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Abstract

These lecture notes provide a basic introduction to the framework of generalized prob-
abilistic theories (GPTs) and a sketch of a reconstruction of quantum theory (QT) from
simple operational principles. To build some intuition for how physics could be even
more general than quantum, I present two conceivable phenomena beyond QT: super-
strong nonlocality and higher-order interference. Then I introduce the framework of
GPTs, generalizing both quantum and classical probability theory. Finally, I summarize a
reconstruction of QT from the principles of Tomographic Locality, Continuous Reversibil-
ity, and the Subspace Axiom. In particular, I show why a quantum bit is described by a
Bloch ball, why it is three-dimensional, and how one obtains the complex numbers and
operators of the usual representation of QT.
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1 What kind of “quantum foundations”?

These lectures will focus on some topics in the foundations of quantum mechanics. When
physicists hear the words “Quantum Foundations”, they typically think of research that is con-
cerned with the problem of interpretation: how can we make sense of the counterintuitive
Hilbert space formalism of quantum theory? What do those state vectors and operators really
tell us about the world? Could the seemingly random detector clicks in fact be the result of
deterministic but unobserved “hidden variables”? Some of this research is sometimes regarded
with suspicion: aren’t those Quantum Foundationists asking questions that are ultimately ir-
relevant for our understanding and application of quantum physics? Should we really care
whether unobservable hidden variables, parallel universes or hypothetical pilot waves are the
mechanistic causes of quantum probabilities? Isn’t the effort to answer such questions simply
an expression of a futile desire to return to a “classical worldview”?

For researchers not familiar with this field, it may thus come as a surprise to see that large
parts of Quantum Foundations research today are not primarily concerned with the interpre-
tation of quantum theory (QT) — at least not directly. Much research effort is invested in
proving rigorous mathematical results that shed light on QT in a different, more “operational”
manner, which is motivated by quantum information theory. This includes research questions
like the following:

(i) Is it possible to generate secure cryptographic keys or certified random bits even if we
do not trust our devices?

(ii) Which consistent modifications of QT are in principle possible? Could some of these
modifications exist in nature?

(iii) Can we understand the formalism of QT as a consequence of simple physical or information-
theoretic principles? If so, could this tell us something interesting about other open
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problems of physics, like e.g. the problem of quantum gravity?

Question (i) shows by example that some of Quantum Foundations research is driven by ideas
for technological applications. This is in some sense the accidental result of a fascinating
development: it turned out that such “technological” questions are surprisingly closely related
to foundational, conceptual (“philosophical”) questions about QT. To illustrate this surprising
relation, consider the following foundational question:

(iv) Could there exist some hidden variable (shared randomness) λ that explains the ob-
served correlations on entangled quantum states?

Question (iv) is closely related to question (i). To see this, consider a typical scenario in which
two parties (Alice and Bob) act with the goal to generate a secure cryptographic key. Suppose
that Alice and Bob hold entangled quantum states and perform local measurements, yielding
correlated outcomes which they can subsequently use to encrypt their messages. Could there
be an eavesdropper (say, Eve) somewhere else in the world who can spy on their key? In-
tuitively, if so, then we could consider the key bits that Eve learns as a hidden variable λ: a
piece of data (“element of reality”, see Ekert, 1991 [32]) that sits somewhere else in the world
and, while being statistically distributed, can be regarded as determining Alice’s and Bob’s out-
comes. But Bell’s Theorem (Bell, 1964 [13]) tells us that the statistics of some measurements
on some entangled states are inconsistent with such a (suitably formalized) notion of hidden
variables, unless those variables are allowed to exert nonlocal influence. This guarantees that
Alice’s and Bob’s key is secure in such cases, as long as there is no superluminal signalling
between their devices and Eve. The conclusion holds even if Alice and Bob have no idea
about the inner workings of their devices — or, in the worst possible case, have bought these
devices from Eve. This intuition can indeed be made mathematically rigorous, and has led
to the fascinating field of device-independent cryptography (Barrett, Hardy, Kent (2005) [10])
and randomness expansion (Colbeck (2006) [25], Colbeck and Kent (2011) [26], Pironio et al.
(2010) [69]).

The preconception that Quantum Foundations research is somehow motivated by the de-
sire to return to a classical worldview is also sometimes arising in the context of question (ii)
above. It is true that the perhaps better known instance of this question asks whether QT would
somehow break down and become classical in the macroscopic regime: for example, sponta-
neous collapse models (Ghirardi, Rimini, and Weber (1986) [36], Bassi et al. (2013) [12])
try to account for the emergence of a classical world from quantum mechanics via dynamical
modifications of the Schödinger equation. However, a fascinating complementary develop-
ment in Quantum Foundations research — the one that these lectures will be focusing on — is
to explore the exact opposite: could nature be even “more crazy” than quantum? Could physics
allow for even stronger-than-quantum-correlations, produce more involved interference pat-
terns than allowed by QT, or enable even more magic technology than what we currently
consider possible? If classical physics is an approximation of quantum physics, could quantum
physics be an approximation of something even more general?

As we will see in the course of these lectures, the answer to these questions is “yes”: na-
ture could in principle be “more crazy”. The main insight will be that QT is just one instance
of a large class of probabilistic theories: theories that allow us to describe probabilities of mea-
surement outcomes and their correlations over time and space. Another example is “classical
probability theory” (CPT) as defined below, but there are many other ones that are equally
consistent.

As we will see, not only is there a simple and beautiful mathematical formalism that allows
us to describe all such theories, but the new approach to QT “from the outside” provides a very
illuminating perspective on QT itself: it allows us to understand which features are uniquely
quantum and which others are just general properties of probabilistic theories. Moreover, it

3

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.28


SciPost Phys. Lect.Notes 28 (2021)

QT CPT

operator-algebraic theories

“boxworld”

other 
theories

Euclidean

physically realized

hyperbolic

other 
theories

Minkowski

Figure 1: Left: the “landscape” of probabilistic theories. QT is for quantum theory
and CPT for classical probability theory (as defined later). Right: as a suggestive
analogy (see main text), the “landscape of theories of (spacetime) geometry”.

gives us the right mathematical tools to describe physics in the, broadly construed, “device-
independent” regime where all we want to assume is just a set of basic physical principles.
Making sparse assumptions is arguably desirable when approaching unknown physical terrain,
which is why some researchers consider some of these tools (and generalizations thereof) as
potentially useful in the context of quantum gravity (Oreshkov et al. (2012) [64]), and, as we
will see, for fundamental experimental tests of QT.

Even more than that: as we will see in these lectures, it is possible to write down a small set
of physical or information-theoretic postulates that singles out QT uniquely within the land-
scape of probabilistic theories. We will be able to reconstruct the full Hilbert space formalism
from simple principles, starting in purely operational terms without assuming that operators,
state vectors, or complex numbers play any role in it. Not only does this shed light on the
seemingly ad-hoc mathematical structure of QT, but can also indirectly give us some hints on
how we might want to interpret QT.

There is a historical analogy to this strategy that has been described by Clifton, Bub, and
Halvorson (2003) [18] (see, however, Brown and Timpson (2006) [17] for skeptic remarks
on this perspective). Namely, the development of Einstein’s theory of special relativity can be
understood along similar lines: there is a landscape of “theories of (spacetime) geometry”,
characterized by an overarching, operationally motivated mathematical framework (perhaps
that of semi-Riemannian geometry). This landscape contains, for example, Euclidean geom-
etry (a very intuitive notion of geometry, comparable to CPT in the probabilistic landscape)
and Minkowski geometry (less intuitive but physically more accurate, comparable to QT in
the probabilistic landscape). Minkowski spacetime is characterized by the Lorentz transforma-
tions, which have been historically discovered in a rather ad hoc manner — simply postulating
these transformations should invite everybody to ask “why?” and “could nature have been dif-
ferent”? But Einstein has shown us that two simple physical principles single out Minkowski
spacetime, and thus the Lorentz transformations, uniquely from the landscape: the relativity
principle and the light postulate. This discovery is without doubt illuminating by explaining
“why” the Lorentz transformations have their specific form, and it has played an important
role in the subsequent development of General Relativity.

In these lectures, we will see how a somewhat comparable result can be obtained for
QT, and we will discuss how and why this can be useful. But before going there, we need
to understand how a “generalized probabilistic theory” can be formalized. And even before
doing so, we need to get rid of the widespread intuition that all conceivable physics must either
be classical or quantum, and build some intuition on how physics could be more general than
quantum.
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2 How could physics be more general than quantum?

Everybody can take an existing theory and modify it arbitrarily; but the art is to find a modifi-
cation that is self-consistent, physically meaningful, and consistent with other things we know
about the world.

That these desiderata are not so easy to satisfy is illustrated by Weinberg’s (1989) [85]
attempt to introduce nonlinear corrections to quantum mechanics. QT predicts that physical
quantities are described by Hermitian operators (“observables”) A, and their expectation val-
ues are essentially bilinear in the state vector, i.e. 〈A〉 = 〈ψ|A|ψ〉. (This property is closely
related to the linearity of the Schrödinger equation.) Weinberg decided to relax the condition
of bilinearity in favor of a weaker, but arguably also natural condition of homogeneity of de-
gree one, and explored the experimental predictions of the resulting modification of quantum
mechanics.

However, shortly after Weinberg’s paper had appeared, Gisin (1990) [37] pointed out that
this modification of QT has a severe problem: it allows for faster-than-light communication.
Gisin showed how local measurements of spacelike separated parties on a singlet state allows
them to construct a “Bell telephone” with instantaneous information transfer within Weinberg’s
theory. Standard QT forbids such information transfer, because bilinearity of expectation val-
ues implies (in some sense — we will discuss more details of this “no-signalling” property
later) that different mixtures with the same local reduced states cannot be distinguished. Su-
perluminal information transfer is in direct conflict with Special Relativity, showing that QT
is in some sense a very “rigid” theory that cannot be so easily modified (see also Simon et al.,
2001 [77]).

This suggests to search for modifications of QT not on a formal, but on an operational level:
perhaps a more fruitful way forward is to abandon the strategy of direct modification of any of
QT’s equations, and instead to reconsider the basic framework which we use to describe simple
laboratory situations. GPTs constitute a framework of exactly that kind. They generalize QT
in a consistent way, and do so without introducing pathologies like superluminal signalling.

To get an intuition for the basic assumptions of the GPT framework, let us first discuss
two examples of potential phenomena that would transcend classical and quantum physics:
superstrong nonlocality and higher-order interference.

2.1 Nonlocality beyond quantum mechanics

Consider the situation in Figure 2. In such a “Bell scenario”, we have two agents (usually
called Alice and Bob) who each independently perform some local actions. Namely, Alice
holds some box to which she can input a freely chosen variable x and obtain some outcome a.
Similarly, Bob holds a box to which he can input some freely chosen variable y and obtain some
outcome b. Alice’s and Bob’s boxes may both have interacted in the past, so that they may
have become statistically correlated or (in quantum physics) entangled. This will in general
lead to correlations between Alice’s and Bob’s outcomes.

While more general scenarios can be studied, let us for simplicity focus on the case that
there are two agents (Alice and Bob) who can choose between two possible inputs x , y ∈ {0, 1}
and obtain one of two possible outcomes a, b ∈ {−1,+1}. In quantum information jargon, we
are on our way to introduce the (2,2, 2)-Bell correlations, where (m, n, k) denotes a scenario
with m agents who each have n possible inputs and k possible outcomes. The resulting statistics
is thus described by a probability table (often called “behavior”)

P(a, b|x , y),

i.e. the conditional probability of Alice’s and Bob’s outcomes, given their choices of inputs. It
is clear that these probabilities must be non-negative and

∑

a,b P(a, b|x , y) = 1 for all x , y (we
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Figure 2: Schematic figure of a Bell scenario. Within any physical theory (classical
physics, quantum physics, or other), we can imagine laboratory situations in which
the causal structure is specifically as depicted (in particular, Alice and Bob cannot
communicate). Regardless of the interpretation of “probability”, we can talk about
situations in which there is data to be chosen independently (x and y) and recorded
(a and b) such that it is meaningful to talk about the probabilities of the recordings,
given the choices. Data from the past that may influence the devices will be labelled
λ. Physical theories differ in the set of probability tables (“correlations”) that they
allow in principle in this scenario.

will assume this in all of the following), but further constraints arise from additional physical
assumptions.

Let us first assume that the scenario is described by classical probability theory — perhaps
because we are in the regime of classical physics or every-day life. Then we can summarize
the causal past of the experiment — everything that has happened earlier and that may have
had some influence on the experiment, directly or indirectly — into some variable λ. Shortly
before Alice and Bob input their choices into the boxes, the variables x , y,λ are in some (un-
known) configuration, distributed according to some probability distribution P. Furthermore,
the outcomes a and b are random variables; in the formalism of probability theory, they must
hence be functions of x , y and λ, i.e. a = fA(x , y,λ), b = fB(x , y,λ). Recall that in probability
theory, random variables are functions on the sample space; and the sample space, describing
the configuration of the world, consists of only x , y and λ. We have simply made λ big enough
to contain everything in the world that is potentially relevant for the experiment.

But what if the boxes introduce some additional randomness, perhaps tossing coins to
produce the outcome? In this case, the coin toss can be regarded as deterministic if only all
the factors that influence the coin toss (properties of the coin, the surrounding air molecules
etc.) are by definition contained in λ. (Or, alternatively, we simply regard the unknown state
of the coin as a part of λ.) The “hidden variable” λ may thus be a quite massive variable, and
learning its value may be practically impossible. In other words, all randomness can, at least
formally, be considered to result from the experiment’s past (in physics jargon, the fluctuations
of its initial conditions).

So far, our description is completely general and does not yet take into account the assumed
causal structure of the experiment: assuming that x and y can be chosen freely amounts to
demanding that their values are statistically uncorrelated with everything that has happened
in the past, i.e. with λ. Furthermore, locality implies that a cannot depend on y and b cannot
depend on x . This means that the scenario must satisfy

P(x , y,λ) = PX (x) · PY (y) · PΛ(λ), a = fA(x ,λ), b = fB(y,λ).

For a more detailed explanation of how and why the causal structure of the setup implies these
assumptions, see e.g. the book by Pearl (2009) [66], or Wood and Spekkens (2015) [88]. These
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assumptions are typically subsumed under the notion of “local realism”, and readers who want
to learn more about this are invited to consult more specialized references. A great starting
point are the Quantum Foundations classes given by Rob Spekkens at Perimeter Institute; these
can be watched for free on http://pirsa.org.

Note that P(a, b|x , y,λ) = δa, fA(x ,λ)δb, fB(y,λ) = PA(a|x ,λ)PB(b|y,λ) (with δ the Kronecker
delta). Hence, by the chain rule of conditional probability,

P(a, b|x , y) =
∑

λ∈Λ

PA(a|x ,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is realizable
within the causal structure as depicted in Figure 2 must be classical according to the following
definition:

Definition 1. A probability table P(a, b|x , y) is classical if there exists a probability space (P,Ω,Σ)
with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ, where X = Y = {0,1} and Λ
arbitrary, such that Eq. (1) holds. If this is the case, then we call (P,Ω,Σ) a hidden-variable
model for the probability table.

Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more
general measurable space like Rn, but here this would not change the picture because the sets
of inputs and outcomes are discrete and finite (in other words, considering only finite discrete
Λ is no loss of generality here).

In the derivation above, we have obtained a model for which PA(a|x ,λ) and PB(b|y,λ)
are deterministic, i.e. take only the values zero and one. But even without this assumption,
probability tables that are of the form (1) can be realized within the prescribed causal structure
according to classical probability theory: one simply has to add local randomness that makes
the response functions PA and PB act nondeterministically to their inputs. Thus, we do not
need to postulate in Definition 1 that PA and PB must be deterministic.

It is self-evident that the classical probability tables satisfy the no-signalling conditions
(Barrett 2007 [11]): that is, PA(a|x , y) :=

∑

b P(a, b|x , y) is independent of y , and
PB(b|x , y) :=

∑

a P(a, b|x , y) is independent of x . This means that Alice “sees” the local
marginal distribution PA(a|x , y) = PA(a|x) =

∑

λ∈Λ PA(a|x ,λ)PΛ(λ) if she does not know what
happens in Bob’s laboratory, regardless of Bob’s choice of input y (and similarly with the roles
of Alice and Bob exchanged). If this was not true, then Bob could signal to Alice simply by
choosing the local input to his box. The causal structure that we have assumed from the start
precludes such magic behavior.

We can reformulate what we have found above in a slightly more abstract way that will
become useful later. Note that we have found that the classical behaviors are exactly those
that can be expressed in the form (1) with PA and PB deterministic (if we want). Thus, we
have shown that

Lemma 2. A probability table is classical if and only if it is a convex combination of deterministic
non-signalling probability tables.

Here and in the following, we use some basic notions from convex geometry (see e.g. the
textbook by Webster 1994 [86]). If we have a finite number of elements x1, . . . , xn of some
vector space (for example probability distributions, or vectors in Rm), then another element x
is a convex combination of these if and only if there exist p1, . . . , pn ≥ 0 with

∑n
i=1 pi = 1

and
∑n

i=1 pi x i = x . Intuitively, we can think of x as a “probabilistic mixture” of the x i ,
with weights pi . Indeed, the right-hand side of (1) defines a convex combination of the
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Pλ(a, b|x , y) := PA(a|x ,λ)PB(b|y,λ). These are probability tables that are deterministic (take
only values zero and one) and non-signalling (in fact, uncorrelated).

This reformulation has intuitive appeal: classically, all probabilities can consistently be
interpreted as arising from lack of knowledge. Namely, we can put everything that we do not
know into some random variable λ. If we knew λ, we could predict the values of all other
variables with certainty.

Quantum theory, however, allows for a different set of probability tables in the scenario
of Figure 2: instead of a joint probability distribution, we can think of a (possibly entangled)
quantum state that has been distributed to Alice and Bob. The inputs to Alice’s box can be
interpreted as measurement choices (e.g. the choice of angle for a polarization measurement),
and the outcomes can correspond to the actual measurement outcomes. This leads to the
following definition:

Definition 3. A probability table P(a, b|x , y) is quantum if it can be written in the form

P(a, b|x , y) = tr
�

ρAB(E
a
x ⊗ F b

y )
�

,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, measurement
operators Ea

x , F b
y ≥ 0 (i.e. operators that are positive semidefinite) and E−1

x + E+1
x = 1A as well as

F−1
y + F+1

y = 1B for all x and all y.
Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the state
ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB, and the mea-
surement operators can be chosen as projectors (see e.g. Navascues et al., 2015 [61]). We
will restrict our considerations to finite-dimensional Hilbert spaces; for the subtleties of the
infinite-dimensional case, see e.g. Scholz and Werner, 2008 [74], and Ji et al., 2020 [49].

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical (quantum)
probability tables are classical (quantum).

(ii) C2,2,2 ⊂Q2,2,2.

(iii) Every P ∈Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables. However,
Q2,2,2 is not.

Let us not prove all of these statements here, but simply explain some key ideas. Property
(i) can easily be proved directly. For (ii), note that classical probability theory can be embedded
in a commuting subalgebra of the algebra of quantum states and observables. Property (iii) is
also easy to prove directly, and shows that measurements on entangled quantum states cannot
lead to superluminal information transfer. For (iv), the convex hull of some points in a vector
space is defined as the set of all vectors that can be obtained as convex combinations of those
points. But there is only a finite number of deterministic non-signalling probability tables, and
thus we obtain the statement for C2,2,2 by using Lemma 2.

The fact that C2,2,2 is a strict subset of Q2,2,2 is a consequence of Bell’s (1964) [13] theorem,
and it can be demonstrated e.g. via the CHSH inequality (Clauser et al., 1969 [24]): if P is
any probability table, denote by Ex ,y(P) the expectation value of the product of outcomes a · b
on choice of inputs x , y , i.e.

Ex ,y(P) := P(+1,+1|x , y) + P(−1,−1|x , y)− P(+1,−1|x , y)− P(−1,+1|x , y),
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and consider the specific linear combination

E(P) := E0,0(P) + E0,1(P) + E1,0(P)− E1,1(P).

Then the CHSH Bell inequality (exercise!) states that

−2≤ E(P)≤ 2 for all P ∈ C2,2,2.

However, there are quantum probability tables that violate this inequality. These can be ob-
tained, for example, via projective measurements on singlet states (see e.g. Peres 2002 [67]).
The largest possible violation is known as the Tsirelson bound (Tsirelson 1980 [81])

max
P∈Q2,2,2

E(P) = 2
p

2.

In particular, we find that C2,2,2 (Q2,2,2: nature admits “stronger correlations” than predicted
by classical probability theory — but still not “strong enough” for superluminal information
transfer.

This simple insight has motivated Popescu and Rohrlich (1994) [71] to ask: are the quan-
tum probability tables the most general ones that are consistent with relativity? In other words, if
we interpret the no-signalling conditions as the minimal prerequisites for probability tables to
comply with the causal structure of Figure 2 within relativistic spacetime, then is QT perhaps
the most general theory possible under these constraints?

The (perhaps surprising) answer is no: there are probability tables that are not allowed by
QT, but that are nonetheless non-signalling. An example is given by the “PR box”

PPR(a, b|x , y) :=

�

1
2 if a · b = (−1)x y

0 otherwise.

It is easy to check that this defines a valid probability table which satisfies the no-signalling
conditions. If the two inputs are (x , y) = (1,1) then the outcomes are perfectly anticorrelated;
in all other cases, they are perfectly correlated. Thus

E(PPR) = 4,

which is larger than the maximal quantum value of 2
p

2 (the Tsirelson bound). Therefore
PPR 6∈Q2,2,2. But if we denote the set of all non-signalling probability tables by NS2,2,2, then
PPR ∈NS2,2,2. Thus, we have the set inclusions

C2,2,2 (Q2,2,2 (NS2,2,2.

Like the set of classical probability tables, NS2,2,2 turns out to be a polytope, with corners
(extremal points) given by the deterministic non-signalling tables as well as eight “PR boxes”,
i.e. versions of PPR where inputs or outcomes have been relabelled. This leads to the picture
in Figure 3.

Thus, we have found one possible way in which nature could be more general than quan-
tum: it could admit “stronger-than-quantum” Bell correlations. Clearly, simply writing down the
probability table PPR does not tell us anything about a possible place in the world where these
correlations would potentially fit: we do not have a theory that would predict these correla-
tions to appear in specific experimental scenarios. However, the same can be said about bare
abstract quantum states: simply writing down a singlet state, for example, does not directly
tell us what this state is supposed to represent. We need to impose additional assumptions
(e.g. that the abstract quantum bit corresponds to a polarization degree of freedom that reacts
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Q

NSC

Figure 3: Schematic figure of the probability tables (“behaviors”) that can be realized
within classical probability theory (C), within quantum physics (Q), or within any
non-signalling probabilistic theory (NS). In the case of (m, n, k) = (2, 2,2), these
convex sets are eight-dimensional; the 16 parameters in P(a, b|x , y) are reduced by
the normalization and no-signalling equalities to 8 free parameters. Both C and NS
are polytopes, and the extremal points of C (which are also extremal points of Q
and NS) are the deterministic non-signalling probability tables. In contrast to C and
NS, the quantum set Q is not a polytope.

to spatial rotations in certain ways) in order to extract concrete predictions for specific exper-
iments.

Further reading. The insight above has sparked a whole new field of research, asking
“why” nature does not allow for stronger-than-quantum non-signalling correlations. One short
answer is of course this: because physics is quantum. But simply pointing to the fact that the
theories of physics that we have today are all formulated in terms of operator algebras and
Hilbert spaces does not seem like a particularly insightful answer. Instead, the hope was to
find simple physical principles that would explain, without direct reference to the quantum
formalism, why nonlocality ends at the quantum boundary. An excellent overview on this re-
search is given in (Popescu, 2014 [70]). Several physical principles have been discovered over
the years which imply part of the quantum boundary, some of them including the Tsirelson
bound: for example, some stronger-than-quantum correlations would trivialize communica-
tion complexity (van Dam 2013 [84] — published 8 years after the preprint on arXiv.org),
violate information causality (Pawlowski et al., 2009 [65]), or have an ill-defined classical
limit (Navascués and Wunderlich, 2009 [62]). However, the discovery of almost quantum
correlations (Navascués et al., 2015 [61]), a natural set of correlations slightly larger than Q
that satisfies all known reasonable principles, has severely challenged this particular research
direction. An exact characterization of the quantum set, however, is achieved by the comple-
mentary program of reconstructing QT (not just its probability tables, but the full sets of states,
transformations and measurements) within the framework of generalized probabilistic theo-
ries. This will be the topic of the last part of these lectures. In the case of (m, n, k) = (2,2, 2),
the set Q can also be exactly characterized in terms of the detectors’ local responses to spatial
symmetries (Garner, Krumm, Müller, 2020 [34]).

2.2 Higher-order interference

Another way in which nature could be more general than quantum is in the properties of
interference patterns that are generated by specific experimental arrangements. In 1994,
Sorkin [79] proposed a notion of “order-n interference” which contains “no interference at
all” as its n = 1 case (as in classical physics), and quantum interference as the n = 2 case.
In principle, however, nature could admit interference of order 3 or higher, and these poten-
tial beyond-quantum phenomena can be tested experimentally (up to a small caveat to be
discussed below).

The starting point is the well-known double-slit experiment as depicted in Figure 4 (left).
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A particle impinges on an arrangement that contains two slits (S1 and S2), finally hits a screen,
and a detector clicks if the particle impinges in a particular region of the screen. The setup
involves the additional possibility of blocking a slit: for example, if a blockage is put behind
slit S2, then the particle will either be annihilated (intuitively, this happens if it tried to travel
through slit S2) or it will pass slit S1. We can now experimentally determine the probability
of the detector click, conditioned on blocking (or not) one of the slits:

P12 := Prob(click | slits S1 and S2 are open),

P1 := Prob(click | only slit S1 is open),

P2 := Prob(click | only slit S2 is open).

If we realize an experiment of this form within classical physics (think of goal wall shooting),
then we expect that P12 = P1 + P2. However, in QT, we find that in general

P12 6= P1 + P2,

and this is exactly what is called interference. Namely, we can think of S1 and S2 as two
orthonormal basis states of a two-dimensional Hilbert space that describes “which slit” the
particles passes. At the time of passage, we have a state |ψ〉= α|S1〉+β |S2〉 (more generally,
a density matrix ρ which could be |ψ〉〈ψ| but could also be a mixed state). Putting a blockage
such that only slit Si is open implements the transformation ρ 7→ P̂iρ P̂i , where P̂i = |Si〉〈Si| (if
both slots are open this is P̂12 = P̂1+ P̂2 = 1). The final detector click corresponds to a measure-
ment operator (POVM element) Q, such that the probabilities are given by PI = tr(P̂Iρ P̂IQ),
with I ∈ {1, 2,12}. Then P12 6= P1+P2 is a consequence of the off-diagonal terms (coherences)
〈S1|ρ|S2〉.
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state). Putting a blockage such that only slit Si is open implements the transformation
ρ !→ P̂iρP̂i, where P̂i = |Si〉〈Si| (if both slots are open this is P̂12 = P̂1 + P̂2 = 1). The
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is a consequence of the off-diagonal terms (coherences) 〈S1|ρ|S2〉.

Figure 4: Interference at an M -slit arrangement, where M = 2 (left, the double-slit) resp. M = 3
(right, the triple-slit). For a fixed initial state preparation, we can ask for the probability of the
detector click, depending on which (if any) slits are blocked. On the left, slit S2 is blocked, and the
resulting click probability is denoted P1. On the right, slit S1 is blocked, and the resulting click
probability is denoted P23. For the double slit, P12 &= P1 + P2 is an expression of interference of
order n = 2. For the triple-slit, QT predicts Eq. (2). A violation of this would be a novel physical
phenomenon beyond QT, namely third-order interference.

Let us now consider a slightly more involved situation: let us add a third slit to the
arrangement, as in Figure 4 (right). As before, we can block one of the slits, but now we
can also block two of the slits at the same time. This allows us to define the probabilities
P123, P12, P13, P23, P1, P2, P3 in an obvious way. For example, P13 denotes the probability
of the detector click, given that (only) slit S2 is blocked. What we now find is that the
following identity holds according to QT:

P123 = P12 + P13 + P23 − P1 − P2 − P3. (2)

Why is that the case? First, note that Eq. (2) holds in classical physics: there, we can
decompose all terms into single-slit contributions (i.e. P123 = P1 + P2 + P3, P12 = P1 + P2

etc.). The reason why this equation also holds in the quantum case can be demonstrated
as follows. Think of the initial “which-slit” state as a 3× 3 density matrix ρ = ρ123. Then
we have




• • •
• • •
• • •


 =




• • 0
• • 0
0 0 0


+




• 0 •
0 0 0
• 0 •


+




0 0 0
0 • •
0 • •




−




• 0 0
0 0 0
0 0 0


−




0 0 0
0 • 0
0 0 0


−




0 0 0
0 0 0
0 0 •


 .

That is, ρ123 = ρ12+ρ13+ρ23−ρ1−ρ2−ρ3, where ρI = P̂Iρ123P̂I for I ∈ {1, 2, 3, 12, 13, 23, 123},
and the projectors P̂I are defined analogously to above.

In principle, however, we can imagine that nature produces an interference pattern that
violates Eq. (2) — in this case, we would say that nature exhibits third-order interference.
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resp. M = 3 (right, the triple-slit). For a fixed initial state preparation, we can ask for
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identity holds according to QT:

P123 = P12 + P13 + P23 − P1 − P2 − P3. (2)

Why is that the case? First, note that Eq. (2) holds in classical physics: there, we can decompose
all terms into single-slit contributions (i.e. P123 = P1+ P2+ P3, P12 = P1+ P2 etc.). The reason
why this equation also holds in the quantum case can be demonstrated as follows. Think of
the initial “which-slit” state as a 3× 3 density matrix ρ = ρ123. Then we have





• • •
• • •
• • •



 =





• • 0
• • 0
0 0 0



+





• 0 •
0 0 0
• 0 •



+





0 0 0
0 • •
0 • •





−





• 0 0
0 0 0
0 0 0



−





0 0 0
0 • 0
0 0 0



−





0 0 0
0 0 0
0 0 •



 .

That is, ρ123 = ρ12+ρ13+ρ23−ρ1−ρ2−ρ3, whereρI = P̂Iρ123 P̂I for I ∈ {1,2, 3,12, 13,23, 123},
and the projectors P̂I are defined analogously to above.

In principle, however, we can imagine that nature produces an interference pattern that
violates Eq. (2) — in this case, we would say that nature exhibits third-order interference.

The scheme above also gives a nice illustration why classical physics (or, rather, classi-
cal probability theory) does not admit second-order interference: namely, classical states are
probability vectors, and so, for example,





•
•
•



=





•
0
0



+





0
•
0



+





0
0
•



 .

Thus, classically, P123 = P1 + P2 + P3 (or, for two slits, P12 = P1 + P2).
From this starting point emerges an obvious idea: could there be physics in which the states

are not tensors with one component (classical probability theory) or two (QT), but three or
more? Instead of density matrices, could there be a regime of physics that is governed by
“density tensors”? This idea has first appeared in the work of Hardy (2001) [40] and Wootters
(1986) [89]. Recent work by Dakić et al. (2014) [28] constructs possible “density cube” states,
but does not give a well-defined theory or state space that contains them. However, consistent
theories that predict higher-order interference can be constructed within the framework of
generalized probabilistic theories (GPTs) that we will describe next (Ududec et al. 2010 [83]),
and the absence of third-order interference can be used as an axiom to single out QT (Barnum
et al. 2014 [9]; see however also Barnum and Hilgert 2019 [8]). Intuitively, while CPT can
arise from QT via decoherence, one might imagine that QT can similarly arise via some de-
coherence process from such a more general theory. However, as Lee and Selby (2018) [54]
have shown, any suitable causal “super-quantum” GPT of this kind must necessarily violate
the so-called purification principle.

The absence of third- or higher-order interference can in principle be tested experimentally,
and this has in fact be done by several different groups. To the best of our knowledge, the first
experimental search for third-order interference (making single photons impinge on actual
spatial slit arrangements) has been performed by Sinha et al. (2010) [78], with negative
result as expected. The relative weight of third-order contributions to the interference pattern
(which is predicted to be exactly zero by QT) has been bounded to be less than 10−3 by Kauten
et al. (2017) [50]. For other experimental approaches, see the references in this paper.

When we compare potential beyond-quantum interference with potential beyond-quantum
nonlocality, then the former has an additional problem of experimental testing that the latter
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does not have: to certify stronger-than-quantum correlations (if they exist), all that we have
to do in principle is to design an experiment in which the structure of spacetime enforces
the causal structure of a Bell scenario as depicted in Figure 2. We know how to close all
potential statistical loopholes (see the recent loophole-free Bell tests, for example Giustina
et al. 2015 [38]) to certify that an (unlikely) violation of, say, the Tsirelson bound would
unambiguously falsify QT. The absence of third-order interference in the form of Eq. (2), on
the other hand, makes a couple of additional assumptions. In particular, we need to ensure
that the different experimental alternatives (corresponding to the different slits) are physically
implemented by operations that correspond to orthogonal projectors.

If this is not ensured, then deviations from Eq. (2) can be detected even within standard
quantum mechanics (Rengaraj et al. 2018 [72]). In other words: we need a physical certificate
(without assuming the validity of QT) which, under the additional assumption that QT is
valid, implies that the blocking transformations correspond to orthogonal projectors. This
insight underlies the necessity to have a well-defined mathematical framework of probabilistic
theories that provides a formalism to describe phenomena like higher-order interference and
that tells us, for example, what the analogue (if it exists) of an orthogonal projection would
be in generalizations of QT (for approaches to this particular question, see e.g. Kleinmann
2014 [51], Chiribella and Yuan 2014 [21], Chiribella and Yuan 2016 [22], Chiribella et al.
2020 [23]). We will describe one such framework in the next section.

3 Generalized probabilistic theories

The framework of generalized probabilistic theories (GPTs) has been discovered and rein-
vented many times over the decades, in slightly different versions (see “Further reading” be-
low). The exposition below follows Hardy 2001 [40] and Barrett 2007 [11] (both excellent
alternative references for an introduction to the GPT framework). However, the mathematical
formalization will mostly follow the notation by Barnum (for example Barnum et al. 2014 [9]).
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Figure 5: The paradigmatic laboratory situation that can be used to motivate the mathematical
framework of GPTs: Preparation P, transformation T, and measurement M.

Consider the simple laboratory situation sketched in Figure 5. On every run of the
experiment, a preparation device P spits out some physical system. In the end, a mea-
surement device M will be applied to the physical system, yielding one of, for simplicity,
finitely many outcomes 1, 2, . . . ,m. In between, we may decide to apply a transformation
device T (which may well be “do nothing”). We assume that it is meaningful to speak of
the probability of an outcome a, given a choice of preparation and transformation devices:
that is, we are interested in the probabilities

P (a|P,T,M). (3)

This probability can be understood in different ways: for example, we can imagine that
the experiment is repeated a large number of times, yielding different outcomes on every
run, with a limiting relative frequency given by P . Alternatively, we might be interested
in doing the experiment only once, and would like to place bets on the possible outcomes
before performing it (as in a Bayesian reading of probability). Regardless of the interpreta-
tion of probability, what a GPT does is to tell us how to describe all possible preparations,
transformations and measurements of a physical system, and how to compute the outcome
probabilities (3).

The following subsections will give an introduction into the formalism of GPTs. While
I will leave out many subtleties for reasons of brevity, readers who are interested in further
details are referred to the book by Holevo (2010) [45].

3.1 States, transformations, measurements

Since a GPT is only targeted at describing the probabilities (3) and nothing else, we
have to start by removing all redundancy from the description. Consider two preparation
devices P and P′. Suppose that these devices prepare a particle in exactly the same way,
with the only difference that P was manufactured by a company called Smith&Sons, while
P′ was manufactured by Miller&Sons. The devices have small labels with the names of
the manufacturers at their bottom. Other than that, whatever we decide to measure on
the prepared particles gives the exact same probabilities in both cases. Then, we should
really consider P and P′ as “the same” for our purpose.

More generally, we will say that two preparation procedures P and P′ are equivalent
if for all possible transformations and measurements that we can in principle perform,
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Consider the simple laboratory situation sketched in Figure 5. On every run of the experi-
ment, a preparation device P spits out some physical system. In the end, a measurement device
M will be applied to the physical system, yielding one of, for simplicity, finitely many outcomes
1, 2, . . . , m. In between, we may decide to apply a transformation device T (which may well
be “do nothing”). We assume that it is meaningful to speak of the probability of an outcome
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experiment only once, and would like to place bets on the possible outcomes before performing
it (as in a Bayesian reading of probability). Regardless of the interpretation of probability,
what a GPT does is to tell us how to describe all possible preparations, transformations and
measurements of a physical system, and how to compute the outcome probabilities (3).

The following subsections will give an introduction to the formalism of GPTs. While I will
leave out many subtleties for reasons of brevity, readers who are interested in further details
are referred to the book by Holevo (2010) [45].

3.1 States, transformations, measurements

Since a GPT is only targeted at describing the probabilities (3) and nothing else, we have to
start by removing all redundancy from the description. Consider two preparation devices P
and P′. Suppose that these devices prepare a particle in exactly the same way, with the only
difference that P was manufactured by a company called Smith&Sons, while P′ was manufac-
tured by Miller&Sons. The devices have small labels with the names of the manufacturers at
their bottom. Other than that, whatever we decide to measure on the prepared particles gives
the exact same probabilities in both cases. Then, we should really consider P and P′ as “the
same” for our purpose.

More generally, we will say that two preparation procedures P and P′ are equivalent if
for all possible transformations and measurements that we can in principle perform, all outcome
probabilities will be identical. In fact, we can regard every transformation T followed by a
measurement M as a combined measurement M′. So equivalence of P and P′ can be defined
by saying that all possible measurements give identical outcome probabilities, without specifically
mentioning transformations.

Once we have introduced this equivalence relation, we can define the notion of a state:
a state is an equivalence class of preparation procedures. In other words, a state subsumes all
possible measurement statistics of a physical system, and nothing else.

As a more interesting example of equivalence of preparations, consider the following two
procedures in quantum theory:

(i) Following a coin toss, an electron is prepared either in state | ↑〉 or | ↓〉 with probability
50% each.

(ii) The entangled state (| ↑↑〉+ | ↓↓〉)/
p

2 of two electrons is prepared, and then one of the
two electrons is discarded.

Both procedures amount to the preparation of the maximally mixed state ρ = 1
21. In partic-

ular, spin measurements in any direction on the resulting physical systems will always yield
completely random outcomes.

Once we have defined the notion of a state, we can also speak about the state space of
a physical system: this is simply the collection of all possible states that can in principle be
prepared by suitable preparation procedures. We will denote states by the Greek letterω, and
state spaces by Ω (more details below).

Given that we aim at describing the probabilities of events, state spaces come with an
important additional piece of structure: convexity. That is, we can always think of the following
situation: a random number i ∈ {1,2, . . . , n} is obtained with probability pi (for example via
some measurement on some state, or by tossing coins), and then state ωi ∈ Ω is prepared,
while i is discarded. The resulting procedure will still correspond to the preparation of a
physical system that leads to well-defined measurement probabilities. Hence there will be an
associated state ω ∈ Ω. By construction, it satisfies

P(a|ω,M) =
n
∑

i=1

pi P(a|ωi ,M) (4)
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for all possible outcomes a of all possible measurements M. This equation allows us to intro-
duce a natural convex-linear structure on the state space. That is, we can write

ω=
n
∑

i=1

piωi , (5)

and by doing so introduce the useful convention that states are elements of some vector space
A over the real numbers R. (I am skipping several details of argumentation at this point; inter-
ested readers are again invited to look into Holevo’s book). In the following, we will always
assume for mathematical simplicity that this vector space is finite-dimensional. We will also
denote physical systems by upper-case letters like A (for example, the spin degree of freedom
of an electron), the corresponding state spaces by ΩA, and the vector space on which ΩA lives
will also be denoted A.

Before giving some examples, let us make two more physically motivated assumptions that
significantly simplify the mathematical description. Namely, let us assume that ΩA is compact,
i.e. topologically closed and bounded. Intuitively, ΩA should be bounded since probabilities
are bounded between zero and one, and probabilities are all we are ever computing from
a state. Furthermore, suppose that we have a sequence of states ω1,ω2,ω3, . . . that are all
elements of ΩA, i.e. that can be in principle prepared on our physical system A. Suppose that
limn→∞ωn =ω for some element of the vector spaceω ∈ A. Isω also a valid state? Physically,
it should be: after all, we can prepare arbitrarily good approximations to ω, and this is all we
can ever hope to achieve in the laboratory anyway. This motivates to demand that ω ∈ ΩA,
i.e. that ΩA is a closed set.

Furthermore, Eq. (5) above implies that convex combinations of valid states are again valid
states, or, in other words that state spaces are convex sets.

This gives us (almost) the following definition:

Definition 5. A state space is a pair (A,ΩA), where A is a real finite-dimensional vector space,
and ΩA ⊂ A is a compact convex set of dimension dimΩA = dim A− 1 such that there is a linear
“normalization functional” uA : A → R with uA(ω) = 1 for all ω ∈ ΩA. The state cone is
A+ := {λω | λ≥ 0,ω ∈ ΩA}.

This definition says a couple of things. First, we want the ability to mathematically describe
the normalization of a state: basically, uA(ω) is the probability that the physical system is there.
Ifω ∈ ΩA, i.e. ifω is a normalized state (as “usual”), then this probability is one. However, it is
often useful to talk about unnormalized states — in particular, subnormalized states for which
uA(ω′) < 1. These could come, for example, from preparing a normalized state ω and then
discarding the system with probability 1− λ, resulting in the subnormalized state ω′ = λω.
The set A+ is exactly the set of elements that can be obtained in this way, via any non-negative
scalar factor λ≥ 0.

The dimension condition can then be interpreted as saying that we choose the vector space A
as small as possible: it contains enough dimensions to carry all normalized and unnormalized
states, and not more. We also see that ΩA = {ω ∈ A+ | uA(ω) = 1}, and dim A+ = dim A.
Furthermore, A+ is a pointed convex cone in the sense of convex geometry (Aliprantis and
Tourky, 2007 [2]): A+ + A+ ⊆ A+, λA+ ⊆ A+ for all λ≥ 0, and A+ ∩ (−A+) = {0}.

Before turning to some examples, we introduce some further terminology:

Definition 6. A state ω ∈ ΩA is called pure if it is an extremal point of the convex set ΩA, and
otherwise mixed.

This definition uses a basic notion of convex geometry (Webster, 1994 [86]): an extremal
point of a convex set Ω is an element of that set that cannot be written as a non-trivial convex
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combination of other points. Hence, a state ω ∈ ΩA is pure if and only if

ω= λω1 + (1−λ)ω2 with 0≤ λ≤ 1,ω1,ω2 ∈ ΩA ⇒ λ ∈ {0,1} or ω1 =ω2.

That is, if we write ω as a convex combination of ω1 and ω2, then this convex combination
must be trivial: either ω1 =ω2 (=ω), or λ is zero or one.

Figure 6: An arbitrary state space and its pure states (black points in ΩA).

Figure 6 gives a (somewhat arbitrary) example of a state space and of its pure states. In
this example, we have the vector space A = R3 that carries a state cone A+ (right); the set
of normalized states ΩA is depicted on the left. The pure states are those marked in black:
this includes the half-circle boundary and the pure states ω1 and ω2. The state ω is on the
boundary of the state space, but it is not pure: it can be written as the non-trivial convex
combination ω= 1

2ω1 +
1
2ω2. All states in the interior of ΩA are mixed states, too.

The two most important examples are given by classical probability theory (CPT) and quan-
tum theory (QT):

Example 7 (N -outcome classical probability theory). The vector space is A = RN , and the
normalized states are the discrete probability distributions:

ΩA =

¨

(p1, . . . , pN ) ∈ RN | pi ≥ 0,
N
∑

i=1

pi = 1

«

.

Geometrically, this set is a simplex. The cases N = 2 and N = 3 are depicted in Figure 7. The
N = 4 case would correspond to a tetrahedron embedded in R4.
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Figure 6: An arbitrary state space and its pure states (black points in ΩA).

Geometrically, this set is a simplex. The cases N = 2 and N = 3 are depicted in Figure 7.
The N = 4 case would correspond to a tetrahedron embedded in R4.

Figure 7: State spaces of classical probability (i.e. ΩA is depicted in gray). Left: the classical bit
with N = 2 outcomes. Right: The classical “trit” with N = 3.

As one can see, the normalization functional is uA(p) = p1 + p2 + . . . + pN (where
p = (p1, . . . , pN )). The state cone A+ consists of all those vectors in RN that have only
non-negative entries, i.e. the positive orthant. It is also not difficult to see that there are N
pure states, namely p(i) = (0, . . . , 0, 1︸︷︷︸

i

, 0, . . . , 0) (with i = 1, . . . , N). These are exactly

the deterministic distributions.

Convex geometry allows us to draw some conclusions about states that are valid for ev-
ery GPT. For example, due to the Minkowski-Carathéodory theorem (Webster, 1994 [85]),
every state ω ∈ ΩA can be written as a convex combination of at most dim A pure states.
In the classical case discussed above, the corresponding decomposition of ω into pure states
is unique; but in general, this is not the case, as the example of quantum theory demon-
strates. To state it, we will use the notation Mn(C) for the n × n complex matrices, and
Hn(C) for the Hermitian complex n × n matrices, i.e. those M ∈ Mn(C) with M † = M .

Example 8 (N -outcome quantum theory). The vector space is A = HN (C) — note that
this is a vector space over the reals, not over the complex numbers, since it is not closed
under multiplication with the imaginary unit i. The set of normalized states is the set of
density matrices,

ΩA = {ρ ∈ A | ρ ≥ 0, tr(ρ) = 1}.
Here and in the following, the notation ρ ≥ 0 denotes the fact that ρ is positive-semidefinite,
i.e. 〈ψ|ρ|ψ〉 ≥ 0 for all |ψ〉 ∈ CN . This is equivalent to ρ being Hermitian and having only
non-negative eigenvalues.

The normalization functional is uA(ρ) := tr(ρ), and the state cone becomes the positive
semidefinite cone, A+ = {M ∈ A | M ≥ 0}.
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As one can see, the normalization functional is uA(p) = p1 + p2 + . . . + pN (where
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Convex geometry allows us to draw some conclusions about states that are valid for every
GPT. For example, due to the Minkowski-Carathéodory theorem (Webster, 1994 [86]), every
state ω ∈ ΩA can be written as a convex combination of at most dim A pure states. In the clas-
sical case discussed above, the corresponding decomposition of ω into pure states is unique;
but in general, this is not the case, as the example of quantum theory demonstrates. To state
it, we will use the notation Mn(C) for the n×n complex matrices, and Hn(C) for the Hermitian
complex n× n matrices, i.e. those M ∈Mn(C) with M† = M .

Example 8 (N -outcome quantum theory). The vector space is A= HN (C)— note that this is a
vector space over the reals, not over the complex numbers, since it is not closed under multiplication
with the imaginary unit i. The set of normalized states is the set of density matrices,

ΩA = {ρ ∈ A | ρ ≥ 0, tr(ρ) = 1}.

Here and in the following, the notation ρ ≥ 0 denotes the fact that ρ is positive-semidefinite,
i.e. 〈ψ|ρ|ψ〉 ≥ 0 for all |ψ〉 ∈ CN . This is equivalent to ρ being Hermitian and having only
non-negative eigenvalues.

The normalization functional is uA(ρ) := tr(ρ), and the state cone becomes the positive
semidefinite cone, A+ = {M ∈ A | M ≥ 0}.

In the quantum case, the general definition of a “pure state” (Definition 6 above) reduces
to the usual definition of a pure quantum state: every density matrix can be diagonalized,
ρ =

∑N
i=1 pi|i〉〈i| for some orthonormal basis {|i〉}Ni=1, and if the pi are not all zero or one,

then this defines a non-trivial convex decomposition of ρ into other states. Hence ρ is pure
if and only if it can be written as a one-dimensional projector, i.e. as ρ = |ψ〉〈ψ| for some
suitable |ψ〉 ∈ CN .

What do the quantum state spaces look like – geometrically, as convex sets? For the case
N = 2 (the qubit), the answer is simple and easy to depict (see e.g. Nielsen and Chuang,
2000 [63]): we can write every 2× 2 density matrix ρ in the form

ρ =
1
2

�

1+ r3 r1 − ir2
r1 + ir2 1− r3

�

.

With the “Bloch vector” r = (r1, r2, r3), we have the equivalence

ρ ≥ 0 ⇔ λ1/2 =
1
2

�

1±
q

r2
1 + r2

2 + r2
3

�

=
1
2
(1± |r|)≥ 0,

where λ1/2 denotes the two eigenvalues of ρ. This parametrization identifies the qubit state
spaceΩA with the Bloch ball – the unit ball in three dimensions. It is crucial that this parametriza-
tion is linear, so that we can interpret convex mixtures in the ball as probabilistic mixtures of
states. The Bloch ball is sketched in Figure 8.

As expected, the pure states lie in the boundary of the state space – but in this case, every
boundary point is in fact a pure state. This is a very special property (called “strict convexity”
of ΩA) that is generically absent, as Figure 6 shows. Note that this property also holds for the
classical bit (a one-dimensional line segment).

What about N ≥ 3 — are these state spaces also balls, perhaps of some higher dimension?
A moment’s thought shows that this cannot be the case: all these state spaces contain mixed
states in their topological boundary. For example, for N = 3, the state ρ = diag

�1
2 , 1

2 , 0
�

is
mixed but lies on the boundary of the set of density matrices (there are unit trace matrices
with negative eigenvalues arbitrarily close to that state). Hence these state spaces cannot be
strictly convex, and in particular, they cannot correspond to Euclidean balls. Instead, these
state spaces are compact convex sets with quite complex and intriguing structure. A beautiful
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In the quantum case, the general definition of a “pure state” (Definition 6 above)
reduces to the usual definition of a pure quantum state: every density matrix can be
diagonalized, ρ =

∑N
i=1 pi|i〉〈i| for some orthonormal basis {|i〉}N

i=1, and if the pi are not
all zero or one, then this defines a non-trivial convex decomposition of ρ into other states.
Hence ρ is pure if and only if it can be written as a one-dimensional projector, i.e. as
ρ = |ψ〉〈ψ| for some suitable |ψ〉 ∈ CN .

What do the quantum state spaces look like – geometrically, as convex sets? For the
case N = 2 (the qubit), the answer is simple and easy to depict (see e.g. Nielsen and
Chuang, 2000 [62]): we can write every 2 × 2 density matrix ρ in the form

ρ =
1

2

(
1 + r3 r1 − ir2

r1 + ir2 1 − r3

)
.

With the “Bloch vector” r = (r1, r2, r3), we have the equivalence

ρ ≥ 0 ⇔ λ1/2 =
1

2

(
1 ±

√
r2
1 + r2

2 + r2
3

)
=

1

2
(1 ± |r|) ≥ 0,

where λ1/2 denotes the two eigenvalues of ρ. This parametrization identifies the qubit
state space ΩA with the Bloch ball – the unit ball in three dimensions. It is crucial that
this parametrization is linear, so that we can interpret convex mixtures in the ball as
probabilistic mixtures of states. The Bloch ball is sketched in Figure 8.

Figure 8: The state space of a quantum bit can be represented as a three-dimensional ball, the
Bloch ball. The pure quantum states lie on the boundary (the sphere), with orthogonal states
on antipodal points of the sphere. The center represents the mixed state 1

21. In contrast to the
classical states, convex decompositions of mixed states into pure states are not unique.

As expected, the pure states lie in the boundary of the state space – but in this case,
every boundary point is in fact a pure state. This is a very special property (called “strict
convexity” of ΩA) that is generically absent, as Figure 6 shows. Note that this property
is also true for the classical bit (a one-dimensional line segment).

What about N ≥ 3 — are these state spaces also balls, perhaps of some higher di-
mension? A moment’s thought shows that this cannot be the case: all these state spaces
contain mixed states in their topological boundary. For example, for N = 3, the state
ρ = diag

(
1
2 , 1

2 , 0
)

is mixed but lies on the boundary of the set of density matrices (there
are unit trace matrices with negative eigenvalues arbitrarily close to that state). Hence
these state spaces cannot be strictly convex, and in particular, they cannot correspond to
Euclidean balls. Instead, these state spaces are compact convex sets with quite complex
and intriguing structure. A beautiful attempt to visualize the N = 3 case can be found in
Bengtsson et al., 2013 [14], and a much more comprehensive introduction to the geometry
of quantum states is given in the book by Bentsson and Życzkowski, 2017 [15].

So far, we have only talked about states; let us now see how to describe measurements
in the GPT framework. Our starting point are Eq. (4) and (5), which say that probabilistic
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orthogonal states on antipodal points of the sphere. The center represents the mixed
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21. In contrast to the classical states, convex decompositions of mixed states
into pure states are not unique.

attempt to visualize the N = 3 case can be found in Bengtsson et al., 2013 [14], and a much
more comprehensive introduction to the geometry of quantum states is given in the book by
Bentsson and Życzkowski, 2017 [15].

So far, we have only talked about states; let us now see how to describe measurements
in the GPT framework. Our starting point are Eq. (4) and (5), which say that probabilistic
mixtures of preparation procedures should lead to the identical mixtures of the corresponding
outcome probabilities. In other words, outcome probabilities of measurements must be linear
functionals of the state. This motivates the following definition.

Definition 9 (Measurements). Let (A,ΩA) be a state space. A linear functional, i.e. an element
of the dual space e ∈ A∗, is an effect if it attains values between zero and one on all normalized
states, i.e. 0≤ e(ω)≤ 1 for all ω ∈ ΩA.

An n-outcome measurement (with n ∈ N arbitrary) is a collection of effects e(1), . . . , e(n) with
the property that e(1) + . . .+ e(n) = uA.

The effect cone is A∗+ = {λ · e | e is an effect, λ≥ 0}.

If we prepare a system in state ω ∈ ΩA and perform an n-outcome measurement, then the
probability of the i-th outcome must certainly lie in the interval [0,1], and it must be a linear
functional of the state: hence it must be given by e(i)(ω), where e(i) is some effect. The total
outcome probability must be unity, so that e(1)(ω) + . . . + e(n)(ω) = 1 for all ω ∈ ΩA. Since
the normalized states span the vector space A, this is only possible if e(1) + . . .+ e(n) = uA, the
normalization functional.

The effect cone is an object of mathematical convenience. In convex geometry terminology
(Aliprantis and Tourky, 2007 [2]), this is exactly the dual cone of A+, i.e.

A∗+ = {e ∈ A∗ | e(ω)≥ 0 for all ω ∈ A+}.

Sometimes, we will call the elements of A∗+ “unnormalized effects” (since their value can be
larger than one on some states). There are a couple of interesting properties of the dual cone;
for example, in our case, A∗∗+ = A+. In other words, the unnormalized effects are exactly the
functionals that give non-negative values on all unnormalized states – and the unnormalized
states are exactly the vectors that give non-negative values on all unnormalized effects. This
expresses a certain form of duality between states and effects.

Let us now discuss the measurements in CPT and QT. In N -outcome CPT, the vector space
is A= RN , and it is convenient for us to identify it with its dual space via the dot product, A' A∗.
Effects are then vectors too, such that e(ω) = e ·ω. To check that a functional e = (e1, . . . , eN )
is a valid effect, it is sufficient to check that it yields probabilities in the interval [0,1] on all
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pure states (the rest follows from convexity). Clearly, this is true if and only if 0≤ ei ≤ 1 for all
i — i.e. e is a valid effect if all its entries lie in the unit interval. In particular, the normalization
functional is a valid effect (as always), and uA = (1, 1, . . . , 1). The effect cone A∗+ is thus the
set of all vectors with non-negative entries — which is the same as the state cone.

For N -outcome QT, let us also identify A= HN (C) and its dual space via some inner product,
namely 〈X , Y 〉 := tr(X Y ) the Hilbert-Schmidt inner product. For example, this means that the
normalization functional becomes the unit matrix, uA = 1, since uA(ρ) = tr(ρ) = 〈1,ρ〉. An
effect is now a self-adjoint matrix E with 0≤ tr(Eρ)≤ 1. As in the CPT case, it is sufficient to
check this on pure states ρ = |ψ〉〈ψ|, such that 0 ≤ 〈ψ|E|ψ〉 ≤ 1 for all normalized ψ ∈ CN .
But this is equivalent to 0≤ E ≤ 1 — that is, both E and 1−E must be positive-semidefinite. A
collection of n such effects, E1, E2, . . . , En with E1+ E2+ . . .+ En = 1, while each Ei is positive-
semidefinite, is known as a POVM: a positive operator-valued measure. Indeed, the set of all
possible quantum measurements are given by POVMs, and we have just rederived this fact
within the framework of GPTs.

Therefore, in this case, we also obtain that A∗+ = A+: the effect and state cones coincide.
One might be tempted to conjecture that this is true in general, but it is easy to see that it is not.
This property of strong self-duality – that there exists some inner product such that the state
and effect cones are identical – is a remarkable property that holds only under very special
conditions. It is known to be false, for example, for the case that ΩA is a square (sometimes
called a “gbit”; Barrett 2007 [11]), and it is also false for the example in Figure 6. However,
self-duality is known to follow from a strong symmetry property called bit symmetry. Call every
pair of pure and perfectly distinguishable states ω1,ω2 a bit. Suppose that for every pair of
bits (ω1,ω2) and (ϕ1,ϕ2), there is a reversible transformation T such that Tω1 = ϕ1 and
Tω2 = ϕ2 (this is true for CPT and QT, for example). Then strong self-duality follows (Müller
and Ududec, 2012 [60]).

In summary, while states and measurements are described by the same kinds of objects
(positive semidefinite matrices) in QT, they will be described by different sets of objects in
general GPTs. Moreover, measurements in GPTs can have properties that look quite unusual
from the perspective of QT. Consider the following definition:

Definition 10. Let (A,ΩA) be some state space. A set of states ω1, . . . ,ωn is called (jointly)
perfectly distinguishable if there exists a measurement e(1), . . . , e(n) with e(i)(ω j) = δi j (that is
1 if i = j and 0 otherwise).

The maximal number n ∈ N for which there exists a set of n perfectly distinguishable states is
called the capacity of the state space, and is denoted NA. On the other hand, we will denote the
dimension of the state space by KA := dim A.

In other words, n states are perfectly distinguishable if we can in principle build a detector
that, on feeding it with one of the states, tells us with certainty which of the states it was that
we have initially prepared (assuming that we are promised that we have indeed prepared one
of the states and not another one).

In QT, the ωi are density matrices, and they are perfectly distinguishable if and only if
their supports are mutually orthogonal (if all states are pure, ωi = |ψi〉〈ψi|, this means that
〈ψi|ψ j〉= δi j). The capacity NA in QT is hence equal to the dimension of the underlying Hilbert
space. The dimension of the state space, KA, is the number of real parameters in a Hermitian
NA × NA-matrix. Simple parameter counting shows that this is KA = N2

A . In particular, the
set of normalized states has dimension dimΩA = N2

A − 1, which equals three for the qubit, in
accordance with Figure 8.

In CPT, on the other hand, we have KA = NA, which is equal to the cardinality of the sample
space on which the states are defined as probability distributions.

In particular, both in CPT and in QT, if some states are pairwise perfectly distinguishable,
then they are automatically jointly perfectly distinguishable. After all, the condition of joint
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distinguishability is pairwise orthogonality of the supports. It is perhaps surprising to see that
this statement is in general false for GPTs. Let us illustrate this with an example.

Example 11 (The gbit (Barrett 2007 [11])). The generalized bit, or “gbit”, is a state space
(A,ΩA), where A= R3, and

ΩA =
�

(x , y, 1) ∈ R3 | − 1≤ x ≤ 1, −1≤ y ≤ 1
	

.

In particular, the normalization functional is uA(x , y, z) := z. If we identify A with its dual space
via the dot product, then uA = (0, 0,1). This state space has four pure states (the corners of the
square):

ω1 = (−1,−1,1), ω2 = (−1,1, 1), ω3 = (1,1, 1), ω4 = (1,−1, 1).

It is a simple exercise to work out the set of effects and the effect cone. Writing ω = (x , y, z)
and demanding that e(ω) ∈ [0, 1] for all ω ∈ ΩA, we find in particular the following effects:
e(x)(ω) = 1

2(z + x), ē(x)(ω) = 1
2(z − x), e(y)(ω) = 1

2(z + y), ē(y)(ω) = 1
2(z − y). Writing these

as vectors, we get

e(x) =
1
2
(1, 0,1), ē(x) =

1
2
(−1, 0,1), e(y) =

1
2
(0,1, 1), ē(y) =

1
2
(0,−1,1).

It turns out that the set of effects is the convex hull of these effects, the “unit effect” (normalization
functional) uA, and the zero effect 0. Geometrically, this can be depicted as in Figure 9. Note that
A+ and A∗+ are not identical. Even if we had chosen another inner product (rather than the dot
product) to represent the effects, then the two cones would never align. This is because the gbit is
not strongly self-dual (Janotta et al., 2011 [46]).

Figure 9: The “gbit” state space (generalized bit). Left: the state cone, with the
normalized states in gray. Right: the effect cone, with the set of effects in gray.

More importantly, we now see that every two distinct pure states are perfectly distinguish-
able. For example, consider the pure states ω1 and ω2, and consider the two effects e(y) and
ē(y). Note that these two effects constitute a valid measurement: e(y) + ē(y) = uA. Moreover, we
have e(y)(ω1) = 0 and e(y)(ω2) = 1, and hence ē(y)(ω1) = 1 and ē(y)(ω2) = 0. That is, the
measurement (e(y), ē(y)) perfectly distinguishes the states (ω1,ω2).

A similar construction can be made for all other pairs of pure states. However, one can check
that no three states of ΩA are jointly perfectly distinguishable. On the one hand, this shows
that the capacity of this state space is NA = 2, hence the name “gbit” (and not gtrit etc.); on the
other hand, it demonstrates that pairwise perfect distinguishability does not in general imply joint
perfect distinguishability.
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The final ingredient of Figure 5 that we have not yet discussed so far are the transforma-
tions. Clearly, a transformation T maps an ingoing state ω to some outgoing state ω′ = Tω.
In general, we can think of transformations from one physical system to another one (for ex-
ample, mapping the spin state of an electron to the state of a quantum dot, or maps between
Hilbert spaces of different dimensions), but for simplicity, let us focus on transformations for
which in- and outgoing systems are the same. Consider the following two scenarios, where
λ1, . . . ,λn are probabilities summing to unity, and ω1, . . . ,ωn are normalized states:

(i) A preparation device prepares the state ωi with probability λi , resulting in the mixed
state ω =

∑

i λiωi . This mixed state is sent into the transformation device, resulting in
some final state ω′ = Tω.

(ii) With probability λi , a preparation device prepares the state ωi , which is then sent into
the transformation device, resulting in the final state ω′i = Tωi .

Clearly, (i) and (ii) are different descriptions of one and the same laboratory procedure; they
must hence result in the exact same statistics of any measurements that we may decide to
perform in the end, and therefore lead to the same final state ω′. But this implies that

T

� n
∑

i=1

λiωi

�

=
n
∑

i=1

λi T (ωi): transformations must be linear. This motivates the following

definition.

Definition 12 (Transformation). Let (A,ΩA) be some state space. A transformation is a linear
map T : A → A with T (ΩA) ⊆ ΩA, i.e. every normalized state is mapped to another normal-
ized state. A transformation T is reversible if it is invertible as a linear map and if T−1 is a
transformation, too.

A dynamical state space is a triplet (A,ΩA,TA), where (A,ΩA) is a state space, and TA is a
compact (or finite) group of reversible transformations.

This definition subsumes several properties of transformations that are either necessary or
desirable. First, transformations T must map valid input state to valid output states; second,
they should preserve the normalization. This leads to the demand that T (ΩA) ⊆ ΩA. It also
implies that uA◦T = uA for every transformation T : the normalization after the transformation
is the same as before. In some situations, it is important to allow a larger class of normalization-
nonincreasing transformations; for example, when we are interested in filters and projections
as in the case of higher-order interference. For more details on this, see e.g. Barrett 2007 [11]
or Ududec et al., 2010 [83].

Of particular significance are transformations that can be physically undone after they have
been implemented: these are the reversible transformations. Namely, after applying T to some
state, we can apply T−1 to the resulting state, with the total effect of doing nothing. In the
following, we will restrict our attention to those, because they will turn out to be particularly
important in the context of axiomatic reconstructions of QT. By definition, reversible transfor-
mations satisfy T (ΩA) ⊆ ΩA and T−1(ΩA) ⊆ ΩA — but this is only possible if T (ΩA) = ΩA. In
other words, every reversible transformation is a linear symmetry of the state space.

If we write down any transformation T , then it satisfies all the conditions that we need
for a map to be a physically implementable operation on some state — as long as the state
space is considered in isolation. In many cases, however, state spaces are subsystems of larger
state spaces; this is certainly the case in standard laboratory situations, where a bit or qubit
is usually embedded into some sort of infinite-dimensional Hilbert space or operator algebra.
Further below, we will discuss how GPT state spaces can be combined via generalizations of
QT’s tensor product rule to form larger state spaces. In these cases, additional conditions may
arise from the demand that the transformations are also valid processes when the state spaces
on which they act are part of a larger state space.
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Definition 12 incorporates this insight by introducing the formal possibility that not all
mathematically valid transformations are in fact physically allowed. Among the reversible trans-
formations in particular, a dynamical state space comes with an additional choice of a set TA
of allowed reversible transformations. The only demand is that if T is an allowed reversible
transformation and so is T ′, then T ′ ◦T is too: after all, we can implement one transformation
after the other. Similarly, “do nothing” should be an allowed transformation, i.e. 1 ∈ TA; and
the meaning of reversibility demands that T−1 ∈ TA whenever T ∈ TA. This makes TA a group.
The demand that TA should be topologically closed and bounded can be motivated similarly
as we did in the case of the state space. Hence TA is a compact matrix group.

Example 13 (Reversible transformations in QT). In Example 8, we have defined the N-outcome
quantum state space as the set of N×N density matrices. Based on this definition, we have already
derived the most general form of measurements in QT: these are the POVMs. Let us now use the
GPT framework to deduce the most general form of reversible transformations.

As discussed above, a reversible transformation T is an (invertible) linear map
T : HN (C) → HN (C) which is a linear symmetry of the state space. That is, it must map
the set ΩA of N × N density matrices onto itself, and it must be linear in the sense of preserving
real-linear combinations of Hermitian matrices. (A priori this is completely unrelated to linearity
on state vectors in the Hilbert space.) Determining the most general transformations T with this
property is hence a mathematical exercise. Its solution is known as Wigner’s theorem (see e.g.
Bargmann 1964 [4]). Namely, these turn out to be the transformations of the following form:

ρ 7→ UρU−1,

where U is a unitary or antiunitary map. Which of these transformations can actually be imple-
mented physically depends on auxiliary assumptions. If we only consider single quantum state
spaces in isolation, then there is no a priori reason to regard antiunitary transformations as phys-
ically impossible. However, if — as in actual physics — we consider a full theory of state spaces,
combining via the usual tensor product rule, then only the unitary transformations can be imple-
mented. This is because antiunitary maps like the transposition, ρ 7→ UρU−1 = ρ>, are known
to generate negative eigenvalues when applied to half of an entangled state. In other words, uni-
tary transformations are completely positive while antiunitary transformations are not (Nielsen
and Chuang 2000 [63]).

Thus, in our physical world, quantum systems come as dynamical state spaces (A,ΩA,TA),
where A and ΩA are as defined in Example 8, and TA is the group of unitary conjugations,
ρ 7→ UρU†. This is a subgroup of the full group of reversible transformations.

The argumentation so far yields a very interesting perspective on the superposition prin-
ciple of QT. Usually, the superposition principle is seen as some kind of fundamental (and
mysterious) principle or axiom of QT. In our case, however, we can see it as some kind of
accidental mathematical consequence of the shape of the state space. It just so happens to be
the case that the pure states are of the form |ψ〉〈ψ|, and applying reversible transformations
to them yields |ψ〉〈ψ| 7→ U |ψ〉〈ψ|U†. Restricting our attention to the pure states only, we
can thus simplify the mathematical description by “taking the square root” in some sense, and
consider the map |ψ〉 → U |ψ〉 only (without forgetting that we have to disregard arbitrary
phase factors).

But doesn’t this argumentation defer the question of “why the superposition principle” to
“why the density matrices”? At first sight it seems so, but we will see later that we can derive
the shape of the state space — that is, that it must correspond to the set of density matrices
— from simple information-theoretic principles. The superposition principle will then indeed
follow as an accidental consequence in the way just described.
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We leave it for the reader as an exercise to check that the reversible transformations in
CPT are the permutations: (p1, . . . , pN ) 7→ (pπ(1), . . . , pπ(n)), where π : {1, . . . , n} → {1, . . . , n}
is one-to-one. For the gbit as defined in Example 11, those transformations are of the form

T =

�

D 0
0 1

�

∈ M3(R), where D ∈ M2(R) is any element of D2, the dihedral group of order

4 (the symmetry group of the square).
Above, we have admitted the possiblity that not all mathematically well-defined transfor-

mations are in fact “physically” allowed, but further above, our formalism has forced the state
cone A+ and the effect cone A∗+ to be full duals of each other. In other words, we are implicitly
working under the so-called “no-restriction hypothesis” (Chiribella, d’Ariano and Perinotti,
2010 [19]): for any given set of states, all mathematically well-defined effects can in princi-
ple be implemented (and vice versa). Here we make this assumption mainly for reasons of
simplicity, but there are situations in which a more general approach is warranted, e.g. in the
context of stabilizer quantum mechanics or Spekkens’ toy theory (Spekkens 2007 [80]). In
this case, one could define, for example, a “sub-cone” of physically allowed effects (though
this is not the only possibility). For more details on such a more general approach, see e.g.
Janotta and Lal, 2013 [48].

In the example of QT, we have seen that we can represent a quantum bit in two ways:
either as the set of 2× 2 density matrices, or as the three-dimensional Bloch ball. In fact, all
probabilistic predictions are exactly identical for both descriptions. This is an example of a
general freedom that we have in representing GPTs:

Definition 14 (Equivalent state spaces). Two state spaces (A,ΩA) and (B,ΩB) are called equiva-
lent if there exists an invertible linear map L : A→ B such that ΩB = L(ΩA). Two dynamical state
spaces (A,ΩA,TA) and (B,ΩB,TB) are called equivalent if they additionally satisfy TB = LTAL−1.

Equivalent state spaces are indistinguishable in all of their probabilistic properties: to every
state ωA ∈ ΩA, there is a corresponding state ωB = LωA ∈ ΩB; to every effect eA ∈ A∗+ there is
a corresponding effect eB = eA ◦ L−1 ∈ B∗+. Finally, to every transformation TA ∈ TA there is a
corresponding transformation TB = LTAL−1 ∈ TB, such that the outcome probabilities are the
same: eB TBωB = eAL−1 LTAL−1 LωA = eATAωA. Intuitively, equivalent state spaces are of the
same convex shape. In particular, equivalent state spaces must have the same dimensions.

Example 15. As illustrated in Example 8, the Bloch ball representation and the density matrix
representation of the quantum bit are equivalent. In more detail, the dynamical state spaces
(A,ΩA,TA) and (B,ΩB,TB) are equivalent, where

A = R4, ΩA =

��

1
r

� �

�

�

�

r ∈ R3, |r| ≤ 1

�

, TA =

��

1 0
0 R

� �

�

�

�

R ∈ SO(3)

�

,

B = H2(C), ΩB = {ρ ∈ B | tr(ρ) = 1, ρ ≥ 0}, TB =
�

ρ 7→ UρU† | U is unitary
	

,

and an invertible linear map L : A→ B that establishes this equivalence is given by

L(r0, r1, r2, r3) :=
1
2

�

r0 + r3 r1 − ir2
r1 + ir2 r0 − r3

�

.

In many places in the literature (for example in Barrett 2007 [11]), one finds an alterna-
tive route to the GPT framework. This alternative approach begins with the same laboratory
situation as in Figure 5, but argues less abstractly. It postulates in a more concrete manner
that states are “lists of probabilities”, corresponding to a set e1, . . . , en of “fiducial effects” —
a bunch of outcome probabilities that are sufficient to fully characterize the state. For example,
for a qubit, these four effects might correspond to the normalization effect, and to the prob-
abilities of measuring “spin-up” in x-, y- and z-directions. (Note that these effects do not in
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general constitute a “measurement” in the sense of Definition 9, i.e. they cannot in general be
jointly measured). Knowing these probabilities determines the state and hence all the outcome
probabilities of all other possible measurements.

According to this prescription, a state is then simply a list of probabilities

(e1(ω), . . . , en(ω)).

How does this fit our definition? To see this, consider any state space (A,ΩA) in the sense of
Definition 5. Since ΩA is a compact convex set, we can always find some invertible linear map
L : A→ A (in fact, many) that maps ΩA into the unit cube C := {(x1, . . . , xn) ∈ A | 0 ≤ x i ≤ 1
for all i}, where n= dim A. Thus, (A,ΩA) is equivalent to (B,ΩB), where B = AandΩB = L(ΩA).

Now, every state ω = (ω1, . . . ,ωn) ∈ ΩB satisfies ei(ω) := ωi ∈ [0,1] by construction, for all
i ∈ {1, . . . , n}. Hence, in particular, the ei are valid effects, and they fit Barrett’s definition of
“fiducial effects”.

So far, we have only considered single state spaces. In the next subsection, we will see how
GPT state spaces can be combined in a way that generalizes the tensor product rule of QT.

3.2 Composite state spaces

Given two state spaces (A,ΩA) and (B,ΩB), then how can we define a meaningful composite
AB? The philosophy of the GPT framework is not to ask for a formal rule in the first place, but
to strive for the representation of fundamental operational properties that should be captured
by such a formalism.

Let us therefore imagine two laboratories that are each locally holding systems which are
described by state spaces (A,ΩA) and (B,ΩB). If these are two separated distinguishable lab-
oratories, then we ought to be able to imagine that Alice performs a local experiment, and
Bob independently performs another local experiment. For example, what Alice can do is to
prepare a state ωA and ask whether the outcome (effect) eA happens in her subsequent mea-
surement; the probability of this is eA(ωA). Similarly, Bob can prepare a state ωB and observe
whether outcome eB happens, which has probability eB(ωB). Now we can regard this as a sin-
gle joint experiment, asking whether both outcomes have happened. The independent joint
preparations should correspond to some valid state ωAB ∈ ΩAB of the two laboratories, and
the independent joint measurement (or rather its “yes”-outcome) should correspond to a valid
effect eAB. Due to statistical independence, the joint probability must be

eAB(ωAB) = eA(ωA) · eB(ωB).

Without loss of generality, this allows us to introduce a particular piece of notation: let us
write ωAB := ωA ⊗ωB for the independent preparations of the two states, and eAB = eA ⊗ eB
for the independent measurements. Statistical mixtures (i.e. convex combinations) of states
on A (or on B) must lead to the corresponding statistical mixtures on AB, which tells us that
⊗ must be a bilinear map. Thus, reading ⊗ as the usual tensor product of real linear spaces,
this will reproduce the correct probabilities.

What we have found at this point is that the joint vector space AB that carries the composite
state space must contain the tensor product space A⊗B as a subspace. This is because for every
ωA ∈ ΩA and for everyωB ∈ ΩB, we postulate that there is a stateωA⊗ωB ∈ ΩAB that describes
the independent local preparation of the two states. This implies, on the one hand, that the
convex hull of ΩA⊗ΩB is contained in ΩAB, and, on the other hand, that KAB ≥ KAKB, where
we have used the notation KA := dim A of Definition 10. But this neither tells us what the set
ΩAB is, nor does it tell us the vector space AB or its dimension KAB.

To narrow the possibilities down in an operationally meaningful way, let us make an ad-
ditional assumption that is often (but not always) made in the GPT framework. This is a
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principle called Tomographic Locality (Hardy, 2001 [40]): all states ωAB ∈ ΩAB are uniquely
determined by the joint statistics of all local measurements.

Fundamentally, this amounts to a claim of what we even mean by a joint state: the joint
state is the thing that tells us all there is to know about the outcomes of local measurements
and their correlations (but not more). Formally, this means the following. Take any two states
ωAB,ϕAB ∈ ΩAB. If

eA⊗ eB(ωAB) = eA⊗ eB(ϕAB)

for all local effects eA ∈ A∗+ and eB ∈ B∗+, then ωAB = ϕAB. In other words, state tomography
can be performed locally, hence the name of the principle.

Due to linear algebra, this implies that A∗+ ⊗ B∗+ linearly spans all of the dual space (AB)∗

— or, in other words, that AB = A⊗ B. This is also equivalent to the claim that KAB = KAKB.
This still does not tell us what the joint state space ΩAB is — and this is in fact the generic

situation in GPTs: given two state spaces, there are in general infinitely many inequivalent pos-
sible composites that satisfy the principle of Tomographic Locality. The full range of possibilities
is captured by the following definition.

Definition 16. Let (A,ΩA) and (B,ΩB) be state spaces. A (tomographically local) composite is a
state space (AB,ΩAB), where AB = A⊗ B and ΩAB is some compact convex set satisfying

Ωmin
AB ⊆ ΩAB ⊆ Ωmax

AB .

The composites (AB,Ωmin
AB ) and (AB,Ωmax

AB ) are called the minimal and maximal tensor products
of (A,ΩA) and (B,ΩB), and they are defined as follows:

Ωmin
AB := conv{ωA⊗ωB | ωA ∈ ΩA, ωB ∈ ΩB},
Ωmax

AB := {ωAB ∈ AB | uA⊗ uB(ωAB) = 1, eA⊗ eB(ωAB)≥ 0∀ eA ∈ A∗+, eB ∈ B∗+}.

In the case of dynamical state spaces, we demand that TA ⊗ TB ⊆ TAB. As a consequence, the
normalization functional on AB is uAB = uA⊗ uB.

In other words, Ωmin
AB is the smallest possible composite: it only contains the product states

and their convex combinations and not more. This is the necessary minimum to describe in-
dependent local state preparations. On the other hand, Ωmax

AB is the largest possible composite:
it contains all vectors that lead to non-negative probabilities on local measurements. This is
the maximal possible state space that still admits the implementation of all independent lo-
cal measurements. Any compact convex state space that lies “in between” these two extreme
possibilities is a possible composite in the GPT framework.

Example 17 (Composition of quantum state spaces). Consider the M-outcome quantum state
space (A,ΩA), and the N-outcome quantum state space (B,ΩB). The usual tensor product rule of
QT tells us that the composite state space should be (AB,ΩAB), where

AB = HM (C)⊗HN (C)' HMN (C), ΩAB = {ρ ∈ AB | tr(ρ) = 1, ρ ≥ 0}.

In other words, the usual tensor product rule of QT tells us that the composite is simply the (MN)-
outcome quantum state space. This composite satisfies the principle of Tomographic Locality. This
can be checked, for example, by noting that dimHM (C) = M2, and thus

KAB = (MN)2 = M2N2 = KA · KB.

This is strictly in between the minimal and maximal tensor products. Namely, Ωmin
AB corresponds

to the set of states that can be written as convex combinations of product states: the separa-
ble states. On the other hand, Ωmax

AB corresponds to the set of operators that yield non-negative
probabilities for all local measurements, which includes operators that are not density matrices:
so-called witnesses or POPT states (Barnum et al., 2010 [6]). These operators have negative
eigenvalues, but these would only be manifested on performing entangled measurements.
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The composition of classical state spaces (those of Example 7) satisfy Tomographic Locality,
too. In fact, if A and B are classical state spaces of M resp. N outcomes, then Ωmin

AB = Ω
max
AB ,

and so there is a unique composite: the classical state space of MN outcomes. It has recently
been shown (Aubrun et al., 2019 [3]) that this property characterizes classical state spaces: if
Ωmin

AB = Ω
max
AB then necessarily one of A or B must be classical, i.e. ΩA or ΩB must be a simplex.

What is more, composite state spaces automatically satisfy the no-signalling principle. In
this sense, GPTs are generalizations of QT that avoid some of the problems of ad-hoc modifi-
cations discussed in Section 2.

Lemma 18 (No-signalling principle). Bell scenarios as in Figure 2 are modelled in GPTs with the
prescription

P(a, b|x , y) = e(a)x ⊗ e(b)y (ωAB);

that is, ωAB represents the initial global preparation procedure on the composite state space (see
Definition 16); for every choice of input x for Alice (resp. y for Bob) there is a corresponding
measurement {e(a)x }a with outcomes labelled by a (resp. a measurement {e(b)y }b with outcomes
labelled by b), and the local measurements are performed independently. These probability tables
satisfy the no-signalling principle.

Proof. This is very easy to demonstrate: note that the effects of any measurement sum up to
the normalization functional, hence, by linearity,

∑

b

P(a, b|x , y) =

�

e(a)x ⊗
∑

b

e(b)y

�

(ωAB) = e(a)x ⊗ uB(ωAB).

This is manifestly independent of y . An analogous argumentation can be applied with Alice
and Bob interchanged, showing that P(a, b|x , y) satisfies the no-signalling conditions.

This calculation can also be used to define a local reduced states that generalize the partial
trace of quantum mechanics:

ωA = 1A⊗ uB(ωAB), ωB = uA⊗ 1B(ωAB).

There are some further intuitive and less trivial consequences of the definition of a composite in
GPTs. For example, ifωA andωB are both pure states then so isωA⊗ωB. This can be shown by
considering the local conditional states, see Janotta and Hinrichsen 2014 [47]. Note however
that this property fails in general if the principle of Tomographic Locality is not assumed, see
e.g. Barnum et al., 2016 [7].

Another simple consequence of the definition is that the capacity is supermultiplicative (re-
call Definition 10):

Lemma 19. For any composite (AB,ΩAB) of two state spaces (A,ΩA) and (B,ΩB), it holds
NAB ≥ NA · NB.

Proof. Let ωA
1, . . . ,ωA

NA
be some maximal set of perfectly distinguishable states in ωA, and

e(1)A , . . . , e(NA)
A be the corresponding measurement that distinguishes these states. Similarly, let

ωB
1 , . . . ,ωB

NB
be some maximal set of perfectly distinguishable states in ΩB, and e(1)B , . . . , e(NB)

B
be the corresponding measurement. Then

e(i)A ⊗ e( j)B (ω
A
k ⊗ω

B
l ) = δikδ jl = δ(i j),(kl),

hence the (NANB) product states ωA
k ⊗ω

B
l ∈ ΩAB are perfectly distinguishable.

In the final example, we will see how the GPT framework reproduces some of the beyond-
quantum phenomena that we have discussed in Section 2: it admits superstrong nonlocality.
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Example 20 (Composition of two gbits). Let (A,ΩA) and (B,ΩB) be the gbit state spaces defined
in Example 11. Consider the maximal tensor product of these two state spaces, (AB,Ωmax

AB ).
Since A = B = R3 and AB = A⊗ B, this shows that Ωmax

AB is an eight-dimensional compact
convex set. What is this set? By definition, the maximal tensor product contains all vectors that
give non-negative probabilities on the product measurements (and normalization is automatic).
Recall Lemma 18: these probabilities are nothing but the probability tables in a Bell experiment.
Now, as we have seen in Example 11, there are only two “pure” measurements of the gbit, which
we have denoted (e(x), ē(x)) and (e(y), ē(y)). Thus, it is sufficient to check non-negativity for these
two possible local measurements, which yield binary outcomes.

But this leads us to conclude that the states in Ωmax
AB are in linear one-to-one correspondence

to the set of all non-signalling (2,2,2)-probability tables. In other words, we conclude that the
maximal tensor product of two gbits is equivalent to the no-signalling polytope of Figure 3.
And this argumentation can indeed be made rigorous by slightly more careful mathematical for-
malization.

In particular, PR-boxes are valid states on AB. Actually, if we defined an entangled state ωAB
as a state that cannot be written as a convex combination of product states, i.e.ωAB ∈ ΩAB \Ωmin

AB ,
then PR-boxes are entangled states, similarly as the singlet is an entangled state in QT.

We can say more about this composite state space Ωmax
AB . In Subsection 3, we have claimed

that the no-signalling polytope has 24 extremal points, including 8 versions of the PR-box.
While the latter claim is somewhat cumbersome to verify, we can now easily understand the
role of the remaining 16 extremal points: these are the pure product states. As illustrated in
Figure 9, a single gbit has four pure states ω1, . . . ,ω4. Therefore, Ωmax

AB must contain the 16
pure product states {ωA

i ⊗ω
B
j }i, j=1,...,4.

The construction above can be generalized in an obvious way to more than two parties,
and also to local systems with more than two pure measurements and two outcomes (Barrett
2007 [11]). What would our world look like if it was described by this kind of theory (some-
times colloquially called “boxworld”) instead of QT? For example, what kind of reversible
transformations would be possible? While QT admits a large group of reversible transforma-
tions (the unitaries), it can be shown that boxworld admits only trivial reversible transfor-
mations: local operations and permutations of subsystems. In particular, no correlations can
be reversibly created, and no non-trivial computation can ever be reversibly performed (Gross
et al., 2010 [39]). It also means that no reversible transformation can map a pure product
state to a PR-box state. This is in contrast to QT, where we can certainly engineer unitary time
evolutions that map a pure product state to, say, a singlet state. In some sense, entanglement
in a boxworld universe would represent a scarce resource which cannot be regained reversibly
once it is spent.

Further reading. We have restricted our considerations to compositions of pairs of state
spaces, and to tomographically local composites. In this case, there is an obvious list of re-
quirements for composition, and we have incorporated all these requirements in Definition 16:
product states and product measurements should be possible, and (as enforced by the tensor
product rule) independent local operations should commute. In general, however, we may be
interested in multipartite systems similar to the circuit model of quantum computation. There,
it becomes very cumbersome to work out the set of constraints that arise from the multipartite
structure. In this case, category theory becomes the tool of choice, see (Coecke and Kissinger,
2017 [27]) for an introduction. Moreover, some of the abstract linear algebra and convex
geometry formalism can be traded for a more picturesque diagrammatic formalism which al-
lows to prove results in QT and beyond in particularly intuitive ways, see e.g. Chiribella et
al., 2010 [19]. As an example, the old problem of how to deal with the tensor product of
quaternionic quantum systems (which also falls into the GPT framework) can be resolved by
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constructing dagger-compact categories of such systems, in which case composition becomes
well-defined and well-behaved (Barnum et al., 2016 [7]).

4 Quantum theory from simple principles

After this formal tour de force, we are ready to understand how QT can be derived from some
simple physical or information-theoretic principles. This section sketches one such possible
derivation published by Masanes and Müller, 2011 [56]. It relies on axioms that have first
been written down by Hardy (2001) [40]. However, there are many alternative routes. Please
see the “Further reading” paragraph at the end of this section for an overview.

As before, we will restrict ourselves to finite-dimensional state spaces, we will work under
the “no-restriction hypothesis”, and we will assume the principle of Tomographic Locality (see
Definition 16). In addition, we will postulate two further principles:

• Subspace Axiom. For every N ∈ N, there is a dynamical state space (AN ,ΩN ,TN ) of
capacity N (e.g. for N = 2 a bit, for N = 3 a trit etc.) Moreover, if e(1), . . . , e(N) is any
measurement that perfectly distinguishes N states in ΩN , then the subset of states ω
with e(N)(ω) = 0 is equivalent to ΩN−1, and the subset of transformations T ∈ TN that
preserve this subset is equivalent to TN−1.

• Continuous Reversibility. The group of reversible transformations TN is connected
(“continuous”), and for every pair of pure state ϕ,ω ∈ ΩN there is some reversible
transformation T ∈ TN that maps one state to the other, i.e. Tω= ϕ.

In all of the rest of this section we will assume that these two principles hold.
The principle of Continuous Reversibility expresses the physical intuition that time evolu-

tion should be continuous and reversible, and that “all pure states are equivalent” under such
time evolution. The Subspace Axiom is particularly well-motivated from scientific practice:
whenever we claim to have a quantum bit (or even a classical bit) in the laboratory, then this
bit is not a free-floating stand-alone system, but it is embedded into a larger system (the rest
of the world). Our description of the state space of the bit, and of its reversible transforma-
tions, should be independent of the rest of the world, and in particular independent of other
zero-probability events.

For example, if we have a three-level atomic system in the laboratory, and we are sure (say,
due to constraints arising from the experimental setup) that we will never find the particle in
the third level, then we should be able to treat this system as a two-level system. In the notation
above, the three-level system would be described by some state space Ω3 (the 3 × 3 density
matrices in the quantum case). There would be some measurement e(1), e(2), e(3) that perfectly
distinguishes the three levels (the measurement operators |1〉〈1|, |2〉〈2|, |3〉〈3| in the quantum
case), and the set of states

Ω̃2 := {ω ∈ Ω3 | e(3)(ω) = 0}

would be equivalent to a two-level system (the density matrices ρ =

�

ρ̃ 0
0 0

�

with ρ̃ a 2×2

density matrix in the quantum case).
It turns out that these principles are sufficient to uniquely determine the quantum state

space. In this section, we will sketch a strategy to reconstruct QT from these postulates alone.
This is quite remarkable, given that neither the GPT framework nor any of the postulates makes
use of any mathematical elements that are typically considered to constitute the basic structure
of QM: complex numbers, wave functions, operators, or multiplication (a priori, GPTs do not
carry any algebraic structure). That is, we will show the following theorem:
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Theorem 21. In the framework described above (which presumes Tomographic Locality), under
the Subspace Axiom and the postulate of Continuous Reversibility, the dynamical state space of
capacity N must be equivalent to (AQT

N ,ΩQT
N ,T QT

N ), where

• AQT
N = HN (C) is the real vector space of Hermitian N × N-matrices,

• ΩQT
N = {ρ | tr(ρ) = 1,ρ ≥ 0} is the set of N × N density matrices,

• T QT
N = {ρ 7→ UρU† | U†U = 1} is the group of unitary conjugations.

Arguably, we can thus see the resulting reconstruction as some sort of explanation for
“why” QM has these counterintuitive structural elements in the first place. It also reinforces
the earlier insight that QM is in some sense a very “rigid” theory which is hard to modify
without breaking some cherished physical principles. For more discussions on this, see e.g.
Koberinski and Müller, 2018 [52], and the references therein.

We will proceed in a couple of steps. Our first step will be to understand why the quantum
bit (or, rather, any capacity-two-system Ω2 that satisfies the postulates) must be equivalent to
a Euclidean ball. This will also provide a quite illuminating explanation for the Bloch ball and
its properties.

4.1 Why is the qubit described by a Bloch ball?

Let us begin with the most boring and trivial case: Ω1, the state space with capacity N = 1. In
the quantum case, this corresponds to the 1× 1 density matrices – containing only the trivial
state ρ = (1) on the trivial Hilbert space C1. But we do not know this yet, so let us only work
with the postulates above.

Lemma 22. The state space of capacity N = 1 is equivalent to the trivial state space (R, {1}). In
other words, Ω1 contains only a single state.

We will not formally prove this lemma, but instead give some intuition for why it is true.
Consider any state space (Rd ,Ω) (with d ∈ N arbitrary) that contains more than one state. If
ϕ1,ϕ2 are two different states in Ω, then the line segment {λϕ1 + (1− λ)ϕ2 | 0 ≤ λ ≤ 1} is
also contained in Ω, hence dimΩ≥ 1, and so d ≥ 2.

Now, convex geometry (Webster 1994) tells us that we can always find some pure state
ω1 ∈ Ω that is an exposed point: namely, there is a hyperplane H1 (of dimension d − 1) that
touches Ω in exactly that point:

H1 ∩Ω= {ω1}.

Figure 10: State spaces Ω that contain more than one state have capacity at least
N = 2 (for argumentation see main text). The plane here is the affine space
{x ∈ A | uA(x) = 1}.

SinceΩ contains more than one state, there must be other states ofΩ that are not contained
in H1, but that are contained in hyperplanes parallel to H1. In particular, there will be one
such hyperplane (call it H2) that touches Ω on the “opposite side” as depicted in Figure 10.
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Hence all of Ω is contained in H1 and H2 and in between, and H2 ∩Ω is not empty. Pick now
any state ω2 from this intersection.

Now every hyperplane is the level set of an affine functional (which becomes linear if we
add in the normalization degree of freedom). That is, we can find some linear functional
e(1) ∈ (Rd)∗ such that e(1)(x) = 1 for all x ∈ H1 and e(1)(x) = 0 for all x ∈ H2. Since all ω ∈ Ω
lie in between the two hyperplanes, we have 0 ≤ e(1)(ω) ≤ 1 for all ω ∈ Ω. Thus, e(1) is a
valid effect (recall that we assume the no-restriction hypothesis in all of these lecture notes;
otherwise, we would need an additional argument to show that e(1) is physically allowed).
Define e(2) := u− e(1), where u is the normalization functional. Then (e(1), e(2)) constitutes a
measurement that perfectly distinguishes the two states ω1 and ω2. Therefore the capacity is
N ≥ 2.

This shows that state spaces with capacity N = 1 contain only a single state.
Next, let us use similar reasoning to say something slightly more interesting:

Lemma 23. The state space Ω2 of capacity N = 2 is strictly convex, i.e. does not contain any
lines in its boundary.

Again, we will not really give a formal proof, but appeal to geometric intuition. Suppose
thatΩ2 was not strictly convex. Then, with a similar construction as above, we could find some
hyperplane H1 that touches Ω2 in more than one point, see Figure 11. Pick any ω1 ∈ H1 ∩Ω.
Furthermore, let H2 be the “opposite” hyperplane, and pick some ω2 ∈ H2 ∩Ω. As above, we
can associate a measurement (e(1), e(2)) to these two hyperplanes that perfectly distinguishes
ω1 and ω2.

Figure 11: Assuming the Subspace Axiom, the bit state space Ω2 must be strictly
convex, i.e. cannot contain lines in its boundary like the convex set depicted on the
left. Instead, it could look like the convex set on the right.

Let us now invoke the Subspace Axiom. It tells us that the set

{ω ∈ Ω2 | e(2)(ω) = 0}= {ω ∈ Ω2 | e(1)(ω) = 1}= H1 ∩Ω

must be linearly equivalent to Ω1. But this set contains infinitely many states, whereas Ω1
contains only a single state. This is a contradiction.

We thus conclude that Ω2 must roughly look like the convex set in the right of Figure 11.
Formally, this means that all of its boundary points must be pure states. Let us now additionally
invoke the postulate of Continuous Reversibility and show the following:

Lemma 24. The state space Ω2 is equivalent to a Euclidean unit ball of some dimension.

In other words, we will now derive the fact that a quantum bit is described by the Bloch
ball. However, we will not (yet) be able to say that this ball must be three-dimensional.

Let us start by defining what one may call the “maximally mixed state” ofΩ2: pick any pure
state ω ∈ Ω2, and define µ :=

∫

T2
TωdT ; that is, we integrate over the invariant (Haar) mea-

sure of the group of reversible transformations T2 (group averaging). It follows that Tµ = µ
for all T ∈ T2, and it is easy to check that µ is in fact the unique state with this property.
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Figure 12: Left: The definition of Bloch vectors embeds the normalized states into
a linear space (of one dimension less than the linear space on which the state cone
lives). Right: If any point on the sphere does not correspond to a valid state, then
this contradicts the strict convexity of Ω2.

For statesω ∈ Ω2, we define the corresponding “Bloch vector” ~ω :=ω−µ (see Figure 12).
Hence, Tω = ϕ if and only if T ~ω = ~ϕ, and ~µ = 0. Then T2 acts on the linear space that con-
tains the Bloch vectors. Now we can use a well-known trick from group representation theory
(Simon 1996 [76]), and construct an invariant inner product. Namely, if “·” is an arbitrary
inner product on the space of Bloch vectors, then we can define

〈~x , ~y〉= α
∫

T2

(T ~x) · (T ~y)dT,

where α > 0 is some normalization constant to be fixed soon. It follows that 〈T ~x , T ~y〉= 〈~x , ~y〉
for all T ∈ T2. This tells us that we can choose coordinates in the Bloch space such that
the T are orthogonal matrices. Moreover, if ω and ϕ are arbitrary pure states, then, due to
Continuous Reversibility, there is some transformation T ∈ T2 such that Tω= ϕ. Thus

‖ ~ϕ‖2 = 〈 ~ϕ, ~ϕ〉= 〈T ~ω, T ~ω〉= 〈 ~ω, ~ω〉= ‖ ~ω‖2.

The Bloch vectors of all pure states have the same Euclidean length, and we can fix it to
‖ ~ϕ‖ = 1 by a suitable choice of α. Hence, all pure states lie on the unit sphere surrounding µ,
see Figure 12 right. Could there be any states on the sphere which do not correspond to pure
states? This is only possible if the topological boundary of Ω2 contains lines, contradicting the
strict convexity of Ω2.

4.2 Why is the Bloch ball three-dimensional?

We have now reconstructed the Bloch ball representation of a qubit, but not its dimensionality.
If the dimension of the bit state space is d = 1, then we recover an old friend from Figure 7:
the classical bit. But, as we have seen in Subsection 3.2, composing classical bits will give us
classical state spaces with a discrete (not connected) group of reversible transformations. The
Bloch ball dimension must thus be d ≥ 2.

We can say more about its dimension by considering composites of several bits.
The first step is to prove that the capacity is multiplicative:

NAB = NANB. (6)

This follows from two lemmas that are proven by making use of all the postulates (see the
paper by Masanes and Müller, 2011 [56] for details): first, that the maximally mixed state
composes as µAB = µA ⊗ µB; and second, that the maximally mixed state on any system A
can be written µA =

1
NA

∑NA
i=1ω

A
i , where ωA

1, . . . ,ωA
NA

is a maximal set of pure and perfectly
distinguishable states of A. In light of Eq. (6), we can now view the dimension K of the state
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space as a function of the capacity N . As first argued by Hardy (2001), the fact that K is also
multiplicative on composition, i.e. KAB = KAKB, enforces that we must have the relation

K = N r , (7)

where r ∈ N is some integer. This fits quite nicely out observation after Definition 10: CPT has
K = N (i.e. r = 1) and QT has K = N2 (i.e. r = 2). This suggests that the unknown exponent
r is somehow related to the “order of interference” of the corresponding theory as introduced
in Subsection 2.2.

Since dimΩ= K − 1, the dimension d of the Bloch ball must be one of

d = 2r − 1 ∈ {1, 3,7,15, 31, . . .}.

We have already excluded d = 1, and we would like to show that d = 3 is the unique pos-
sibility consistent with the postulates. To this end, let us consider the group of reversible
transformations T2 of a single bit. What can we say about it? We know that it must be a
compact connected group, and we also know that it must satisfy the principle of Continuous
Reversibility: all pure states are connected by some reversible transformation. In other words,
T2 must act transitively on the sphere.

What groups satisfy these requirements? In fact, for arbitrary ball dimensions d ∈ N, there
are many such groups. For example, for d = 6, it can be SO(6), SU(3) or U(3) (see Masanes et
al., 2014, for a complete list). However, if d is odd (as we have shown above) then the answer
is pretty simple, but with a surprising twist:

• If d 6= 7 then we must have T2 = SO(d).

• If d = 7 then we either have T2 = SO(7) or T2 = G2, the exceptional Lie group.

For simplicity, let us in the following ignore the G2-case (how to treat this case, and all other
details of the proof, can be found in the paper by Masanes and Müller, 2011 [56]). To under-
stand why d = 3 follows from our postulates, we have to consider a pair of two bits. Due to
Eq. (6), its state space Ω2,2 is equivalent to Ω4. Consider two perfectly distinguishable states
ω0 and ω1 of a single bit (as points of the state space, they must lie on opposite sides of the
d-dimensional Bloch ball), and two corresponding effects e0 and e1 with ei(ω j) = δi j . Then
the four states ωA

i ⊗ω
B
j ∈ Ω2,2 are perfectly distinguishable. Now consider the subset

Ω′2 := {ω ∈ Ω2,2 | eA
0 ⊗ eB

1 (ω) = eA
1 ⊗ eB

0 (ω) = 0}.

This subset contains two of the product states, ωA
0 ⊗ω

B
0 ∈ Ω

′
2 and ωA

1 ⊗ω
B
1 ∈ Ω

′
2. Using the

Subspace Axiom twice, it follows that Ω′2 is again equivalent to a bit – it also corresponds to
a d-dimensional Bloch ball that somehow sits inside the joint vector space AB = Rd+1 ⊗Rd+1.
And it must contain at least one (actually, many) non-product pure states ω — these will be
entangled states.

Returning to bit A, consider rotations R ∈ SO(d) that preserve the axis that connects ω0
andω1; these will be rotations with ei◦R= ei for i = 0, 1. The subgroup of such R is equivalent
to SO(d − 1). We can also perform such rotations on bit B. But since they preserve the two
effects ei , they also preserve the bit Ω′2:

R⊗ S(Ω′2) = Ω
′
2 for all R, S ∈ SO(d − 1).

Now, Ω′2 spans a pretty small affine subspace (we can turn it into a linear subspace L2 by
substracting the maximally mixed state of Ω′2): we have dim L2 = d. On the other hand,
SO(d − 1)⊗ SO(d − 1), where each factor acts in its fundamental representation, is a pretty
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large group. It acts on a large subspace Rd−1⊗Rd−1 that sits inside AB. We have just seen that
it must preserve the small d-dimensional subspace L2. Is this possible at all?

The answer comes from group representation theory. It turns out that the fundamental rep-
resentation of SO(d−1) is complex-irreducible if d ≥ 4. Thus, it follows that SO(d−1)⊗SO(d−1),
as a representation of two copies of this group, also acts irreducibly: but this implies that there
cannot be any proper invariant subspaces like L2. This rules out the possibility that d ≥ 4.

Why is the case d = 3 different? This is due to the fact that SO(3−1) is an Abelian group.
Hence all its irreducible representations must be one-dimensional, and so its acts reducibly on
C2. This is the reason why the argumentation above does not apply in this case. We can hence
summarize our finding with the following slogan:

The Bloch ball of Quantum Theory is three-dimensional “because” SO(d −1) is non-trivial
and Abelian only for d = 3.

There is a surprising twist to this insight. Garner et al., 2017 [35], consider a thought
experiment in which the two arms of a Mach-Zehnder interferometer are described by a d-
dimensional Bloch ball state space. They study the question for which d this “fits into rela-
tivistic spacetime” (under some background assumptions), in the sense that relativity of simul-
taneity is satisfied. Under one set of assumptions, it turns out that only d = 3 is possible —
and the reason is, once again, that SO(d − 1) is only non-trivial and Abelian for d = 3. This
is the same “mathematical reason” as above, but with a different physical interpretation: now
SO(d − 1) corresponds to “local phase transformations” that do not alter the global statistics,
and commutativity of this group is enforced by relativity. This points to a fascinating interplay
between information-theoretic and spacetime properties of QT; see also Müller and Masanes
2013 [59] and Dakić and Brukner 2013 [30] for further insights into this relation.

The d = 7 Bloch ball with its transitive group G2 appears as a curious special case. While
the above argumentation shows incompatibility with our postulates also for this case, there
was some hope for a while that one can construct a non-quantum composite state space of
7-balls that satisfies the principles of Tomographic Locality and Continuous Reversibility, but
not the Subspace Axiom, see e.g. Dakić and Brukner, 2013 [30]. Unfortunately, this possibility
has since been ruled out for the case of two bits in Masanes et al., 2014 [57]. However, it
is not known whether such a construction might be possible in the case of n ≥ 3 bits. While
Krumm and Müller, 2019 [53], rule out such non-quantum state spaces for SO(d) with d 6= 3,
it remains open whether there is a curious post-quantum G2-related theory on more than two
bits.

4.3 How do we obtain the quantum state spaces for N ≥ 3?

The next step is to show that the state space of k bits, for any k ≥ 2, is equivalent to the state
space of k quantum bits. We begin with the case k = 2. From the argumentation above, we
know that the two-bit dynamical state space can be written as (R4 ⊗ R4,Ω4,T4), i.e. Ω4 is a
15-dimensional compact convex set.

We already know that the states and transformations of single bits are equivalent to those
of the quantum bit. Let us use this fact to introduce an equivalent representation in the sense
of Definition 14. Recall the linear map L from Example 15, mapping the Bloch vector repre-
sentation of a qubit to its density matrix representation. Let us now apply the invertible linear
map L⊗ L to map R4⊗R4 into H2(C)⊗H2(C))' H4(C). In this representation, the elements
of Ω4 become self-adjoint unit-trace matrices. We know that Ω4 contains all quantum product
states and their convex combinations (the separable states), but we do not yet know that Ω4
is exactly the set of 4× 4 density matrices.

33

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.28


SciPost Phys. Lect.Notes 28 (2021)

To show that it is, we have to return to the previous subsection. The sub-bit Ω′2 contains
the two antipodal product states ωA

0 ⊗ω
B
0 and ωA

1 ⊗ω
B
1 , but there is a 2-sphere of pure states

“in between”. Mapping out the action of SO(2)⊗SO(2) on these states, and analyzing how the
SO(3)-rotations ofΩ′2 have to interact with those, one can show with some tedious calculations
that these pure state must correspond to |ψ〉〈ψ| for |ψ〉= α|00〉+β |11〉. Acting on those states
via local rotations produces all pure quantum states of Ω4. Since we can similarly generate all
quantum effects, and since these are full duals of each other, there cannot be any further states.
This shows thatΩ4 is equivalent to the two-qubit quantum state space. Moreover, the rotations
that we have just described turn out to generate the full group of unitary conjugations.

If we now have k ≥ 3 bits, then we can repeat the above argumentation for every pair
among the k bits. Since the unitary gates on pairs of qubits generate all unitaries, this implies
that T2k must contain all unitary conjugations. These generate all quantum states and effects.
Furthermore, any additional non-unitary transformation would map outside of the quantum
state space.

This reconstructs QT for N = 2k. For capacities that are not a power of two, we can
simply invoke the Subspace Axiom to derive the quantum state space (and the group of unitary
conjugations) also in this case. For example, Ω3 is embedded in the two-bit state space Ω4,
and the Subspace Axiom tells us that it must have the form that we expect.

This concludes our proof of Theorem 21, and our reconstruction of finite-dimensional
quantum theory.

Further reading. The search for alternative axiomatizations of QT dates back to Birkhoff
and von Neumann (1936) [16]. It was followed by foundational work on Quantum Logic
(Piron 1964) [68] as well as mathematical work on the characterization of the state spaces of
operator algebras (Alfsen and Shultz, 2003 [1]) and several attempts to pursue a derivation of
QT as above, for example in the operationally motivated work of Ludwig (1983) [55] and in
the description of “relational quantum mechanics” by Rovelli (1996) [73]. The rise of quantum
information theory has shifted the focus: it became clear that the main features of quantum
theory are already present in finite-dimensional systems, and that the notion of composition
plays an extraordinarily important role in its structure. This shift of perspective has led to a
new wave of attempts to derive the quantum formalism from simple principles, pioneered by
Hardy (2001) [40]. Despite the importance and ingenuity of Hardy’s result, there remained
some problems to be cured — in particular, one of the postulates from which he derived the
quantum formalism was termed the “simplicity axiom”, stating that the state space should be
in some sense the smallest possible for any given capacity. In particular, this left open the
possibility that there is in fact an infinite sequence of theories, characterized by the “order of
interference” parameter r, see Eq. (7), and QT is just the r = 2 case. This was excluded ten
years later, see Dakić and Brukner 2011 [29], Masanes and Müller 2011 [56], and Chiribella
et al. 2011 [20] (see also d’Ariano, Chiribella, and Perinotti, 2017 [31]). These works gave
complete reconstructions of the formalism of QT. A lot more progress and insights have been
gained since then. For example, there is now a new reconstruction by Hardy (2011) [41]
which does not make use of the Simplicity Axion, a diagrammatic reconstruction based on
category theory (Selby et al., 2018 [75]), a reconstruction “from questions”, i.e. based on the
complementarity structure of propositions (Höhn and Wever 2017 [44], and Höhn 2017 [42,
43]); there are several beautiful works by Wilce on deriving the more general Jordan-algebraic
state spaces from the existence of “conjugate systems” resembling QT’s maximally entangled
states (e.g. Wilce 2017 [87]); and there is now a derivation of QT from single-system postulates
only, namely spectrality and strong symmetry (Barnum and Hilgert, 2019 [8]), an immensely
deep result that significantly improves on earlier work by Barnum et al, 2014 [9]. This list is
far from complete, and it certainly excludes important work that does not fall into the GPT
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framework but relies, for example, more on the device-independent formalism mentioned at
the end of Subsection 2.1.

5 Conclusions

The framework of Generalized Probabilistic Theories (GPTs) yields a fascinating “outside per-
spective” on QT. It tells us that QT is just one possible theory among many others that could
potentially describe the statistical aspects of nature. These theories share many features with
QT, like entanglement or the no-cloning theorem (see Barnum et al., 2007 [5]), but they also
differ in some observable aspects, e.g. in the set of Bell correlations that they allow, in the
group structure of their reversible transformations, or in the interference patterns that they
generate on multi-slit arrangements.

However, we have seen that QT is still special: it is the unique GPT that satisfies a small set
of simple information-theoretic principles. These principles are formulated in purely opera-
tional terms, without reference to any of the mathematical machinery of QT like state vectors,
complex numbers, operators, or any sort of algebraic structure of observables. Thus, recon-
structing QT from such principles can tell us, in some sense, “why” QT has its counterintuitive
mathematical structure.

These results give us arguably important insights into the logical structure of our physical
world. But then, what exactly do they tell us? Can we learn anything about how to interpret QT,
and about the nature of the quantum world? The hope for a positive answer to this question
has been famously raised by Fuchs (2003) [33]. Fuchs’ hope was that a reconstruction of
QT would ground it in large parts on information-theoretic principles, but not completely. He
wrote: “The distillate that remains — the piece of quantum theory with no information theoretic
significance — will be our first unadorned glimpse of ‘quantum reality’. Far from being the end of
the journey, placing this conception of nature in open view will be the start of a great adventure.”

However, the recent reconstructions, including the one summarized in these lecture notes,
seem to have given us derivations of QT from purely information-theoretic principles, full
stop. What do we make of this? At the conference “Quantum Theory: from Problems to
Advances” in Växjö, 2014, Časlav Brukner argued as follows: “The very idea of quantum states
as representatives of information — information that is sufficient for computing probabilities of
outcomes following specific preparations — has the power to explain why the theory has the very
mathematical structure that it does. This in itself is the message of the reconstructions.” It is
possible to acknowledge this beautiful insight while remaining completely agnostic about the
problem of interpretation. Or one may contemplate a bolder possibility: perhaps our world is
at its very structural bottom fundamentally probabilistic and information-theoretic in nature
(Müller, 2020 [58])? Whatever this may mean, or whichever position one may want to take,
information-theoretic reconstructions of QT can be a fascinating and enlightening piece of
puzzle in the great adventure to make sense of our quantum world.
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