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Abstract

Free fermion systems enjoy a privileged place in physics. With their simple structure
they can explain a variety of effects, ranging from insulating and metallic behaviours to
superconductivity and the integer quantum Hall effect. Interactions, e.g. in the form
of Coulomb repulsion, can dramatically alter this picture by giving rise to emerging
physics that may not resemble free fermions. Examples of such phenomena include
high-temperature superconductivity, fractional quantum Hall effect, Kondo effect and
quantum spin liquids. The non-perturbative behaviour of such systems remains a major
obstacle to their theoretical understanding that could unlock further technological appli-
cations. Here, we present a pedagogical review of “interaction distance" [Nat. Commun.
8, 14926 (2017)] – a systematic method that quantifies the effect interactions can have
on the energy spectrum and on the quantum correlations of generic many-body systems.
In particular, the interaction distance is a diagnostic tool that identifies the emergent
physics of interacting systems. We illustrate this method on the simple example of a
two-site Fermi-Hubbard model.
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1 Introduction

The study of interacting quantum systems is recognised as one of the hardest problems in
physics. When interactions are weak, perturbation theory and mean-field theory can be suc-
cessfully employed to find an approximate description of a system. In a handful of cases, exact
solutions to idealised models are also available, usually in low-dimensional systems [1]. How-
ever, a systematic approach for solving general strongly-interacting systems does not exist. To
date, there has been a wide variety of inspired theoretical methods applicable to particular
kinds of interacting systems, including, e.g., density functional theory [2–6], bosonisation [7],
AdS/CFT correspondence [8–10], variational methods [11–13], the Bethe ansatz for integrable
systems [14], or advanced numerical techniques based on quantum entanglement [15–17] and
quantum Monte Carlo [18].

Physical systems are typically described by Hamiltonians which comprise a kinetic and an
interaction term. Usually we associate the strength of interactions with the magnitude of the
coupling constant in front of the interaction term. While this might be valid in the perturbative
regime, it can also happen that models in the non-perturbative regime can be recast as free
theories with a modified kinetic operator. Then, the interaction coupling fails to identify how
truly interacting a system is, requiring a new measure of “interactiveness". Furthermore, it
is of much interest to identify the “optimal" free theory, i.e., the theory that gives the closest
possible description to the given interacting system. Finally, one would like to quantify the
“error" in approximating the interacting system by the optimal free theory. Such a generally
applicable diagnostic tool is still lacking.

A common approach for finding a free theory from an interacting one is by employing
the mean-field approach [19]. This approach assumes weak correlations, such that the Wick
theorem [20] can be approximatively applied and modifications of the kinetic term of the
original Hamiltonian can be obtained. The mean-field approach is constructive in the sense
it can determine the solution of the system when it is weakly correlated, but fails in general
to provide the optimal free model. Powerful extensions of this approach, like the density
functional theory, can identify the free fermion theory that has the same kinetic term and local
fermion density as the interacting theory. Nevertheless, these methods require some additional
insight into the form of the correlation and exchange functionals. Several other methods have
been employed with rather specialised applicability [21–27].

Here we give an introduction to interaction distance [28], a systematic method that allows
to quantify the effect of interactions on a generic quantum system. Interaction distance is for-
mulated in terms of quantum information concepts, such as the entanglement spectrum [29]
and distinguishability measures between quantum states [30]. As a result, interaction distance
can be evaluated from the data obtained by analytic or numerical studies of entanglement or
energy spectra of the system. This tool not only quantifies the effect of interaction on a quan-
tum system, but also allows to identify the optimal free model closest to the interacting one.
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For example, if the interaction distance is zero then the interacting system can be faithfully
described by the optimal free system. Importantly, this can occur even in the non-perturbative
regime of strong interactions. Hence, the interaction distance is a versatile tool for probing
many-body systems, complementary to similar diagnostics such as the entanglement or Renyi
entropies [30]. Knowing if an interacting model behaves effectively as free can also be used as
a resource for scientific or technological applications, such as quantum simulations or quan-
tum computation. Moreover, it can inspire new theoretical approaches for analytically solving
strongly interacting systems.

The remainder of this paper is organised as follows. We start by reviewing some general
properties of free and interacting systems and highlighting their differences in Secs. 2 and 3 .
While interaction distance can be formulated for any kind of system (e.g., bosons and fermions,
on a lattice or in continuum), for technical simplicity in this paper we focus on fermionic lattice
models that have a finite local Hilbert space. In Sec. 4 we introduce some technical concepts,
such as thermal and reduced density matrix, which will allow us to define the interaction
distance. The motivation behind interaction distance is provided in Sec. 5, while its formal
definition and general properties are presented in Sec. 6. In Sec. 7 we develop an intuitive
understanding of interaction distance in the perturbative regime of weak interactions. Sec. 8
illustrates a simple application of interaction distance to the solvable two-site Fermi-Hubbard
model. Our conclusions and future directions are presented in Sec. 9. Further examples and
numerical code can be found at Interaction Distance Website 1.

2 Free-fermion systems

Free-fermion systems form the foundation of our understanding of the majority of physical
phenomena. Due to their analytical tractability they can transparently describe many physi-
cally relevant systems, such as the structure of atoms or the electronic properties of solids. A
typical example of the latter is a free spinless fermion chain with N sites, as illustrated in Fig. 1.
This model has a local Hilbert space {|0〉, |1〉} at site i with fermionic mode operators c†

i and
ci , that respectively create and annihilate a fermion at site i, and satisfy {ci , c†

j } = δi j . These
basis states correspond to the site being either empty, ci|0〉 = 0, or filled with one fermion,
|1〉= c†

i |0〉. The population of each mode is an eigenvalue of n̂i = c†
i ci . The full system can be

described by the basis states |n1, n2, . . . , nN 〉, with each ni = 0 or 1. This basis spans the Fock
space, which is a 2N -dimensional Hilbert space.

The fermions of the free system are allowed to hop between sites i and j, which is formally
implemented by the kinetic energy operator of the form c†

i c j + c†
j ci . In addition, there might

be local (on-site) chemical potential, c†
i ci , arising, e.g., due to the presence of an impurity

at site i, as shown in Fig. 1. Finally, the system might also be coupled to a bath with which
it can exchange particles. This might give rise to “superconducting" or “pairing" terms like
cic j + c†

j c
†
i . Thus, in general the model contains any “quadratic" combinations of fermion

operators (c†
i c j , cic j , and c†

i c†
j ), but there are no higher order terms, like c†

i c†
j cic j , which would

mediate “interaction" between fermions.
The simple model in Fig. 1 already contains much interesting physics. For example, it

can explain conductivity of metals because fermion hopping gives rise to transport and Bloch
bands [31]. On the other hand, if the chemical potential varies strongly between different
lattice sites in a random way, the system might undergo Anderson localisation and the trans-
port would vanish [32]. Further, in some parameter regimes, the model can represent a one-
dimensional p-wave superconductor, which displays a special type of boundary excitations –

1http://theory.leeds.ac.uk/interaction-distance
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Figure 1: An example of a free fermion system defined on a one-dimensional chain
with sites i, j, k, l,· · · . In addition to the hopping term c†

i c j between any pairs of
sites i and j, the system is also coupled to a bath with which it can exchange pairs
of particles. The latter gives rise to superconducting terms of the form c†

i c†
j . Local

chemical potential, c†
i ci , may arise, e.g., due to an impurity on site i.

the “Majorana zero modes" that exhibit non-Abelian anyonic statistics [33]. Finally, the effects
of electromagnetic fields can be described by introducing complex phases into the fermion
hopping amplitudes, t i j . In two dimensions, this can give rise to “Chern bands" [34] – lattice
analogs of integer quantum Hall states.

The quadratic structure of the Hamiltonian allows one to directly diagonalise it using el-
ementary techniques. For example, in the absence of superconducting terms, a lattice system
with N sites is described by a general Hamiltonian

H =
N
∑

i, j=1

hi jc
†
i c j . (1)

Here, h is an N × N Hermitian matrix that can be diagonalised by an N -dimensional unitary
transformation u. The new modes (eigenmodes) in which H is diagonal are simply given by

c̃†
j =

N
∑

i=1

c†
i ui j , (2)

which are a linear combination of the original ci modes. Then the Hamiltonian assumes the
form

H =
N
∑

j=1

ε j c̃
†
j c̃ j , (3)

where the eigenenergies are

ε j = (u
†hu) j j , j = 1,2, . . . , N . (4)

Hence, to diagonalise the 2N -dimensional Hamiltonian, H, we only need to diagonalise the
kernel Hamiltonian h, with the help of u which is N -dimensional. The diagonalisation of h is
an exponentially simpler problem. The free fermion system is also known as a single-particle
problem as the eigenstates of each fermionic particle are independent from the populations of
the other eigenmodes as they are constants of motion (see below). If the Hamiltonian H also
contains superconducting terms, the definition of u can be generalised so that c̃ is a linear func-
tion not only of c but also of c†. This method is known as the Bogoliubov transformation [35]
and it results in a final expression which is analogous to Eq. (3).

The meaning of Eqs. (2)-(3) is that in the new basis of states c̃†
j |0〉 the system behaves as a

set of independent, uncorrelated modes. The new single-particle modes c̃ j are also fermionic
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because the commutation properties are preserved by the unitarity of u, i.e., {c̃i , c̃†
j }= δi j . The

problem can now be completely solved because, for the N -many original modes c j , we have
constructed exactly N new modes c̃ j , whose population operators trivially commute with the
Hamiltonian,

�

c̃†
j c̃ j , H

�

= 0. (5)

The new modes are thus integrals of motion, and they provide conserved quantum numbers
– the populations of the new modes – given by the eigenvalues of c̃†

j c̃ j for each j, which fully
specify the eigenstates of the system.

Now we can consider a many particle free fermion system. Due to Pauli exclusion princi-
ple the available N single-particle modes can be populated by 0, 1, . . ., N fermions in total.
This results in an exponentially large Hilbert space of total dimension 2N . However, due to
the factorisation of the Hamiltonian in Eq. (3), any property of the system can be obtained
efficiently, requiring only a small number of parameters. For example, the energy spectrum of
the system is given by

Ef
k(ε) = E0 +

N
∑

j=1

ε jn j(k), k = 1, 2, . . . , 2N , (6)

where ε j are the single-particle energies in Eq. (4) and k labels all many-body states. The
energies are expressed relative to the vacuum reference energy, E0. For each state k, the set
of numbers {n j(k)} specifies the occupancies of free modes c̃†

j . Each n j(k) must be 0 or 1 and

it is an eigenvalue of the operator c̃†
j c̃ j . Thus, by assigning the N -many free energies ε j to any

allowed number of fermions we can generate the entire many-body energy spectrum, {Ef
k(ε)},

of the system. For example, with two free modes ε1,ε2, the many-body energy spectrum
contains four levels given by E0, E0+ε1, E0+ε2, E0+ε1+ε2. Similarly, properties of eigenstates
can also be computed efficiently due to the Wick theorem: as the Hamiltonian is quadratic, the
computation of correlation functions can be reduced to evaluating only two-point correlators,
〈c†

i c j〉, in the eigenstate of interest. Hence, the quantum correlations of the system can be
exactly described in terms of these two-point correlators that increase only polynomially with
the system size.

3 Interacting fermion systems

Although much interesting physics can be explained in terms of free fermions, there are also
some basic phenomena, like thermalisation in closed systems, which cannot be described with-
out invoking interactions (see the recent review [36]). When particles do not interact, they
do not scatter, so the system is “non-ergodic" and fails to thermalise. In such systems, parti-
cles would propagate ballistically, unlike in generic thermalising systems where propagation
is diffusive. Another phenomenon which crucially depends on the presence of interactions is
the emergence of quasiparticles whose mutual braiding statistics is different from bosonic or
fermionic, e.g., as arising in the fractional quantum Hall effect [13, 37] and frustrated mag-
netism [38–41]. In certain cases, such as the example shown in Fig. 1, a special symmetry (like
fermion parity) can allow excitations with different types of statistical properties. An example
of this are the Majorana zero modes [33], whose braiding statistics is different from ordinary
fermions when they are restricted to two dimensions.

In the previous section, we have seen that a problem of N non-interacting fermions can be
reduced to the problem of finding a unitary transformation u that maps the original fermionic
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modes c† to new independent modes, c̃†. This unitary diagonalises the kernel Hamiltonian,
h, and thus its dimension scales linearly with the system size N , which allows to efficiently
solve non-interacting systems. Let us now consider the case where we add an interaction term
to the Hamiltonian. By “interaction" we formally mean any term in the Hamiltonian which is
higher than quadratic in the fermion operators. For example, a density-density interaction can
give a quartic Hamiltonian of the form

H =
N
∑

i, j=1

(hi jc
†
i c j + Vi j n̂i n̂ j), (7)

where n̂i = c†
i ci and Vi j is the interaction coupling between particles at sites i and j. In this

case, in order to diagonalise the Hamiltonian (7), one can no longer diagonalise the kernel h
and the interaction couplings V independently, as the two terms do not in general commute.
Hence, in order to diagonalise the Hamiltonian a 2N × 2N unitary matrix U is needed, which
acts on the full many-body Fock space of the system, i.e.,

Ek = (U
†HU)kk, k = 1,2, . . . , 2N . (8)

These eigenvalues can all be independent from each other as they do not need to satisfy the
simple relation (6). In rare instances, there may exist linearly many, mutually commuting
operators I j such that

�

I j , H
�

= 0, (9)

which make the system integrable. In that case the problem can be solved exactly in a similar,
albeit more complicated way, to the free fermion case [42].

The eigenvalues Ek of an interacting system can take arbitrary values, in contrast to the
eigenvalues of a free system, that have the very specific structure (6) determined by the linearly
many single particle energies ε j . Moreover, the eigenstates of the system cannot be given in
terms of uncorrelated eigenmodes, as was the case for free systems. This complexity in the
structure of interacting models makes them in general very hard to solve or to diagnose their
properties. In the following section, we introduce two theoretical concepts – thermal states
and the reduced density matrices of eigenstates – which we will use to diagnose the effect of
interactions on the properties of generic interacting systems.

4 Thermal and reduced density matrices

The properties of a generic system can be described using two types of states: the thermal
state, ρth, or the reduced density matrix, ρent, corresponding to one of the system’s eigenstates.
Both of these are density matrices [43] and they provide complementary information about
the statistical or entanglement properties of a quantum system.

Let us first consider a system in thermal equilibrium. The state of such a system is given
by the (thermal) density matrix [44]

ρth(β) =
1
Z

e−βH , (10)

where Z = tr(e−βH) is the partition function and T = 1/β (in units kB = 1) is the thermo-
dynamic temperature. Partition function can appear either explicitly, as a normalisation of
the density matrix in Eq. (10), or it can be included in the spectrum as a constant energy
E0 =

1
β ln Z which appeared in Eq. (6). If the system is free, then thermodynamic functions

can be directly evaluated from Eq. (10) using the free-fermion factorisation of the energies
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in Eq. (6). The thermal state corresponding to the free Hamiltonian (1) is also called “Gaus-
sian" as the exponent is quadratic in the creation and annihilation operators (conversely, if
the Hamiltonian is interacting, the thermal state is called “non-Gaussian"). The eigenvalues
ρth

k (β) of ρth(β) are given in terms of the energy eigenvalues of the system

ρth
k (β) =

1
Z

e−βEk . (11)

Note that, due to the exponential dependence, at low temperatures (βEk � 1), only the low-
lying energy eigenstates contribute to ρth.

Apart from the energy spectrum one can also consider the entanglement properties of
a certain eigenstate |Ψk〉 of H. Quantum correlations are usually studied using the reduced
density matrix [30]. To evaluate the reduced density matrix, we perform a bipartition of the
system into a region A and its complement B. We will consider spatial bipartition where A is a
contiguous region containing some number of lattice sites (typically half). This results in the
decomposition of the Hilbert space H = HA ⊗HB. For a certain (pure) eigenstate |Ψk〉, the
reduced density matrix is then defined as

ρent = trB |Ψk〉〈Ψk| , (12)

where trB denotes the partial trace over the degrees of freedom in B. Reduced density matrix
ρent fully characterises the state of the subsystem A and in general is a mixed state.

The reduced density matrix can be equivalently expressed in the following form, which
brings out the similarity with the thermal density matrix in Eq. (10):

ρent = e−Hent
. (13)

Here we have introduced the “entanglement Hamiltonian" [45] Hent, defined on the subsystem
A. Thus, the reduced density matrix behaves as the thermal state of the subsystem with an
effective Hamiltonian Hent (and at fictitious temperature, βent = 1). The eigenvalues of ρent

are simply related to the “entanglement spectrum" [29] {Eent} of Hent via ρent
k = e−Eent

k . We
will always assume that the entanglement spectrum is normalised according to

tr ρent =
∑

k

e−Eent
k = 1. (14)

The eigenvalues ofρent (and as a result the entanglement spectrum) quantify the quantum cor-
relations between A and B, as can be easily checked with the extreme examples of separable
states or maximally entangled ones. In the case of systems with conformal invariance [46,47]
or in topological phases of matter [48], the entanglement spectrum inherits some character-
istics of the energy spectrum of the full system, e.g., it reveals the energy excitations at the
edge of a topologically ordered system [29]. Moreover, due to the exponential relation (13),
the dominant quantum correlations depend primarily on the lowest part of the entanglement
spectrum.

At low enough temperatures, the structure of the energy spectrum and the entanglement
spectrum is often “simpler" than in a generic many-body system, especially if some quantum
ordering takes place. The properties of the system can then be described in terms of effective
quasiparticles, which are localised excitations that determine the dominant quantum correla-
tions in the low-lying states of the system. As pointed out by Li and Haldane [29], the entan-
glement spectrum exhibits a generic separation into the universal long-wavelength part and
a non-universal short-distance part, the two being separated by the “entanglement gap" [29].
Assuming that the linear size of the system’s quasiparticles, `, is much smaller than the linear
size of the partition A, the long-wavelength physics of the system is determined by correlated
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quasiparticle excitations across the entanglement partition. The lengthscale ` is a function
of microscopic details of the Hamiltonian, in particular it may diverge at the phase transition
where the order is destroyed. In this paper we focus on the low energy or the long wavelength
limit, which corresponds to probing the correlations between the quasiparticles rather than
their internal structure.

5 From interacting to free

It is well known that even if the Hamiltonian contains interaction terms, the system may still be
described by a free-electron model, exactly or approximately. This may be especially the case
when one focuses on the low-energy properties. It can be argued, using adiabatic continuity,
that the properties of the ground state and low-lying excitations smoothly evolve upon “switch-
ing on" interactions between particles. Hence, their fundamental properties and symmetries
remain the same as without the interactions. A particularly striking example of the success of
this approach is the Landau Fermi liquid theory [49], which accurately describes properties of
materials (often with extremely complicated microscopic Hamiltonians) in terms of effective
free fermions with renormalised parameters e.g., the mass. In such cases, it is intuitively clear
that we have an emergent free-fermion description of the system, though possibly restricted
to low energies. Another example is the superconducting system, where the effective pairing
terms emerge from attractive interactions that cause the fermions to pair and condense. After
the condensation, the interaction term can be effectively written as a pairing term, as shown
in Fig. 1.

We can formally define the emergent freedom by the system having a constrained energy
spectrum of the form given in Eq. (6). More precisely, we say that the system is “free" if there
exists a unitary U such that the eigenenergies of U†HU obey Eq. (6). This definition naturally
generalises our discussion in Sec. 2. In that section we employed a unitary u that generated
a linear transformation of the fermionic modes on the level of a single particle, as seen in
Eq. (2). More generally, we now allow for the possibility that the system is free when its
spectrum satisfies Eq. (6) under some non-linear (non-Gaussian) unitary transformation U of
fermionic modes in the many-body Hilbert space, as the one in Eq. (8).

Let us look at explicitly how a Hamiltonian that might be non-quadratic with respect to
some fermionic operators, could be transformed into a quadratic form with respect to some
other modes and vice versa. Consider a Hamiltonian of the form

H =
∑

i, j

hi j fi(c)
† f j(c), (15)

where the operators f j are defined by

f j(c)≡ Uc jU
† (16)

(and similarly for f †). Here, U is a 2N × 2N unitary defined on the many-body Hilbert space,
and the single-particle operators c†

j , c j are extended to the same space by their action on Fock

states |n1, . . . , n j , . . . , nN 〉, which includes the fermion anticommutation sign, (−1)
∑

i< j c†
i ci . In

general, the operators f are not linearly related to c’s. Thus, if we look at H expressed in
terms of c operators, it will have the form of an interacting Hamiltonian. But from Eq. (15)
we know that H is free in terms of the f operators. Hence, given an interacting Hamiltonian
expressed in terms of {c j} operators, our goal is to find the effective { f j} operators and the
kernel Hamiltonian h, which would allow us to dramatically simplify our problem.

Apart from the emergent freedom of the energy spectrum, we also introduce a weaker
notion of freedom that applies only to a given eigenstate, |Ψk〉. Intuitively, we call a state

8

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.4


SciPost Phys. Lect. Notes 4 (2018)

free if it is “close" to a Gaussian state, i.e., if the quantum correlations in its large subsystems
(i.e., for subsystems A, B whose linear dimensions are larger than the correlation length, ξ,
and the size of the quasiparticles, `) can be approximately generated by some free fermion
modes. Formally, we can express this as a condition that the entanglement Hamiltonian of the
state |Ψk〉 is the Hamiltonian of a free system restricted to region A. For example, for the free
lattice system in Fig. 1 and the biparition into equal halves, Hent is a 2N/2×2N/2 matrix whose
eigenvalues can be fully determined from N/2 free energies via the combinatorial formula
in Eq. (6). Thus, the spectrum of the density matrix, either thermal or reduced, exhibits a
special structure in free systems. In the following section, we shall employ the energy and
the entanglement spectra to define a distance that measures how far the thermodynamic and
correlation properties of a many-body system are from the optimal free system.

6 Interaction distance

In this section, we present a distance measure that quantifies how far a quantum system (or
one of its eigenstates) is from the corresponding free system (or free state). This measure was
first introduced in Ref. [28], where it was called “interaction distance". We first give a brief
motivation and the definition of interaction distance, then discuss how it can be efficiently
evaluated, and finally list some of its general properties.

6.1 Definition

As announced in Sec. 5, in order to analyse the properties of an interacting fermionic system
with the Hamiltonian H, we focus on two main aspects: the distribution of its energy spectrum
and of its entanglement spectrum. In particular, we compare these spectra to the correspond-
ing spectra of free systems. To systematically determine possible deviations the interactions
can bring to a system compared to the free-fermion behaviour, we would like to have a distance
function between their states. To probe the energy spectrum we choose for the state to be the
thermal density matrix of the system. To probe the entanglement spectrum we can choose the
reduced density matrix of an eigenstate, typically of the ground state, over some bipartition.

As a first step, we define the manifold of all free or Gaussian fermion statesF . These states
are given by density matrix σ of the form

σ = exp

 

−βE0 − β
∑

j

ε ja
†
j a j

!

, (17)

where a j are arbitrary fermion operators and E0 is a β-dependent normalisation constant that
ensures σ satisfies Eq. (14). We will use the label σ interchangeably for either a free thermal
density matrix, as in Eq. (10), or a free reduced density matrix as in Eq. (13). Importantly, in
both cases the energy or entanglement spectrum of σ obeys Eq. (6). If σ is a reduced density
matrix, then β = 1 in Eq. (17) and a j are defined on a subsystem A. Note that a j are not
necessarily equal to the original fermionic operators, c j , that appear in the Hamiltonian H of
the system.

Next, we consider an arbitrary density matrix, ρ, either coming from a thermal state or
from partial trace over a pure eigenstate of the system. We want to quantify if ρ has the struc-
ture similar to Eq. (17), or in other words we want to determine σ ∈ F which is the optimal
free state, i.e., “closest" to ρ, see Fig. 2. As emphasised above, this optimal free state does
not need to be the same as the free state obtained by simply removing the interaction terms
from the Hamiltonian. Hence, this approach provides a new perspective into the properties
of interacting systems: it identifies how “interacting" these systems are with respect to any
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Interac(on	Distance	
Introduce	the	interac(on	distance	
	
	
where	
	
	
is	the	trace	distance	between				and					.		
					contains	all	fermionic	Gaussian	states.	

DF (⇢) = min
�2F

D(⇢,�)

D(⇢,�) =
1

2
tr
p

(⇢� �)2
F

⇢

�DF (⇢)

⇢ �
F

Exactly	free	system	 Maximally	interac9ng	system	

Too	complicated!	

0  DF  1

hOi = tr(⇢O)DF (⇢) gives	informa9on	about	observables	

Figure 2: The manifoldF of free states and the state ρ of an interacting system that
in general sits outside F . The interaction distance DF (ρ) is the shortest distance
between the state ρ and the manifold F . Finding this distance also determines the
optimal free model σ ∈ F that is closest to ρ. In general, the optimal σ may not be
unique.

free-fermion system, and it provides the optimal free models associated to them. Note that,
in general, the optimal free state may not be unique. In the examples discussed in this paper,
as well as in the literature [28, 50], the optimal free state was found to be unique. Thus, for
simplicity, below we will assume that optimal σ is unique.

To quantify how similar or different an interacting system is from a free one, we introduce
the interaction distance DF . This is defined as the trace distance between the density matrix
ρ of a generic system and the closest density matrix corresponding to a free system σ, given
by

DF (ρ) = min
σ∈F

D(ρ,σ), (18)

where D(ρ,σ) = 1
2 tr
p

(ρ −σ)2 is the trace distance. This distance expresses the distinguisha-
bility of the two density matrices, ρ and σ. The quantity DF has a geometric interpretation as
the distance of the density matrix ρ from the manifold F , as shown in Fig. 2. Note that the
trace distance is merely one convenient choice for the definition of DF , other quantities like
relative entropy [30] can equally be used.

The definition of DF involves a potentially difficult minimisation over all σ. Nevertheless,
it has been shown that the minimum of D(ρ,σ) can be obtained simply from the spectra of ρ
and σ [28,51]. More precisely, both ρ and σ can be individually diagonalised (even though ρ
and σ may not have a common eigenbasis), and the problem then reduces to finding a unitary
transformation W which minimises D(ρd, W †σdW ), where diagonal matrices ρd,σd contain
the spectra ofρ andσ, respectively. It can be proven [51] that the minimum of D(ρd, W †σdW )
is achieved when W is a permutation matrix which orders the entries in ρd and σd in the same
way (e.g., from largest to smallest). This significantly simplifies the minimisation procedure
of Eq. (18). Instead of optimising among all the possible variables of a density matrix with N
modes, that would involve 2N × 2N − 1 complex numbers, we only need to optimise among
the N independent parameters corresponding to single particle energies ε j via Eq. (6). Hence,
the interaction distance takes the form

DF (ρ) =min
{ε j}

1
2

∑

k

�

�

�e−βEk − e−βEf
k(ε)
�

�

� , (19)

where the minimisation is with respect to the N -many single particle energies. As N increases
linearly with the system size, Eq. (19) provides the means to efficiently compute the interaction
distance numerically or analytically for any state of an interacting theory whenever its energy
or entanglement spectrum {Ek} is accessible.
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� �
A B A B

�⇢

Figure 3: The eigenstate of a given interacting system (Left) can be effectively de-
scribed by the eigenstate of a free one (Right). To determine that we first consider
various partitions of the interacting system in A and its compliment B and the cor-
responding partitions of the free system. These partitions give rise to the reduced
density matrices in A denoted by ρ (interacting system) and σ (free system). If
D(ρ,σ) = 0 for any of the partitions then the free system on the right is the optimal
free model of the interacting system.

6.2 Spectral versus entanglement interaction distance

Depending on the choice of ρ, we can define two different types of interaction distance. For a
thermal density matrix, ρth, we define the interaction distance for the energy spectrum, Dβth,
as

Dβth ≡ DF (ρ
th(β)). (20)

This measures the distance of the Hamiltonian spectrum, {Ek} from the closest possible spec-
trum of a free fermion system, {Ef

k}, given by Eq. (6), through the exponentially decaying
function e−βEk . As a result, this function exponentially penalises high energy eigenvalues.
To compare the low energy sectors we can choose β to be large (small temperatures), while
smaller values of β (larger temperatures) implement a comparison of larger parts of the spec-
trum.

The second type of interaction distance applies to an individual quantum state, defined by
the reduced density matrix ρent,

Dent ≡ DF (ρ
ent). (21)

This quantity measures the distance of the entanglement spectrum, corresponding to the given
eigenstate |Ψk〉 and the given partition, from the closest possible free-fermion entanglement
spectrum, {Ef

k}, given also by Eq. (6). Loosely speaking, Dent measures how much the part A
of the system “interacts" with part B. Similar measures to Dent appear in quantum informa-
tion [21, 22, 27, 52–54], which however restrict to a single set of modes. The distance Dent
can be evaluated using a formula similar to Eq. (19), with the only difference that we set the
entanglement temperature to be β = 1 and the number of variational parameters ε is now
determined by the number of degrees of freedom in the subsystem A.

One important difference between Dent and Dβth is that Dent explicitly depends on the par-
tition between A and B subsystems. By varying the size of the partition A, in principle Dent can
probe the short-distance physics associated with internal structure of the emerging quasipar-
ticles rather than their correlations. In what follows, we focus on the long-wavelength limit
where Dent is expected to have universal properties, and restrict to real space partition between
contiguous regions A and B. We will only consider as admissible partitions those for which the
size of regions A and B is much larger than the correlation length, ξ (otherwise, we would
end up probing short-distance, i.e., high-energy physics, which is potentially non-universal)
and the size ` of the constituent quasiparticles. Note that if we establish Dent = 0 with respect
to a certain partition, we cannot immediately conclude that correlations in |Ψk〉 are those of
free fermions. To deduce that one needs to check that the entanglement interaction distance
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F

⇢

�

DF (⇢)

Figure 4: Possible behaviour of the density matrix ρ upon increasing the interaction
coupling (depicted by arrow). As the interactions are turned on, ρ could depart from
the free manifold F with an increasing interaction distance DF (ρ). As the interac-
tion coupling increases the interaction distance may eventually start decreasing and
possibly go back to zero, thus making the system effectively free.

is zero with respect to all admissible bipartitions of the system, as shown in Fig. 3. In this
case we assume that there is a global optimal Gaussian state that effectively describes the sys-
tem. Nevertheless, it is possible that even if the correlations between all partitions are of free
fermions, the total state is not reproducible by a Gaussian state. In the case where Dent 6= 0
the exact value of Dent may then depend on the geometrical or topological properties of the
partitioning boundary [50]. This is due to the possibility of different regions having different
quantum correlations with their complement.

It is intriguing that a variety of distinct behaviours could emerge when we contrast the
behaviour of Dth and Dent. For example, a system might have Dth = 0 while Dent 6= 0 or the
other way around. Moreover, Dent can be zero for some of the eigenstates but not for all
of them. If we are interested in the low energy behaviour then we may only consider the
behaviour of a few low lying states. The most interesting examples are those of interacting
Hamiltonians for which DF ≈ 0, where an emergent freedom arises for strong interactions,
as shown in Fig. 4. In such cases, we can identify the single particle energies that reproduce
the full energy or the entanglement spectrum, thus exponentially compressing the amount of
information needed to describe the system.

6.3 General properties of interaction distance

We now describe some general properties of the thermal and entanglement interaction dis-
tances. The trace distance is bounded, i.e., it satisfies 0 ≤ D(ρ,σ) ≤ 1 when ρ and σ are
allowed to vary arbitrarily. The case D(ρ,σ) = 0 corresponds to the two density matrices
being identical, while D(ρ,σ) = 1 corresponds to ρ being as different from σ as possible.
Nevertheless, for determining DF for a given ρ we need to optimise with respect to σ. So it
is possible that the interaction distance will not saturate the upper bound as the two density
matrices are not arbitrarily chosen. Indeed, we have shown [28] that

0≤ DF ≤ 3− 2
p

2≈
1
6

, (22)

so in practice the upper bound is much smaller than 1. The condition DF = 0 corresponds to
a system that can be exactly described by free fermions, while DF = 3−2

p
2 is the maximum

distance a density matrix can have from a free description. Note that even this value can be
attained only for asymptotically large systems [50].

The physical meaning of DF is that it provides a bound on the expectation values of various
observables in the state ρ compared to state σ. For any observable O , this can be expressed
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as
|〈O 〉ρ − 〈O 〉σ| ≤ cO DF (ρ), (23)

where 〈O 〉ρ = tr(Oρ) and the constant cO depends only on the norm of the operator O , but
does not depend on the states ρ or σ. The ability to approximate expectation values in terms
of an emerging free system signifies also the applicability of the Wick decomposition with an
error which tends to zero as DF → 0.

In terms of practical evaluation of interaction distance, we note that Dent can be efficiently
computed by the use of Eq. (19). The required entanglement spectrum, used as input for
Eq (19), can be obtained in one dimension by computationally efficient matrix-product state
methods [15, 16]. The computation of Dth is also efficient in the system size, but requires
as input the energy spectrum (or its part), which is much less efficient (if a finite density of
states is required, the cost would become exponential in the system size). Numerical code for
evaluating DF and the accompanying documentation can be found at 1.

Finally, we mention that there is an inherent flexibility in the definition of DF , which
allows ρ and σ to be of different dimensions (possibly as a result of different statistics of
their underlying modes). This flexibility is enabled by the fact that we can freely change
the dimension of ρ by adding (or removing) zero eigenvalues. In the case of thermal states,
adding large energies does not affect the lower temperature properties; for reduced density
matrices, adding zeros corresponds to adding disentangled parts in the system that do not
alter its correlation properties. Hence, adding zero eigenvalues in ρ does not alter the physical
properties, which allows us to investigate the important cases where an emergent description
of a system is in terms of different types of free quasiparticles. For example, the low-energy
properties and correlations in a fermionic system may behave as bosons, rather than fermions.
A simple example is the 1D XY spin model, which can be expressed as a fermion lattice model
like in Fig. 1. For such a model, the correlations in the ground state would be formally given
by a fermionic reduced density matrix ρ, while the effective σ should be more naturally given
in terms of bosonic modes. In order to compare such ρ and σ we would need to pad ρ with
some zeros because the Hilbert space of σ has higher dimension (since it is a bosonic Hilbert
space). The flexibility of DF that allows to compare density matrices coming from different
kinds of particles allows for a study of a much wider class of emergent phenomena in many-
body systems. Technically, this can be done because we only require the spectra of ρ and σ to
determine DF , as discussed in Sec. 6.1.

7 Perturbative analysis of interaction distance

To obtain a better understanding of the interaction distance, we now focus on the perturbative
regime of interactions. For that we consider a Hamiltonian H0 of N free fermionic modes,
where we add the fermion interactions V̂ as a perturbation for weak dimensionless coupling
λ. To simplify the analysis we assume that the free system, H0, has non-degenerate eigenstates.
Moreover, we assume that the energy gaps separating the adjacent eigenstates in the spectrum
remain larger than λ as the perturbation is continuously introduced from λ= 0 to a small but
non-zero value. These assumptions are clearly very stringent, e.g., in a many-body system
there might be large degeneracies in the excited spectrum where the typical energy spacing
is ∼ 2−N , thus a perturbation by finite λ can couple many states at once. However, in small
systems such as the two-site Fermi-Hubbard model (which we solve exactly in Sec. 8) we will
find that the perturbative treatment on DF gives good agreement with exact results in the
regime of weak interactions.

By perturbative analysis of the eigenvalues and eigenstates of the interacting Hamiltonian
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H = H0 +λV̂ , (24)

we can calculate the interaction distance for the energy spectrum with small coupling λ. We
first consider the eigenstates |Ψ(0)k 〉 and eigenvalues E(0)k of the free Hamiltonian H0 satisfying

H0 |Ψ
(0)
k 〉= E(0)k |Ψ

(0)
k 〉 , (25)

for k = 1, ..., 2N . As the Hamiltonian H0 describes free fermions its eigenstates are given by

|Ψ(0)k 〉= |n1(k), n2(k), ..., nN (k)〉 , (26)

where {n j(k), j = 1, ..., N} is the population pattern of the eigenmodes corresponding to the

Gaussian state |Ψ(0)k 〉. The eigenmodes are unitarily related to the initial modes of the system.
Similarly, the eigenvalues of H0 are given by

E(0)k =
N
∑

j=1

ε jn j(k), (27)

where {ε j , j = 1, ..., N} are the single particle energies of the eigenmodes. As the perturbative
corrections will change the values of the energy, we set E0 = 0 in Eq. (27), but we explicitly
normalise the density matrix by the partition function.

To first order in perturbation theory the eigenvalues of H are given by

Ek = E(0)k +λ 〈Ψ(0)k | V̂ |Ψ
(0)
k 〉+O (λ

2) (28)

and its eigenstates are given by

|Ψk〉= |Ψ
(0)
k 〉+λ

∑

m 6=k

〈Ψ(0)m | V̂ |Ψ
(0)
k 〉

E(0)k − E(0)m

|Ψ(0)m 〉+O (λ
2). (29)

We assumed that the resulting energies Ek do not become degenerate as λ is kept small. Hence,
the optimal free model corresponding to the interacting theory for a small λwill have the same
population pattern {n j(k), j = 1, ..., N} as the free model H0. We shall see in the following
that this condition simplifies the calculation of the spectral interaction distance, as it is not
necessary to apply the minimisation to identify the optimal free model.

When λ= 0 then the optimal free model of H is identical to H0 itself. The first order effect
in perturbation theory of the energy eigenvalues, given in Eq. (28), can change the single
particle energies ε j , defined in Eq. (27), to the new ones ε̃ j that correspond to the modified
optimal free model. Moreover, they can have a contribution, ∆Ek, that cannot be absorbed by
single particle energies. Hence we can write

Ek =
∑

j

ε̃ jn j(k) +∆Ek. (30)

In view of Eq. (28) we then have

N
∑

j=1

(ε̃ j − ε j)n j(k) +∆Ek = λ 〈Ψ
(0)
k | V̂ |Ψ

(0)
k 〉 . (31)

We now split the set of eigenstates {|Ψ(0)k 〉} into the part with population patterns
{n j(k), j = 1, ..., N} with only a single population at j = k and the rest of the states that
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have either zero or more than one total population. There are N such single occupation states
that we call |Ψ(0)k 〉 for k = 1, ..., N . For these states we take ∆Ek = 0 as interactions take place
only between two or more particles. Moreover, for these single occupancy states all n j(k) in
Eq. (31) are zero except from one with the single occupancy, nk(k) = 1 so we obtain

ε̃k = εk +λ 〈Ψ
(0)
k | V̂ |Ψ

(0)
k 〉 , k = 1, ..., N . (32)

From these N equations we obtain all N single particle energies ε̃ j for j = 1, ..., N that com-
pletely determine the spectrum of the optimal free model.

After determining the effect of the perturbation on the single particle energies we can go
ahead and determine the purely interacting contribution of the perturbation to the eigenvalues
of the energy. From the total of 2N equations of Eq. (31) we used N of them to determine the
single particle energies so there are 2N −N of them left to determine the 2N parameters ∆Ek.
Nevertheless, N of them for k = 1, ..., N that correspond to single particle occupations are
set to zero, so we have an exact match of equations and unknowns. Note also that when all
the populations of the eigenmodes are zero n j(k) = 0 for all j = 1, ..., N , corresponding to

the k = 0 eigenstate then we have 〈Ψ(0)0 | V̂ |Ψ
(0)
0 〉 = 0 as the interactions cannot be witnessed

without particles, and hence ∆E0 = 0.
By solving these linear equations we finally determine both the optimal single particle

energies, ε̃ j , and the genuine interacting effect, ∆Ek. We are now in position to evaluate the
spectral interaction distance

Dβth =min
{ε̃}

1
2

∑

k

�

�

�

�

�

e−Ekβ

Z
−

e−Ef
kβ

Zf

�

�

�

�

�

≈
1
2

∑

k

e−Ef
kβ

Zf

�

�

�∆Ekβ −
∑

l

e−Ef
lβ

Zf
∆Elβ

�

�

�++O ((∆E)2), (33)

where Ef
k =

∑

j ε̃ jn j(k), with ε̃ j determined from Eq. (32). We have used the fact that

e−Ekβ ≈ e−Ef
kβ(1− β∆Ek), (34)

Z ≈ Zf −
∑

l

e−βEf
lβ∆El . (35)

Note, that no optimisation was needed in obtaining this analytic expression for the spectral
interaction distance, Dβth.

Similar calculation in first order perturbation can be performed for the entanglement in-
teraction distance, but it is more cumbersome to express the final result in closed form. In
the following section, we consider the two-site Fermi-Hubbard model. For this model, we
analytically evaluate both spectral and entanglement interaction distance and compare them
against numerical optimisation, finding excellent agreement in the regime where first order
perturbation theory is applicable.

8 Example: Two-site Fermi-Hubbard model

We now consider the Fermi-Hubbard model on a lattice with two sites, also known as the “Hub-
bard dimer" [55, 56]. This model will illustrate how to analytically evaluate the interaction
distance, and compare the exact results with perturbation theory. At the same time, this simple
toy model is physically interesting because it features an analogue to the Mott metal-insulator
transition, and it has recently been experimentally realised using cold atoms [57].
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The two-site Fermi-Hubbard model is described by the following second-quantised Hamil-
tonian

Ĥ = −t
�

c†
1,↑c2,↑ + c†

2,↑c1,↑

�

− t
�

c†
1,↓c2,↓ + c†

2,↓c1,↓

�

+ ∆1

�

n̂1,↑ + n̂1,↓
�

+∆2

�

n̂2,↑ + n̂2,↓
�

+ V̂ . (36)

Here t denotes the hopping strength (which is set to t = 1) and∆ j denotes the on-site potential
(which is also fixed to ∆1 = −∆2 = 1). Fermions interact with strength V when they are on
the same lattice site

V̂ = V
�

n̂1,↑n̂1,↓ + n̂2,↑n̂2,↓
�

. (37)

The Hamiltonian Ĥ in Eq. (36) commutes with the total projection of spin Ŝz =
1
2

∑

j(n̂ j,↑−n̂ j,↓),
hence we can restrict the problem to the largest sector with Sz = 0, which contains four states:
|0X 〉, | ↑↓〉, | ↓↑〉, |X0〉, where X denotes double occupancy of a given site.

In the absence of interactions (V = 0), the energy eigenvalues are E(0)1 = −2
p

2,

E(0)2 = E(0)2′ = 0 and E(0)3 = 2
p

2, with the corresponding (unnormalised) eigenstates denoted
by |1〉, |2〉, |2′〉, |3〉:

|1〉 = (3+ 2
p

2)|0X 〉+ (−1−
p

2)| ↓↑〉+ (1+
p

2)| ↑↓〉+ |X0〉,
|2〉 = | ↑,↓〉+ | ↓↑〉, (38)

|2′〉 = |0X 〉+ | ↓↑〉 − | ↑↓〉 − |X0〉, (39)

|3〉 = (3− 2
p

2)|0X 〉+ (−1+
p

2)| ↓↑〉+ (1−
p

2)| ↑↓〉+ |X0〉.

Choosing the lowest energy as the reference (vacuum) energy, the single particle energies of
the effective free system are

ε1 = ε2 = 2
p

2. (40)

According to Eq. (32), the modified single-particle energies in first order perturbation are given
by

ε̃1 = ε1 + 〈2|V̂ |2〉= 2
p

2, (41)

ε̃2 = ε2 + 〈2′|V̂ |2′〉= 2
p

2+
V
2

. (42)

As the interaction term does not couple the degenerate eigenstates, i.e., 〈2|V̂ |2′〉= 0, Eqs. (41)-
(42) can be directly applied. Further, note that the vacuum energy is also renormalised by
interactions

E1 = E(0)1 + 〈1|V̂ |1〉= −2
p

2+
3V
4

.

Hence, with respect to the new vacuum, the effective free particle energies are

ε̃1 = 2
p

2−
3V
4

, (43)

ε̃2 = 2
p

2−
V
4

. (44)

The final expression for the interaction distance via Eq. (33) (setting β = 1) is

Dβth =
1
2

�

�

�

�

�

�

e−β(−2
p

2+ 3V
4 )

Z
−

1
Zf

�

�

�

�

�

+

�

�

�

�

1
Z
−

e−βε̃1

Zf

�

�

�

�

+

�

�

�

�

�

e−β
V
2

Z
−

e−βε̃2

Zf

�

�

�

�

�

+

�

�

�

�

�

e−β(2
p

2+ 3V
4 )

Z
−

e−βε̃1−βε̃2

Zf

�

�

�

�

�

�

, (45)
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Figure 5: Interaction distance Dβth for the energy spectrum as a function of interaction
strength V in the Hubbard dimer for β = 1. Solid line denotes the exact result with
Dβth determined by numerical optimisation. The first order perturbation in V , of Dβth
according to Eq. (45) (red dashed line) shows good agreement with the exact result
for weak V ® 1. We observe that Dβth becomes maximum near the crossing point
V ≈ 2, where the energy gap is smallest, thus allowing the interactions to have a
strong effect on the distribution of the energy eigenvalues. The interaction distance,
Dβth, tends to zero for large V , signalling that the model becomes effectively free,
which is a non-perturbative result.

where the corresponding partition functions are

Z = exp
�

−β(−2
p

2+
3V
4
)
�

+ 1+ exp
�

−β
V
2

�

+ exp
�

−β(2
p

2+
3V
4
)
�

, (46)

Zf = 1+ exp (−βε̃1) + exp (−βε̃2) + exp (−βε̃1 − βε̃2) . (47)

In Fig. 5 we compare the first-order perturbation formula, Eq. (45), against the exact result
(solid curve) where the full Dth optimisation is performed numerically. We fix β = 1 in Fig. 5.
The perturbative result in Eq. (45) (red dashed line in Fig. 5) shows good agreement with
the full calculation at small values of V ® 0.5. Perturbative result, as expected, significantly
deviates from the full calculation in the vicinity of the transition (V ¦ 2).

It is instructive to consider also Dβth as a function of temperature, T = 1/β , and interaction
coupling V , as shown in Fig. 6. We note that for small temperatures (large β) and for large
temperatures (small β) Dβth is almost zero for all V . Indeed, for small temperatures only a

few energy levels contribute significantly in Dβth, for which it is possible to find a free model
to approximate them. For temperatures dictated by the interaction coupling β ∼ 1/Vc , where
Vc ∼ 2.5 determines the critical coupling that causes the transition of the dimer, the interaction
distance becomes maximum. Hence, this result suggests that Dβth can diagnose the strong
effect of the interactions when the system is close to its critical point. We also observe that
Dβth becomes zero for large temperatures as well (small β). In that case, the eigenvalues of the
density matrix become roughly equal, and because there are four of them, it is possible to find
an effective free model. Moreover, it is apparent from Figs. 5 and 6 that the model becomes
free when V is small or very large. The small coupling optimal free model corresponds to
the free spin-1/2 fermion system given by V = 0. The Bethe ansatz analysis of the large V
limit gives that the model is faithfully described by a free spinless fermion model with twisted
boundary conditions [58].
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Figure 6: Interaction distance Dβth (colour scale) for the energy spectrum as a function
of interaction strength V and temperature T = 1/β in the two-site Fermi-Hubbard
model.

Finally, we consider the entanglement interaction distance of the Fermi-Hubbard dimer
when it is partitioned in the middle. Perturbative analysis of Dent in the limit of weak inter-
actions can be performed analogously to the energy spectrum. Since the ground state of the
dimer is unique, it is sufficient to use non-degenerate first order perturbation. When V = 0,
the eigenvalues of the reduced density matrix ρA are given by

ρ
(0)
1 =

3+
p

2
8

, ρ(0)2 = ρ(0)3 =
1
8

, ρ(0)4 =
3− 2

p
2

8
. (48)

This gives us the effective free-particle “entanglement energies"

ε1 = ε2 = ln(3+ 2
p

2). (49)

From the perturbed ground state, we can determine the perturbed eigenvalues of ρA. Keeping
corrections up to linear order O (V ), we get

ρ̃1 = ρ
(0)
1 +

(−8− 5
p

2)V
128

, ρ̃2 = ρ
(0)
2 +

10
p

2V
128

,

ρ̃3 = ρ̃2, ρ̃4 = ρ
(0)
4 +

(8− 5
p

2)V
128

, (50)

where, conveniently, we still have
∑

k ρ̃k = 1. Eq. (50) is valid for weak interactions such that
the ordering of the levels remains unchanged, i.e., ρ̃1 > ρ̃2 = ρ̃3 > ρ̃4. Assuming V is small,
we see that the effective single particle energies are going to be

ε̃1 = ε̃2 = ln
ρ̃1

ρ̃2
= ln

�

48+ 32
p

2+ (−8− 5
p

2)V

16+ 10
p

2V

�

, (51)

which takes into account the renormalisation of the “vacuum" energy due to the perturbation.
Failing to include the renormalisation of the reference energy would result in Dent that depends
linearly on V , which does not capture the qualitative behaviour of the exact solution.
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Figure 7: Interaction distance, Dent, evaluated from the entanglement spectrum of
the ground state of the two-site Fermi-Hubbard model, as a function of interaction
strength V . The perturbative result (red dashed line) faithfully approximates the
exact numerical result (black solid line) for V ® 1. The ground state for large V
becomes effectively Gaussian again, as diagnosed by Dent→ 0.

With the perturbed free-particle entanglement energies in Eq. (51), the expression for Dent
is formally very similar to that of Dth in Eq. (45):

Dent =
1
2

��

�

�

�

ρ̃1 −
1
Zf

�

�

�

�

+

�

�
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, (52)

where the free partition function Zf is given by the previous Eq. (47) with new ε̃i defined in
Eq. (51).

Fig. 7 shows the value of Dent as a function of V , for fixed t = 1 and ∆1 = −∆2 = 1 [56].
Entanglement interaction distance behaves similarly to the spectral interaction distance Dth
except that it displays a much sharper kink around the expected thermodynamic-limit transi-
tion point, V ≈ 2.5. The first-order perturbation result in Eq. (52) is plotted by red dashed
line in Fig. 7. Similar to the interaction distance for the energy spectrum, Dent shows excellent
agreement with the exact result for weak interactions V ® 1. For larger V , the perturbation
theory fails. Nevertheless, Dent goes to zero as V increases. This signifies that correlation
properties of the ground state can be described by a free theory [58].

9 Conclusions and outlook

The interaction distance, DF , provides a systematic method to quantify how interacting a
system is with respect to its spectral and quantum correlation properties. Identifying if an
interacting system behaves as free is equivalent to finding out if it satisfies the simplest possible
integrability condition, that of a free system. Equivalently, it determines if a free theory can
effectively describe the low energy sector of the model. When DF approaches zero then, at
least, the low energy part of the system can be efficiently described by free fermions, possibly
different from the free fermions that describe the model when the interactions are turned off.

Determining the interaction distance, DF , of a state ρ also specifies the optimal free state
σ that is closest to ρ. In principle, the parent Hamiltonian – the optimal free model – that
gives rise to σ can also be obtained, although this is in general exponentially more difficult
than just determining the value of DF . The resulting free model is optimal either with respect
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to the spectral or correlation properties of the interacting system. As such it is bound to be-
have better than the usual techniques employed to describe interacting systems, such as the
mean-field theory. In particular, mean-field theory constructs a free model by using the same
fermionic operators {c j} (or their linear combinations) as the interacting theory. This should
be contrasted to the generality of our approach where optimisation over arbitrary rotations of
{c j} in the many-body Fock space is performed (i.e., allowing for non-linear transformations
of {c j}). Nevertheless, it should be emphasised that, unlike mean-field theory, our method is
a diagnostic tool. To apply our approach, one first needs to find the spectrum of the Hamilto-
nian or its ground state, before determining DF , similar to other diagnostic tools such as the
entanglement entropy or finite-size scaling analysis.

While the perturbative behaviour of the interaction distance follows the intuitive expecta-
tions, as we have seen in Section 8, the non-perturbative behaviour of interacting models can
be rather surprising. Often, a system appears to be free even in the presence of strong inter-
actions when the thermodynamic limit is taken. As an example, the Ising model in both trans-
verse and longitudinal fields [28] appears to have zero interaction distance when both field
strengths are comparable in magnitude to the nearest neighbour coupling. Another, even more
surprising example, is the Fermi-Hubbard model. The ground state of the 1D Fermi-Hubbard
model appears to have zero entanglement interaction distance for all values of the interac-
tion coupling when the thermodynamic limit is approached with system sizes N = 4k + 2,
k = 0,1, ... [56]. This generalises previous results about the ability to describe the Fermi-
Hubbard model by free fermions when its interaction coupling is infinite.

When considering a system that undergoes a second-order phase transition, its critical
region may be particularly susceptible to interactions. In this region the energy gap that pro-
tects the eigenstates from perturbations becomes negligibly small (and the correlation length
diverges), thus exposing them to interactions. The scaling analysis of Dent near criticality for
various systems sizes reveals important universal features about the systems. Most impor-
tantly, it reveals if the interaction term is a relevant or irrelevant operator in the renormalisa-
tion group sense [28]. An important open problem is to relate the scaling exponents of Dent
to the underlying critical theory (e.g., conformal field theory in one-dimensional cases).

Away from critical regions we can consider gapped systems that are fixed points of renor-
malisation group. Among these systems, of particular interest are those that support topologi-
cally non-trivial properties. Examples include one-dimensional chains exhibiting parafermion
zero modes [59], in two dimensions the topologically ordered string-net models [60] and in
three dimensions the Walker-Wang models [61]. Interestingly, as we have shown in Ref. [50],
the ground states of these families of models vary enormously in their complexity: while some
of the topologically-ordered models can be expressed as free fermion states, others attain all
possible values of interaction distance, including values that saturate the upper bound for Dent
[Eq. (22)] in the thermodynamic limit.

Parafermion chains, parametrised by the group ZN , include the Majorana chain as a special
case for N = 2. It is well known that Majorana chains can be expressed as free fermions
models, so it comes as no surprise that they also have Dβth = 0 and Dent = 0. This characteristic
made it possible to analytically study Majorana zero modes to a great extent as well as made
them amenable to experimental implementations. On the other hand, parafermion models
in general are strongly interacting. As a consequence, much less is theoretically known about
their behaviour or how to realise them in the laboratory. By evaluating the interaction distance
for these models at the fixed point, we analytically found that all models with N = 2n, n
integer, have Dent = 0 in their ground state [50], see Fig. 8. Hence, they can be related by
local unitaries to n copies of Majorana chains. This relation allows to determine the properties
of the Z2n parafermions in terms of the known physics of Majorana fermions, such us their
stability in terms of perturbations. Recently, several studies have focused on investigating the
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Figure 8: Different topological states, including the ground states of parafermion
chains Z2 and Z4 as well as the Kitaev honeycomb lattice model, are interpreted as
free-fermion states belonging to F .

description of the Z4 model in terms of free fermions [62,63].
More surprisingly we observed that systems that support topological order, such as the

toric code, have both thermal and entanglement interaction distances identically zero [50]. In
fact, all Abelian Z2n string-net models are unitarily equivalent to free fermions as well as their
three-dimensional generalisations to the Walker-Wang models. This gives a new perspective
to the origins of topological order and of anyonic statistics. In parallel, it makes these models
amenable to a variety of analytical or numerical investigations that are hard to perform in
strongly correlated systems beyond one dimension.

In conclusion, the interaction distance, as a diagnostic tool, has already yielded unique
insights into a wide variety of interacting systems, ranging from standard many-body models
(like Ising or Fermi-Hubbard) to more exotic models with topological order. We envision that
the interaction distance can be embedded into a new class of numerical or analytical meth-
ods for solving interacting systems. For example, building a density functional theory that
optimises over the entanglement properties rather than the local densities can bring about
the optimal free model without the need to first determine the ground state of the model.
Such an approach can be applicable not only in the perturbative regime where the Kohn-Sham
model is known to be a good approximation, but more importantly in the strongly correlated
regimes [56]. At the numerical front we envision that a variational method (akin to DMRG-
type methods) can be employed that optimises with respect to Dent. As the interaction distance
is well behaved under renormalisation, confirmed by the system size scaling analysis [28], we
are optimistic that it can reveal further surprises in the low energy behaviour of strongly in-
teracting systems.
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