q1

k k− q2

q2

τ1 τ2
�

k− q1

q1

k′

q2

k− q2

τ1 τ2

Figure 7: Illustration of the SWAP update. The phonon propagators carrying momentum q1
and q2 are understood to connect back to the fermion line at vertices at times τA and τB,
respectively. τA and τB may each be either before or after τ1 and τ2. After the update, the
central fermion propagator carries a momentum k′ = k− q1 − q2.

dom electron propagator and identify its left and right endpoints. Let us call this propa-
gator G0(k,τR − τL). Select with uniform probability a time τ1 ∈]τL ,τR[, which serves
as the time of the left vertex of the new phonon propagator. The time τ2 is obtained as
τ2 = τ1 − ln u/ωph with u ∈]0,1[ chosen uniformly. If τ2 > τR the update is rejected. The
three components of the momentum q are obtained from the Box-Müller algorithm as a gaus-
sian random number with mean 0 and variance m/(τ2−τ1). The acceptance factor is given by
r =W (Y )P(Y → X )/W (X )P(X → Y ) where X stands for the old configuration and Y for the
new one, W (·) for their respective weights, and P(·) for their a priori transition probabilities.
They are given by

W (X ) = −G0(k,τR −τL) ,

W (Y ) = −α̃2G0(k,τ1 −τL)G0(k,τR −τ2)G0(k− q,τ2 −τ1)

×D̃(q,τ2 −τ1)dτ1dτ2
d3q
(2π)3

,

P(X → Y ) = pINS
dτ1

τR −τL
ωphe−ωph(τ2−τ1)dτ2

e−
q2

2m (τ2−τ1)d3q
(2πm/(τ2 −τ1))3/2

,

P(Y → X ) = pREM
1

Narcs + 1
. (28)

Here, pINS and pREM are the probabilities to select the INSERT and REMOVE probabilities,
respectively. Note in particular that all differentials cancel in the acceptance factor r. The
reader notices that further cancellations occur in the acceptance factor such as the electron
propagators between τ1 −τL and τR −τ2, as well as any µ-dependence. Those cancellations
are only exact if function calls are used; for tabulated objects in combination with interpolation
techniques there are tiny deviations from these cancellations.

REMOVE – This is the reverse update of INSERT. We uniformly select a phonon arc and
check if its vertices are consecutive elements in the time ordered confiugration (see P(Y → X )
above). If this is not the case, the update is rejected. The acceptance factor is the inverse of
the one determined above for the INSERT update.

SWAP – The INSERT and the REMOVE update allow to change the expansion order
but are insufficient to generate all possible topologies because they do not allow phonon
arcs to cross. The SWAP update allows one to change the topology within a given expan-
sion order n ≥ 2. With the notation of Fig. 7 we randomly select a vertex excluding the
last one. If it has a time τ1 and the next one a time τ2, we attempt to swap the end
points of their respective phonon propagators. In order to conserve momentum at every
vertex, the momentum of the electron propagator between τ1 and τ2 changes – in line
with our design criterion of finding updates that are local. The acceptance factor is given
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by r = W (Y )/W (X ) with W (X ) = −G0(k,τ2 − τ1)D̃(q1, |τ1 − τA|)D̃(q2, |τ2 − τB|) and
W (Y ) = −G0(k′,τ2 −τ1)D̃(q2, |τ1 −τB|)D̃(q1, |τ2 −τA|).

EXTEND – Although this update is not needed for ergodicity, it is a useful one to improve
the sampling. It changes the duration of the rightmost electron propagator in a similar fashion
as the CHANGE-TAU update.

3.3 Implementation

The number of diagrams grows as (2n−1)!!= (2n−1)(2n−3) . . .. Only the lowest expansion
orders can be evaluated explicitly, but the Monte Carlo algorithm manages to sample over
the most important contributions in any order. The parameter µ requires some finetuning: Its
magnitude needs to be sufficiently large such that the full Green function decays exponentially.
The closer µ is chosen to the unknown polaron energy E0 (i.e., |µ| ¦ |E0|) the less rapid this
decay will be and the more accurate the fit (cf. Eq. 21) can be performed. For sufficiently
strong α, and µ chosen closely to E0, the expansion order can be 100 or more.

Other authors prefer the use of a cyclical implementation [13] instead of a backbone line.
The aim is to treat the electrons and the phonons on equal footing. It is also the structure
that naturally arises at finite temperature. At zero temperature, we see little advantages for
polaron problems and have not used cyclical diagrams in our codes.

3.4 Data structure

Let us now discuss the data structure. There are various equivalent ways to store the diagram.
E.g., one may either (i) store the intervals between the emission and absorption of a single
phonon along with its momentum, or (ii) one opts to store the vertices. We choose the latter
approach. The necessary information needed to specify a vertex are its time, a pointer to the
vertex that it connects to via the phonon propagator, the phonon momentum and at least one
momentum interacting at the vertex such that all momenta can be inferred from momentum
conservation. If we choose, say, to store only the phonon momenta, all electron momenta in
the diagram can be computed from the given external electron momentum and by invoking
momentum conservation at every vertex, but this is obviously a costly operation scaling linearly
with the number of vertices. In the present implementation we decided to redundantly store all
three momenta at each vertex for reasons of simplicity and memory-locality. A configuration
is then specified by a time-ordered collection of such vertex objects.

When choosing the data structure, one should be conscious of the operations required
by the update scheme and their respective complexity. Obviously, the ability to INSERT and
REMOVE vertices efficiently while retaining the time ordering as well as the ability to seek
forward and backward along the electronic backbone line are crucial, thus ruling out plain
contiguous array-like data structures. Likewise, the INSERT update needs to randomly pick an
electron backbone segment, the REMOVE update randomly picks a phonon propagator, and
the SWAP update randomly selects a pair of adjacent vertices. All three of these ultimately
draw a vertex uniformly from the set of all vertices (or in case of SWAP from all but one).

We implemented a number of different data structures to meet these requirements to vary-
ing degrees and gauge their impact.

1. A doubly-linked list as provided in C++ by std::list satisfies the first criterion with
O (1) insertion and removal but requires one to start at the beginning and iterate through
the list to reach a randomly picked vertex, thus resulting in O (N) scaling (with N the
number of vertices).
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Figure 8: Benchmark of different diagram data structures. To provoke large expansion orders,
α= 1 has been used and imaginary times reached as far as τmax = 250. The chemical potential
has been tuned from very close to the polaron energy, µ = −1.02 (high expansion order), to
µ= −1.2 (low expansion order).

2. A self-balancing binary search tree, e.g. an AVL or red-black tree, provides O (log(N))
insertion and removal and in principle also allows for true random access of an ordered
sequence in O (log(N)) when nodes keep track of the number of nodes in their subtrees.
Search trees will automatically enforce ordering which we however do not benefit from
as the update scheme is designed in a way that retains time ordering anyway. While
std::map is usually implemented in terms of binary search trees, it cannot be used
off-the-shelf here as it hides its tree implementation and does not allow for the kind of
additional bookkeeping required to achieve fast random access. For testing, we imple-
mented an AVL search tree with a function to randomly access elements by index.

3. A doubly-linked list may be combined with a contiguously stored array (a
std::vector) of iterators to the list elements that serves as a lookup table. Upon inser-
tion, an iterator to the newly created list element is pushed to the back of the array. The
list element is likewise tagged with the index of its iterator in the array. When removing
a list element, its iterator in the array swaps places with the last one (updating the tag
of its list element) before it is popped. This procedure retains the O (1) complexity of
insertion and removal operations and keeps an up-to-date array containing iterators to
all the list elements contiguously, albeit not in time order. Thus, we do not get proper
random access but gained the ability to pick a random element in O (1). Care has to be
taken when applying this to the SWAP update.

The performance impact of the choice of data structure depends on the average order that
is reached in the course of the simulation which in turn depends on the system parameters.
In our benchmark, Fig. 8, we decided to keep α = 1 fixed and vary the chemical potential to
probe a number of mean expansion orders.

In situations where the average order was below 10, the search tree (implemented as
an AVL tree) performed badly compared to the list-based data structures due to the added
overhead. It would only become a feasible alternative outperforming the plain list when orders
beyond 40 were reached as can be seen from Fig. 8. In contrast, the list-array combination
barely shows any scaling with the diagram order and was consistently faster than the plain
list indicating that the overhead added due to the lookup array is very light. For models with
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a sign problem where only low expansion orders can be reached, it does not matter how the
data structure is implemented.

3.5 Error bars

The estimation of the error bars on the Green function is complicated by the fact that the nor-
malization itself is estimated from the same simulation. We employ the jackknife resampling
technique to account for that. This requires knowledge of the time series. Sampling after ev-
ery single update would result in excessive memory demand and post-processing time due to
many highly-correlated samples and negate the efficiency of the local update scheme. Thus,
we group updates into bunches of Nloop elementary updates. After each elementary update,
we increment histograms for the Green function, the zeroth order counter used for normal-
ization, etc. After Nloop elementary updates, the histograms are measured, i.e. recorded in
the time series, and subsequently reset. The choice of Nloop can be guided by the estimated
autocorrelation time obtained from a binning analysis.

Within the framework provided by the ALPSCore library (cf. Sec. 6), we chose to rely
on the FullBinningAccumulator to perform the above binning analysis for us. Further,
any derived quantities calculated from the observables are automatically resampled using the
Jackknife method.

3.6 Results

For α= 1.0, µ= −1.2 and a runtime of about 1 minute on a single core laptop one can extract
the polaron energy with an accuracy better than a percent. Stronger couplings are a little bit
harder to simulate: We show the Green function for α = 5, µ = −6 and zero momentum
in Fig. 9a. By fitting the exponential tail according to Eq. 21, one can extract the polaron
energy (E0 = −5.55) and residue (Z = 0.032). Here, the fit took data from τfit = 5 onwards
into account. However, for µ = −6 the Green function decays rather quickly. This limits the
maximum time that can be accessed with reasonable accuracy. Additionally, when taking the
error bars into account in the fit, the data close to τfit impact the fit more strongly due to
their higher accuracy. This leads to a heightened sensitivity towards systematic errors from
the non-asymptotic fast initial decay with respect to the choice of τfit.

In order to get a more reliable estimate of the polaron energy, we tuned the chemical
potential to achieve longer imaginary times along with a less severe growth of the error bars.
Choosing µ = −5.6 (Fig. 9b), τ = 40 was accessible, allowing us to probe the asymptotic
regime over time scales many times that of the initial fast decay. The inset in Fig. 9b displays
results for the polaron energy estimated from fits with different τfit. This has been done for
the data from each of the 28 independent MPI processes to yield an error on that estimate. It
can be seen that after an initial influence from the non-asymptotic onset, the results beyond
τfit = 5 stay consistent within their error bars. Our final result reads E0 = −5.5498± 0.0021
and Z = 0.03215± 0.00084. The polaron energy was thus found with a relative accuracy of
0.04 % at modest computational effort.

The polaron energy is remarkably close to the value predicted by Feynman’s variational
ansatz despite the rather strong coupling α = 5. Feynman’s trial action is parametrized by
parameters v and w, the latter of which was assumed to have only a mild influence on the
end result [26]. Feynman then optimized for v at fixed w, treating parts of the integrals ap-
proximately. From the expressions he gave in the strong-coupling regime, we find E0 = −5.33
(for w = 1) and E0 = −5.39 (for w = 3). With today’s readily available numerical integration
and optimization tools, we also optimized for v and w simultaneously without taking any ap-
proximations to the integrals. This results in an improved variational energy of E0 = −5.44
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Figure 9: Logarithm of the Green function ln(−G(p = 0,τ)) as a function of imaginary time
τ for α = 5 and different values of µ. Error bars are indicated by the shaded area. The
exponential decay of the Green function is fitted starting from τfit = 5 in order to obtain the
polaron ground state energy and its residue, cf. Eq. 21. The inset in panel (b) shows the
polaron energy (computed from the slope of the fit) for different fit windows [τfit, 40]. Error
bars on these data have been obtained by considering 28 independent simulations. One can
see that τfit = 5 is sufficiently great to probe the asymptotic regime. We switched off the
CHANGE-P update and used a uniform grid in the τ-direction. The code ran for 36 (a) and
467 (b) CPU-hours with the number of updates totalling 1012 and 1013 respectively.

(v = 4.03, w = 2.14). Thus, our Monte Carlo estimate is 2 % lower, in accordance with the
variational principle.

The dispersion for α = 1 is shown in Fig. 10. In this calculation we recalculated one of
the first hallmarks of DiagMC [12]. It shows that the perturbative result incorrectly predicts
an endpoint to the dispersion, whereas the DiagMC results show that the binding energy can
be seen up to zero energy. In passing we note that other formula for the computation of
the effective mass and the group velocity exist, see Ref. [13, 24]. The histogram over the
expansion orders for α = 5 is shown in Fig. 11. For large enough expansion orders n, H[n]
decays exponentially. The acceptance factors are about 5% for INSERT and REMOVE and 29%
for SWAP. Those numbers are acceptible. If deemed too low, or if the frequency of visiting the
normalization diagram is too low, reweighting and flat histogram techniques should be used.

4 Fröhlich polaron: self-energy

It is often advantageous to compute the self-energy instead of the full Green function and re-
sort to the Dyson equation (Eq. 14) to obtain the latter. However, a Fourier transform from
imaginary times to (Matsubara) frequencies is needed to cast the Dyson equation in algebraic
form; otherwise, it is a convolution. Below we first discuss how to perform such Fourier trans-
forms by considering the first-order diagram, and then proceed with the diagrammatic Monte
Carlo computation of the full self-energy. In this text, the self-energy is always understood as
the one-particle irreducible self-energy [5].
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was historically one of the first successes of DiagMC [12].
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Figure 11: Histogram over the expansion orders for the same system as in Fig. 9.

Σ(1)

↔

G(1)

Figure 12: The first-order self-energy Σ(1) and one of the terms in the corresponding Green
function G(1).
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Figure 13: Computation of the Green function G(1)(p = 0,τ) via the first-order self-energy.
The result is shown for different number of Matsubara frequencies (powers of 2 are indicated)
and compared to the result where G(1)(p = 0,τ) is directly sampled (cf. Sec. 3 with minor
modifications: the INSERT update is only allowed on the final electron propagator (which has
zero phonon coverage) and REMOVE can only remove the last phonon arc. The SWAP update
is disabled). The error bars on the latter correspond (or are smaller than) the line width. The
inset shows a zoomed-in version of the last-time region. Error bars on a subset of the data
sampled from the bare expansion are shown.
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Figure 14: Same as in Fig. 13 but instead of the self-energy we compute the convolution
(Σ ? G0)(τ) for p = 0, which behaves as ∼

p
τ for τ→ 0. Compared to Fig. 13, treating the

divergence of the self-energy more carefully allowed us to substantially reduce the required
number of Matsubara frequencies.
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4.1 Fourier transforms explained for the first-order self-energy

The first-order self-energy is shown in Fig. 12 together with the Green function related to this
diagram via the Dyson equation. The first-order self-energy can be computed analytically for
zero external momentum,

Σ(1)(p = 0,τ) = −
α̃2p2m

4π3/2
p
τ

e−(ωph−µ)τ. (29)

When applying Eq. 17 and using a root solver, we find that the polaron energy is given by
E(1)0 = −2.6258286 for α = 5 in our units. The first-order self-energy for non-zero external
momenta can be computed as,

Σ(1)(p 6= 0,τ) = −
α̃2e−(ωph−µ)τ

p

� m
2πτ

�3/2
∫ ∞

0

dr sin(pr)e−
mr2
2τ

= −
α̃2e−(ωph−µ)τ

p

� m
2πτ

�3/2�2τ
m

�1/2

F
�

p
s

τ

2m

�

, (30)

where F is the Dawson function, F(x) = e−x2 ∫ x
0 e y2

d y . For small values of the argument, it
behaves as F(x) ≈ x − 2x3/3. For large values of x , it behaves as F(x) ≈ 1/(2x) + 1/(4x3).
This formula for Σ(1)(p 6= 0,τ) is the Fourier transform of the self-energy in real space
Σ(1)(r ,τ) = G0(r ,τ)D̃(r ,τ), with

G0(r ,τ) = −θ (τ)
� m

2πτ

�3/2
e−

mr2
2τ +µτ, (31)

and

D̃(r ,τ) =
α̃2e−ωphτ

4πr
, (32)

which can be seen as a retarded Coulombic-like potential.
In principle, all we need to do is apply the Dyson equation (Eq. 14) and Fourier transform

G(1)(p,ω) back to the imaginary time domain. However, as we will see, this must be done
very carefully.

Shape of the self-energy – The most important observation is that the self-energy diverges as
1/
p
τ for τ→ 0 for any p. This is in fact quite a common situation in continuous space, origi-

nating from the momentum integral over the bare electron Green function. The first-order self-
energy very often has limits that need to be analyzed analytically. Is this divergence a problem?
On the one hand, any integral

∫ ε

0 Σ
(1)(p,τ)dτ is convergent; in particular, there is no problem

with the existence of a proper Fourier transform. On the other hand, a Taylor expansion of the
self-energy around the middle of the τ-bin shows that the binning process has uncontrollable
systematic error bars for sufficiently small values of τ→ 0. The solution is not difficult: One
can choose to refrain from sampling and compute the self-energy analytically for fixed, dis-
crete τ j values, thereby circumventing the binning issue. If this is not an option and sampling
remains essential, then one should make a measurement of Σ̃(1)(k,τ) = Σ̃(1)(k,τ)

p
τ, which

is a featureless function of τ. Whenever the discretized Σ(1)(k,τ j) is needed, it is obtained
from Σ̃(1)(k,τ j)/

p

τ j . Unfortunately, this is not the only problem associated with the 1/
p
τ

divergence as we will see in the discussion on the Fourier transforms.
Fourier transforms – One of the most fundamental differences between classical mechanics

and quantum mechanics is the occurrence of non-commuting operators in the latter, which in
turn leads to the time ordering inherent to quantum field theory. This is already apparent from
the Heaviside θ (·) function in Eq. 15. It has the following frequency representation

θ (t) =

∫ ∞

−∞
dω

eiωt

ω− i0+
dω. (33)
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It is this behavior which explains the structure in Eq. 16. Note that the coefficient of the
1/(iωn) term in Eq. 16 is exactly 1 (which is identical to the jump in the Green function for
τ= 0+ and τ= 0−) thanks to the (anti-)commutation relations of bosonic (fermionic) annihi-
lation and creation operators [5]. Therefore, the same asymptotic behavior 1/(iωn) holds not
only for G0 but for any Green function G. In the inverse Fourier transform G(k,ωn)→ G(k,τ),
brute force summing (or integrating) over all frequencies in the hope of restoring the Heavi-
side θ (·) function is hopeless. One therefore needs to treat the large-frequency tails carefully.
At finite temperature, Fourier transforms assume that the function can be periodically contin-
ued, which is likewise violated. The easiest solution is to (i) only use the analytic formulations
Eq. 15 and Eq. 16 for the bare Green function, and (ii) never perform a Fourier transform
on any full Green function G but only on differences δG = G − G0. In doing so, the leading
asymptotic frequencies are compensated as well as the discontinuity in imaginary time taken
care of. It is also possible to treat the 1/(iωn)2 in the same fashion: Its coefficient in frequency
space corresponds to the (sum of the) slope(s) of the Green function at τ = 0+ (and τ = 0−)
in imaginary time.

In the literature one can also find formulas for the 1/(iωn)3 term, but we have never seen
a case where this is necessary for the success of the calculation.

When we rely explicitly on the jump being 1 in G between τ = 0+ and τ = 0−, we
need to make sure in the Monte Carlo sampling that we choose τmax large enough such that
G(k,τmax) ≈ 0 since by construction we have G(k, 0) = −1. As we have seen before, this
means that τmax must be quite large when µ is chosen close to the polaron energy E0. The
region where Σ(1)(p = 0,τ) is sizable may well appear smaller than this. Let us now use the
imaginary-time and Matsubara formalisms for the Fourier transforms; specifically,

Σ(p,ωn) =

∫ β

0

Σ(p,τ)eiωnτdτ, (34)

δG(p,τ) =
1
β

n=∞
∑

n=−∞
δG(p,ωn)e

−iωnτ, (35)

with the Matsubara frequencies ωn =
2nπ
β for bosons and ωn =

(2n+1)π
β for fermions. Here,

we have introduced a fictitious inverse temperature β = τmax to impose the discretization in
frequency space. A single electron obviously has no statistics, so we can use either bosonic or
fermionic frequencies, or justωn =

nπ
β – it should not matter as long as we use a transformation

that turns the Dyson equation into an algebraic equation. From the Dyson equation δG(p,ωn)
can be written as

δG(p,ωn) =
G0(p,ωn)Σ(p,ωn)G0(p,ωn)

1− G0(p,ωn)Σ(p,ωn)
. (36)

Observing the decay of G(p,τ) over many decades (as a function of τ) requires in turn a
huge number of Matsubara frequencies. The naive implementation of the Fourier transform
scales as O (N2) where N is the number of points in the time/frequency domain and becomes
too costly. Although alternative approaches exist [27], let us explain here how fast Fourier
transforms (FFT) can be used, with a scaling as O (N log N). For simplicity and efficiency, we
rely on the open source package FFTW [28]. Although our input data is real (impyling that
G(p,ωn) = G∗(p,−ωn)) and we could use the function calls r2c and c2r (cf. the FFTW
documentation; we could save a factor 2 in storage) we consider this advantage negligible
and use instead the easier function call dft for complex input and output. At this point the
reader should keep in mind that FFT is only a tool for solving the equations Eq. 34 and Eq. 35.
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It performs

Yk =
N−1
∑

j=0

X je
−i2π jk/N ,

X j =
N−1
∑

k=0

Ykei2π jk/N , (37)

between input data X and output data Y , and this is not identical to Eqs. 34 and 35. Recall
what FFT really computes (cf. the FFTW documentation): first, the phase used in the for-
ward (backward) Fourier transform corresponds to the backward (forward) sign convention
in Eqs. 34 and 35; second, the forward transform immediately followed by the backward trans-
form multiplies the input by N ; and third, the positive frequencies are stored in the first half
of the output and the negative frequencies are stored in backwards order in the second half of
the output.

FFT assumes an equidistant grid where the input data are located exactly on the grid points.
If we need more Matsubara frequencies than we have grid points in imaginary time, or if
we use a non-uniform grid, we need interpolation methods. In practice, quadratic or spline
interpolation is used. After binning the data for the self-energy, we have discretized values
τ j = ( j + 1/2)∆τ (in order to avoid τ = 0 the same has to be done with Eq. 29); i.e., we
do not have the self-energy evaluated precisely on the grid points as FFT requires. If we
choose bosonic Matsubara frequencies ωn = 2πn/β , then this problem does not pop up for
the frequencies. Dropping the diagonal momentum index k to make the notation lighter, the
discretized form of Eq. 34 reads

Σ[n] =
N−1
∑

j=0

∆τΣ[ j]ei 2πn
β ( j+1/2)∆τ, (38)

with ∆τ = β/N . This is almost identical to what FFT can compute for us: Apart from mul-
tiplying the input Σ[ j] with ∆τ (the integration measure), the output self-energy of the FFT
must be multiplied by einπ/N for each positive frequency n = 0, . . . , N/2, and by −einπ/N for
each negative frequency n = N/2 + 1, . . . , N − 1. This operation needs to be undone when
δG(p,ωn)→ δG(p,τ) (and we should not forget the factor 1/β). In case of fermionic Matsub-
ara frequencies, a similar phase multiplication on the data in the time domain can be derived
(we leave the exact phase as an exercise).

The Green function corresponding to the first-order self-energy at zero momentum is
shown in Fig. 13. We see that the required number of Matsubara frequencies is prohibitively
large before agreement with the bare result is found; i.e., the systematic error of the trun-
cation in Matsubara frequencies dominates over the statistical error of the unbiased Monte
Carlo sampling of the bare Green function. The reason is that the nasty ∼ 1/

p
τ divergence

of the first-order self-energy leads by dimensional arguments to a 1/
p
ωn behavior, which de-

cays even slower than a Green function for large frequencies. One could treat this divergence
analytically (e.g., by Taylor-expanding the self-energy), or pursue the following approach:
First, notice that the 1/

p
τ divergence in Eq. 30 is to leading order independent of the mo-

mentum p (and hence identical to the p = 0 result). Second, notice from the Dyson equa-
tion Eq. 36 that it suffices to compute Σ(p,ωn)G0(p,ωn) corresponding to the convolution
(Σ(p) ? G0(p))(τ) =

∫ τ

0 Σ(p,τ′)G0(p,τ− τ′)dτ′ in imaginary time and which hence behaves
as ∼

p
τ for τ → 0. This cures the divergence but still has a divergent slope: When bin-

ning data over the sampled continuous variable τ we should still measure (Σ ? G0)(τ)
p
τ, as

mentioned before. Before performing the Fourier transform, we subtract

δΣ(p,τ) = Σ(p,τ)−Σ(p = 0,τ), (39)
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Figure 15: First order and higher orders of the self-energy Σ(p = 0,τ) for α = 5 and
µ = −6,−5.6, respectively. Error bars are indicated by the region shaded in gray. Both simu-
lations ran for 1330 CPU-hours each.

and compute analytically the convolution

ζ(p,τ) := (Σ(p = 0) ? G0(p)) (τ) = −
α̃2pm
(2π)3/2

e−(
p2

2m−µ)τ
∫ τ

0

e−(ωph−
p2

2m )τ
′

p
τ′

dτ′. (40)

For p2 < 2mωph the integral is I =
p

π/βerf(
p

βτ), with β = (ω − p2

2m). For p2 > 2mωph

the integral is I = 2F
�Æ

β̃τ
�

eβ̃τ
Æ

β̃ , with β̃ = ( p2

2m −ω). With these manipulations the Dyson
equation reads

δG(p,ωn) =
G0(p,ωn)(δΣ(p,ωn)G0(p,ωn) + ζ(p,ωn)

1− (G0(p,ωn)δΣ(p,ωn) + ζ(p,ωn)
. (41)

In this approach only (a few) thousand Matsubara frequencies are needed, mostly to accom-
modate the decay of the Green function over many decades, see Fig. 14.

4.2 Computation of the full self-energy

Compared to the code for the computation of the full Green function in the bare expansion,
a few minor modifications are needed for the evaluation of the self-energy Σ(k,τ). First, the
initial and final bare electron propagator have to be removed; the first vertex must have time
0 and the last one time τ. We can still use a bare propagator for normalization purposes, but it
obviously does not contribute to the self-energy measurement and is hence considered a fake
diagram. The transition between the fake sector and the first-order diagram is best done with
a separate update pair FROM-FAKE and TO-FAKE. INSERT and REMOVE allow one then to
switch between expansion orders n and n+1 for n≥ 1, but do not need further modifications.
The EXTEND update also needs to be slightly modified because the duration of the final phonon
propagator changes. Finally, in the SWAP update we need to check for one-particle reducibility:
in case an electron propagator is not covered by any phonon propagator, the diagram is one-
particle reducible, i.e., it would fall into two pieces when cutting this propagator line. A simple
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Figure 16: Energy estimation using the self-energy in imaginary time with φ(E), the right
hand side of Eq. 17. Same parameters are used as before (α = 5;µ = −6 and µ = −5.6,
respectively). The intersection point with the E′ = E line determines the polaron ground state
energy. It is marked for the case of µ= −5.6 and its error bars are given by the gray area.

check for one-particle reducibility is to compare the momentum of an electron propagator with
the external one. Because in the SWAP update only one electron momentum changes, this is
a very cheap test to perform. The required changes to the code are left as an exercise for the
reader. Note that, although the above is sufficient, the actual implementation that accompanies
this document uses elements (such as DRESS-VERTEX) of Sec. 5.3 for efficiency reasons.

The self-energy is shown in Fig. 15. One sees that the first-order self-energy diverges as
1/
p
τ for τ → 0 but decays rapidly for large τ. The higher order terms have a vanishing

contribution at τ = 0 but develop an exponential tail for large τ which is important for the
energy of the polaron. This figure shows that computing the convolution of the self-energy
with the bare Green function is optional for the higher order terms.

In Fig. 16 we show the estimation of the polaron energy from Eq. 17. The intersection
point of the right-hand side integral φ(E) =

∫∞
0 Σ(0,τ)e(E−µ)τdτ with the identity line E = E

determines the polaron ground state energy. We have sampled φ(E) in the Monte Carlo simu-
lation directly on a non-uniform grid of E-values centered around the polaron energy estimate
from the analysis of the Green function in the bare expansion (cf. Sec. 3.6). One could also
calculate φ(E) from the discretized self-energy in post-processing and find the intersection
point using a bisection scheme, albeit without the benefit of reliable error bars.

Note that the data are strongly correlated amongst different values of E resulting in a
relatively smooth appearance of φ(E) whereas the error analysis reveals that the errors are
indeed substantial. The integral over the first-order self-energy may be calculated analytically,
yielding φ(1)(E) = −α

Æ

m/(ωph − E), thereby treating the 1/
p
τ divergence exactly, while

the higher orders are integrated numerically from QMC data. However, we did not find any
significant discrepancy compared to taking the full self-energy.
φ(E) should be independent of the choice of µ and, indeed, the curves calculated from

simulations carried out at µ= −6 and µ= −5.6 coincide within their errors. However, like in
the bare expansion, choosing µ close to (but below) the polaron energy significantly reduces
the error as longer times can be accessed before the self-energy (Green function) decays. The
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= + Σ
(1)
B

Figure 17: Upper panel: The first-order self-energy Σ(1) in the self-consistent approximation
(known as the non-crossing approximation) and illustration of an included diagram in this
approximation for the self-energy. The double line denotes a full electron propagator. Lower
panel: the corresponding Dyson equation. In bold diagrammatic Monte Carlo one seeks a
self-consistent solution to the above two equations by stochastic means and (usually) some
iterative procedure.

locus of the intersection point has been interpolated. Any interpolation errors are bound to be
negligible compared to the statistical one. Propagating the error onto the intersection point,
we find E0 = −5.5497± 0.0042 or a relative error of 0.08%, in agreement with the analysis
from the bare expansion, Sec. 3.6. In contrast, for µ = −6, the result is E0 = −5.546± 0.016
which is significantly less accurate.

5 Fröhlich polaron: bold diagrammatic Monte Carlo

The sampling space can be further reduced when skeleton techniques are used. Graphically,
this corresponds to the notion of 2-particle irreducibility: The bold diagrams for the self-energy
do not fall apart when cutting any two electron propagator lines. Originally demonstrated
for a (linear) scattering problem [9], it was believed that non-perturbative physics can be
incorporated this way and that the series convergence could be better than for the bare series.
In case the bare series is absolutely convergent, the bare and the bold series must converge
to the same answer. The bold series for the Fröhlich Hamiltonian has merely a demonstrative
character: in case of a convergent sign-free sampling of the bare series, it makes little sense to
use anything more complicated.

5.1 First-order self-consistent diagram: non-crossing approximation

Let us first illustrate the method by considering the self-consistent approach to first order, i.e.,
the diagram shown in the upper panel of Fig. 17. One sees that the self-energy depends on the
full Green function G(k,τ), which itself is a function of the self-energy via the Dyson equation
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Figure 18: The Green function GNCA(p = 0,τ) in the non-crossing approximation for α = 5
and µ = −4. Shown are the first 4 iterations with the initial guess G = G0 and compared
with the result obtained by sampling the corresponding diagrams in the bare expansion. We
used 256 points in imaginary time on a logarithmic grid and 213 Matsubara frequencies. We
took 200 equidistant points in momentum space with a momentum cutoff at kc = 100. The
results are obtained in just a few minutes on a single core. The inset shows the residues after
subtracting the result after 4 iterations. The error bars on the Green function sampled from
the bare expansion are indicated by the area shaded in gray.
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Figure 19: (Green’s functions in the NCA approximation for different momenta. Same param-
eters as in Fig. 18.
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Figure 20: Histogram of the electron momenta contributing to the (full) self-energy in the
bare expansion.
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Figure 21: Dependence on the momentum cutoff for the NCA propagator. In each case, the
maximum of 19 iterations has been used to ensure convergence. The inset shows a zoomed
view of the same data at late times.
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(see the lower panel in Fig. 17). This is a self-consistency problem,

Σ
(1)
B [G

(1)
B ](k,τ) = α̃2

∫

d3q
(2π)3

D̃(q,τ)G(1)B (k− q,τ) , (42)

G(1)B (k,ωn) =
1

G−1
0 (k,ωn)−Σ

(1)
B (k,ωn)

. (43)

The self-consistency problem is usually solved by iteration (note that this iteration is not a
Markov process). Given an initial guess for G(1)B , the self-energy is computed (numerically or
stochastically for the higher orders) in imaginary time and subsequently Fourier transformed
to Matsubara representation, from which a new Green function is extracted via the Dyson
equation and brought back to imaginary time representation by an inverse Fourier transform,
and this procedure is repeated until convergence is reached. It is often needed to introduce
a damping factor. As can be seen in Fig. 17 the diagrams thus summed correspond in the
bare series to all possible diagrams in which the phonon lines do not cross (the so-called non-
crossing approximation (NCA)).

Given the previous experience with numerical instabilities in the first-order self-energy
using the bare expansion (see Sec. 4.1), we anticipate the same problem. We split hence

G(1)B (p,τ) = G0(p,τ) +δG(1)B (p,τ),

Σ
(1)
B [G

(1)
B ](p,τ) = Σ(1)[G0](p,τ) +Σ(1)B [δG(1)B ](p,τ), (44)

that is, we subtract the bare propagator from the bold propagator and evaluate the corre-
sponding contributions to the self-energy separately. The first part is simply the first-order
self-energy Σ(1) ≡ Σ(1)B [G0], cf. Eqs. 29 and 30. Henceforth, we abbreviate the second part

Σ
′(1)
B ≡ Σ(1)B [δG(1)B ] and reduce it to a one-dimensional integration,

Σ
′(1)
B (p = 0,τ) =

α̃2

2π2
e−ωphτ

∫ ∞

0

δG(1)B (q,τ)dq ,

Σ
′(1)
B (p 6= 0,τ) =

α̃2

(2π)2
e−ωphτ

1
p

∫ ∞

0

δG(1)B (q,τ)q ln

�

�

�

�

p+ q
p− q

�

�

�

�

dq. (45)

The integral can be split as

∫ ∞

0

. . .=

∫ p−∆p

0

. . .+

∫ p+∆p

p−∆p
. . .+

∫ ∞

p+∆p
. . . (46)

where the first and third integral can be evaluated numerically and the middle integral vanishes
in the limit ∆p→ 0,

lim
∆p→0

∫ p+∆p

p−∆p
δG(1)B (q,τ)q ln

�

�

�

�

p+ q
p− q

�

�

�

�

dq

= lim
∆p→0

�

δG(1)B (p,τ)p 2∆p ln(2p)−δG(1)B (p,τ)p∆p(2 ln(∆p)− 2+ iπ)
�

= 0. (47)

The first-order contribution Σ(1)[G0] in Eq. 44 singles out the 1/
p
τ divergence of the

self-energy. As before, it should be treated carefully, for instance as the convolution
(Σ(1)(p= 0) ? G0(p))(τ) which we suggested before.

The corresponding Green function is shown in Fig. 18 for zero momentum. The momentum
dependence of the Green function can be seen in Fig. 19.
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Figure 22: Dependence of the polaron energy in the NCA approximation on the momentum
cutoff kc and the number of momenta Nk chosen uniformly with spacing δk =

kc
Nk

. Other
parameters are µ = −4, τmax = 20.48 with 512 time points chosen on a logarithmic grid,
and 216 Matsubara frequencies. The energy was determined from linear regression of the
exponential tail of the Green function between τ= 5 and τ= 18.

5.2 Grid and momentum cutoff

It is seen in Fig. 17 that even the computation of Σ(1)B (p = 0,τ) requires knowledge of

G(1)B (p,ωn) for all momenta p. We hence need a two-dimensional grid for G and Σ in (p,τ)
space, and biquadratic (or bicubic if affordable) interpolation. We also need to introduce a mo-
mentum cutoff to store the measurement of Σ. We now analyze if (and when) the momentum
cutoff matters.

The bare Green function decays with momentum as a gaussian for fixed values of τ. Large
values of τ are usually unimportant because of the µ dependence in the propagator, providing
a cutoff in time (even for p = 0 this term is present). If large values of τ occur, they provide a
cutoff for the momenta of the order of p ∼

p

2m/τ. However, for very small values of τ there
is no restriction on the values that p can take.

To see what influence large momenta have in practice, we show in Fig. 20 the histogram
of the logarithm of the modulus of all electron momenta contributing to the self-energy (using
the bare G0 expansion) when the external momentum is p = 0. The main contribution is at
low momenta, as expected, and large momenta are suppressed as a power law with exponent
4.25(5); contributions for p > 4 are seen to be already very small. But given that our require-
ment on precision is extremely high (just recall the reported very small values of the Green
function for large values of τ – surely we need our systematic error to be much smaller than
the signal), it is not a priori clear that the cutoff dependence is going to be negligible.

This is likewise reflected in the first-order (non-bold) self-energy. Choosing a very small
τ, we see that for p2� 2m/τ the first-order self-energy is to leading order momentum inde-
pendent (namely, a large constant because of the ∼ 1/

p
τ divergence) but for p2 � 2m/τ it

behaves as ∼ p2. This follows from the asymptotic expansions of the Dawson function. The
momentum dependence in the NCA approximation is unfortunately not identical to the one in
the bare first-order self-energy and hard to grasp analytically.
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Figure 23: Illustration of the VERTEX-DRESS / VERTEX-UNDRESS pair of updates.

Higher order diagrams should be better behaved: When phonon lines cross, then phase
space arguments for τ show that small values of τ are not giving important contributions
to the self-energy. We believe it is indispensable to numerically check the influence of the
cutoff, which we show for the Green function in the NCA approximation in Fig. 21. Note
that we used bare propagators whenever momenta whose magnitude is higher than the cutoff
were requested, but it makes little to no difference compared to a hard cutoff. This is an
approximation but would lead to a correct evaluation of the first-order bare diagram in all
circumstances. It is seen in Fig. 21 that the cutoff dependence is not pronounced.

However, quantities such as the energy converge rather slowly with the cutoff parameter
(since the energy corresponds to the asymptotic decay of the Green function one can appre-
ciate this aspect from Fig. 21) even though the approximate values are very close to the final
one. Furthermore, precise energies remain sensitive to the discretization. Getting control be-
yond the ∼ 0.5% level of accuracy on such quantities is not an easy task in a self-consistent
approach, and a systematic study of all parameters is warranted. We show a characeristic ex-
ample in Fig. 22, where we modify the cutoff as well as the momentum spacing. We chose the
time discretization such that it is about two orders of magnitude weaker than the momentum
discretization in this plot. However, choosing a smaller starting value for the fitting interval
over which the energy is determined leads to fluctuations of the same order of magnitude
as in Fig. 21. Since the tail should be fitted for the energy, we believe that our starting value
(τfit = 5) is conservative. A striking feature in Fig. 22 is the non-monotonous behavior for large
cutoffs, indicating that too few momenta might well have led to erroneous extrapolations. At
the moment we see no other option than a purely numerical analysis of this dependence, and
argue that it is indispensable to perform such checks.

5.3 Code

Bold DiagMC requires only a couple of changes to the code for the self-energy:
Boldification – This step has been described already in Sec. 5.1.
New updates – The current implementation of the INSERT update automatically leads

to a two-particle reducible diagram. One possibility is to keep the updating scheme as is
supplemented with introducing a flag signalling two-particle reducibility, and making sure
that the self-energy is measured only in the irreducible space. There exists however a way
to add a phonon arc such that it always leads to an irreducible diagram. It works as follows
(see Fig. 23): first a random vertex at time τV is chosen, excluding the one at τ = 0. Then
we propose to insert a new phonon propagator that dresses this (but only this) vertex. This
is also a local update, and since it increases the number of phonon line crossings by one, this
update always leads to a physical diagram. We leave the derivation of detailed balance for this
VERTEX-DRESS/VERTEX-UNDRESS pair as an exercise, but note that choosing the last vertex
requires special care.

Irreducibility checks in SWAP – In a bold code we need to make sure that no subpiece of
a diagram can be identified with a lower order diagram already taken into account (which is
the same as the requirement of two-particle irreducibility). Fortunately, there exists a simple
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Figure 24: The Green function G(p = 0,τ) obtained in the bold approach for α = 5 and
µ = −6. Shown are the first six iterations (bottom to top, obtained by sampling) with the
initial guess G = G0 and compared to the result obtained in the bare expansion. Error bars
on the latter are indicated by the shaded region. We used 256 points in imaginary time on a
logarithmic grid and 213 Matsubara frequencies. We took 200 equidistant points in momentum
space with a momentum cutoff at kc = 100. The inset shows the same data with the asymptotic
line fit from Fig. 9a subtracted, ∆ ln(−G) = ln(−G)− (a+ bτ).

check: if no 2 momenta are identical then the diagram is bold irreducible. If one uses the
VERTEX-DRESS/VERTEX-UNDRESS updates, then reducibility can again only happen during
the SWAP update, and one only needs to check the new momentum k′ between τ1 and τ2
against the incoming and outgoing momenta of τA and τB (for the notation see Fig. 7). If this
simple check cannot be done (as in any system not dealing with polarons), then one keeps
track of the momenta in the diagram in the form of a hash table. This allows for a quick check
if a new momentum is suggested. Momenta whose values change are removed from the table
and the new ones are added.

5.4 Results

For our standard example α= 5 we see in Fig. 24 that the full Green function agrees with the
one obtained from the bare expansion (cf. Fig. 9). We also see that only few iteration steps are
needed before convergence is reached. In particular, the inset reveals that after six boldification
iterations, it stays well within the error bars of the bare Green function over the whole range of
imaginary times considered. We do not have any rigorous means of obtaining error bars on the
Green function in the bold scheme, however the norm of the change δGB due to boldification
may be considered indicative of convergence. Since we do not reset our observable for the self-
energy after boldification but just keep on sampling with respect to the new bold propagator,
we have an easy way to systematically improve our results and diminish the statistical Monte
Carlo errors by just carrying out further bold iterations. Otherwise, one would need to employ
some sort of heuristic for increasing the number of Monte Carlo sweeps within each iteration
step to reflect the higher demand on statistical accuracy as self-consistency is reached. If the
desired accuracy is not reached a comprehensive analysis of the sources of all systematic errors
is necessary, which combined with the statistical errors from the sampling can be a cumbersome
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task.
The data presented in Fig. 24 took 840 CPU-hours (30 hours on one 28-core Broadwell

node @ 2.4 GHz) to gather. Each of the six iteration steps consisted of 7.5 × 1012 elemen-
tary Monte Carlo updates. The time taken by the actual boldification step is negligible in
comparison, at only a few minutes each. The bold scheme thus requires significantly more
computational effort to achieve results that are comparable to the bare approach. However,
one should be mindful that the bold scheme has a somewhat larger configuration space to
cover as it samples the self-energy at different momenta while the momentum was kept fixed
at zero in Fig. 9.

6 Open source codes

We provide our C++ implementations of the DiagMC method for the systems discussed in
parts 2 through 5 under an open source license (GPL v3). They are available through the Git
repository at https://gitlab.lrz.de/Lode.Pollet/LecturesDiagrammaticMonteCarlo .

Our codes make use of the ALPSCore library [29], based on the original ALPS project [30].
ALPSCore employs the HDF5 data format [31], as well as the Boost C++ libraries [32]. Further,
we rely on the FFTW3 library [28] for the Fourier transform necessary for the Dyson equation
in the self-energy formalism. Finally, the Faddeeva package implementation of the Dawson
function [33] is used in the calculation of the first order of the self-energy.

Please refer to the README files in the code repository for technical details on how to
build and run the codes. We also provide parameter files which allow you to reproduce the
data depicted in Figs. 9, 15, 16, and 24.

7 Outlook

In these notes we only discussed the concepts of the (irreducible) self-energy and skeleton
diagrams for the Green function propagator. In a many-body context, the (irreducible) po-
larization and the effective interaction can be treated in the same way and give rise to such
effects as screening (a well-known example is the electron gas model [5]). Graphically, the
interaction is also a two-point line-object: The interaction corresponds to the propagation of
a single boson. For polaron and impurity-like problems, the medium is considered an infinite
bath and can hence not be renormalized. In practice, bold DiagMC schemes rely on the G2W
scheme [34].

More generally bold diagrammatic elements can also be introduced at the two particle
level. The full system of non-perturbative self-consistent equations are known as the Hedin
equations [35]. The central object of the 5 Hedin equations is the 3-point irreducible vertex;
Green functions and effective interactions are related via their respective Dyson equations
to the self-energy and the polarization, whereas the vertex can be expressed in terms of bold
propagators and the irreducible vertex. There is however no closed form for the right hand side
in the self-consistent equation for the 3-point vertex (in the language of functional integrals,
it is possible to write down the right hand side as a functional derivative, but this remains
impractical for an actual numerical computation). Thus far, the self-consistent treatment of
the 3-point vertex has not been attempted in diagrammatic Monte Carlo because of the curse of
“dimensions”: already for the Fröhlich polaron in 3 dimensions with rotational symmetry it is
a 5-dimensional object whose storage, interpolation and stochastic evaluation are non-trivial.
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8 Extensions

In this final section we very briefly discuss a number of systems that can rather straightfor-
wardly be studied with the techniques outlined in this manuscript. Our goal is to show the
similarities between these systems from the algorithmic point of view rather than a full discus-
sion of the physics of these models, which is beyond the scope of these lecture notes. Wherever
possible, we will provide references to reviews.

8.1 Acoustic phonons

In contrast to the optical branch relevant for the model discussed in the main part of the
text, acoustic phonons have a linear dispersion, ωq = cq with c the speed of sound. The
derivation of the large polaron in the Fröhlich model results in a coupling V (q)∼pq between
the impurity and the phonon bath [36]. Consequently, a UV-cutoff is needed as can easily
be seen by writing down the first-order self-energy expression. The polaron properties were
computed using diagrammatic Monte Carlo in Ref. [37]. Just as for the optical phonons,
Feynman’s variational Ansatz [26] is in excellent agreement with the full results, but predicts
a transition between a quasi-free and a self-trapped polaron, which may be continuous or
discontinuous depending on the value of the cutoff [36]. This transition was also observed in
a path-integral Monte Carlo study [38], seen as a jump in the potential energy. It cannot be
ruled out that this jump is cutoff dependent, and this jump is not a proof of any (strong or
weak) localization. The authors of Ref. [37] did not elaborate but noted that the structure of
the diagrams which contribute significantly differs in the quasi-free and self-trapped regimes.

8.2 Bose polaron

The Bose polaron describes an impurity immersed in a weakly interacting Bose-Einstein con-
densate (BEC). The system is usually modelled with δ-pseudopotentials in continuum space,
after which the interactions of the BEC are linearized using the Bogoliubov prescription, result-
ing in a Fröhlich type of Hamiltonian, with phonon dispersionω(k) = kc

p

1+ (kξ)2/2, where
c is the speed of sound and ξ the healing length of the BEC. The coupling of the impurity to the

BEC phonons is given by V (q)∼
�

(ξq)2

(ξq)2+1

�1/4
. This derivation breaks down however when the

impurity is able to sufficiently deplete the condensate: As soon as the impurity gets dressed by
two (or more) phonons, one must also take the full density-density repulsion of the bosons into
account for stability reasons, but this lies outside the Fröhlich BEC polaron model. One there-
fore expects substantial differences between experiments and the predictions of this model in
the strongly interacting regime. An excellent review of the physics of the Bose polaron can be
found in Ref. [39]. The Fröhlich-type BEC polaron model is, just like the previously discussed
acoustic phonons, UV divergent and a renormalization scheme is essential. In the diagram-
matic Monte Carlo study of Ref. [37] it was found that the momentum cutoff had to be orders
of magnitude larger than any physical parameter before the (renormalized) ground state ener-
gies could be reliably extrapolated in the inverse of the cutoff. Fluctuations over many orders
of magnitude make the simulations inefficient. It would hence be interesting to revisit this
problem with a different renormalization scheme, and/or utilizing a partial resummation of
diagrams to cure the sensitiveness to the cutoff.

8.3 Fermi polaron

When an impurity is immersed in a dilute, non-interacting Fermi sea, the ground state can ei-
ther be a polaron or a molecule when the impurity forms a bound state with just one fermion.
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Like for the Bose polaron, the interactions between impurity and bath originate from a typ-
ical cold atom setup with all their benefits: The scattering lengths can be tuned, even made
infinitely strong, but the interactions remain of zero range. The Fermi polaron was one of the
first hallmarks of modern diagrammatic Monte Carlo simulations [40,41], firmly establishing
the polaron-to-molecule transition. Note that the presence of fermionic propagators leads to a
sign-problem, which makes the simulations much harder than for bosonic problems and limits
the reachable expansion orders typically to 8-12, depending on the dimensionality, interaction
strength, species mass, etc [42–45]. A particularly elegant way to deal with the UV divergence
and resonant interactions simultaneously is by introducing the T-matrix [40, 41]. There exist
excellent reviews on the topic of the Fermi polaron, such as Refs. [46,47].

8.4 Multi-polaron systems

A finite density of electrons coupled to optical phonons within the Holstein model (i.e., the
electron density couples locally to the displacement operator via a coupling of the form
g
∑

i a†
i ai(b

†
i + bi) where the amplitude of the coupling is g and ai the electron/impurity an-

nihilation operator on site i and bi the phonon one) was considered in Ref. [48]. In this case,
the presence of a Fermi surface for the electrons leads again to a sign problem (since the par-
ticle and the hole propagators have opposite sign). In Ref. [48] the bold series was sampled
up to orders 4-6, high enough to observe convergence. It was found that the effective mass
increases and the residue decreases with increasing electron density at fixed coupling strength
for typical metals. The authors found that approximating the self-energy with a purely local
one is accurate to 2%.

8.5 Spin-boson models

The spin-boson Hamiltonian is the prototypical model for a quantum-mechanical system em-
bedded in a dissipative bath [49], describing the coupling of a two-level system to an infinite
bath. It is defined as

H =∆σx +σz

∑

i

λi(b
†
i + bi) +

∑

i

ωi b
†
i bi , (48)

where σx and σz are the Pauli spin-1/2 operators, bi and b†
i are boson creation and annihila-

tion operators, ωi are harmonic oscillator frequencies, and∆ is the tunneling matrix element.
The coupling between the spin and the bosonic bath is determined via the λi by the spectral
function J(ω) = π

∑

i λ
2
i δ(ω−ωi) = 2παω1−s

c ωs forω<ωc and zero otherwise. The param-
eter α describes the coupling strength to the dissipative bath. The parameter s distinguishes
between a sub-ohmic bath (s < 1) and an ohmic bath (s = 1). At zero temperature and for
s ≤ 1 the system undergoes a phase transition at finite coupling strength αc between a de-
localized and a localized state, in which the system is no longer able to tunnel and behaves
essentially classically. There was controversy about the nature of the phase transition in the
sub-ohmic case. On general grounds one expects the transition to fall in the universality class
of the classical Ising model with long-range interactions with mean-field critical exponents for
s < 1/2. The first numerical group renormalization studies observed however different expo-
nents obeying hyperscaling for s < 1/2 and argued the breakdown of the quantum-to-classical
mapping.

The continuous time Monte Carlo simulations of Ref. [50] are free of systematic errors and
could establish the exactness of the quantum-to-critical mapping by observing the expected
mean-field exponents. The discrepancies had thus to be found in the truncation of the bosonic
Hilbert space in the numerical renormalization group approach. The Monte Carlo sampling of
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this system resembles Sec. 2 but needs to be augmented with a cluster update for the retarded
spin-spin interactions, see Ref. [50], resulting from integrating out the bath modes.

For a comprehensive review of the physics of spin-boson models, see Ref. [51].

8.6 Anderson localization

When free fermions can hop on a lattice subject to disorder in the chemical potential, they will
always localize in 1D and 2D and for strong enough disorder in 3D. For quenched disorder
drawn from a Gaussian distribution, the diagrammatic technique is simplest to derive. The
diagrammatic structure is in fact very similar to Sec. 8.4: The electron propagator is dressed
with arcs, but those arcs have no time-dependence (in contrast to the exponential decay for the
polarons, see Eq. 13). The Green function at zero temperature on a 3D lattice was computed in
real time in Ref. [52]. While unable to locate the transition (which requires the computation
of the conductivity and analyzing it for low frequencies and momenta), it showed the very
strong local character of the self-energy (cf. Sec. 8.4).

8.7 Impurity models

Models such as Anderson’s impurity model occur as auxiliary problems in dynamical mean-
field theory, when one seeks to sum over all skeleton diagrams for the self-energy built with
purely local Green functions. The important point is that this sum is not accomplished directly
but through the impurity problem, for which a variety of Monte Carlo solvers have been devel-
oped in continuous time, see Ref. [1] for a review. One expands in the interations (CT-INT),
performs a Hubbard-Stratonovich decoupling of the interactions (CT-AUX), or expands in the
hybridization (CT-HYB). For the bosonic impurity problem, only an expansion in the kinetic
term has thus far been developed (cf. CT-HYB), see Refs. [53,54].

8.8 Real-time phenomena

The spectral function [13, 24] and the optical conductivity [55] have been determined from
the corresponding imaginary time correlation functions for the Fröhlich polaron using analytic
continuation methods. The optical conductivity of the Holstein model was studied in Ref. [56,
57], as well as its mobility [58]. To date, no polaron studies have been published directly for
real time following the approach of Ref. [52] for the Anderson model.

By contrast, impurity models have also been studied to address out-of-equilibrium phenom-
ena, see Refs. [59–68]. One is typically interested in the transport of quantum dot like systems
coupled to external leads, and attempts to monitor the time evolution for a long enough period
of time such that a steady state sets in.

9 Conclusion

The purpose of these notes is to provide a pedagogical overview of the technical aspects of di-
agrammatic Monte Carlo simulations, lowering the barrier for newcomers, and giving a flavor
of its power to experienced researchers acquainted with other numerical techniques. With the
techniques outlined here interesting physics has been discovered and established unambigu-
ously in the past. With only minor changes open, challenging problems can still be attacked,
and we gave a number of examples in the previous section. To study the complexity of strongly
interacting problems a few more steps are needed, such as resummation techniques, more up-
dates, and sign alternations. The series will in general not be convergent, which we consider
to be the greatest challenge for diagrammatic Monte Carlo simulations, and the diagrammatic
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structure is more complicated than the diagrams considered here, which all have a backbone
line for the impurity propagator. Just as for the Fröhlich polaron, it is imperative to treat
as much as possible of the physics in an analytical way. Having gone through this tutorial
the reader can understand better the technical aspects of the method, appreciate the efforts
described in the literature, or start coding and exploring on their own.
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