
SciPost Phys. Lect. Notes 6 (2018)

Nested Algebraic Bethe Ansatz in integrable models:
recent results

Stanislav Pakuliak 1 Eric Ragoucy 2 and Nikita Slavnov 3

1 Laboratory of Theoretical Physics, JINR, Dubna, Moscow reg., Russia
2 Laboratoire de Physique Théorique LAPTh, CNRS and USMB,

BP 110, 74941 Annecy-le-Vieux Cedex, France
3 Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

This paper corresponds to two talks given by E.R. and N.S. at
"Correlation functions of quantum integrable systems and beyond,"

in honor of Jean-Michel Maillet for his 60s (ENS Lyon, October 2017)

Abstract

We review the recent results we have obtained in the framework of algebraic Bethe ansatz
based on algebras and superalgebras of rank greater than 1 or on their quantum defor-
mation. We present different expressions (explicit, recursive or using the current real-
ization of the algebra) for the Bethe vectors. Then, we provide a general expression (as
sum over partitions) for their scalar products. For some particular cases (in the case of
gl(3) or its quantum deformation, or of gl(2|1)), we provide determinant expressions for
the scalar products. We also compute the form factors of the monodromy matrix entries,
and give some general methods to relate them. A coproduct formula for Bethe vectors
allows to get the form factors of composite models.
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1 Introduction

Calculation of correlation functions is one of the most challenging problems in the study of
quantum integrable models. Among various methods to solving this problem, we would like
to mention the form factor approach in the framework of the algebraic Bethe ansatz (ABA).
This approach was found to be very effective, in particular, in studying asymptotic behavior of
correlation functions of critical models in the works by J.-M. Maillet and coauthors [1–5].

In the works listed above, the correlation functions of the Lieb–Liniger model and XXZ spin-
1/2 chain were considered. From the point of view of the ABA, these are models respectively
described by the Yangian Y (gl2) and the quantum group Uq(Ògl2). At the same time, there
exist a lot of models of physical interest that are described by the algebras with higher rank of
symmetries (see e.g. [6–9]). Our review is devoted to the recent results obtained in this field.

The first problem that one encounters when studying models with a high rank of symmetry
is to construct the eigenvectors of the Hamiltonian. In the case under consideration, they have
a much more complex form, in comparison with gl2 based models [10–15]. First we need to
build the so-called off-shell Bethe vectors (BVs) that depend on sets of complex parameters. If
these parameters satisfy special constraints (Bethe ansatz equations), then the corresponding
vector becomes an eigenvector of the quantum Hamiltonian (on-shell Bethe vector).

The second problem is the calculation of the scalar products of off-shell BVs. In the study
of correlation functions, one can not confine himself to treating only on-shell Bethe vectors,
since the actions of operators on states, generally speaking, transform on-shell BVs to linear
combinations of off-shell BVs. In view of rather complex structure of BVs, their scalar products
also were found to be difficult to compute [16,17].

The third problem consists in calculating the form factors of local operators. Formally, it
reduces to scalar products of BVs. The problem, however, is to obtain such representations for
form factors that would be convenient for calculation of correlation functions. In particular,
such representations include determinant formulas for form factors.

Finally, having convenient formulas for form factors, one can proceed to a direct calculation
of the correlation functions with the framework of the form factorial expansion. It should be
noted, however, that the procedure for summing the form factors strongly depends on the
specific model. In other words, this procedure depends on the concrete representation of the
algebra describing the given quantum model. At the same time, the first three problems can be
formulated already at the level of the algebra, what makes it possible to obtain their solutions
for a wide class of models within the framework of the ABA. Therefore, in this review, we will
focus on the first three problems.

The plan of this presentation reflects the steps described above. We first present in section
2 the framework we work with, namely the generalized integrable models. Then, we show in
section 3 some results on the construction of BVs for these models. Their scalar products will
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be dealt in section 4, and they can be gathered in three main categories: a generalized sum
formula, some determinant forms and a Gaudin determinant for the norm of BVs. To compute
form factors (FF), we will use four methods: the twisted scalar product tricks, the zero mode
method, the universal FF, and finally the composite model. They are presented in section 5.
Finally, we will conclude on open problems. Since the calculations are rather technical we will
focus on ideas and results, referring to the original papers for the details.

To ease the presentation we will mainly focus on the case of Yangians Y (gln), possibly
fixing n = 3. However, after each result, we will precise to which extend these results can be
used, and refer to the relevant publications where they can be found.

2 Generalized quantum integrable models

The construction of generalized quantum integrable models relies on two main ingredients:
the R-matrix and the monodromy matrix.

The R-matrix. It depends on two spectral parameters z1, z2 ∈ C and acts on a tensor space
Cn ⊗Cn, i.e. R(z1, z2) ∈ V ⊗ V with V = End(Cn). R(z1, z2) obeys the Yang–Baxter equation
(YBE), written in V ⊗ V ⊗ V :

R12(z1, z2)R
13(z1, z3)R

23(z2, z3) = R23(z2, z3)R
13(z1, z3)R

12(z1, z2) . (1)

Here and below, we use the auxiliary space notation, where the exponent indicates on which
copies of Cn acts the R-matrix, e.g. R12 = R⊗ In, R23 = In ⊗ R, ...

The universal monodromy matrix T (z) ∈ V ⊗A . It contains the generators of the alge-
bra we will work with. In the present paper we will focus on (super)algebras A = Y (gln),
Uq(Ògln), Y (glm|p) and Uq(Òglm|p). Note however that the construction can be also done for
other algebras, such as A = Y (son), Y (spn), Uq(Òson), Uq(Òspn), Y (ospm|p), Uq(dospm|p). The
algebraic structure ofA is contained in the two following relations:

T (z) =
n
∑

i, j=1

ei j ⊗ Ti j(z) ∈ V ⊗A [[z−1]] , (2)

R12(z1, z2) T
1(z1) T

2(z2) = T2(z2) T
1(z1)R

12(z1, z2) . (3)

The first relation shows how the generators1 Ti j(z) are encoded in a matrix. The second one
(called RTT relation) provides the commutation relations of the algebra. Again, we have used
the auxiliary space notation, i.e. T1(z1) = T (z1) ⊗ In ∈ V ⊗ V ⊗ A ;
T2(z2) = In ⊗ T (z2) ∈ V ⊗ V ⊗A . We will note n = rankA (i.e. n = m or m+ p, depending
on the algebra we consider).

Remark that T (z) is a universal monodromy matrix, meaning that the generators ofA are
not represented. What is usually called a monodromy matrix corresponds to π(T (z)) where
π is a representation morphism. The choice of a representation (hence of the morphism π)
fixes the physical model we work with. In fact, most of the calculations can be done with mild
assumptions on the type of representation used to define the model. This leads to the notion
of generalized models, that are based on lowest weight representations without specifying the
lowest weight.

1Strictly speaking, the generators of A are obtained through an expansion of Ti j(z) in z, z−1. However, the
expansion depends on the algebra we are considering, and most of the calculations can be done using the generating
functions Ti j(z), so that we will loosely call them ’generators’.
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Choice of (lowest weight) representations ofA . The generalized models are defined from
the universal monodromy matrix, assuming that it obeys the additional relations:

T j j(z)|0〉= λ j(z)|0〉, j = 1, ..,n, Ti j(z)|0〉= 0, 1≤ j < i ≤ n, (4)

where |0〉 is some reference state (the so-called pseudo-vacuum) and λ j(z), j = 1, ..,n, are
arbitrary functions. Up to normalisation of T (z), we only need the ratios

r j(z) =
λ j(z)

λ j+1(z)
, j = 1, ...,n− 1.

In generalized models, r j(z) are kept as free functional parameters. The calculations we
present will be valid for arbitrary functions r j(z).

The transfer matrix t(z). It encodes the dynamics of the model as well as its conserved
quantities. For algebras, the transfer matrix is defined as

t(z) = tr T (z) = T11(z) + ...+ Tnn(z) . (5)

For superalgebras, it takes the form

t(z) = str T (z) =
n
∑

i=1

(−1)[i]Tii(z) (6)

= T11(z) + ...+ Tmm(z)− Tm+1,m+1(z)− ...− Tp+m,p+m(z) , (7)

where [.] is the standard Z2 gradation used for superalgebras, implicitly defined in (7). Due
to (3), we have [t(z) , t(z′)] = 0, so that the transfer matrix defines an integrable model (with
periodic boundary conditions).

Example: the "fundamental" spin chain. To illustrate the different notions presented above,
we consider the following monodromy matrix:

T0(z|z̄) = R01(z − z1)R
02(z − z2) · · ·R0L(z − zL) ,

where z̄ = {z1, ..., zL} are complex parameters, called the inhomogeneities. 1, 2, ..., L are the
quantum (physical) spaces of the spin chain, they are n-dimensional: on each site the "spins"
can take n values. The auxiliary space 0 has the same dimension.

Due to the YBE, one shows that the above monodromy matrix indeed obeys the RTT re-
lation (3). The form of the R-matrix, for all the algebras A = Y (glm), Uq(Òglm), Y (glm|p),
Uq(Òglm|p) ensures that this monodromy matrix obeys the lowest property (4). For the Yangian
Y (gln), the weights read

λ1(z) =
L
∏

`=1

�

1+
c

z − z`

�

and λ j(z) = 1 j = 2, ...,n.

For any algebraA , it is the simplest spin chain that one can construct. It is built on the tensor
product of L fundamental representations of the underlying finite dimensional Lie algebra,
and corresponds to a periodic spin chain with L sites, each of them carrying a fundamental
representation ofA .
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To illustrate the presentation, we will focus on the Yangian Y (gln). Formulas will be
displayed for this algebra, but we will mention when they exist for other algebras.

The Yangian Y (gln) has a rational R-matrix

R(z1, z2) = I+ g(z1, z2)P ∈ End(Cn)⊗ End(Cn),

g(z1, z2) =
c

z1 − z2
,

where I is the identity matrix, P is the permutation matrix between two spaces End(Cn), c is
a constant. It corresponds to XXX-like models and is based on Y (gln).

Explicitly, in the case n= 3, the R-matrix has the form

R(z1, z2) =





























f 0 0 0 0 0 0 0 0
0 1 0 g+ 0 0 0 0 0
0 0 1 0 0 0 g+ 0 0
0 g− 0 1 0 0 0 0 0
0 0 0 0 f 0 0 0 0
0 0 0 0 0 1 0 g+ 0
0 0 g− 0 0 0 1 0 0
0 0 0 0 0 g− 0 1 0
0 0 0 0 0 0 0 0 f





























,

where g+ = g− ≡ g(z1, z2) and f ≡ f (z1, z2) = 1+g(z1, z2). Note that the R-matrix for Uq(Ògl3)
has a similar form, but with different functions g± and f .

2.1 Notation

We have already introduced the functions

g(z1, z2) =
c

z1 − z2
and f (z1, z2) =

z1 − z2 + c
z1 − z2

,

that enter in the definition of the R-matrix, and describe the interaction in the bulk. The
functions presented above are of XXX type. For completeness, we give below the functions f
and g for the XXZ type:

g(z1, z2) =
q− q−1

z1 − z2
and f (z1, z2) =

qz1 − q−1z2

z1 − z2
.

We have also seen the free functionals

ri(z) =
λi(z)
λi+1(z)

, i = 1, ...,n− 1 ,

that (potentially) describe the representation used for the model. These are all the scalar
functions we will deal with.

We will use many sets of variables and to lighten the presentation, we will use some nota-
tion for them:

• "bar" always denote sets of variables: w̄, ū, v̄ etc.

• Individual elements of the sets have latin subscripts: w j , uk, etc.

• # is the cardinality of a set: w̄= {w1, w2} ⇒ #w̄= 2, etc.
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• Subsets of variables are denoted by roman indices: ūI, v̄iv, w̄II, etc.

• Special case of subsets: ū j = ū \ {u j}, w̄k = w̄ \ {wk}, etc.

Associated to these sets of variables, we use shorthand notation for products of scalar
functions (when they depend on one or two variables). If a function depends on a set of
variables, then one should take take the product over the sets, e.g.:

f (ūII, ūI) =
∏

u j∈ūII

∏

uk∈ūI

f (u j , uk),

r1(ūII) =
∏

u j∈ūII

r1(u j); g(vk, w̄) =
∏

w j∈w̄

g(vk, w j), etc.
(8)

We use the same prescription for the products of commuting operators, for example,

T j j(ūI) =
∏

u j∈ūI

T j j(u j), etc. (9)

By definition, any product over the empty set is equal to 1. A double product is equal to 1 if
at least one of the sets is empty.

3 Bethe vectors

3.1 Generalities

The framework to compute Bethe vectors has been developed by the Leningrad school in the
80’s. It is the Nested Algebraic Bethe Ansatz (NABA), developed by Kulish and Reshetikhin [10,
11]. It provides vectors (the Bethe vectors, BVs) that depend on some parameters (the Bethe
parameters) and that are eigenvectors of the transfer matrix provided the Bethe parameters
obey some algebraic equations (the Bethe Ansatz Equations, BAEs). When it is the case, the BVs
are called on-shell, while they are said off-shell otherwise. Our first goal is to provide explicit
expressions for these BVs. The general strategy of the ABA is to start with the pseudo-vacuum
vector |0〉, which is itself an eigenvector of the transfer matrix. Then, one applies the ’creation
operators’ Ti j(u), i < j, on |0〉 to build more general vectors, and seek for combinations that
can be transfer matrix eigenvectors.

In the case of the "usual" XXX (gl2) spin chain. The construction of BVs is rather simple,
since we have only one ’raising’ operator T12(z):

Ba(ū) = T12(u1)T12(u2) · · · T12(ua)|0〉, (10)

which leads to one set of Bethe parameters ū = {u1, ...,ua}. Then, asking Ba(ū) to be an
eigenvector of the transfer matrix t(z) = T11(z) + T22(z) leads to the BAE:

r1(u j) =
f (u j , ū j)

f (ū j , u j)
, j = 1,2, ..., a .

In the case of higher rank n. There are many raising operators Ti j(z), 1 ≤ i < j ≤ n,
and the calculation becomes more tricky. In particular, there are n− 1 different sets of Bethe
parameters:

t̄( j) = {t( j)1 , ..., t( j)a j
} , # t̄( j) = a j ∈ Z≥0 , j = 1,2, ...,n− 1 ,

t̄ = { t̄(1), t̄(2), ...., t̄(n−1)} , ā = {a1, a2, ..., an−1}.
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On needs to find how to put together all the raising operators, and Bā( t̄) appears to be much
more complicated. The expression of Bā( t̄) is fixed by asking it to be a transfer matrix eigen-
vector

t(z)Bā( t̄) = τ(z| t̄)Bā( t̄), (11)

provided the Bethe equations are obeyed. For illustration, we give the eigenvalue and the
BAEs in the case of the Yangian Y (gln) [10,11]:

τ(z| t̄) =
n
∑

i=1

λi(z) f (z, t̄(i−1)) f ( t̄(i), z), (12)

ri( t̄
(i)
I
) =

f ( t̄(i)I , t̄(i)II )

f ( t̄(i)II , t̄(i)I )

f ( t̄(i+1), t̄(i)I )

f ( t̄(i)I , t̄(i−1))
, i = 1, ...,n− 1, (13)

with the convention that t̄(0) = ; = t̄(n). Recall that here we use the shorthand notation (8)
for the products of the functions ri and f . In particular, any product over the empty set equals
1. BAEs hold for arbitrary partitions of the sets t̄(i) into subsets { t̄(i)I , t̄(i)II }.

Dual Bethe vectors Cā( t̄). As already mentioned, Bā( t̄) is a transfer matrix eigenvector
provided the Bethe equations are obeyed. In the same way, one can construct dual BVs that
are left eigenvectors of the transfer matrix

Cā( t̄) t(z) = τ(z| t̄)Cā( t̄),

provided the (same) BAEs are obeyed, and where τ(z| t̄) is the same as in (11). In that case
they will be called on-shell dual BVs, and off-shell dual BVs otherwise.

Below, we will mainly focus on the BVsBā( t̄), but formulas also exist for dual Bethe vectors.
A simple way to get such formulas is to use an anti-morphism ψ. For the Yangian Y (gln) it
takes the form ψ

�

Ti j(u)
�

= T ji(u) and allows to define the dual BV as

Cā( t̄) =ψ
�

Bā( t̄)
�

.

• An example of the use of the morphismψ in the Yangian case can be found in [18]. Note
that in the case of super-Yangians, ψ relates BVs of Y (glm|p) to dual BVs of Y (glp|m),
see [19,20]. The same is true for its generalization to the Uq(Òglm) algebra, see e.g. [21].

Generalized models. Usually, when dealing with e.g. spin chain models, the Bethe equa-
tions are seen as a ’quantization’ of the Bethe parameters t̄. Here, for generalized models,
since the functions ri(z) are not fixed, BAEs are rather viewed as functional relations between
the functions ri(z), i = 1, ...,n− 1 and the Bethe parameters t(i)j .

3.2 Expressions for Bethe vectors

There are different presentations for the BVs, each of them being adapted for different purpose.
Known formulas: the trace formula. It is the first general expression for BVs of higher

rank algebras. Again, as an illustration, we present it in the case of the Yangian Y (gl3). For a
BV Ba,b(ū; v̄), where a = #ū and b = #v̄, one introduces a+ b auxiliary spaces V = End(C3).
Then, the Bethe vector can be written as

Ba,b(ū; v̄) =
�

λ2(ū)λ2(v̄) f (v̄, ū)
�−1

tr
a+b

�

∈Y (gl3)⊗V⊗(a+b)

︷ ︸︸ ︷

T(ū; v̄)R(ū; v̄) e⊗a
21 ⊗ e⊗b

32

�

︸ ︷︷ ︸

∈Y (gl3)

|0〉 ,
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where ei j are the 3 × 3 elementary matrices (acting in C3) with 1 at position (i, j) and 0
elsewhere. The trace tra+b is taken over the a+ b auxiliary spaces, and T(ū, v̄) (resp. R(ū, v̄))
is a product of monodromy matrices (resp. R-matrices):

T(ū, v̄) = T1(u1) · · · T a(ua) T
a+1(v1) · · · T a+b(vb) ,

R(ū, v̄) =
�

Ra,a+1(ua, v1) · · ·Ra,a+b(ua, vb)
�

· · ·
�

R1,a+1(u1, v1) · · ·R1,a+b(u1, vb)
�

,

where we have used the auxiliary space notation, i.e. the exponents indicate in which auxiliary
space(s) the matrices act.

• The trace formula was introduced by Tarasov and Varchenko for Y (glm) and Uq(Òglm)
algebras [12]. It has been generalized to superalgebras Y (glm|p) and Uq(Òglm|p) in [22].

Recursion formulas. They allow to build BVs with a ’big’ number of Bethe parameters from
BVs having a smaller number of them. Again, in the gl2 case (10), these recursion formulas
are rather trivial, Ba+1(ū) = T12(uk)Ba(ūk), while they become more intricate for higher
ranks. In the case of Y (gl3), they take the form:

λ2(uk) f (v̄, uk)Ba+1,b(ū; v̄) = T12(uk)Ba,b(ūk; v̄)

+
b
∑

i=1

r2(vi)g(vi , uk) f (v̄i , vi)T13(uk)Ba,b−1(ūk; v̄i), (14)

λ3(vk) f (vk, ū)Ba,b+1(ū; v̄) = T23(vk)Ba,b(ū; v̄k)

+
a
∑

j=1

g(vk, u j) f (u j , ū j)T13(vk)Ba−1,b(ū j; v̄k). (15)

Remark that considering the underlying finite Lie algebra gl3 with simple roots α, β , one sees
that Ba,b(ū; v̄) "behaves" as the root aα+ bβ . This reflects the fact that BVs are eigenvectors
of the zero modes Tkk[0], see section 5.2.

• Recursion formulas are in fact a particular case of multiple action of Ti j( x̄) on BVs. The
case of Y (gl3) can be found in [23], Uq(Ògl3) in [24], and Y (gl2|1) in [25]. It exists also
for Y (glm|p) [26] and Uq(Ògln) [27].

Explicit formulas. Solving the recursion relations, we obtain different explicit formulas for
the Bethe vectors, which depend on the recursion we use, e.g. (14) or (15) in the Y (gl3) case.
An example of such explicit expression is given by:

Ba,b(ū; v̄) =
∑λ2(v̄I)Kk(v̄I|ūI)

λ3(v̄)λ2(ū)
f (v̄II, v̄I) f (ūII, ūI)
f (v̄II, ū) f (v̄I, ūI)

T12(ūII)T13(ūI)T23(v̄II)|0〉 , (16)

where the sums are taken over partitions of the sets: ū ⇒ {ūI, ūII} and v̄ ⇒ {v̄I, v̄II} with
0≤ #ūI = #v̄I = k ≤min(a, b) and Kk(v̄I|ūI) is the Izergin–Korepin determinant

Kk( x̄ | ȳ) = ∆k( x̄)∆
′
k( ȳ)

f ( x̄ , ȳ)
g( x̄ , ȳ)

det
k

�

g2(x i , y j)

f (x i , y j)

�

, (17)

∆k( x̄) =
k
∏

`<m

g(x`, xm) ; ∆′k( ȳ) =
k
∏

`<m

g(ym, y`) . (18)

• A fully explicit expression for BVs in the case of Y (gl3)was presented in [23] and in [27]
for Uq(Ògln). The generalization to superalgebras can be found in [28] for Y (gl2|1) and
in [26] for Y (glm|p).
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Current presentation and projection method. Instead of presenting the algebraA in term
of a monodromy matrix T (z), one can use the current realization. It exists for the quantum
groups Uq(Ògln) and Uq(glm|p), as well as for the double Yangians DY (gln) and DY (glm|p). The
current realization is related to a Gauss decomposition of the monodromy matrix T (z) [29].
Using the projection method introduced by Khoroshkin, Pakuliak, and collaborators in the
years 2006-10, one gets an explicit expression of BVs in a different basis.

As an illustration of the projection method, we consider the current realization of DY (gl3).
Then, BVs can be written as

Ba,b(ū; v̄) =N P +f
�

F1(u1) · · · F1(ua)F2(v1) · · · F2(vb)
�

k1(ū) k2(v̄) |0〉 ,

where

N =

∏

1≤ j<i≤a f (u j , ui)
∏

1≤ j<i≤b f (v j , vi)

λ2(ū)λ3(v̄) f (v̄, ū)
,

and

1. k1(z) and k2(z) are the Cartan generators;

2. F1(z) is the generator associated to the first simple (negative) root;

3. F2(z) is the generator associated to the second simple (negative) root;

4. P +f is the projector of the Borel subalgebra on the positive modes.

• The construction of BV in the current presentation has been initiated for the Uq(Ògln)
algebra in [13–15] and then generalized to the (super)Yangian Y (glm|p) case in [26].

3.3 Relations between the different expressions of Bethe vectors

All the formulas presented in section 3.2 are related:

1. The explicit expressions solve the recursion formulas;

2. The trace formula obeys the recursion formulas;

3. The recursion formulas uniquely fix the BVs, once the initial values

Ba,0(ū;;) =
T12(ū)
λ2(ū)

|0〉, or B0,b(;; v̄) =
T23(v̄)
λ3(v̄)

|0〉

for Y (gl3) are known;

4. The projection of currents coincides with the trace formula.

Thus, they all describe the same (off-shell) BVs.

Normalization of BVs. The main property of BVs is that they become eigenvectors of the
transfer matrix if the Bethe parameters enjoy the BAEs. Since any eigenvector is defined up
to a normalization factor, the BVs also have a freedom in their normalization. The choice of
normalization is a question of convenience. In the above formulas, the normalization was
chosen as follows.

It follows from the explicit representation (16) that BV is a polynomial in Ti j (i < j) acting
on |0〉. Among the terms of this polynomial, there is one term that does not depend on the
operator T13. We call this monomial main term and denote by eBa,b(ū; v̄). Thus,

Ba,b(ū; v̄) = eBa,b(ū; v̄) + . . . , (19)
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where ellipsis refers to all the terms containing at least one operator T13, and

eBa,b(ū; v̄) =
T12(ū)T23(v̄)|0〉
λ3(v̄)λ2(ū) f (v̄, ū)

. (20)

Thus, we fix the normalization of BV by the explicit form of the main term. This normalization
is convenient for recursion formulas, formulas of the action of Ti j(z) on BVs, calculation of
scalar products of BVs.

We use similar conventions on the normalization in the cases Y (gln), Uq(Ògln), and Y (glm|p).
In all these cases the BV contain a term that depends on the operators Ti,i+1 only. We call it
the main term. In the case of Y (gln) it is normalized as follows:

eBā( t̄) =
T12( t̄(1))T23( t̄(2)) . . . Tn−1,n( t̄(n−1))|0〉
∏n−1

i=1 λi+1( t̄(i))
∏n−2

i=1 f ( t̄(i+1), t̄(i))
. (21)

In the case Uq(Ògln) the normalization is the same, but one should take q-deformed analogs of
the f -functions. For the superalgebra Y (glm|p), the normalization looks similar, but it takes
into account the grading (see [20]).

4 Scalar products

Once the BVs (and dual BVs) are constructed, one can consider their scalar product

Sā(s̄| t̄) = Cā(s̄)Bā( t̄), (22)

where
s̄ = {s̄(1), s̄(2), ....s̄(n−1)},

t̄ = { t̄(1), t̄(2), .... t̄(n−1)}
#s̄( j) = # t̄( j), j = 1, . . . ,n− 1. (23)

If #s̄( j) 6= # t̄( j) for at least one j, then the scalar product vanishes.

4.1 Sum formula

The scalar product of generic off-shell BVs can be presented in the form known as a sum formula

Sā(s̄| t̄) =
∑

Wpart(s̄I, s̄II| t̄I, t̄II)
n−1
∏

j=1

r j(s̄
( j)
I
)r j( t̄

( j)
II
). (24)

Korepin and then Reshetikhin were the first to obtain such formula, see references below. In
(24), the sum is taken over all possible partitions of each set t̄( j) and s̄( j) into subsets { t̄( j)I , t̄( j)II }
and {s̄( j)I , s̄( j)II } respectively, such that # t̄( j)I = #s̄( j)I . The dependence on the monodromy matrix
vacuum eigenvalues r j is given explicitly. The coefficient Wpart are rational functions of the
Bethe parameters s̄ and t̄. They are completely determined by the R-matrix. Thus, they do not
depend on the specific representative of the generalized model.

The first formula of this type, corresponding to the Y (gl2) and Uq(Ògl2) based models, was
obtained by Korepin. For these models, one can derive the sum formula using the explicit
form of the BVs. However, in the models with higher rank of symmetry, the use of explicit
formulas for BVs leads to too cumbersome expressions. A generalization of the sum formula
to the Y (gl3) case was done by Reshetikhin via a special diagram technique. In the case of
Y (gln), Y (glm|p), and Uq(Òglm) the sum formula was derived by the use of a coproduct formula
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for BVs [20]. This method allows to express an arbitrary coefficient Wpart in terms of so-called
highest coefficients. Namely, if we set

Z(s̄| t̄) =Wpart(s̄,;| t̄,;) ,

Ẑ(s̄| t̄) =Wpart(;, s̄|;, t̄) ,
(25)

then the general coefficient Wpart(s̄I, s̄II| t̄I, t̄II) has the following form

Wpart(s̄I, s̄II| t̄I, t̄II) = Z(s̄I| t̄I) Ẑ(s̄I I | t̄ I I)

∏n−1
k=1 f (s̄(k)II , s̄(k)I ) f ( t̄

(k)
I , t̄(k)II )

∏n−2
j=1 f (s̄( j+1)

II , s̄( j)I ) f ( t̄
( j+1)
I , t̄( j)II )

. (26)

The highest coefficients are known explicitly for Y (gl3), Y (gl2|1), and Uq(Ògl3). For higher
rank algebras they can be constructed via special recursions.

• We already mentioned Korepin [30] for Y (gl2) or Uq(Ògl2), and Reshetikhin [16] for
Y (gl3). For Uq(Ògl3), the highest coefficient is given in [31], and the full formula in [32].
The super Yangian Y (gl2|1) was dealt in [33], while the general cases of Y (glm|p) and
Uq(Ògln) were respectively presented in [20] and [21].

The expression (24) is valid for all BVs (on-shell or off-shell). However, it is difficult to
handle, specially when considering the thermodynamic limit, so that we look for determinant
expressions for Sā(s̄| t̄).

4.2 Determinant formula

It is known that for the Y (gl2) and Uq(Ògl2) based models the sum over partitions in (24) can be
reduced to a single determinant if one of BVs is on-shell [34]. An analog of this determinant
representation for the higher rank algebras is not known for today. However, determinant
formulas for the scalar products have been obtained in some particular cases. One needs to
impose more restrictive conditions for the BVs as we shall see below. The results have been
obtained only for some specific algebras that we describe at the end of this subsection.

Consider the particular case Y (gl3) and the scalar product of an on-shell Bethe vector
Ba,b(ūB; v̄B) with a twisted dual on-shell Bethe vector Cκa,b(ū

C ; v̄C). To define the twisted dual
on-shell Bethe vector we consider the twisted transfer matrix

tκ(z) = tr
�

M T (z)
�

= T11(z) + κT22(z) + T33(z) with M = diag{1,κ, 1}.

The twisted dual BV is an eigenvector of tκ(z)

Cκa,b(ū
C ; v̄C) tκ(z) = τκ(z|ūC , v̄C)Cκa,b(ū

C ; v̄C), (27)

with
τκ(z|ūC , v̄C) = λ1(z) f (ū

C , z) +κλ2(z) f (z, ūC) f (v̄C , z) +λ3(z) f (z, v̄C), (28)

provided the twisted BAEs are satisfied:

r1(u
C
j ) = κ

f (uC
j , ūC

j )

f (ūC
j , uC

j )
f (v̄, uC

j ),

r2(v
C
j ) =

1
κ

f (vC
j , v̄C

j )

f (v̄C
j , vC

j )
1

f (vC
j , ū)

.
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Then, the scalar product

Sκa,b ≡ C
κ
a,b(ū

C ; v̄C)Ba,b(ū
B; v̄B)

can be written as:

Sκa,b =
g2(v̄C , ūB)∆′a(ū

C)∆a(ūB)∆′b(v̄
C)∆b(v̄B)

κb f (v̄C , ūB) f (v̄C , ūC) f (v̄B, ūB)
det
a+b
M , (29)

where∆n and∆′n are given by (18), andM is a (a+ b)×(a+ b)matrix. If we set ξ̄= {ūB, v̄C},
then

M j,k =
c

λ2(ξk)g(ξk, ūC)g(v̄C ,ξk)
∂ τκ(ξk|ūC , v̄C)

∂ uC
j

, j = 1, . . . , a,

Ma+ j,k =
−c

λ2(ξk)g(ξk, ūB)g(v̄B,ξk)
∂ τ(ξk|ūB, v̄B)

∂ vB
j

, j = 1, . . . , b.
(30)

It is worth mentioning that in spite of this determinant representation is valid only for very
specific case of the scalar product, it can be used as a generating formula for determinant
representations of all form factors of the monodromy matrix entries (see sections 5.1, 5.2).

• These formulas can be found in [35] for the Yangian Y (gl3) (see also [36] for a de-
terminant form of the highest coefficient). Similar determinant formula exists for the
models described by Uq(Ògl3) algebra [37]. In the case of super-Yangians Y (gl2|1) and
Y (gl1|2), a determinant representation was found for arbitrary diagonal twist matrix
M = diag{κ1,κ2,κ3} [38]. In the case of the Yangian Y (gl3) and a twist matrix
M = diag{κ1,κ2,κ3}, a determinant formula for the scalar product was found up to
corrections in (κi − 1)(κ j − 1) [39].

Unfortunately, for models with higher rank symmetry determinant representations are not
known, except for the norms of on-shell BVs that we present now.

4.3 Norm of on-shell BVs: Gaudin determinant

In this section we give a determinant formula for the norm of an on-shell BV. The case of the
models described by Y (gl2) and Uq(Ògl2) algebras was considered in [30], where a Gaudin
hypothesis (see [40], [41]) was proved. A generalization of this result to the Y (gl3) based
models was given in [16]. Here we focus on the Y (gln) case to lighten the presentation.

The Gaudin matrix. To introduce the Gaudin matrix, we first rewrite the BAEs as Φ(i)k = 1,
k = 1, ..., ai , i = 1, ...,n− 1, where

Φ
(i)
k = ri(t

(i)
k )

f ( t̄(i)k , t(i)k )

f (t(i)k , t̄(i)k )

f (t(i)k , t̄(i−1))

f ( t̄(i+1), t(i)k )
,

k = 1, ..., ai

i = 1, ...,n− 1.
(31)

Then, the Gaudin matrix G is a block matrix
�

G(i, j)
�

i, j=1,..,n−1, where each block G(i, j), of
size ai × a j , has entries

G(i, j)k,l = −c
∂ log(Φ(i)k )

∂ t( j)l

. (32)
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Norm of Bā( t̄). For an on-shell Bā( t̄), the square of its norm is traditionally defined as
Sā( t̄) = Cā( t̄)Bā( t̄), where Cā( t̄) is its dual BV. Then one has:

Sā( t̄) =
n
∏

i=1

ai
∏

k=1

� f ( t̄(i)k , t(i)k )

f ( t̄(i+1), t(i)k )

�

det G , (33)

where Bā(t) is normalized as in (19) and (21). Note that if Bā(t) and Cā(s) are on-shell, we
have Cā(s̄)Bā( t̄) = δs̄, t̄ Sā( t̄).

• The representation of the norm of BVs are described in [42] for Y (gln) and Y (glm|p).
Similar representations for Uq(Ògln) can be found in [21].

5 Form factors (FF)

Form factors are the building blocks to study correlation functions. Here we will consider the
FF of the monodromy matrix entries:

Fi j(z|s̄; t̄) = Cā′(s̄)Ti j(z)Bā( t̄), i, j = 1, ...,n− 1

where both Cā′(s̄) and Bā( t̄) are on-shell BVs. The cardinalities of the Bethe parameters of
the dual BV ā′ = {a′1, . . . , a′n} depend on the operator Ti j(z). Since the FF is based on the
monodromy matrix, we will call diagonal (resp. off-diagonal) the FF related to diagonal (resp.
off-diagonal) entries of T (z). To compute these FF, we use four different techniques:

1. The twisted scalar product trick (which leads to diagonal FF);

2. The zero mode method (to deduce off-diagonal FF);

3. The universal FF (for the general form of the FF);

4. The composite model (for FF of local operators).

We describe all these techniques below, again in the case of the Yangian Y (gln) to give simple
formulas.

5.1 Twisted scalar product trick

Diagonal FFF j j(z|s̄; t̄) are computed using the "twisted scalar product" trick. Consider a twist
matrix M = diag{κ1, . . . ,κn} and define a twisted transfer matrix as

tκ̄(z) = tr
�

M T (z)
�

. (34)

From the simple identity

tκ̄(z)− t(z) = (κ1 − 1) T11(z) + · · ·+ (κn − 1) Tnn(z) ,

T j j(z) =
d

dκ j

�

tκ̄(z)− t(z)
�

, j = 1,2, ...,n ,

one deduces that

F j j(z|s̄; t̄) =
d

dκ j

�

Cκ̄ā(s̄)
�

tκ̄(z)− t(z)
�

Bā( t̄)
�

κ̄=1
=

d
dκ j

�

�

τκ̄(z; s̄)−τ(z; t̄)
�

Sκ̄ā (s̄| t̄)
�

κ̄=1
, (35)

where κ̄ = 1 means that κ j = 1 for j = 1, . . . ,n. The function τκ̄(z; s̄) is the eigenvalue of
the twisted dual on-shell BV Cκ̄ā(s̄). It is given by equation (12), in which one should replace
t̄( j) → s̄( j) and λ j(z)→ κ jλ j(z). Hence, if one knows the form of the twisted scalar product,
one can deduce the diagonal FF.
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• The same trick also can be done for the cases Y (glm|p) and Uq(Ògln). However, determi-
nant representations for the twisted scalar products Sκ̄ā (s̄| t̄) for today are rather seldom,
see section 4.2. They provide determinant expressions for diagonal FF in Y (gl3) and
Y (gl2|1) models, see [39] and [19] respectively. For Uq(Ògl3) models, due to the special
twist, only F2,2(z|s̄; t̄) is known [37]. Other FF are yet missing, but progress continues,
and we hope to produce soon new formulas for diagonal FF.

5.2 Zero mode method

Zero modes of the monodromy matrix. They correspond to the finite dimensional Lie sub-
algebra embedded in A . For instance, they form a gln Lie subalgebra in Y (gln). Typically
they are defined as

Ti j[0] = lim
w→∞

w
c

�

Ti j(w)−δi j

�

, (36)

but depending on the model and onA , some normalisation can be implied before taking the
limit w→∞. The monodromy matrix is a representation of this Lie subalgebra:

�

Ti j[0] , Tkl[0]
�

= δk j Til[0]−δil Tk j[0] ,
�

Ti j[0] , Tkl(z)
�

= δk j Til(z)−δil Tk j(z) .
(37)

Bethe vectors and zero modes. The zero modes occur naturally in the BVs when one of the
Bethe parameter is sent to infinity:

lim
w→∞

w
c
B( t̄(1), .., { t̄( j−1), w}, t̄( j), .. t̄(n−1)) = T j−1, j[0]B( t̄) ,

lim
w→∞

w C(s̄(1), .., {s̄( j−1), w}, s̄( j), ..s̄(n−1)) = C(s̄) T j, j−1[0] .
(38)

Here and further, to simplify the formulas. we omit the subscripts of the BVs that refer to the
cardinalities of the Bethe parameters.

In the Y (gln) and Y (glm|p) cases, the BAEs are compatible with the limit2 t( j−1)
k →∞ for

j and k fixed. This implies that if the BV B( t̄) is on-shell then so is B({∞, t̄}).
Moreover, still for the Y (gln) and Y (glm|p) cases, on-shell BVs obey a highest weight prop-

erty with respect to the zero modes. Indeed, if B( t̄) and C(s̄) are on-shell, with t̄ and s̄ finite,
then

Ti j[0]B( t̄) = 0 and C(s̄) T ji[0] = 0, i > j .

From these properties, we can elaborate a method to relate different FF. For obvious reason,
we call it the zero mode method.

The zero mode method (Y (gln) and Y (glm|p) cases). The basic idea behind the zero mode
method is to use the Lie algebra symmetry generated by the zero modes and the highest weight
property of on-shell BVs to obtain relations among form factors. To illustrate the method we

2To provide the compatibility of BAEs in this limit, one should have r j(z) → 1 as z →∞. This is not always
true even for the models described by the Y (gln) and Y (glm|p). We show in section 5.3 how this problem can be
solved.
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show it on an example in the Y (gln) case, starting from a diagonal FF. We have

lim
w→∞

w
c
F j j(z|s̄; t̄(1), .., { t̄( j−1), w}, t̄( j), .. t̄(n−1))

= C(s̄) T j j(z) lim
w→∞

w
c
B( t̄(1), .., { t̄( j−1), w}, t̄( j), .. t̄(n−1))

= C(s̄) T j j(z) T j−1, j[0]B( t̄)

= C(s̄)
�

T j j(z) , T j−1, j[0]
�

B( t̄)
= C(s̄) T j−1, j(z)B( t̄)
= F j−1, j(z|s̄; t̄).

Symbolically, we will write: lim
w→∞

w
c
F j j(z|s̄; {w, t̄}) = F j−1, j(z|s̄; t̄), w ∈ t̄( j). Similarly,

with the zero mode method, one gets the following relations:

lim
w→∞

w
c
F j j(z|s̄; {w, t̄}) =F j−1, j(z|s̄; t̄), w ∈ t̄( j) ,

lim
w→∞

w
c
F j j(z|{w, s̄}; t̄) = −F j, j−1(z|s̄; t̄), w ∈ s̄( j) ,

lim
w→∞

w
c
F j−1, j(z|s̄; {w, t̄}) =F j−2, j(z|s̄; t̄), w ∈ t̄( j−1) ,

lim
w→∞

w
c
F j, j−1(z|{w, s̄}; t̄) = −F j, j−2(z|s̄; t̄), w ∈ s̄( j−1) ,

(39)

and so on. Thus, all the off-diagonal FF can be computed starting from diagonal ones. More-
over, from the limit

lim
w→∞

w
c
F j−1, j(z|{w, s̄}; t̄) =F j, j(z|s̄; t̄)−F j−1, j−1(z|s̄; t̄), w ∈ s̄( j) (40)

one deduces that only one diagonal FF is needed to compute all the FF based on the mon-
odromy matrix.

• These considerations were developed in [43] for Y (gl3), but the same consideration
can be done for Y (glm|p). Thus, the determinant representation for the scalar product
(29) does generate determinant formulas for all FF in the models described by Y (gl3)
[18,44] and its super-analogs Y (gl2|1) and Y (gl1|2) [19]. However, a generalization of
this method to the case of the Uq(Ògln) algebra is not straightforward.

5.3 Universal Form Factors

Consider the case of Y (gln) or Y (glm|p) algebra. Let C(s̄) and B( t̄) be on-shell and such that
their eigenvalues τ(z|s̄) and τ(z| t̄) are different. Then the ratio

Fi, j(s̄; t̄) =
Fi, j(z|s̄; t̄)

τ(z|s̄)−τ(z| t̄)
(41)

is independent of z and does not depend on the monodromy matrix vacuum eigenvalues. It
depends solely on the R-matrix, and is thus model independent. We call it the universal FF.

One can show that the relations (39) yield similar relations for the universal FF. On the
other hand, it follows form (35) that the diagonal universal FF are related to the twisted scalar
product by

F j j(s̄; t̄) =
d

dκ j
Sκ̄(s̄| t̄)

�

�

�

κ̄=1
. (42)

Thus, computing Sκ̄(s̄| t̄) we can find all the universal FF.

15

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.6


SciPost Phys. Lect. Notes 6 (2018)

Since the universal FF are completely determined by the R-matrix, they do not depend
on the behavior of the monodromy matrix T (z) at z →∞. Therefore, they can be used to
calculate ordinary FF in models for which BAEs do not admit infinite roots. In this way, one
can circumvent the z→∞ limit even for models where the zero modes method formally fails.

Note that in the models described by the Uq(Ògln) algebra, the universal FF exist for the
diagonal operators T j j(z) only.

5.4 Composite models

In the models, for which an explicit solution of the inverse scattering problem is known [45–
47], the FF of the monodromy matrix entries immediately yield FF of local operators. In
other cases, the FF of local operators can be calculated within the framework of the composite
model [48]. In this model, the total monodromy matrix T (z) is presented as a product of two
partial monodromy matrices T (2)(z) and T (1)(z) as

T (z) = T (2)(z) T (1)(z) (43)

with
T (2)(z) = LL(z) · · ·Lm+1(z) ,

T (1)(z) = Lm(z) · · ·L1(z) ,
(44)

where m ∈ [1, L[ is an intermediate site of the chain. One can also consider continues com-
posite models. Then the total monodromy matrix T (z) is still given by (43), while the partial
monodromy matrices T ( j)(z) should be understood as continuous limits of the products of the
L -operators in (44).

We assume that each partial T ( j)(z) possesses a pseudo-vacuum vector |0〉( j) so that
|0〉= |0〉(2) ⊗ |0〉(1), and

T (`)j j (z)|0〉
(`) = λ(`)j (z)|0〉

(`), `= 1,2. (45)

Similarly to how it was done in section 5.2, one can introduce partial zero modes T (`)i j [0].
Then in the models described by the Yangian Y (gl3), the FF of the first partial zero modes are
related to the universal FF by

C(s̄)T (1)i j [0]B( t̄) =

 

2
∏

k=1

r(1)k (s̄
(k))

r(1)k ( t̄
(k))
− 1

!

Fi, j(s̄; t̄) , (46)

where

r(1)k (u) =
λ
(1)
k (u)

λ
(1)
k+1(u)

, (47)

and we used the shorthand notation (8) for the products of these functions. It is assumed in
(46) that the on-shell BVs C(s̄) and B( t̄) have different eigenvalues.

Since the number m of the intermediate site is not fixed, the FF of the first partial zero
modes give an immediate access to the FF of the local operators (Lm)i j[0] due to

T (1;m)
i j [0] =

m
∑

k=1

(Lk)i j[0] , (48)

where we have stressed by the additional superscript m that the partial zero mode T (1;m)
i j [0]

depends on m. Then

C(s̄)(Lm)i j[0]B( t̄) = C(s̄)
�

T (1;m)
i j [0]− T (1;m−1)

i j [0]
�

B( t̄) . (49)
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• These calculations for the Yangian Y (gl3) can be found in [49–52], with application to
the two-component Bose gas. Similar equations for FF of local operators in the case of
Yangians Y (gl2|1) and Y (gl1|2)was obtained in [53]. Most probably, FF of local operators
in the general Y (gln) and Y (glm|p) cases can be expressed in terms of the universal FF
in the same way.

6 Conclusion

Concerning the points described in the present review, many directions remain to be devel-
oped. Among them, one can distinguish the following ones.

(i) Finding a simpler expression for the scalar product of off-shell BVs. We have already
mentioned the determinant expressions that seem to be well-adapted for the calculation of
correlation functions and for the thermodynamic limit. Such expressions, even in the case of
Uq(Ógl3), are thus highly desirable. On this point, note the determinant expression for XXX
model in the thermodynamic limit found by Bettelheim and Kostov [54]. Remark also the
approach by N. Grommov et al. using a single ’B’-operator [55], for Y (gln) with fundamental
representations.

(ii) Another way to get simple expressions for scalar products could be to use an integral
representation. A first step has been done by M. Wheeler in [17]. Remark also that the pro-
jection method in the current presentation provides an integral representation, see e.g. [56].

(iii) Once determinant expressions are known for scalar products, in the case of (super)
Yangians, the zero mode methods allows to get similar expressions for the form factors. It
would be good to get a similar method of the Uq(Ógln) case. It seems that the zero mode meth-
ods can be adapted to this case: we hope to come back on this point in a further publication.

Obviously, all these points are the first step towards the complete calculation of correlation
functions and their asymptotics. As mentioned in the introduction, this calculation depends
specifically on the model one wishes to study. Among the possible applications, one can dis-
tinguished multi-component Bose gas, tJ-model or the integrable approach to amplitudes in
Super-Yang-Mills theories.

Finally, the case of other quantum algebras, based on orthogonal or symplectic Lie algebras
is also a direction that deserved to be studied.
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