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Abstract

These are the lecture notes from the 2019 Les Houches Summer School on “Quantum In-
formation Machines”. After a brief introduction to quantum error correction and bosonic
codes, we focus on the case of cat qubits stabilized by a nonlinear multi-photon driven
dissipation process. We argue that such a system can be seen as a self-correcting qubit
where bit-flip errors are robustly and exponentially suppressed. Next, we provide some
experimental directions to engineer such a multi-photon driven dissipation process with
superconducting circuits. Finally, we analyze various logical gates that can be imple-
mented without re-introducing bit-flip errors. This set of bias-preserving gates pave the
way towards a hardware-efficient and fault-tolerant quantum processor.
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1 Introduction

Decoherence is regarded as the major obstacle towards scalable and robust processing of quan-
tum information. It is caused by the interaction of a quantum system with its noisy environ-
ment, through which the system gets entangled with an infinite number of degrees of freedom.
Despite one’s effort to isolate the quantum system of interest, some amount of undesired inter-
action persists limiting the lifetime of the information. In the case of superconducting qubits,
this effort over the past two decades has led to an increase of the lifetime from a few nano-
seconds [1] to 100µs-1ms in best cases [2–4]. Quantum Error Correction (QEC) has emerged
as an inevitable tool to go beyond this limitation and significantly enhance the lifetime of quan-
tum information [5, 6]. By designing an encoded logical qubit, possibly using many physical
qubits, one protects the quantum information against major decoherence channels and hence
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ensures a longer coherence time than a physical qubit [7,8].1

1.1 Quantum Error Correction

The contents of this section are strongly inspired by [5] and [11], and set a general framework
for QEC. In Subsection 1.1.1, we briefly introduce the formalism of open quantum systems.
More precisely, we give a general description of quantum operations acting on a system and
in particular modeling the occurring errors. Such a quantum error channel is described in
Subsection 1.1.2 through the analysis of a quantum code, the three-qubit bit-flip code. Next,
the Subsection 1.1.3 recalls some general results on QEC. In particular, given a quantum code,
it provides a necessary and sufficient condition for a set of errors to be correctable.

1.1.1 Quantum maps and decoherence

The state of an open quantum system S is described by a density matrix ρS , a semi-definite
positive hermitian operator of unit trace, defined on the Hilbert space HS of the system. After
a time interval τ, the state of this open system is updated by a trace-preserving quantum
operation

∀ρS , E(ρS) =
∑

µ

MµρS M†
µ . (1)

Here, the trace-preserving property of the above operation is ensured via the relation
∑

µ M†
µMµ = IS . The superoperator E is also called a quantum map or a Kraus map,

and {Mµ} is a set of associated Kraus operators. This choice of Kraus operators is not
unique as the operators M̃µ =

∑

ν rµ,νMν, with (rµ,ν) an arbitrary unitary matrix, satisfy
∑

µ M̃µρS M̃†
µ =
∑

µ MµρS M†
µ for all ρS . Note that, a pure state of the quantum system S,

corresponding to a density matrix of the form ρS = |ψ〉〈ψ|, is generally mapped to a mixed
state, therefore leading to its decoherence.

So far, we have modeled the harmful decoherence phenomena as a quantum operation.
We will see throughout this chapter, that it is also possible to engineer a particular quantum
operation that rather purifies a state by evacuating the entropy of the quantum system. More
precisely, such a quantum operation R can correct the decoherence (given by E) acting on a
manifold C ⊂HS , where the information is encoded:

(R ◦E)(ρ) = ρ , ∀ρ ∈ C .

1.1.2 An example: three-qubit bit-flip code

In classical information theory, one can protect a logical bit of information against bit-flip
errors, by encoding it, redundantly, in three bits: 0→ 0L = 000 and 1→ 111. Provided that
the probability p for an error to occur on a bit is small, and that the errors are not correlated,
this code prevents these errors from damaging the information. Indeed, through a majority
voting, the erroneous state 100, is associated to 000. This reduces the error probability from
p to 3p2 (case where two bits have flipped).

There exists a direct quantum analog, called the three-qubit bit-flip code, which pro-
tects the information against single bit-flip errors mapping an arbitrary superposition state
c0|0〉 + c1|1〉 of a qubit to c0|1〉 + c1|0〉. Three qubits are used to encode a single logical
qubit with |0L〉 = |000〉 and |1L〉 = |111〉. Starting from a superposition in the code space
E0 = span{|000〉, |111〉}, a single bit-flip error maps the states to one of the error subspaces
E1 = span{|100〉, |011〉}, E2 = span{|010〉, |101〉} or E3 = span{|001〉, |110〉}. We can associate

1Some parts of Ref. [9] and Ref. [10] have been reused with permission of APS and IOP under CC BY (Creative
Commons Attribution 4.0 International License).
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to these error processes, the Kraus operators M0 =
p

1− 3pI, M1 =
p

pσ1
x , M2 =

p
pσ2

x and
M3 =

p
pσ3

x , where p≪ 1 is the probability of a single bit-flip, I is the identity on the qubits
Hilbert space, and σk

x is the Pauli matrix along the X axis of the k’th qubit. The associated
quantum operation E reads

∀ρ , E(ρ) = (1− 3p)ρ + pσ1
xρσ

1
x + pσ2

xρσ
2
x + pσ3

xρσ
3
x .

The measurement of the two-qubit parities σ1
zσ

2
z and σ2

zσ
3
z reveals the subspace on which

the three-qubit system lies, without leaking information about the quantum superposition.
The subspace E0 corresponds to error syndrome {σ1

zσ
2
z ,σ2

zσ
3
z} = {1,1}, E1 to {−1,1}, E2 to

{−1,−1}, and E3 to {1,−1}. One can recover the initial state by applying the inverse operation.
Here, it corresponds to flipping back the qubit on which the error occurred. This recovery
operation R is defined by

∀ρ, R(ρ) = ΠE0
ρΠE0

+σ1
xΠE1

ρΠE1
σ1

x +σ
2
xΠE2

ρΠE2
σ2

x +σ
3
xΠE3

ρΠE3
σ3

x ,

where ΠEi
is the projector on the subspace Ei . One can easily check that R is a recovery

operation for the error map E, with

∀ρ ∈ E0, (R ◦E)(ρ) = ρ .

Similarly, the three-qubit phase-flip code protects a logical qubit against single phase flips,
mapping c0|0〉+ c1|1〉 to c0|0〉− c1|1〉. Encoding the information in the basis |0L〉= |+++〉 and
|1L〉= |−−−〉with |±〉= (|0〉±|1〉)/

p
2, the error syndromes are provided by the measurement

of the two-qubit operators σ1
xσ

2
x and σ2

xσ
3
x .

1.1.3 Basics of quantum error correction

In quantum error correction, one encodes the information in a subspace C, the code space, of
a larger Hilbert space. The decoherence channels are described by quantum maps (described
by a set of Kraus operators) acting on the code space. These Kraus operators are referred to
as the errors. The protection by QEC is characterized by the code space C and the images of
this code space through various errors. We start by giving a necessary and sufficient condition
for the Kraus operators, to ensure the existence of a recovery operation. Next, through an
error discretization theorem, we explain that linear combinations of correctable errors remain
correctable by the same code. From this theorem, one infers that an arbitrary single-qubit
error can be corrected with a code correcting for bit flips, phase flips, and simultaneous bit
flip and phase flip. Finally, we present a well-known example of such a quantum code, the
so-called Shor code [7].

Quantum error correction condition
Let us consider that a quantum system of interest is subject to a noise mapE, represented by

a set of Kraus operators (or errors) {Mµ}. The logical information is encoded in a subspace C.
Can we find a quantum operation R that recovers the initial state, i.e ∀ρ ∈ C, (R◦E)(ρ) = ρ?

A central theorem in QEC theory addresses this problem by giving a necessary and sufficient
condition on the errors Mµ (Theorem 10.1 of [5]). There exists a recovery operation R for the
noise map E, if and only if there exists a Hermitian matrix (cµν) satisfying

ΠCM†
µMνΠC = cµνΠC . (2)

Here ΠC is the projection operator over C. Under this condition, {Mµ} is a set of correctable
errors for the code defined by C.

Let us provide an intuitive explanation for this theorem. First, we can choose a more
suitable set of Kraus operators {Eν} for the map E, such that condition (2) becomes
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ΠCE†
µEνΠC = dµδµ,νΠC , with dµ > 0 and

∑

µ dµ = 1. Furthermore, δµ,ν = 1 if and only
if µ = ν and δµ,ν = 0 otherwise. This change of Kraus operators is justified in the next para-
graph. As two distinct errors Eµ and Eν satisfy ΠCE†

µEνΠC = 0, they map the code space C
to mutually orthogonal error subspaces Eµ and Eν. These errors can be unambiguously diag-
nosed by measuring a set of commuting observables which admit the subspaces Eν as common
eigenspaces. In addition, considering an orthonormal basis, {|iL〉}, of the code space, through

the relation 〈iL|
E†
µp
dµ

Eµp
dµ
| jL〉= δi, j , an error Eµ rotates this logical basis to an orthonormal ba-

sis of the error subspace Eµ. This ensures that once an error is diagnosed, one can reverse the
operation by applying the inverse unitary. Equivalently, it means that no information about the
logical superposition is leaked to the environment through the error channels Eµ. More pre-
cisely, we have EµΠC =

Æ

dµUµΠC , with Uµ a unitary operation, and thereforeΠEµ = UµΠCU†
µ

is the projector on the error subspace Eµ. The mutual orthogonality of the error subspaces is
expressed through the relation ΠEµΠEν = δµ,νΠEµ . The quantum operation R described by the

Kraus operators {Rν = U†
νΠEν} is a recovery map for the quantum operation E. Indeed, for an

initial state ρ ∈ C, we have

(R ◦E)(ρ) =
∑

ν,µ

RνEµρE†
µR†
ν

=
∑

ν,µ

dµU†
νΠEνΠEµUµρU†

µΠEµΠEνUν

=
∑

ν

dνU
†
νUνρU†

νUν = ρ .

In this paragraph, we justify the existence of a set of operators {Eν} for the map E, such
that condition (2) becomes ΠCE†

µEνΠC = dµδµ,νΠC . The hermitian matrix c of eq. (2) can be

written as c = pdp†, with d a diagonal matrix and p a unitary matrix. We define the operators
Eν =
∑

µ pµνMµ. They satisfy

ΠCE†
ν1

Eν2
ΠC =

�

∑

µ1,µ2

p∗µ1ν1
pµ2ν2

cµ1µ2

�

ΠC = δν1,ν2
dν1,ν1

ΠC ,

as dν1,ν2
=
∑

µ1,µ2

p∗µ1ν1
pµ2ν2

cµ1µ2
stems from the relations d = p†cp. Following Subsection 1.1.1,

the matrix p being unitary, the map E is equivalently described by the set of Kraus operators
{Eν}.

Error discretization
Provided that the logical information is encoded in a code space C, the condition (2) states

the existence of a recovery operation for a given set of errors. Here we see that, a quantum
code can be subject to an infinite number of noise maps, and still remain correctable. It would
greatly simplify the design of QEC protocols, if a same correction operation R could work for
various correctable sets of errors. Fortunately, this is the case through the following sufficient
condition [5]:

Consider {Eν} a set of correctable errors associated to a noise map E, and an associated
recovery operation R. Let F be the noise map represented by the set of errors {Fµ}, where the
operators Fµ are linear combinations of the operators Eν. Then the set {Fµ} is a correctable
set of errors with the same recovery operation R.

While this statement can be easily proven by inserting into the equation R ◦ F(ρ) = ρ,
the relation Fµ =

∑

νλµνEν, here we provide a more physical insight into this result. The
noise map F can be represented by a unitary operation USE acting on the system and an
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environment E, with USE(|ψ〉S ⊗ |gµ0
〉E) =
∑

µ(Fµ|ψ〉S) ⊗ |gµ〉E , where {|gµ〉E} form an
orthonormal basis for the Hilbert space of E. Here, we have assumed the initial state of
system S to be a pure state for simplicity sakes. By inserting Fµ =

∑

νλµνEν, we obtain
USE(|ψ〉S ⊗ |gν0

〉E) =
∑

ν(Eν|ψ〉S) ⊗ |eν〉E , with the states |eν〉E =
∑

µλµν|gµ〉E . Note that,
the states |eν〉E are not necessarily orthogonal as the matrix (λµν) is not necessarily unitary.
The recovery operation R associated to the error set {Eν}, can be described by the set of Kraus
operators Rν = U†

νΠEν (see previous paragraph). Similarly to the noise map E, the quantum
operation R can be equivalently represented by a unitary operation USA acting on the system
S and an ancillary system A, such that USA(|ψ〉S ⊗ |aµ0

〉A) =
∑

µ(Rµ|ψ〉S)⊗ |aµ〉A for all states
|ψ〉S . Therefore, for a state |ψ〉S ∈ C, the state after the correction reads

USA[USE(|ψ〉S ⊗ |gν0
〉E)⊗ |aµ0

〉A] =
∑

ν

USA[(Eν|ψ〉S ⊗ |aµ0
〉A)]⊗ |eν〉E

=
∑

µ,ν

(U†
µΠEµEν|ψ〉S)⊗ |eν〉E ⊗ |aµ〉A

= |ψS〉 ⊗ [
∑

ν

Æ

dν|eν〉E ⊗ |aν〉A] .

Here, to obtain the third line from the second one, we have used the fact that
U†
µΠEµEν = dνδµ,νΠC . Note that the state of the environment and the ancilla
∑

ν

p

dν|eν〉E ⊗|aν〉A does not depend on |ψS〉, which means that no information on this state
has leaked out to the environment nor the ancilla.

Example: a multi-qubit code
The theory provided in previous two subsections applies to general QEC schemes. In partic-

ular, they apply to encodings on a single quantum harmonic oscillator, where the redundancy
is insured through the infinite dimensional Hilbert space. Such codes will be discussed in
Section 1.3. In this subsection, though, we focus on multi-qubit codes similar to three-qubit
bit-flip code. As we shall see, the single-qubit errors can be cast into three types of errors.

Here, we study the effect of a noise map defined by the Kraus operators {Eµ} on a system
S composed of n qubits. Let us denote X , Y and Z the standard Pauli matrices, and I the
identity on a qubit’s Hilbert space. As {I , X , Y ,Z} forms a basis for the space of linear oper-
ators on C2, the Kraus operators Eµ are linear combinations of operators of the Pauli group
Gn = {I , X , Y ,Z}⊗n. In particular, a single-qubit error is a linear combination of the operators
I , X i , Y j and Zk acting on a single qubit, where X i is the operator that acts as X on the qubit
i and as the identity on the other qubits (idem for Y j and Zk). An error X k is called a bit-flip
error as it maps |0〉 ↔ |1〉, and an error Zk is a phase-flip error, since it maps |0〉 → |0〉 and
|1〉 → −|1〉. The error Y = iZX can be seen as a simultaneous bit flip and phase flip.

From the error discretization theorem follows a remarkable corollary. Consider the set of
single qubit errors {I , X j , Y j ,Z j , j = 1...n}. Let us assume that this set (unnormalized here)
is a correctable set of errors and R a recovery operation for this set. Then any arbitrary single
qubit noise map is correctable by the mapR. In other words, to protect the information against
any kind of noise occurring on a single qubit, it is enough to correct for single phase flips, bit
flips and simultaneous bit flips and phase flips. The Shor code [7], presented below, provides
such a protection.

One can encode a single logical qubit using nine “physical” qubits. The idea consists in a
concatenation of a three-qubit bit-flip code with a three-qubit phase-flip code. First, we group
the qubits three by three, and each group encodes a single intermediate logical qubit via the
three-qubit bit-flip code. Next, the three intermediate qubits, protected against bit flips, are
used to encode a single logical qubit through the three-qubit phase-flip code. The logical states,
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|0L〉 and |1L〉, are given by

|0L〉= |+〉1,L ⊗ |+〉2,L ⊗ |+〉3,L =
(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)

2
p

2
,

|1L〉= |−〉1,L ⊗ |−〉2,L ⊗ |−〉3,L =
(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉)

2
p

2
.

Let us study the effect of single bit flips and single phase flips on the code space. The logi-
cal qubit is protected against bit flips as it is encoded by intermediate ones which are them-
selves protected. More precisely, a single bit-flip error occurring on the first three qubits is
revealed by measuring the two joint-parties Z1Z2 and Z2Z3, and so on for the two other
groups of three qubits. Hence, single bit flips are revealed by measuring the six two-qubit
parities {Z1Z2,Z2Z3,Z4Z5,Z5Z6,Z7Z8,Z8Z9}. Next, by construction, the logical qubit is pro-
tected against the single phase flips of the intermediate logical qubits. Note, however, that
a single phase flip occurring on any of the three “physical” qubits, results in a phase flip of
the intermediate qubit. These phase flips are identified by the measurement of the operators
X1,LX2,L = X1X2X3X4X5X6 and X2,LX3,L = X4X5X6X7X8X9, where X1,L , X2,L and X3,L are
the logical X operators of the intermediate qubits. If a phase flip on the first intermediate
qubit is diagnosed, the initial state is recovered by applying any of the operators Z1, Z2 and
Z3. Finally, note that an error Y i is diagnosed as a bit flip X i , and a phase flip Z j,L of the
corresponding intermediate qubit. Consequently, such an error is also correctable.

Since the Shor code corrects single qubit errors X i , Y i and Z i , it corrects any arbitrary
single qubit errors.

1.2 Autonomous quantum error correction

In the previous subsection, we have discussed some general results on QEC. The system, re-
dundantly encoding the logical information, is subject to a noise map E. The initial state is
then restored through a recovery procedure represented by the map R. However, we haven’t
discussed yet how these recovery operations are physically implemented. The subsection 1.2.1
introduces the concept of continuous QEC versus discrete QEC. The Subsection 1.2.2 presents
reservoir engineering as a mean to achieve continuous autonomous QEC, and provides a few
examples of existing QEC schemes based on this method.

1.2.1 Continuous QEC versus discrete QEC

So far, we have implicitly adopted a discrete vision of QEC. The system undergoes a noise map,
followed by a correction step. The noise map ET corresponds to the evolution super-operator
over a time duration T of the system: ρ(t + T ) = ET (ρ). Consider that after each time
interval Terror, one applies a recovery operation R. The state of the system at time t = nTerror,
isρ(nTerror) = [(R◦ETerror

)◦· · ·◦(R◦ETerror
)](ρ(0)). Here, the time Terror between two successive

recovery operations, is assumed to be small enough, so that the error model remains simple
enough to be correctable. This recovery operations often involves a projective measurement
of some error syndromes followed by an appropriate unitary operation (see Subsection 1.1.3).
While the above description neglects the finite time needed for the recovery operation, the
finite bandwidth of the measurement protocol usually limits the performance. This aspect was
carefully analyzed in the experimental work of Kelly et al. [12], where a repetition bit-flip code
was realized.

Continuous QEC [13], as opposed to discrete QEC, considers a situation where the recov-
ery operation is applied continuously in time. Continuous QEC was first explored by Ahn et al.
in a measurement-based feedback strategy [13] (see also [14] for a more recent contribution
in this regard). In this article, several continuous correction schemes based on existing QEC
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codes are presented. The error syndromes are continuously monitored through weak mea-
surements, and the corresponding correction is achieved by implementing a time-dependent
feedback Hamiltonian. This Hamiltonian, based on the measurement records, continuously
steers the system back to the coding subspace. Let us define Rt the evolution operation on
time duration t, resulting from the dynamics of the correction procedure only, while excluding
the decoherence channels resulting in Et . Note that, Rt represents a recovery operation only
for large enough times t > Tcorr (larger e.g. than the error syndrome measurement time). The
evolution operator FT of the continuous QEC scheme, can intuitively be thought as the limit
FT = limn(RT/n ◦ET/n)n.

1.2.2 Continuous autonomous QEC via reservoir engineering

Reservoir engineering consists of carefully coupling the system we wish to control/manipulate,
with a dissipative reservoir. The idea is to transfer the entropy introduced by errors in the
system of interest, onto an ancillary system (reservoir). This entropy is next evacuated via the
strong dissipation of the ancilla. Several experiments based on this method have led to the
continuous stabilization of specific quantum states, in circuit quantum electrodynamics [15–
18] .

In [16], Geerlings et al. demonstrated the continuous stabilization of the ground state of
a transmon qubit. In this experiment, a transmon qubit is dispersively coupled with a lossy
driven resonator, via a Hamiltonian of the form −ħhχσZ a†a/2. Here, σZ and a denote the
Z−Pauli matrix of the qubit and the annihilation operator of the resonator mode. The trans-
mon spontaneously jumps to the excited state |e〉 at a rate γ↑, while the cavity decay rate κc
is taken to be much larger than γ↑. Through the dispersive coupling, the frequency of the
resonator depends on the qubit state, and the qubit frequency depends on the number of pho-
tons in the resonator. In this protocol, one applies a drive at frequency ωg

c , where ωg
c is the

frequency of the cavity when the qubit is in the ground state |g〉. If the transmon is in |g〉, the
resonator evolves towards a coherent state |α〉 in a time of order 1/κc , where α is given by the
ratio between the drive amplitude and the cavity rate κc . In this case, the state of the global
system is |g〉⊗ |α〉. If the transmon is in the excited state |e〉, the drive is off-resonant, and the
cavity evolves to the vacuum state |0〉 in a mean time 1/κc , leading to the global system state
|e〉 ⊗ |0〉. The state of the transmon is thus imprinted on the state of the resonator. In other
words, the cavity realizes a measurement of the qubit state, with the pointer states |0〉 and |α〉.
Indeed, one could access to the measurement output by looking at the amplitude of the trans-
mitted cavity field, although it is not required by this scheme. Instead, one can regularly apply
a fast π-pulse at frequency ω0

ge, where ω0
ge is the qubit frequency when the cavity is in the

vacuum state. More precisely, after a time larger than 1/κc , and before the application of the
π-pulse, the state of the total system is given by ρSA = (1− p)|g〉〈g|⊗ |α〉〈α|+ p|e〉〈e|⊗ |0〉〈0|,
with 0≤ p ≤ 1. The conditionalπ-pulse mapsρSA to the state |g〉⊗((1−p)|α〉〈α|+p|0〉〈0|) and
next the continuous drive resets the resonator to the state |α〉 (entropy evacuation). In [16],
this reservoir engineering scheme is implemented in a continuous manner, by using a continu-
ous Rabi drive at frequencyω0

ge instead of π-pulses. As the cavity drive pumps the population
on |g〉⊗ |0〉 out to the state |g〉⊗ |α〉 at a rate κc , the system is rapidly projected to the steady
state |g〉⊗ |α〉. Hence, the entropy introduced by the spontaneous excitations of the transmon
at a rate γ↑ is evacuated via the resonator at a rate of order κc ≫ γ↑.

Inspired by this protocol, Shankar et al. demonstrated the autonomous stabilization of an
entangled Bell state by dispersively coupling two transmon qubits to a lossy cavity [17].

Similarly, reservoir engineering QEC schemes use the coupling to an ancillary quantum
system to mediate the evacuation of the information entropy created by errors. From Sub-
section 1.1.3, one recalls that the recovery operation involves the use of an ancillary system.
More precisely, the effect of a recovery operation is expressed through a unitary operator USA
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on the system S and an ancillary system A, such that

USA[
∑

ν

(Eν|ψ〉S)⊗ |aµ0
〉A⊗ |eν〉E] = |ψS〉 ⊗

�

∑

µ

q

dµ|aµ〉A⊗ |eµ〉E
�

.

Here, the increase of entropy on the system S is expressed through the entangled state
∑

ν(Eν|ψ〉S)⊗ |eν〉E between S and the environment E. By applying the unitary operation USA,
we have transferred the entropy onto the ancilla, resulting in the creation of the entangled state
∑

µ

Æ

dµ|aµ〉A⊗ |eµ〉E . The strong dissipation of the ancilla naturally evacuates the entropy by
resetting its state to |aµ0

〉A.
So far, the recovery procedure is not continuous. The discrete operation USA corresponds

to the conditional π-pulse applied in the above example. The resonator plays the role of the
ancilla, and the ancilla state |aµ0

〉A is the coherent state |α〉. The operation USA and the decay
of the ancilla, can be realized in a simultaneous manner as illustrated through the example
of [16].

We would like to stress the fact that in a reservoir engineering QEC scheme, error detection
and correction are not two distinct steps. A few proposals of such protocols can be found in
the literature. In [19], Kerckhoff et al. proposed to implement the three-qubit bit-flip (and
phase-flip) code in a photonic circuit through an autonomous feedback loop embedded in the
system. More precisely, error syndromes are collected through optical beams interacting with
the qubits, and then conveyed to two quantum controllers (ancillas) via directional couplings.
The beams, combined with the dissipation of the ancillas, drive the controllers to steady states
which depend on the error syndromes. Two additional “feedback” beams interact with the
controllers, and are injected into the qubit system to drive it back to the code space. Kerckhoff
et al. have also presented an extension of this work to the implementation of the 9-qubit Bacon-
Shor code [20]. An autonomous QEC scheme based on three-qubit phase-flip code was also
proposed in the field of circuit QED by Kapit et al. [21]. In [21], such a scheme is realized by
coupling three transmon qubits to three dissipative ancillary qubits. The transmon qubits are
two-by-two coupled through well-chosen magnetic fluxes. When the system stepped out of the
code space through a single phase flip, it is irreversibly brought back through the dissipation of
the ancillas. In [22], we presented another autonomous QEC protocol for three-qubit bit-flip
(or phase-flip) code with transmon qubits. As illustrated in the PhD dissertation of Joachim
Cohen [23], such an autonomous QEC scheme can be adapted to the case of a repetition cat
code (such codes are the main topic of the present notes).

1.3 Bosonic codes

In the previous sections we re-called some general results on quantum error correcting codes,
illustrated by a few multi-qubit codes as examples. Instead of using many qubits to provide the
redundancy required to protect the encoded information, one can also encode the information
in bosonic modes, such as a single harmonic oscillator, and benefit from the vastness of the
associated Hilbert space. Such an idea has been pursued along two different directions. One
direction is to mainly focus on the infinite dimensional Hilbert space of such systems and
encode information in such a way that some major error channels, such as the photon loss due
to energy relaxation, become tractable [24–26]. The question of benefiting from this infinite
dimensions in an optimal manner then becomes a relevant question [27]. The second direction
is to focus on the phase space of the Harmonic oscillator and encode information in a non-
local manner in this phase space [10,28]. Then a protection can be ensured against all types
of errors with a local action on the phase space. Such a protection appears to be strong as
it involves most physical error mechanisms such as photon-loss, photon dephasing, thermal
excitations, or spurious non-linear Hamiltonians with bounded potentials (e.g. those induced
by Josephson junctions).
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(a) (b)

Figure 1: (a) A protected logical qubit consisting of a register of many qubits: here,
we see a possible architecture for the Steane code [8] consisting of 7 qubits requiring
the measurement of 6 error syndromes. In this sketch, 7 transmon qubits in a high-
Q resonator and the measurement of the 6 error syndromes is ensured through 6
additional ancillary qubits with the possibility of individual readout of the ancillary
qubits via independent low-Q resonators. (b) Minimal architecture for a protected
logical qubit, adapted to circuit quantum electrodynamics experiments. Quantum
information is encoded in a Schrödinger cat state of a single high-Q resonator mode
and a single error syndrome is measured, using a single ancillary transmon qubit and
the associated readout low-Q resonator.

In the literature, the cat codes have been exploited in both above directions. While these
notes have for goal to study the cat-codes uniquely from the second perspective, here we
provide a brief overview of both approaches.

1.3.1 Exploiting infinite dimensional Hilbert space

The infinite dimensional Hilbert space of a quantum harmonic oscillator (e.g. a high-Q mode
of a 3D superconducting cavity) can be used to redundantly encode quantum information. The
power of this idea lies in the fact that the dominant decoherence channel in a cavity is photon
damping, and no extra decay channels are added if we increase the number of photons we
insert in the cavity. Hence, only a single error syndrome needs to be measured to identify if
an error has occurred or not.

One such scheme was proposed in [25], where the logical qubit is encoded in a four-
component Schrödinger cat state. Repeated quantum non-demolition (QND) monitoring of a
single physical observable, consisting of photon number parity, ensures then the tractability of
single photon jumps. We obtain therefore a first-order quantum error correcting code using
only a single high-Q cavity mode (for the storage of quantum information), a single qubit
(providing the non-linearity needed for controllability) and a single low-Q cavity mode (for
reading out the error syndrome). As sketched in Figure 1, this leads to a significant hardware
economy for realization of a protected logical qubit.

The idea consists in mapping the qubit state c0|0〉+c1|1〉 into a superposition of four coher-
ent states of a quantum harmonic oscillator |ψ(0)α 〉= c0|0〉L+c1|1〉L = c0|C(0mod4)

α 〉+c1|C(2mod4)
α 〉,

where

|C(0mod4)
α 〉=N0(|α〉+ | −α〉+ |iα〉+ | − iα〉) ,

|C(1mod4)
α 〉=N2(|α〉 − | −α〉 − i|iα〉+ i| − iα〉) ,
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|C(2mod4)
α 〉=N1(|α〉+ | −α〉 − |iα〉 − | − iα〉) ,

|C(3mod4)
α 〉=N3(|α〉 − | −α〉+ i|iα〉 − i| − iα〉) .

Here, N0 ≈N1 ≈N2 ≈N3 ≈ 1/2 are normalization factors, and |α〉 denotes a coherent state
of complex amplitude α. For α large enough, |α〉, | −α〉, |iα〉 and | − iα〉 are quasi-orthogonal
(note that for α = 2, |〈α|iα〉〉|2 < 10−3) and therefore the normalization constants Nk are
well-approximated by 1/2. The four-component cat state |C( jmod4)

α 〉 is a linear superposition
of Fock states |4n+ j〉, i.e Fock states with photon numbers j mod 4. As a consequence, these
states form an orthonormal basis of the 4D-manifold M4,α = span{|α〉, |−α〉, |iα〉, |−iα〉}. This
manifold is the direct sum of the even-parity subspace E+ = span{|C(0mod4)

α 〉, |C(2mod4)
α 〉} and

the odd-parity subspace E− = span{|C(1mod4)
α 〉, |C(3mod4)

α 〉}. In [25], a logical qubit is encoded
on the even-parity subspace, such that

|0L〉= |C(0mod4)
α 〉 , |1L〉= |C(2mod4)

α 〉 .

We also define the logical operators

σeven
Z = |C(0mod4)

α 〉〈C(0mod4)
α | − |C(2mod4)

α 〉〈C(2mod4)
α | ,

σeven
X = |C(0mod4)

α 〉〈C(2mod4)
α |+ |C(2mod4)

α 〉〈C(0mod4)
α | ,

σodd
Z = |C(3mod4)

α 〉〈C(3mod4)
α | − |C(1mod4)

α 〉〈C(1mod4)
α | ,

σodd
X = |C(3mod4)

α 〉〈C(0mod4)
α |+ |C(1mod4)

α 〉〈C(2mod4)
α | .

This encoding enables us to protect the quantum information against photon loss
events [25]. In order to see this, let us also define |ψ(1)α 〉 = c0|C(3mod4)

α 〉 + c1|C(1mod4)
α 〉,

|ψ(2)α 〉 = c0|C(2mod4)
α 〉 + c1|C(0mod4)

α 〉 and |ψ(3)α 〉 = c0|C(1mod4)
α 〉 + c1|C(3mod4)

α 〉. The state |ψ(n)α 〉
evolves after a photon loss event to a|ψ(n)α 〉/∥a|ψ

(n)
α 〉∥ = |ψ

[(n−1)mod4]
α 〉, where a is the har-

monic oscillator’s annihilation operator. Furthermore, in the absence of jumps during a time
interval t, |ψ(n)α 〉 deterministically evolves to |ψ(n)

αe−κt/2〉, where κ is the decay rate of the har-
monic oscillator. Now, the photon number parity operatorΠ= exp(iπa†a) can act as a photon
jump indicator. Indeed, we have 〈ψ(n)α | Π | ψ

(n)
α 〉 = (−1)n and therefore measuring a change

in the photon number parity indicates the occurrence of a single photon loss event.
While the parity measurements keep track of the photon loss events, the deterministic re-

laxation of the energy, replacing α by αe−κt/2, remains inevitable. To overcome this relaxation
of energy, we need to intervene before the coherent states start to overlap in a significant man-
ner to re-pump energy into the codeword. This energy repumping in the cat state requires a
non-linear interaction with the cavity mode. In [25], it was proposed that such an energy
re-pumping can be performed through the application of a sequence of well-chosen pulses on
a qubit-cavity system. Indeed, as proven in [29], the strong dispersive coupling of a quantum
harmonic oscillator to a qubit, together with frequency-resolved microwave drives, provide
the means towards the universal controllability of the state of the harmonic oscillator Further-
more, as shown recently in [30] this universal controllability can be extended to the case of
weak dispersive couplings as well.

Furthermore, the quantum non-demolition (QND) measurements of the parity observable
can also be performed by coupling the harmonic oscillator to a qubit in the dispersive regime
and exploiting the same controllability. Such parity measurements using a superconducting
qubit was experimentally performed in [31]. This experiment, later, led to the first imple-
mentation of a QEC experiment at the break-even point [32]. Here, the break-even means
that the encoded quantum information is protected over a longer time than the best physical
component of the system.
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(a) (b)

(c) (d)

Figure 2: (a) and (b): Wigner representation of the logical states |0L〉 = |C(0mod4)
α 〉

and |1L〉 = |C(2mod4)
α 〉 of the four-component cat code, with α = 3. (c) and (d):

Wigner representation of the logical states |+L〉 = (|0L〉 + |1L〉)/
p

2 ≈ |C+α 〉 and
|−L〉= (|0L〉 − |1L〉)/

p
2≈ |C+iα〉.

Such a bosonic code based on Schrödinger cat states can be extended to higher order errors.
Indeed, in order to implement an N ’th order correcting scheme, one can consider superposing
2(N+1) quasi-orthogonal coherent states for logical states. As an example a 2nd order coding
can be obtained in the following manner

|0L〉= |C(0mod6)
α 〉=

5
∑

r=0

|αeirπ/3〉 , |1L〉= |C(3mod6)
α 〉=

5
∑

r=0

eirπ|αeirπ/3〉 .

By continuously monitoring the photon number modulo 3, we can track photon jumps up to
two in a measurement time. Similarly to the case of the four-component cat, we need to re-
pump energy in the cat state before the coherent states start to significantly overlap because of
the energy damping. Indeed, in order to ensure a small overlap between the two neighbouring
coherent states, we need to start with cat states with larger amplitude |α| than the case of the
four-component cat.

Later, a more economic use of the Hilbert space of the harmonic oscillator was considered in
the proposal for binomial codes [26]. In order to develop a generalized code which protects the
information against the set of errors {I , a, a2, . . . , aL , a†, . . . , (a†)G ,n, . . . ,nD}, the information
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is encoded in two states

|W↑/↓〉=
1

2N

[0 N+1]
∑

p even/odd

√

√

√

�

N + 1
p

�

|p(S + 1)〉 ,

where S = L + G is the spacing, N = max(L, G, 2D) is the the maximum order, and p ranges
from 0 to N+1. In the case of N →∞ the binomal code states, asymptotically approach to the
2(S+1) component cat code. Here, the error syndromes are more complex than simply photon
number parity (or photon number modulo N in general). However, using the universal control
provided by the dispersive coupling to a qubit, it is possible to track and correct the associated
errors. Such a code at first order and against photon loss has been recently experimentally
implemented in [33] approaching the break-even point. In this case, the associated logical
states are

|0L〉=
1
p

2
(|0〉+ |4〉) , |1L〉= |2〉 ,

and the error syndrome corresponds to the photon number parity.
In the next subsection, we will see how the infinite dimensional Hilbert space of a harmonic

oscillator can be exploited in a different manner, paving the way towards hardware-efficient
implementations of a fault-tolerant quantum processor.

1.3.2 Exploiting non-locality in phase space

Quite early in the process of the theoretical proposals on quantum error correction, Gottes-
man, Kitaev and Preskill came up with an ingenious idea to encode a qubit in a harmonic
oscillator [28]. The idea consisted in encoding the information in the so-called grid states of
the harmonic oscillator:

|0L〉=
∞
∑

r=−∞
|q = 2r

p
π〉, |1L〉=

∞
∑

r=−∞
|q = (2r + 1)

p
π〉. (3)

Here, q = (a+a†)/
p

2 is the position operator and the state |q = q〉 corresponds to the position
state which is infinitely squeezed along the q -axis. Very importantly, such states can also be
written in the following form

|0L〉=
∞
∑

r=−∞

�

|p = 2r
p
π〉+|p = (2r+1)

p
π〉
�

, |1L〉=
∞
∑

r=−∞

�

|p = 2r
p
π〉−|p = (2r+1)

p
π〉
�

,

where p = (a − a†)/i
p

2 is the momentum operator. Therefore, the states along the logical
X -axis (|±L〉= (|0L〉 ± |1L〉)) are given by

|+L〉=
∞
∑

r=−∞
|p = 2r

p
π〉 , |−L〉=

∞
∑

r=−∞
|p = (2r + 1)

p
π〉 .

One notes that the two states |0L〉 and |1L〉 have a disjoint support in the phase space. The
state |1L〉 is achieved from |0L〉 by shifting the position by value

p
π. In the same manner the

two states |+L〉 and |−L〉 have also a disjoint support in the phase space and |+L〉 is achieved
from |−L〉 by shifting the momentum operator by the same value

p
π. It is therefore possible

to protect such a qubit against bit-flips and phase-flips if the shifts in the phase space occur
slowly enough. Indeed, by measuring both quadratures q and p modulo

p
π, it is possible to

correct for shifts which are not larger than
p
π/2.

One important detail is that, in the above definitions, we have intentionally avoided to talk
about any state normalization. Indeed, the above logical states are not physical as they corre-
spond to states with infinite energy. In practice, one can approach such states by considering a
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superposition of finitely squeezed states of the q quadrature. More precisely, the logical states
are defined as

|0L〉=N0

∞
∑

r=−∞
e−

δ2(2r
p
π)2

2

∫ +∞

−∞
dqe−

(q−2r
p
π)2

2δ2 |q = q〉 ,

|1L〉=N1

∞
∑

r=−∞
e−

δ2((2r+1)
p
π)2

2

∫ +∞

−∞
dqe−

(q−(2r+1)
p
π)2

2δ2 |q = q〉 .

Note that these states are not eigenstates of the observables associated to position (or momen-
tum) modulo

p
π and their protection comes with extra complications. It is however possible

to protect them as far as the squeezing level (characterized by δ ) is high enough.
The above qualitative description of the protection against local errors can be made more

precise. Let us assume that a particular error mechanism leads to a diffusion of the state
of harmonic oscillator in its phase space. Let us also assume the measurement time to be
given by τM . In the case of ideal grid states and perfect measurement , the effective error
probability after correction is given by the probability that during the time τM , the state has
diffused along the q or p quadratures on a distance that is longer than

p
π/2. Assuming

τM to be short, one can hope that such a probability is very small. In order to achieve even
lower error probabilities however, one needs to further concatenate this bosonic code with
another multi-qubit code. The references [34–36] consider such a concatenation with e.g.
toric/surface codes or 3D color codes. Note furthermore that in practice, the physical errors
lead to diffusions in the phase space where the diffusion rate depends on the energy (faster
diffusion for high photon numbers). Therefore, in order to obtain an optimal effective error
probability after error correction with the grid states, one should not infinitely increase the
level of squeezing towards ideal GKP states. Despite these complications, the first level of
protection provided by the grid states encoding can lead to a significant reduction of hardware
overhead for quantum error correction.

One might ask if is possible to achieve a better protection by making the encoding states
even more non-local? What happens if the computational states |0L〉 and |1L〉 are even fur-
ther apart in the phase space? While this is indeed possible and make the bit-flip errors less
probable, it unfortunately also comes at the expense of closer states |±L〉 in the dual basis and
therefore higher phase-flip probability. Through these notes, we will however see that such
an asymmetric situation can still be very useful and can lead to significant hardware shortcuts
for quantum computation. Indeed, through these notes, we will consider an encoding where
the non-locality in the phase space is only employed to efficiently suppress the bit-flip errors.
The phase-flip errors are then handled differently.

Indeed, while it is possible to design a grid state with such asymmetric property, a better
option is to consider the cat encoding once again. However, instead of a four-component cat,
we will simply focus on a simpler two-component one. Our choice of encoding is as follows
(see also Figs. 3 and 4). We define the cat states

|C±α 〉=N±(|α〉 ± | ±α〉) , N± =
1
p

2(1± e−2|α|2)
.

The cat state |C+α 〉 is a superposition of only even Fock states, while |C−α 〉 is a superposition of
the odd ones. We define the cat qubit states to be

|0〉c =
1
p

2
(|C+α 〉+ |C−α 〉) = |α〉+O(exp(−2|α|2)) ,

|1〉c =
1
p

2
(|C+α 〉 − |C−α 〉) = | −α〉+O(exp(−2|α|2)) .
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Figure 3: Bloch sphere representation of a cat qubit. Reproduced with permission
from Ref. [9].

The non-locality in the phase space can be tuned by the amplitude |α| of the cat states. As
it will be seen in these notes, through an appropriate protection mechanism the bit-flip rate
can be exponentially suppressed with |α|2. This happens while the phase-flip rate only in-
creases linearly in |α|2. This favorable scaling leads to strong reduction of hardware overhead
requirements for fault-tolerant quantum computation. One very important feature of such cat
qubits is that their protection against bit-flips can be performed through an autonomous error
correction mechanism which is within the reach of experiments in superconducting circuits.
This autonomous QEC scheme is based on a two-photon driven dissipative process. We will
explain through the next chapter how such a process can be engineered and how it leads to
protection against bit-flips.

2 Two-photon driven dissipation and bit-flip suppression

A damped classical harmonic oscillator which is driven periodically converges asymptotically
to a steady periodic solution with the same frequency as the drive. Indeed, considering the
equations of a driven damped harmonic oscillator

d
d t

a = −iωaa−
κ

2
a− iεd e−i(ωd t+φd ) ,

where ωa is the frequency of the harmonic oscillator, κ its damping rate, ωd , εd and φd ,
respectively, the frequency, amplitude and the phase of the drive, the system converges to the
steady state

a∞(t) = āe−i(ωd t+φ̄) , with āe−iφ̄ =
−iεd e−iφd

i(ωa −ωd) + κ/2
.

Interestingly, a driven damped quantum harmonic oscillator behaves in a similar manner. Un-
der a Markovian approximation (which is valid in an under-damped regime), the Lindblad
master equation of a driven damped harmonic oscillator is given by

d
d t
ρ = −iωa[a

†a,ρ]− iεd[e
−i(ωd t+φd )a† + ei(ωd t+φd )a,ρ] + κD[a]ρ ,
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Figure 4: (a) and (b): Wigner representation of the logical states |+〉c = |C+α 〉 and
|−〉c = |C−α 〉 of the two-component cat code, with α= 3. The color of the fringe at the
center (red or blue), indicates the parity of the cat state (resp. even and odd). (c) and
(d): Wigner representation of the computational states |0〉c = (|+〉c+|−〉c)/

p
2≈ |α〉

and |1〉c = (|+〉c − |−〉c)/
p

2≈ |−α〉.

where

D[L]ρ = LρL† −
1
2

L†Lρ −
1
2
ρL†L .

This master equation admits as the steady state a periodic solution given by a pure coherent
state

ρ∞(t) = |α∞(t)〉〈α∞(t)| , with α∞(t) = ᾱe−i(ωd t+φ̄) , ᾱe−iφ̄ =
−iεd e−iφd

i(ωa −ωd) +κ/2
.

One way of seeing this is to perform the following unitary change of variables (rotating frame
of the drive and an appropriate mode displacement)

ρ̃ = U(t)ρU(t)† , with U(t) = D(−ᾱe−iφ̄)eiωd ta†a and D(α) = eαa†−α∗a .

The master equation satisfied by ρ̃

d
d t
ρ̃ = −i(ωa −ωd)[a

†a, ρ̃] + κD[a]ρ̃ ,

is that of an undriven damped harmonic oscillator. The asymptotic convergence of the un-
driven damped harmonic oscillator to the vacuum state implies the convergence of the driven
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one to the above periodic solution consisting of a pure coherent state. This convergence to a
pure state is a remarkable fact as usually the steady state of a dissipative quantum system is a
mixed one.

It is reasonable to ask if it is possible to find other such driven damped systems with pure
steady states, possibly of more interesting character. The answer is yes! At least at a theoretical
level, one such system can be built of a harmonic oscillator with a multi-photon drive and
dissipation. Let us consider a Lindblad master equation of the form

d
d t
ρ = −i∆d[a

†a,ρ]− iεr−[e
−iφd a†r + eiφd ar ,ρ] + κr−D[ar]ρ .

written in the rotating frame of the r-photon drive. This master equation represents the dy-
namics of a harmonic oscillator which exchanges photons in multiples of r with its environ-
ment. Indeed, while the first term in the dynamics represents a simple detuned Hamiltonian
evolution of a harmonic oscillator (the dynamics is in the rotating frame of the drive), the
second term indicates a nonlinear driving Hamiltonian where the exchange of photons with
the harmonic oscillator occurs at multiples of r. Also, the final Lindbladian term models a
damping where the harmonic oscillator loses photons in multiples of r.

We will postpone the question of how such a non-standard dynamics can be achieved in
practice to the end of this section, and we will start by discussing the interest of such a non-
linear driven dissipative system. We will start by analysing the asymptotic behaviour of the
above master equation. We will see how this leads to a natural choice of physical qubits with
“simple” error mechanisms.

2.1 Multi-photon driven dissipative processes: asymptotic behaviour

Let us consider the above r-photon driven dissipative process and assume, for simplicity sakes,
that the detuning term vanishes∆d = 0. We are therefore interested in the following dynamics

d
d t
ρ = −iεr−[e

−iφd a†r + eiφd ar ,ρ] +κr−D[ar]ρ .

It is easy to see that the righthand side can be regrouped in the following form

d
d t
ρ = κr−D[ar −αr]ρ , α= e−i

φd
r r

√

√

−
2iεr−

κr−
. (4)

Any state in the kernel of the dissipation operator ar − αr is necessarily a fixed state of the
above dynamics. It is easy to see that all the coherent states

ρ̄k = |αk〉〈αk| , αk = ei 2kπ
r α= ei 2kπ

r e−i
φd
r r

√

√

−
2iεr−

κr−
, k = 0, · · · , r − 1 ,

satisfy this property
(ar −αr)|αk〉= 0 ,

and are the fixed points of the dynamics. More importantly any superposition
∑

k ck|αk〉 of
these coherent states is also in the kernel of the dissipation operator and therefore a fixed point
of the dynamics. Indeed, one can show that the manifold of the fixed points is given by the
density operators in the r-dimensional Hilbert space

Hr = Span{|αk〉}r−1
k=0 .

Initializing the system in any state out of this manifold, it will end up converging to a state de-
fined in this manifold. One important question is how to characterize the asymptotic solution
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for a given initial state. The answer is easy at least for one particular initial state. If we initilize
the system in vacuum and let it evolve according to the above dynamics, it will asymptotically
converge to the r-component Schrödinger cat state

|C(0modr)
α 〉=N (0modr)

α

r−1
∑

k=0

|αk〉=N (0modr)
α

r−1
∑

k=0

|αei 2kπ
r 〉 ,

where

N (0modr)
α =
















r−1
∑

k=0

|αei 2kπ
r 〉
















−1

is a normalizing constant close to 1/
p

r for large enough |α|. In order to see this, one needs to
note that in the above dynamics the number of photons are conserved modulo r. Indeed, as
any exchange of photons with the drive or with the bath occurs in multiples of r, initializing
the system in the vacuum state |0〉, the asymptotic state can only be a superposition of Fock
states associated to photon numbers which are multiples of r. There is a single state in the
Hilbert space Hr with this property and it is given by

|C(0modr)
α 〉=N (0modr)

α

r−1
∑

k=0

|αei 2kπ
r 〉= rN (0modr)

α e−|α|
2/2
∞
∑

m=0

αmr

p

(mr)!
|mr〉 .

Finding the steady state for other initializations is a delicate question. In what follows, we will
concentrate on the simple case of r = 2 which is central for our the definition of cat qubits. In
this case, the system converges towards a density matrix defined on the 2-dimensional Hilbert
space Span{| ±α〉}, with

α= e−iφd/2

√

√

−
2iε2

κ2
.

The two coherent states | ±α〉 are not exactly orthogonal, but the cat states

|C±α 〉=N±(|α〉 ± | −α〉) , N± =
1
p

2(1± e−2|α|2)
,

are exactly orthogonal. Indeed, the cat state |C+α 〉 is a superposition of only even Fock states,
while |C−α 〉 is a superposition of the odd ones.

All initial states evolving under the two-photon driven dissipative process

d
d t
ρ = κ2phD[a2 −α2]ρ , (5)

will exponentially converge to a specific (possibly mixed) asymptotic density matrix defined on
the Hilbert space spanned by the two-component Schrödinger cat states {|C+α 〉, |C−α 〉}. In order
to characterize the Bloch vector of this asymptotic density matrix ρ∞, it is sufficient to deter-
mine three degrees of freedom: the population of one of the cats (c++ = 〈C+α |ρ∞|C+α 〉) and the
complex coherence between the two (c+− = 〈C−α |ρ∞|C+α 〉). There exist conserved quantities
J++, J+− corresponding to these degrees of freedom [37] such that c++ = Tr

�

J†
++ρ(0)
�

and
c+− = Tr
�

J†
+−ρ(0)
�

for any initial state ρ(0). These conserved quantities are given by

J++ =
∞
∑

n=0

|2n〉〈2n| , (6)

J+− =

√

√ 2|α|2

sinh (2|α|2)

∞
∑

q=−∞

(−1)q

2q+ 1
Iq(|α|2)J

(q)
+−e−iθα(2q+1) , (7)

18

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.72


SciPost Phys. Lect. Notes 72 (2023)
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Figure 5: Asymptotic (infinite-time) behavior of the two-photon driven dissipative
process given by Eq. (5) where the density matrix is initialized in a coherent state.
Here a point β in the phase space corresponds to the coherent state |β〉 at which the
process is initialized. The upper row illustrates the difference between the population
of the two steady coherent states {|±α〉} (〈α|ρ|α〉−〈−α|ρ| −α〉 varying between −1
and 1) with n̄= |α|2 = 2, 4,9 and 25. We observe that for most coherent states except
for a narrow vertical region in the center of the phase space, the system converges
to one of the steady coherent states | ± α〉. The lower row illustrates the purity of
the steady state to which we converge (Tr

�

ρ2
∞

�

) for various initial coherent states.
Besides the asymptotic state being the pure | ± α〉 away from the vertical axis, one
can observe that the asymptotic state is also pure for initial states near the center
of phase space. Indeed, starting in the vacuum state, the two-photon process drives
the system to the pure Schrödinger cat state |C+α 〉. Reproduced with permission from
Ref. [10].

where Iq(.) is the modified Bessel function of the first kind and

J (q)+− =

( (a†a−1)!!
(a†a+2q)!! J++a2q+1 q ≥ 0 ,

J++a†2|q|−1 (a†a)!!
(a†a+2|q|−1)!! q < 0 .

In the above, n!!= n× (n− 2)!! is the double factorial.

Initializing in a coherent state. The conserved quantities {J++, J+−} are sufficient to cal-
culate the population c++ = 〈C+α |ρ∞|C+α 〉 and coherence c+− = 〈C−α |ρ∞|C+α 〉 of the asymptotic
state for any initial state ρ(0). Letting ρ(0) = |β〉〈β | with β = |β |eiθβ , the respective terms
are

c++ = Tr
�

J†
++ρ(0)
�

=
1
2

�

1+ e−2|β |2
�

, (8)

c+− = Tr
�

J†
+−ρ(0)
�

=
iαβ⋆e−|β |

2

p

2sinh (2|α|2)

∫ π

φ=0

dφe−iφ I0

��

�α2 − β2e2iφ
�

�

�

. (9)

Assuming real α and using Eq. (5.8.1.15) from [38], one can calculate limits for large |β |2
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Figure 6: Vector field associated to the semi-classical dynamics behind the master
equation (5) represented in the phase space of the harmonic oscillator. This vector
field governs the dynamics of coherent states. It admits two stable equilibria | ± α〉
and one saddle point at zero. Reproduced with permission from Ref. [9].

along the real and imaginary axes in phase space:

lim
β→∞

c+− =
1
2

erf(
p

2|α|)
p

1− e−4|α|2

|α|→∞
−→

1
2

and lim
β→i∞

c+− = −i
1
2

erfi(
p

2|α|)
p

e4|α|2 − 1

|α|→∞
−→ 0 ,

where erf(.) and erfi(.) are the error function and imaginary error function, respectively. Both
limits analytically corroborate Fig. 5 and show that the two-photon system is similar to a
classical double-well system in the combined large α,β regime. This behaviour is also well
presented by Figure 6 where the vector field associated to the semi-classical dynamics of a
coherent state governed by (5) is plotted in the phase space of the oscillator.

2.2 A qubit with biased noise

As stated in the previous subsection, a two-photon driven dissipative harmonic oscillator mod-
elled by (5) admits as steady state the 2 dimensional manifold spanned by the two cat states
{C±α }. This leads to a natural definition of an effective quantum bit, the so-called cat qubit.
The cat qubit states are defined as |±〉c = |C±α 〉, or equivalently as

|0〉c =
1p
2

�

|C+α 〉+ |C−α 〉
�

= |α〉+O
�

exp(−2|α|2)
�

,

|1〉c =
1p
2

�

|C+α 〉 − |C−α 〉
�

= | −α〉+O
�

exp(−2|α|2)
�

.

Note that, with respect to most of our early publications, we have changed the computational
basis to the dual basis along the X -axis. This choice is motivated by the simplifications in the
presentation of the implemented logical gates proposed recently [9].

In terms of quantum information processing, the interest of this cat qubit lies in the fact
that its physical implementation endows it with a natural protection. As soon as the action
of a noise process is local in the phase space of the harmonic oscillator, the effective bit-flip
errors (jumps between |0〉c and |1〉c) are exponentially suppressed with |α|2 (the effective bit-
flip rate is proportional to exp(−c|α|2) with an appropriate constant c). The idea behind this
protection can be deduced from Fig. 6, where the vector field associated to the semi-classical
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dynamics of a coherent state governed by (5) is plotted in the phase space of the oscillator. Any
noise process that perturbs the coherent state | ±α〉 locally in the phase space, keeps it in the
attraction domain of the departing point |±α〉. Such a protection is similar to the one achieved
by topological qubits such as Majorana fermions, but the non-locality of information is here
engineered through the particular driven dissipative process of the harmonic oscillator. In
particular, the non-locality can be tuned by modifying the cat “size”, given by the mean number
of photons |α|2. This mean number is itself easily modulated by controlling the strength,
ε2ph, of the two-photon drive. The local character of the noise processes is an omnipresent
concept in information protection, and in the case of superconducing oscillators, it includes
various mechanisms such as photon loss, thermal excitations, photon dephasing and non-
linear interaction Hamiltonians induced by Josephson circuits (this fact will be seen in the
next section).

Note however that phase-flips, or equivalently jumps between even-parity cat state |C+α 〉
and the odd-parity one |C−α 〉, can be induced by noise mechanisms such as photon loss or
thermal excitations. As a result, an increase of the mean photon number (in order to suppress
the bit-flip errors) comes at the expense of higher phase-flip rates. This rate increase is however
expected to be only linear with respect to |α|2. The noise bias exp(−c|α|2)/|α|2 of cat qubits is
therefore tunable with the cat size. An experimental proof of such an exponential and tunable
bias have been recently observed [39].

Throughout the rest of this chapter, we provide a more detailed discussion of this bit-flip
suppression.

2.3 A detailed discussion of bit-flip suppression

The two-photon driven dissipative process (5) can be seen as an autonomous error recovery
operation. Throughout this section and for simplicity sakes, we assume α real and we define
M2,α to be the manifold of density matrices on the Hilbert space spanned by {|C±α 〉}. Given
an initial state ρ(0), the system converges, via the two-photon process, to an asymptotic state
ρ f ∈M2,α. This defines a quantum mapR2 such that ρ f = R2(ρ(0)). Applying the conserved
quantity J+−, the super-operatorR2 satisfies the following statements: for all complex number
β such that |ℜ(β)|< α,

R2(|α+ β〉〈α+ β |) = |0〉c〈0|+O
�

e−α
2−|α+β |2+|β(2α+β)|

�

. (10)

Indeed, the population of |0〉c and |1〉c inR2(ρ(0)) is given by 1±Tr(J Zρ(0))
2 , where J Z= J+−+J†

+−.
The statement (10) is therefore equivalent to

〈α+ β |J Z |α+ β〉= 1+O
�

e−α
2−|α+β |2+|β(2α+β)|

�

. (11)

Following (9), we have

〈α+ β |J Z |α+ β〉=
iα|α+ β |e−|α+β |

2−α2

p

1− e−4α2

×





π
∫

0

dΦ [e−i(Φb+Φ) I0(|α2 − |α+ β |2ei2(Φb+Φ)|)− c.c]



 ,

where α+ β = |α+ β |eiΦb . Noting that

|α2 − |α+ β |2ei2(Φb+Φ)|=
Æ

α4 + |α+ β |4 − 2α2|α+ β |2 cos(2(Φ+Φb)) ,
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We expand cos(2(Φ + Φb)) = 2cos2(Φ + Φb) − 1, and make the change of variable
Φ → u := cos(Φ + Φb). Note that this is allowed since the function f (Φ) = cos(Φ + Φb) is
bijective from the domain ]0,π[ to the domain ]− cos(Φb), cos(Φb)[. Indeed, from the condi-
tion |ℜ(β)|< α, one satisfies Φb ∈]−

π
2 , π2 [. This change of variable gives

〈α+ β |J Z |α+ β〉=
4α|α+ β |e−|α+β |

2−α2

p

1− e−4α2

cos(Φb)
∫

0

du I0

�
Æ

(α2 + |α+ β |2)2 − 4α2|α+ β |2u2
�

.

We do another change of variable u→ v :=
p

(α2 + |α+ β |2)2 − 4α2|α+ β |2u2 leading to

〈α+ β |J Z |α+ β〉=sign(cos(Φb))
2e−|α+β |

2−α2

p

1− e−4α2

m(α,|α+β)|,π2 )
∫

m(α,|α+β |,Φb)

I0(v)vdv
p

(α2 + |α+ β |2)2 − v2

=sign(cos(Φb))
2e−|α+β |

2−α2

p

1− e−4α2







m(α,|α+β |,π2 )
∫

0

I0(v)vdv
p

(α2 + |α+ β |2)2 − v2

−

m(α,|α+β)|,Φb)
∫

0

I0(v)vdv
p

(α2 + |α+ β |2)2 − v2



 ,

where m(α, |α+β)|,θ ) =
p

(α2 + |α+ β |2)2 − 4α2|α+ β |2 cos2(θ ), and sign(x) = +1 if x > 0,
and sign(x) = −1 if x < 0. The condition |ℜ(β)| < α implies cos(Φb) > 0. Using (2.15.2.6)
from [38], the first term gives

2e−|α+β |
2−α2

p

1− e−4α2

m(α,|α+β |,π2 )
∫

0

I0(v)vdv
p

(α2 + |α+ β |2)2 − v2
=

1− e−2α2−2|α+β |2

p

1− e−4α2
.

The same formula implies that

2e−|α+β |
2−α2

p

1− e−4α2

m(α,|α+β)|,Φb)
∫

0

I0(v)vdv
p

(α2 + |α+ β |2)2 − v2
<O
�

e−α
2−|α+β |2+|β(2α+β)|
p

1− e−4α2

�

.

Hence, we have

〈α+ β |J Z |α+ β〉=
1
p

1− e−4α2

�

1−O
�

e−α
2−|α+β |2+|β(2α+β)|

��

>1−O
�

e−α
2−|α+β |2+|β(2α+β)|

�

.

From |Tr (ρJ+−) | = |c+−| ≤ 1, we infer that the operator J Z satisfies, ∀ρ, |Tr (ρJ Z) | ≤ 1.
This leads to

1−O
�

e−α
2−|α+β |2+|β(2α+β)|)

�

< 〈α+ β |J Z |α+ β〉 ≤ 1 .

This clearly shows that

〈α+ β |J Z |α+ β〉= 1−O
�

e−α
2−|α+β |2+|β(2α+β)|

�

.
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Note that e−α
2−|α+β |2+|β(2α+β)| = e−α

2−|α+β |2+|(α+β)2−α2|. In particular, for a real negative
number β , we have e−α

2−|α+β |2+|β(2α+β)| = e−2(α−β)2 . In the sequel, we provide a discussion
of the conditions for the noise processes on a harmonic oscillator such that they are corrected
through the recovery operation R2.

General analysis. Let us consider a general operator E(a, a†) defined on the Hilbert space of
a harmonic oscillator. Here, we assume E to be analytical function of its arguments a and a†.
We would like to study the effect of such an operator on the code space M2,α. This operator
can be written in the form

E(a, a†) = F I
�

a2, a†2
, a†a
�

I + F Z ,−
�

a2, a†2
, a†a
�

a+ F Z ,+
�

a2, a†2
, a†a
�

a† ,

where F I , F Z ,±, are analytical functions of a2, a†2
and a†a. In particular, the photon number

parity is conserved through the action of such operators. From the relation a|C±α 〉 = α|C∓α 〉,
we infer that aΠM2,α

= αZ c and a2ΠM2,α
= α2ΠM2,α

, where ΠM2,α
= |C+α 〉〈C+α |+ |C−α 〉〈C−α | and

Z c = |C+α 〉〈C−α |+ |C−α 〉〈C+α |. Thus, a single photon jump maps the logical subspace onto itself,
and acts as a phase-flip Z c of the cat qubit. While we will deal with such phase-flips later,
based on the same argument, note that the action of the parity-preserving operators F I , FX ,±

cannot result in phase-flip errors. As we shall see below, these errors induce at most bit-flip
errors in the cat qubit. Since we are interested in the action of E on the manifold M2,α, we
focus on the operator EΠM2,α

. By writing a†ΠM2,α
= a†a2ΠM2,α

/α2 = a†aσL
X/α, the operator

E(a, a†)ΠM2,α
admits the decomposition

E(a, a†)ΠM2,α
= F I(a2, a†2

, a†a)ΠM2,α
+ F Z ,α(a2, a†2

, a†a)Z c ,

with F Z ,α(a2, a†2
, a†a) = αF Z ,−(a2, a†2

, a†a) + F Z ,+(a2, a†2
, a†a)a†a/α. A general error E

acts therefore as a linear combination of a parity-preserving operator (unable to induce cat
qubit phase-flips) and the product of a parity-preserving operator with a cat qubit phase-flip.
Although the cat qubit phase-flip component is needed to be taken care of otherwise, we show
here that this two-photon process is capable of protecting the information against a large class
of parity-preserving errors of the type F(a2, a†2

, a†a).
Let us consider a noise map F, described by parity-preserving errors {F k(a2, a†2

, a†a)}.
This set of errors is correctable if and only if the operators F k satisfy the criteria, i.e

ΠM2,α
F†

j F kΠM2,α
= c jkΠM2,α

. (12)

As the operators F k are invariant under the transformation a → −a, we have the equality
〈α|F†

j F k|α〉= 〈−α|F
†
j F k| −α〉= c jk. This leads to

ΠM2,α
F†

j F kΠM2,α
= c jkΠM2,α

+m jkX c ,

where X c = |C+α 〉〈C+α | − |C−α 〉〈C−α | is the cat qubit bit-flip operation. If one satisfies
m jk := 〈−α|F†

j F k|α〉 = 〈α|F
†
j F k| − α〉 = O(ε) with ε a small parameter, we can find a re-

covery map R such that ∀ρ ∈ M2,α, (R ◦ F)(ρ) = ρ + O(ε). In this case, we say that
the noise map F is (approximately) correctable up to O(ε) [40]. Roughly, a sufficient con-
dition for this, is that for all j, k, the states F k|α〉 and F j| − α〉 remain far enough, per-
haps in the right half and left half planes of the phase space. This can be seen by writing
〈−α|F†

j F k|α〉 = (1/π)
∫

C d2β〈−α|F†
j |β〉〈β |F k|α〉 and by noting that such a condition ensures

the smallness of the quantity 〈−α|F†
j |β〉〈β |F k|α〉 for all β ∈ C.

Let us outline the strategy of our analysis. We show that if the action of the error operators
F(a2, a†2

, a†a), send the code states |±α〉 to states that are spanned by near enough coherent
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states span{| ±α+β | |β |< ϵ〉}, they are corrected by R2 up to an O(exp(−2|α|2)). Next, we
show that the major physical error channels lead to such operators.

Protection agains parity-preserving errors- Consider a set of parity-preserving errors
{F k(a2, a†2

, a†a)}. Let us assume that there exists a function c(α) : C 7→ R+ satisfying

lim
|α|→∞

c(α)
|α|
= 0 ,

such that
F k| ±α〉 ∈ span{| ±α+ β〉 | |β |< c(α)} . (13)

This set of errors is correctable up to O(e−2|α|2). More precisely, one can find a recovery op-
eration such that any state ρ ∈M2,α subject to error channels of the form {F k(a2, a†2

, a†a)},
can be recovered with a unit fidelity up to O(e−2|α|2). Furthermore, this recovery operation is
given by the two-photon process R2. This claim is easily proven through the formula (10).

Here, we illustrate the previous analysis with various examples of decoherence channels.
In what follows, we choose α real and positive.

Example: photon loss channel - The dynamics of an oscillator subject only to single-photon
dissipation at rate κ is well described by the Lindblad master equation

d
d t
ρ = κD[a]ρ .

For such a master equation the evolution of the system’s density matrix ρ over a time interval
δt, can be represented by the Kraus map [24]

ρ(t +δt) =
∞
∑

k=0

Ekρ(t)E
†
k , Ek =

√

√(1− e−κδt)k

k!
e−

κδt
2 nak , (14)

where n = a†a represents the photon number operator. The term Ekρ(t)E
†
k is the state of

the system at time t + δt if k photon jumps (losses) have occurred within the time inter-
val δt, weighted by the probability of this event. The state of the system ρ(t + δt) is then
obtained by summing over the number of jumps. The set of errors Ek can be decomposed
into the operators E2k and E2k+1 involving an even and odd number of photon jumps respec-

tively. Moreover, E2k+1 expands as E2k+1 = F2ka, where F2k =
r

(1−e−κδt )2k+1

(2k+1)! e−
κδt

2 na2k. Since

a2ΠM2,α
= α2ΠM2,α

, the operators E2kΠM2,α
read

E2kΠM2,α
= α2k

√

√(1− e−κδt)2k

(2k)!
e−

κδt
2 nΠM2,α

.

Similarly, we have F2kΠM2,α
= α2k
p

(1− e−κδt)2k+1/(2k+ 1)!e−
κδt

2 nΠM2,α
. Noting that

e−κδtn/2| ±α〉
∥e−κδtn/2| ±α〉∥

= | ±αe−κδt/2〉 ,

the operators E2k and F2k map the coding subspace to M2,αe−κt/2 , while leaving the photon
number parity unchanged.

Now, we note the convergence rate to M2,α due to the two-photon process scales with
|α|2. This fact will be shown in Section 3.4. Following a discussion similar to the one detailed
in Section 1.2.1, the time duration δt between two corrections can be fixed as τm/|α|2 with
a constant time τm independent of the cat size (and scaling with the two-photon dissipation
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rate). Therefore, The action of all error operators F2k and E2k send the code states | ± α〉 to
| ±αe−kτm/2|α|2〉. We note that

αe−kτm/2|α|2 = α−
kτm

2|α|
+O
�

1
|α|2

�

.

Therefore one can fix ϵ > 0 such that the coherent states | ± α〉 are sent to coherent states
within ϵ neighbourhood of the initial states. This indicates that such photon loss errors are
corrected up to an O(−2|α|2). This indication relying on a descretization of the continuous
error correction process is confirmed through the numerical simulations of Figure 7.

Example: Gaussian displacement channel - In such a model, we assume that the state of
the harmonic oscillator undergoes a random displacement of value β ∈ C with β a Gaussian
random variable centered at the origin and with the standard deviation

p
Γδt proportional to

the square root of a waiting time δt. It is therefore modelled by the Kraus map

ρ(t +δt) =
1

2πδtΓ

∫

β∈C
d2βe−

|β |2
2δtΓ Dβρ(t)D

†
β

.

Once again, we note that the time δt between error correction operations scales at τm/|α|2.
Therefore, the evolution between two correction steps is given by

ρ+ =
|α|2

2πτmΓ

∫

β∈C
d2βe−

|α|2 |β |2
2τmΓ DβρD†

β
.

For a function c(α) =
p

|α| satisfying c(α)/|α| → 0 as |α| →∞, we have

|α|2

2πτmΓ

∫

β∈C
d2βe−

|α|2 |β |2
2τmΓ Dβ |α〉〈α|D

†
β
=

|α|2

2πτmΓ

∫

|β |<c(α)
d2βe−

|α|2 |β |2
2τmΓ Dβ |α〉〈α|D

†
β
+
|α|2

2πτmΓ

∫

|β |>c(α)
d2βe−

|α|2 |β |2
2τmΓ Dβ |α〉〈α|D

†
β

.

While, the left term is corrected by R2 up to an O(exp(−2|α|2)), we have for the right term

|α|2

2πτmΓ
















∫

|β |>c(α)
d2βe−

|α|2 |β |2
2τmΓ Dβ |α〉〈α|D

†
β
















≤
|α|2

2πτmΓ

∫

|β |>
p
|α|

d2βe−
|α|2 |β |2
2τmΓ = e−

|α|3
2τmΓ .

Therefore, this error channel is corrected up to an O(−2|α|2)+O(−γ̃|α|3), with γ̃= 1/2τmΓ .
This indicates that the total error channel is corrected up to an O(−2|α|2).

Example: Markovian photon dephasing- The dynamics of an oscillator subject only to
Markovian photon dephasing at rate κφ is well described the Lindblad master equation

d
d t
ρ = κφD[a†a]ρ .

For such a master equation the evolution of the system’s density operator ρ over a time interval
δt, can be represented by the Kraus map

ρ(t +δt) =
1
Æ

2πδtκφ

∫ ∞

−∞
dφe

− |φ|
2

2δtκφ eiφa†aρ(t)e−iφa†a .
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Taking δt = τm/|α|2, ρ = |α〉〈α| and c(α) = |α|1−η with η > 0 small, we have

|α|
Æ

2πτmκφ

∫ ∞

−∞
dφe

− |α|
2 |φ|2

2τmκφ eiφa†a|α〉〈α|e−iφa†a =

|α|
Æ

2πτmκφ

∫

|φ|<c(α)/|α|
dφe

− |α|
2 |φ|2

2τmκφ eiφa†a|α〉〈α|e−iφa†a+

|α|
Æ

2πτmκφ

∫

|φ|>c(α)/|α|
dφe

− |α|
2 |φ|2

2τmκφ eiφa†a|α〉〈α|e−iφa†a . (15)

We have
eiφa†a|α〉= |eiφα〉 ,

and therefore, for |φ|< c(α)/|α|= 1/|α|η, we have

|α− eiφα|= |α|
Æ

2(1− cosφ)< c(α) = |α|1−η in the limit |α| →∞ .

Thus in (15), the first term is corrected by R2 up to an O(exp(−2|α|2)). For the second term,
we have

|α|
Æ

2πτmκφ
















∫

|φ|>c(α)/|α|
dφe

− |α|
2 |φ|2

2τmκφ eiφa†a|α〉〈α|e−iφa†a
















≤
|α|
Æ

2πτmκφ

∫

|φ|>c(α)/|α|
dφe

− |α|
2 |φ|2

2τmκφ

= 1− erf

�

|α|1−η
Æ

2τmκφ

�

.

Noting that 1− erf(x)≤ e−x2
for x ≥ 0, we have

1− erf

�

|α|1−η
Æ

2τmκφ

�

≤ e
− |α|

2−2η

2τmκφ .

We note that for κφτm ≤ 1/4 (meaning that the dephasing rate 4 times lower than the two-

photon dissipation rate), the above error function is dominated by e−2|α|2−2η
. This indicates

that the Markovian dephasing error is suppressed up to an O(e−2|α|2−ε) for all ε > 0.
Example: phase noise due to dispersive coupling to a high-Q mode at non-zero temperature-

Let us consider that the mode a is coupled to a mode b through the cross-Kerr coupling
H int = −ħhχa†ab†b. This mode b, coupled to a non-zero temperature bath, is in the ther-
mal equilibrium ρs

b =
∑

n pn|n〉〈n|, associated to the mean photon number nth =
∑

n npn.
In the expansion H int = −ħhχa†a(b†b − nth)− ħhχntha†a, we keep only the first term, as the
second term induces a deterministic phase rotation that can be taken into account in the cat
code pumping. Given an initial state of the form ρ(0) = ρa ⊗ρs

b, the state at time δt is given

by ρ(δt) = eiχδta†a(b†b−nth)ρ(0)e−iχδta†a(b†b−nth). The state of the mode a at time δt reads
ρa(δt) = trb[ρ(δt)], i.e

ρa(δt) =
∑

n

pneiχδt(n−nth)a†aρae−iχδt(n−nth)a†a .

The set of errors associated to this map is the set of unitary errors {En =
p

pneiχδt(n−nth)a†a}.
Once again, we note that the time δt between error correction operations scales at τm/|α|2.
Therefore,

En|α〉=
p

pn|αeiχτm(n−nth)/|α|2〉 .
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Now calling θn = χτm(n− nth)/|α|2, we have

|αeiθn −α|2 = 2|α|2(1− cosθn) .

We note that, for c(α) = |α|1−η, and in the limit of large |α|, |αeiθn −α|< c(α) is equivalent to

|n− nth|< |α|2−η/χτm .

Therefore, writing

ρa(δt) =
∑

n

pneiχδt(n−nth)a†aρae−iχδt(n−nth)a†a

=
∑

n≤nth+|α|2−η/χτm

pn|αeiθn〉〈αeiθn |+
∑

n>nth+|α|2−η/χτm

pn|αeiθn〉〈αeiθn | , (16)

the left hand term is corrected by R2 up to an O(exp(−2|α|2)). For the right hand term, we
have













∑

n>nth+|α|2−η/χτm

pn|αeiθn〉〈αeiθn |












≤
∑

n>nth+|α|2−η/χτm

pn .

Noting that for a thermal distribution pn = rn/(1+ nth) with r = nth/(1+ nth), we have
∑

n>nth+|α|2−η/χτm

pn ≤ rnth+|α|2−η/χτm = enth log r+|α|2−η log r/χτm .

Therefore taking χτm/| log r| ≤ 1/2 (meaning χ ≤ κ2| log r|/2 ), the right hand term in (16)
is dominated in norm by an O(e−2|α|2−η) for all η > 0.

Before ending this section, we provide a numerical simulation illustrating such an expo-
nential suppression in presence of single photon loss and Markovian dephasing. Other effects
could be added to these numerical simulations. In order to understand these simulations, we
note that the cat qubit codespace is a subspace of the infinite dimensional Hilbert space of
a quantum harmonic oscillator. Various noise mechanisms could therefore lead to a leakage
out of the code space, even though the two-photon dissipation mechanism tends to steer the
state back to the codespace. One way to take into account this leakage in the calculations of
the qubit properties (e.g. bit-flip and phase-flip errors) is to specify the qubit state through
observables of the quantum harmonic oscillator. Therefore, whole subspaces of the harmonic
oscillator state space are associated to a logical qubit value in a way that makes sense compared
to the typical measurements. In other words, the logical qubit value is uniquely defined from
Pauli expectation values 〈σ̂i〉 = Tr (J iρ) with i = x , y , z. In the presence of the two photon
dissipation, the most natural choice for these observables J i are the invariants as introduced
before.

In Figure 7, we simulate the master equation

d
d t
ρ = κ2D[a2 −α2]ρ + κ1D[a]ρ +κφD[a†a]ρ .

We initialize the system at |0〉c ≈ |α〉 and we calculate the value of the invariant J Z after
a time of 1/κ2. This corresponds to an effective bit-flip error probability after this time. The
simulations show clearly an exponential suppression of bit-flips as predicted through the above
analysis at a rate proportional to exp(−2|α|2).

Note also that, in the discussion of this section we have only studied an effective model
associated to the two-photon driven dissipation. In the next chapter, we discuss how to effec-
tively achieve such a process.
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Figure 7: The probability of bit-flip after a time of order 1/κ2 in presence of single
photon loss (blue curve) and both single photon loss and Markovian photon dephas-
ing (orange curve).

3 Realizing two-photon driven dissipation

In this chapter, we go through approaches to implement multi-photon driven dissipative pro-
cesses using the coupling of cavity modes to a circuit based on Josephson junctions. The
so-called parametric methods, let us to combine a microwave driving pump satisfying a fre-
quency matching condition, and a certain non-linear interaction term, to engineer un-natural
linear or nonlinear effective Hamiltonians. In the past, such methods have been used, for in-
stance, to achieve frequency conversion [41], quantum-limited amplification [42], two-mode
squeezing [43], transverse readout of a qubit [44], and multi-photon exchanges between two
modes [18].

In the context of quantum superconducting circuits, the required non-linear interactions
are provided by the Josephson junctions. While, in the standard approaches to quantum in-
formation processing, the Josephson junctions are directly used to encode the information as
an artificial atom, here they merely play the role of a nonlinear crystal providing multi-wave
mixing. Note however that, compared to nonlinear crystals in the optical regime, Josephson
circuits have a much larger ratio between multi-wave mixing and decoherence rates [45–47].
Therefore, they operate at regimes that have never been accessible to quantum optics experi-
ments.

We will first focus on the case of two-photon driven dissipative processes. After providing
the general picture, we will start by presenting the simplest implementation of a two-photon
exchange Hamiltonian and will discuss its limitations. We will next present some alternative
circuits that potentially remove some of these limitations. Next, we will show how from the
effective two-photon exchange Hamiltonian, and through adiabatic elimination techniques,
one achieves a two-photon dissipative process. We will also provide the corrections to this
picture by higher order terms in such an approximation.
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Q

I
a

b

ωb

ωp

Figure 8: Lay-out of a possible implementation of two-photon driven dissipative pro-
cess. A high-Q 3D cylindrical post-cavity [49] (the blue disk represented by the anni-
hilation operator a) is coupled through a Josephson circuit (double box with double
crosses) to a low-Q strip-line resonator (red strip represented by the annihilation op-
erator b). The Josephson circuit is strongly driven by a microwave pump drive at a
well-chosen frequency ωp to effectively engineer an interaction Hamiltonian of the
form H2/ħh = g2a2b† + g∗2a2†b. The strip-line resonator is driven at its resonance
(frequency ωb) and loses its photons through the strongly coupled port on the left.

3.1 General picture

Using the coupling of cavity modes to a Josephson junction (JJ), single photon dissipation,
and coherent drives, we aim to produce effective dynamics in the form of Eq. (5). These
are the same tools used in the Josephson Bifurcation Amplifier (JBA) to produce a squeezing
Hamiltonian [48] and here we will show that, by selecting a particular pump frequency, we can
achieve a two photon driven dissipative process. The general picture of a device implementing
an effective two-photon driven dissipative process is presented in Fig. 8.

In a parametric approach, and through driving a non-linear coupling between two modes
a and b at a well-chosen frequency ωp, we engineer a two-photon interaction Hamiltonian of
the form

H2

ħh
= g2a2b† + g∗2a2†b , (17)

where the complex coupling amplitude g2 is controlled by the phase and amplitude of the
pumping drive. The mode a is assumed to be high-Q and for now we will neglect its loss. The
mode b is however intentionally lossy and loses photons at a rate κb. Finally, this low-Q mode
is driven at its resonance ωb. The master equation in the rotating frame of the two harmonic
oscillators is given by

d
d t
ρ = −i[g2a2b† + g∗2a2†b,ρ]− i[εd b† + ε∗d b,ρ] +κbD[b]ρ , (18)

where the complex amplitude εd represents the amplitude and phase of the resonant drive at
frequency ωb. This master equation can also be written in the form

d
d t
ρ = −i[g2(a

2 −α2)b† + g∗2(a
2 −α2)†b,ρ] +κbD[b]ρ ,
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where

α=
√

√

−
εd

g2
.

In particular, for a fixed two-photon interaction strength |g2|, the magnitude of α is simply
controlled by the amplitude of the resonant drive |εd |. As we will see in Section 3.4, assum-
ing κb to be large enough compared to |g2|, we can adiabatically eliminate the dynamics of
the mode b to achieve an effective two-photon driven dissipative dynamics for the mode a
represented by the master equation (5).

3.2 Engineering a two-photon exchange Hamiltonian

In this section and the next one, we focus on the engineering of the two-photon interaction
Hamiltonian (17).

Here, we start by the simplest possible implementation where the Josephson circuit in
Fig. 8 is a single Josephson junction with two antennas coupling on one side to the high-Q 3D
cavity mode (called the storage mode) and on the other side to the low-Q strip-line resonator
(called the dump mode). This is the case in the experimental implementations [18,50].

We assume the dump mode to be driven at two frequencies ωp and ωd . The frequency
ωp is chosen close to 2ωa −ωb and the frequency ωd is close to ωb. The total Hamiltonian is
given by [51]

H
ħh
= ω̃aa†a+ ω̃bb†b−

EJ

ħh

�

cos(ϕ) +
ϕ2

2

�

+
�

εpe−iωp t + ε∗peiωp t + εd e−iωd t + ε∗d eiωd t
�

(b† + b) . (19)

The bare frequencies ω̃a,b are shifted towards the measured frequenciesωa,b due to the Lamb
shift induced by the contribution of the Josephson Hamiltonian. This Hamiltonian is repre-
sented by the cosine term, where we have subtracted the quadratic terms, already taken into
account in the first two terms. Furthermore, EJ represents the Josephson energy associated to
the junction, and ϕ is the phase across the junction. Here, ϕ can be decomposed as a linear
combination of various modes participating to this phase across the junction

ϕ = ϕa(a+ a†) +ϕb(b
† + b) ,

where ϕa,b denote the contribution of the modes a and b to the zero point fluctuations of ϕ.
Note that, other modes could participate to this phase (e.g. the Junction’s mode will contribute
significantly). However, here we assume that these modes are not driven and are therefore
in their vacuum state. Therefore, they only contribute to a renormalisation of the Josephson
energy EJ . Finally, εp,d andωp,d represent the complex amplitudes and frequencies of the two
microwave drives irradiating the dump mode.

Now, we make a change of frame consisting in going to an appropriate rotating frame for
the modes a and b and furthermore displacing the b mode to take into account the effect of
the pump εp. This change of frame is given by the unitary

U(t) = eiωd tb†bei
ωd+ωp

2 ta†ae−ξ̃p b†+ξ̃∗p b ,

d
d t
ξ̃p = −iω̃bξ̃p − i

�

εpe−iωp t + ε∗peiωp t
�

−
κb

2
ξ̃p .

Note that the displacement value ξ̃p(t) converges, after a transient regime over a time-scale
of order 1/κb, to ξ̃p(t) = ξpe−iωp t with

ξp = −i
εp

κb/2+ i(ω̃b −ωp)
.
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The Hamiltonian in this new frame is given by

eH
ħh
=
�

ω̃a −
ωp +ωd

2

�

a†a+ (ω̃b −ωd)b
†b−

EJ

ħh

�

cos(ϕ̃) +
ϕ̃2

2

�

+
�

εd e−iωd t + ε∗d eiωd t
�

(e−iωd t b+ eiωd t b†) ,

where

ϕ̃ = ϕa

�

e−i
ωp+ωd

2 t a+ ei
ωp+ωd

2 t a†
�

+ϕb

�

e−iωd t b+ eiωd t b†
�

+ϕb

�

ξ̃p(t) + ξ̃
∗
p(t)
�

.

Assuming |εd | ≪ ωd , and ∥ϕ̃∥ ≪ 1, we expand the cosine up to fourth order and perform
rotating-waves approximation to reach an effective Hamiltonian

Heff = Hdetuning +HKerr +H2 , (20)

where

Hdetuning

ħh
=
�

ωa −
ωp +ωd

2
−χab|ξp|2
�

a†a+ (ωb −ωd − 2χaa|ξp|2)b†b,

HKerr

ħh
= −

χaa

2
a†2a2 −

χbb

2
b†2b2 −χaba†ab†b,

H2

ħh
= g2a2b† + g∗2a†2b+ εd b† + ε∗d b .

Here, the frequencies ωa,b differ from the bare frequencies ω̃a,b by the Lamb shift arising
from operator ordering in HKerr. Moreover these frequencies are further shifted down by a
term proportional to |ξp|2, which corresponds to the AC Stark shift induced by the pump.
The linear dependence of this shift versus the pump power is only a first order approximation
where higher order contributions of the cosine potential are neglected. The second term HKerr
corresponds to self-Kerr and cross-Kerr terms. In a first order approximation, we have:

χaa =
EJ

ħh
ϕ4

a

2
, χbb =

EJ

ħh
ϕ4

b

2
, χab =

EJ

ħh
ϕ2

aϕ
2
b .

Note that, in a higher order approximation, these terms also depend on the pump power and
one can observe shifts similar to the AC Stark shift.

Finally, the last term H2 is precisely the Hamiltonian that we are intending to engineer.
The second term simply represents the near-resonant driving of the dump mode. The first
term of this Hamiltonian models a non-linear interaction between the storage and the dump
mode: two photons from the storage mode can swap with a single photon in the dump. This
term is induced by the four-wave mixing of the pump, the dump and the storage modes. Up
to first oder approximations, the coupling strength is given by

g2 = χsr

ξ∗p

2
.

The amplitude and phase of this two-photon interaction is therefore controlled by the ampli-
tude and phase of the pumping drive at frequency ωp. In particular, it is tempting to think
that one can increase this interaction strength linearly with the pump amplitude. While this
assumption is true for small enough pump amplitudes, it has been experimentally observed
that the scaling rapidly stops to be true (see e.g. [18]). More precisely, as soon as the system is
driven too strongly, other terms that are not included in the above approximations dominate
the dynamics of the system, therefore limiting the performance of the two-photon process. In
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practice, the maximal value of |ξp| achieved in experiments [18,50] has been around 1. Note
that in all these experiments ϕb≪ 1 and therefore a value |ξp| of order one, still corresponds
to small excursions at the bottom of the cosine potential. One would therefore expect the
above assumptions to be still holding.

In a recent theoretical analysis [52] and a parallel experimental validation work [53], we
have investigated these limitations. In a numerical analysis which gets out of the scope of the
current notes, we argue that such out-of-equilibrium nonlinear systems are easily plagued by
complex dynamics leading to instabilities. These instabilities are the quantum reminiscent of
the classical chaotic behaviour of driven Josephson junctions studied decades ago. The same
study suggests that shunting a Josephson junction in the transmon regime with an appropriate
inductance removes such instabilities and enables us to operate over a much larger range of
pump powers.

Finally, note that, even in the absence of such instabilities one necessarily has to deal with
undesired terms such as the self-Kerr and cross-Kerr terms in the above effective Hamiltonian.
As argued in the previous chapter, whenever these undesired terms are weak enough (com-
pared to the effective two-photon dissipation rate), their effect can be neglected. It is therefore
important to come up with circuit designs that diminish the strength of such terms. This is the
topic of the next section.

3.3 Alternative circuits to suppress undesired interactions

As argued in the previous section, the engineering of an effective two-photon interaction (17)
with a single Josephson junction is necessarily accompanied with undesired cross-Kerr inter-
action terms that could potentially limit the performance of the two-photon process. In this
section, we propose alternative Josephson circuits that circumvent such a limitation.

Asymmetric Josephson ring modulator. Inspired by the design of the Josephson ring modu-
lator [54, 55], which ensures an efficient three-wave mixing, we present here a design which
can potentially induce the above two-photon interaction Hamiltonian while avoiding the addi-
tion of extra undesirable interactions (this design was proposed in [10]). The Josephson ring
modulator (Fig. 9(a)) provides a coupling between the three modes (as presented in Fig. 9(c))
of the form

HJRM =
EL

4

�

ϕ2
X +ϕ

2
Y +
ϕ2

Z

2

�

− 4EJ

h

cos
ϕX

2
cos
ϕY

2
cos
ϕZ

2
cosϕext + sin

ϕX

2
sin
ϕY

2
sin
ϕZ

2
sinϕext

i

,

where EL = φ2
0/L, ϕX ,Y,Z = ΦX ,Y,Z/φ0 = ϕX ,Y,Z(aX ,Y,Z + a†

X ,Y,Z) and ϕext = φext/φ0 is the
dimensionless external flux threading each of the identical four loops of the device (here
φ0 = ħh/2e represents the reduced flux quantum). Furthermore, the three spatial mode ampli-
tudes ϕX = ϕ3−ϕ1, ΦY = ϕ4−ϕ2 and ΦZ = ϕ2+ϕ4−ϕ1−ϕ3 are gauge invariant orthogonal
linear combinations of the superconducting phases of the four nodes of the ring (Fig. 9(c)).

In the same manner the design of Fig. 9(b), for a dimensionless external flux of ϕext = π/4
on the small loops and 3ϕext = 3π/4 on the big loops, induces an effective interaction Hamil-
tonian of the form

H ′JRM =
EL

4

�

ϕ2
X +ϕ

2
Y +
ϕ2

Z

2

�

− 2
p

2EJ sin
ϕX

2
sin
ϕY

2

h

sin
ϕZ

2
+ cos

ϕZ

2

i

. (21)

Similarly to [55], by decreasing the inductances L and therefore increasing the associated EL ,
one can keep the three modes of the device stable for such a choice of external fluxes. This
however comes at the expense of diluting the nonlinearity.
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Figure 9: Josephson ring modulators (JRM) providing desired interactions between
field modes. (a) JRM developed to ensure quantum limited amplification of a quan-
tum signal or to provide frequency conversion between two modes; The signal and
idler are respectively coupled to the X and Y modes, as represented in (c) and the
pump drive is applied on the Z mode. (b) A modification of the JRM to ensure an
interaction of the form Eq. (17). Reproduced with permission from Ref. [10].

Now, we couple the Z mode of the device to the high-Q storage mode a, its Y mode to the
low-Q dump mode b mode, and we drive the X mode by a pump of frequency 2ωa −ωb (ωa
and ωb are the effective frequencies of the modes a and b). By expanding the Hamiltonian of
Eq. (21) up to fourth order terms in ϕ = (ϕX ,ϕY ,ϕZ), the only non-rotating term will be of
the form

Heff = −
p

2
16
p

npumpEJϕ
2
ZϕYϕX

�

eiφpumpa2b† + e−iφpumpa†2b
�

,

where φpump is the phase of the pump drive and npump is the average number of circulating
photons at pump frequency [56].

Let us now present another circuit design which has been used in a recent experiment
demonstrating for the first time the exponential suppression of bit-flips for dissipatively stabi-
lized cat qubits.

The Asymmetrically Threaded SQUID (ATS). In order to circumvent the limitations of the
experiments [18,50], a novel non-linear circuit element, called the Asymmetrically Threaded
SQUID (ATS) was realized in [39] to implement the two-to-one photon conversion Hamilto-
nian (17). It consists in a SQUID (Superconducting Quantum Interference Device) shunted in
its center by a large inductance, thus forming two loops. Before we detail how the two-photon
exchange Hamiltonian is obtained from the interaction Hamiltonian between the dump mode
and the storage mode, let us recall the properties of the ATS. The potential energy of this el-
ement alone depends on only one degree of freedom, the phase ϕ across the inductor, and is
given by

U(ϕ) =
1
2

EL,bϕ
2 − EJ ,1 cos(ϕ +ϕext,1)− EJ ,2 cos(ϕ +ϕext,2) .

Denoting EJ ,1 = EJ +∆EJ and EJ ,1 = EJ −∆EJ , the potential energy can be written

U(ϕ) =
1
2

EL,bϕ
2 − 2EJ cos(ϕΣ) cos(ϕ +ϕ∆) + 2∆EJ sin(ϕΣ) sin(ϕ +ϕ∆) ,

whereϕΣ =
1
2(ϕext,1+ϕext,2) andϕ∆ =

1
2(ϕext,1−ϕext,2). SettingϕΣ=

π
2+ε(t)=

π
2+ε0 cos(ωp t)
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Figure 10: Circuit representation of the low Q mode of an ATS (red) coupled ca-
pacitively to a high-Q storage mode a (red) hosting the cat qubit. The ATS is DC
biased at the asymmetric flux bias point ϕΣ =

1
2(ϕext,1+ϕext,1) = π/2+ε0 cos(ωp t),

ϕ∆ =
1
2(ϕext,1−ϕext,1) = π/2 to mediate the required two-photon exchange between

the memory and the buffer mode (see main text).

and ϕ∆ = π/2, where ε0 is small, the time-dependent potential energy becomes (to the first
order in ε(t))

U(ϕ) =
1
2

EL,bϕ
2 − 2EJε(t) sin(ϕ) + 2∆EJ cos(ϕ) .

Now, because of the shunt, this potential is unbounded which prevents the system to escape
to unconfined state like in the case of an unshunted Josephson junction. In practice, the
inductance can be replaced by an array of N Josephson junctions for which the potential energy
1
2 EL,bϕ

2 is replaced by N EJ ,L cos(ϕ/N)where EJ ,L is the Josephson of each individual junction
of the array; which is now a bounded potential, but for which the number of junctions N can
be chosen such that the depth of the potential is high enough (N EJ ,L ≫ 2EJε0) so that the
state remains confined in the parabolic part of the cosine potential.

The two modes we consider are a high Q mode (the storage a) and the (low Q) mode
of the ATS. When these two modes are coupled using the ATS as in Figure 10, and a weak
resonant drive is applied on the buffer, the Hamiltonian governing the dynamics is given by

H/ħh=ωaa†a+ωbb†b− 2EJε(t) sin(ϕ) + (εd e−iωd t + ε∗d eiωd t)(b+ b†) ,

where ϕ = ϕa+ϕ b = ϕa(a+a†)+ϕb(b+b†) is the global phase across the ATS dipole, written
as the sum of the phase across each of the two modes a and b weighted by the contribution
ϕa,b of each mode to the zero point fluctuations of ϕ.

Expanding the sine up to the third order, the Hamiltonian reads

H/ħh=ωaa†a+ωbb†b− 2EJε(t)ϕa − 2EJε(t)ϕ b +
1
3 EJε(t)(ϕa +ϕ b)

3

+
�

εd e−iωd t + ε∗d eiωd t
�

(b+ b†) .

The rest of the derivation proceeds as in the case of the single junction. By going to the
frame displaced by ξa(t) = ξae−iωp t for a and ξb(t) = ξbe−iωp t for b, to the frame rotating
at frequency (ωp +ωd)/2 for a and ωd for b and keeping only the non rotating terms, the
Hamiltonian reads

H = H shift +H int ,
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where

H shift = (ω̄b −ωd −∆b)b
†b+
�

ω̄a −
ωp +ωd

2
−∆a

�

a†a ,

H int = g∗2a2b† + g2a†2b+ εd b† + ε∗d b .

The AC Stark Shift induced by the pump is now given by ∆a,b/ħh=
1
3 EJϕ

2
a,b(ℜ(ξa)ϕa)+ℜ(ξb)ϕb

and the coupling strength is given by ħhg2 =
1
2 EJε0ϕ

2
aϕb.

Crucially, unlike in the case of a single Josephson junction, the only leading order non-
rotating term is precisely the desired Hamiltonian, without all the Kerr-like terms that resulted
in spurious effects. This led to the first observation of the exponential suppression of the bit-flip
error rate with the size of the cat qubit, at the cost of a linear increase of the phase-flip error
rate [39]. More precisely, the parameters achieved in this experiment are κ1/2π = 53kHz
and κ2/2π= 40kHz, thus the ratio is of the two rates of dissipation is of order 1. This ratio is
expected to be greatly improved by using a long-lived 3D cavity for the storage mode. However,
because of the absence of Kerr-terms, it was possible to witness the exponential increase of
lifetime with respect to bit-flip errors: for each added photon in the cat qubit, the bit-flip
time is multiplied by 4.2, up to a point where it saturates around 1ms (300 times longer than
the T1 = 3µs). In this experiment, the saturation of the bit-flip exponential suppression was
caused by the thermal occupation of the transmon used for the Wigner tomography of the
cat qubit, which contaminated the storage mode through the dispersive coupling between the
transmon and the cavity mode used for the readout.

3.4 Two-photon dissipation: Adiabatic elimination

In previous sections, we showed how to engineer an interaction between two modes a and b
to effectively achieve a master equation of the form (18). As stated in Section 3.1, this master
equation can also be written in the following form

d
d t
ρ = −i
�

g2(a
2 −α2)b† + g∗2(a

2 −α2)†b,ρ
�

+κbD[b]ρ , α=
√

√

−
εd

g2
. (22)

In this section, assuming |g2| ≪ κb we will show how one can perform an adiabatic elimination
of the mode b to effectively achieve the master equation (5) for the mode a. This is the two-
photon driven dissipative process that we were looking to achieve.

One way is to pursue the approach of [57, Section 12.1]. Calling

ϵ = |g2|/κb≪ 1 ,

the above master equation is of the following form

d
d t
ρ = −iϵ
�

H int

ħh
,ρ
�

+κbD[b]ρ ,

Here, restricting the dynamics to a finite dimensional subspace of the harmonic oscillator’s
Hilbert space, the Hamiltonian H int/ħh admits a norm of order κb, similar to the dissipation
rate. The idea consists in taking as ansatz the solution of the form

ρ = ρ00 ⊗ |0b〉〈0b|+ ϵ(ρ01 ⊗ |0b〉〈1b|+ρ10 ⊗ |1b〉〈1b|)

+ ϵ2(ρ11 ⊗ |1b〉〈1b|+ρ02 ⊗ |0b〉〈2b|+ρ20 ⊗ |2b〉〈0b|) +O(ϵ3) . (23)

Here, the operators ρ jk live on the Hilbert space of the mode a and we are interested in the
reduced dynamics of

ρs = trb(ρ) = ρ00 + ϵ
2ρ11 +O(ϵ3) .
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We can also perform this adiabatic elimination in a more systematic way that enables us to
apply it to other similar bipartite systems (we borrow the recipe proposed in [58]). Indeed,
we are dealing with a bipartite quantum system composed of two subsystems A and B. The
subsystem B is strongly dissipative and the subsystems A and B are weakly coupled through
the Hamiltonian interaction.

In a general form, we have the following type of dynamics:

d
d t
ρ = −iϵ[H int,ρ] +LB(ρ) , (24)

where LB is a Lindblad super-operator acting only on the Hilbert space HB. Also the two sys-
tems A and B are weakly coupled through the interaction Hamiltonian H int. For ϵ = 0, the so-
lutions stay separable for all times, namely for ρ(0) = ρA⊗ρB, we have ρ(t) = ρA(0)⊗ρB(t).
Here, we assume that the Lindbladian LB is strongly dissipative and relaxes fast to a unique
steady state ρ̄B.

We seek a solution summarizing the effect of the coupling by viewing it as a perturbation
in ϵ on this uncoupled situation. This perturbation should leave an invariant subspace of the
same dimensionality as HB, and we postulate to model it by a density operator ρs on Hs.
The postulate is thus that, beyond linear systems perturbation, the reduced dynamics for the
perturbed system can satisfy the structure of a quantum system, with dynamics

d
d tρs = Ls,ϵ(ρs) , (25)

and embedded in the overall system via a Kraus map (completely positive trace-preserving
map)

ρ =Kϵ(ρs) =
∑

µ

MµρsM
†
µ . (26)

This will indeed be a solution of the system if it satisfies the invariance equation:

L(Kϵ(ρs) ) =Kϵ(Ls,ϵ(ρs) ) for all ρs . (27)

Solving (25)-(27) exactly is difficult in general, so we consider a series expansion in ϵ. Writing

Ls,ϵ(ρs) =
∞
∑

k=1

ϵkL̃s,k(ρs) ,

Kϵ(ρs) =
∞
∑

k=0

ϵkKk(ρs) ,

we plug this into the invariance equation (27) and identify terms of equal powers in ϵ. Solving
the resulting equations up to some order ϵk then provides the relevant approximation.

A challenge in this method is to prove that the resulting finite sums of linear superoperators,
indeed take a Lindblad equation and Kraus map form respectively. Note that the Lk and
Kk individually are not imposed Lindbladian and Kraus maps; e.g. for the sum to be trace-
preserving, the Kk for k > 0 must actually provide a zero trace. For this it can be necessary to
exploit some freedom in the coordinate choice left by (25),(26), depending on the system at
hand.

In this section, we provide a recipe to find at least the first terms of such a series. We start
by writing the interaction Hamiltonian in the generic form

H int =
∑

r

Ar ⊗ B†
r , (28)
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where Ar and Br are Hamiltonians acting on Hilbert spaces HA and HB respectively. We also
remind that the unique steady state of the LindbladianLB is assumed to be ρ̄B. In the particular
case of the two photon exchange Hamiltonian, we have

A1 =
p

κbeiφ(a2 −α2), A2 =
p

κbe−iφ(a2 −α2)† , B1 =
p

κbeiφb , B2 =
p

κbe−iφb† ,

where eiφ = g2/|g2|.
Also the Lindbladian is simply given by

LB(ρB) = κbD[b]ρB ,

and therefore its unique steady state is the vacuum state of the mode b:

ρ̄B = |0B〉〈0B| .

First order reduced model. The first order dynamics is purely Hamiltonian:

Ls,ϵ(ρs) = −iϵ[H s,1,ρs] +O(ϵ2) .

An effective Hamiltonian is calculated as

H s,1 :=
∑

r

Tr
�

Br ρ̄B

�

Ar . (29)

In the case of the two-photon process, this gives H s,1 = 0.
Second order reduced model. It is computed by pursuing the following steps:

1. (Bottleneck step) for r = 1 to r̄, find Rr the unique solution of

LB(Rr) = i(Br ρ̄B − Tr
�

Br ρ̄B

�

ρ̄B) , with Tr (Rr) = 0 .

This operator Rr can always be written in the form K r ρ̄B but not in a unique manner.

2. Compute X and Y the matrices with entries

(X )r,r ′ = i Tr
�

B†
rRr ′ −R†

r Br ′
�

and (Y )r,r ′ =
1
2

Tr
�

B†
rRr ′ +R†

r Br ′
�

.

The matrix X is semi-definite positive and, we take Λ any matrix satisfying X = ΛΛ†.

3. Compute

H s,1 =
∑

r

Tr
�

Br ρ̄B

�

A†
r ,

H s,2 =
∑

r,r ′
(Y )r,r ′Ar A†

r ′ ,

Lr
s,2 =
∑

r ′
(Λ)†r ′,r A†

r ′ . (30)

The second order reduced Lindbladian is given by

Ls,ϵ(ρs) = −iϵ[H s,1,ρs]− iϵ2[H s,2,ρs] + ϵ
2
∑

r

D[Lr
s,2]ρs +O(ϵ3) . (31)

Let us apply this algorithm to the case of the two-photon process.
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1. Taking B1 =
p
κbeiφb and ρ̄B = |0〉〈0|, we have

LB(R1) = 0 , with R1 = K1|0〉〈0| , 〈0|R1|0〉= 0 .

The unique solution to this equation is R1 = 0.

Also taking B2 =
p
κbe−iφb†, we have

LB(R2) = i
p

κbe−iφ |1〉〈0| , with R2 = K2|0〉〈0| , 〈0|R2|0〉= 0 .

The unique solution to this equation is

R2 = −
2i
p
κb

e−iφ |1〉〈0| .

2. We have

X =

�

0 0
0 4

�

, Y =

�

0 0
0 0

�

.

We choose Λ=

�

0 0
0 2

�

.

3. We have

H s,1 = H s,2 = 0 ,

L1
s,2 = 0 ,

L2
s,2 = 2A†

2 = 2
p

κbeiφ(a2 −α2) .

The second order Lindblad equation is therefore given by

d
d t
ρs = 4ϵ2κbD[a2 −α2]ρs .

This is the driven two-photon process with an effective two-photon dissipation rate

κ2 ≈ 4ϵ2κb = 4
g2

2

κb
.

The calculations for higher order terms are much more involved and here we skip them. It
is however important to answer one question. Is the bit-flip suppression induced by the two-
photon process affected by higher order terms in this adiabatic elimination? The answer for-
tunately is no. In order to see this, one can note that the states {|±α〉⊗|0〉} are precise steady
states of the two-mode system (22). Indeed, the protection of the coherent states |±α〉 against
local shifts is ensured at all orders because of this stability. The rate of convergence to these
states (which can be seen as the rate of protection against such excursions in the phase space)
can however be modified when considering higher-order terms. Note that it is important that
such a convergence (correction) rate exceeds the diffusion rate induced by local error mech-
anisms. Let us discuss this convergence rate and higher-order corrections to it through the
following few paragraphs.

One can consider the Lyapunov function [59]

V(ρs) = Tr
�

(a2 −α2)ρs(a
2 −α2)†
�

.

It is clear that V(ρs) = 0 if and only if ρs ∈ span{| ±α〉}. Considering the above second-order
reduced dynamics, it was shown in [59] that

d
d t

V(ρs)≤ −8ϵ2κbV(ρs) .
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More strongly, simple calculations show that for a coherent state ρs = |β〉〈β |, we have

d
d t

V(ρs)≈ −8ϵ2κb

�

1+ 2|β |2
�

V(ρs) .

Therefore, locally around the states | ±α〉, the convergence rate is given by 8ϵ2κb(2|α|2 + 1).
The question is if this convergence rate is significantly modified at higher orders. The higher
order calculations are complicated. Such calculations up to fourth order have been recently
performed in [60]. Skipping the details, here we provide the reduced master equation:

d
d t
ρs = 4ϵ2κbD
��

1− 2ϵ2(A†A+ AA†)
�

A
�

ρs + 32ϵ4κbD[A2]ρs +O(ϵ5) , A= a2 −α2 .

First, we note that, as expected, the two coherent states | ± α〉 are still steady states of this
system. Considering the same Lyapunov function and considering ρs = |β〉〈β |, we have

d
d t

V(ρs)≈ −8ϵ2κb(1+ 2|β |2)
�

1− 4ϵ2(1+ 2|β |2)
�

V(ρs) .

Therefore the above local convergence rate reduces by a factor of
�

1− 4ϵ2(1+ 2|α|2)
�

. This
calculation provides the insight that, fixing a maximum amplitude |αmax|, we need to design
the parameters in a deep enough adiabatic regime. More precisely, we need to ensure that
4ϵ2(1+ 2|αmax|2) remains small with respect to 1.

4 Bias-preserving gates

The purpose of this section is to describe how the quantum bit of information stored in a cat
qubit can be processed. As mentioned earlier, in these notes we focus on the potential of cat
qubits as biased noise qubits. It is therefore crucial that the noise bias remains preserved during
the processing of the information encoded in the cat qubit. There are actually two distinct
conditions to fulfil to successfully design a bias-preserving operation, that are discussed in the
next subsections.

4.1 Bias-preserving gates: two conditions to satisfy

The first condition concerns the operation itself, as operators that convert the Z operator into
an X (or Y ) operators are automatically non bias-preserving. The textbook example of such
an operation is the Hadamard gate H, that converts a Pauli Z operator into X (and vice-versa).
Applying a Hadamard gate to a cat qubit converts a phase-flip error that occurs just before the
gate to a bit-flip error. Thus, even though bit-flips occur with an exponentially small probability,
the application of a Hadamard gate on a cat qubit re-introduces bit-flips with a probability that
is similar to the phase-flip error probability. This observation can be generalized to other gates
such as the S gate or the controlled-H gate, etc. The gates that commute with the Z operator
are readily acceptable candidates. Gates that do not commute with Z may still be acceptable,
as long as the error produced by the propagation of the Z error through the gate remains of
the phase-flip type. Note that in this regard, we only require that Z errors are not converted
to other types of errors, while X or Y errors that occur with exponentially small probability
can be converted to other types of errors.

Single-qubit gates. Consider the case of a unitary operator U acting on a single qubit. For
the purpose of this discussion, one can disregard the global phase and identify the unitary to a
rotation on the Bloch sphere of an angle θ around the axis specified by the real valued unitary
vector n⃗= (nx , ny , nz)

U =Rn⃗(θ ) = e−i θ2 n⃗·σ⃗ = cos
θ

2
− i sin

θ

2
(nx X + ny Y + nz Z) .
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Figure 11: a) Circuit representation of a general U1-controlled-U2 gate. (b-c) A Pauli
Z error commutes with a Z-controlled-U operation, but produces an additional U
error by propagating through an X -controlled-U gate.

where σ⃗ = (X , Y, Z). A phase-flip error Z that occurred before the gate Rn⃗(θ ) propagates
through the gate as a Z error together with an additional unitary error EZ(n⃗,θ )

Rn⃗(θ )Z = ZEZ(n⃗,θ )Rn⃗(θ ) ,

where the additional error EZ(n⃗,θ ) is given by

EZ(n⃗,θ )=
�

cosθ+2sin2 θ

2
n2

z

�

I−i
�

sinθnx+2 sin2 θ

2
ny nz

�

X−i
�

sinθny − 2 sin2 θ

2
nx nz

�

Y .

Thus, the unitary Rn⃗(θ ) does not convert Z errors into X or Y error if and only if the
following conditions are satisfied

�

sinθnx + 2sin2 θ
2 ny nz = 0 ,

sinθny − 2sin2 θ
2 nx nz = 0 .

(32)

As one could expect, this includes the rotations around the Z axis of the Bloch sphere
of an arbitrary angle Z(θ ), which commute with the Z operator (the π rotation around the
Z-axis) as confirmed by checking the above conditions are satisfied for nz = 1 (and hence
nx = ny = 0) and any angle θ . Note that the set of rotations {Z(θ )}θ∈[0,2π[ actually contains
gates from arbitrarily high levels of the Clifford hierarchy [61, 62], as one can check that the
rotation around a cardinal axis +X ,+Y,+Z of an angle θ ∈ {kπ/2n−1}k∈Z2n is in the n-th level
of the Clifford hierarchy.

The conditions (32) can also be satisfied for unitaries that do not commute with the Z
operator. For instance, they are satisfied by the π-rotations around any axis in the (X , Y )
plane, θ = π and (nx , ny , nz) = n⃗X ,Y (ϕ) = (cos(ϕ), sin(ϕ), 0), producing the unitary

U =Rn⃗X ,Y (ϕ)(π) = cos(ϕ)X + sin(ϕ)Y .

Note that this set also contains gates from arbitrary levels of the Clifford hierarchy, following
from the fact that Rn⃗X ,Y (ϕ)(π) is in the (n − 1)-th level if ϕ ∈ {kπ/2n−1}k∈Z2n . This can be
checked e.g from the above fact using the decomposition

Rn⃗X ,Y (ϕ)(π) = Z(ϕ)X Z(−ϕ) .

The conditions(32) also automatically rule out some gates. One can check, as expected,
that the Hadamard gate (θ = π, n⃗= (1,0, 1)/

p
2) does not match the criteria, or that the only

rotations around the X or Y axis that are allowed are those of an angle π, that is the Pauli
rotations.

Entangling gates. The same analysis can be carried through for entangling gates. For two
qubits (or more generally, two subsystems), an entangling gate U is a gate that cannot be
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factorized in the form U = U1⊗U2, where U1,2 are gates acting each on one of the two qubits
(or two subsystems).

Here, we investigate the bias-preserving compatibility of a specific subset of entangling
gates composed of the “controlled” gates. A two-qubit controlled gate is built using two single-
qubit unitary operators (different from the identity) U1 and U2, where one of the two (say U1)
has to be Hermitian. The resulting entangling gate, called the “U1−controlled−U2” gate, acts
as follows. The unitary operator U1 being Hermitian (and non-trivial), it has exactly two eigen-
values: ±1. The two associated eigenspaces split the Hilbert space of the first qubit in two.
The U1-controlled-U2 consists in applying the unitary U2 to the second qubit, called the target
qubit, whenever the state of the first qubit, called the control qubit, is in the −1 eigenspace,
and applying identity otherwise. The circuit representation of such a gate is depicted in Fig-
ure 11 a). In general, it suffices that only one of the two unitaries U1 or U2 be Hermitian to
define such an operation, where the qubit corresponding to the Hermitian unitary is taken as
the control qubit. Interestingly, when both unitaries are Hermitian, choosing either one of the
qubits as the control qubit produces the same quantum gate. Note that in the literature, a
Z-controlled-U gate is simply referred to as a controlled-U operation, because the ±1 eigen-
states of the Z operator are the computational |0〉, |1〉 states and the Z control is represented
by the symbol • in circuit notation to emphasize the classical analogy. This definition is readily
generalized to multi-qubit unitaries.

Here, we focus on a specific subset of multi-qubit controlled gates where the basic uni-
taries used to construct entangling gates are only X and Z Pauli operators. This includes, for
example, the two-qubit “controlled-NOT” gate (Z-controlled-X ), denoted CNOT or CX, the
two-qubit “controlled-Z” gate (Z-controlled-Z) gate, denoted CZ, or the three-qubit Toffoli
gate (Z-controlled-Z-controlled-X ), denoted CCX.

As with the single-qubit unitaries, we are here interested in two things. First, one can
check that an n-qubit controlled gate where each of the involved unitaries is a (non-trivial)
Pauli operator is in the n-th level of the Clifford hierarchy. Consider first the three two-qubit
controlled gates that can be formed using X and Z operators

{U1 − controlled− U2, U1,2 ∈ {X , Z}} .

We are interested in how Z errors propagate through such gates. As Z trivially commutes
with Z but anti-commutes with X , it is clear that the ±1 eigenspaces of the Z operator are
not disturbed by a Z error, while the ±1 eigenspaces of X are swapped. Thus, as depicted in
Figure 11 (b-c), a Z error acting on a “Z-controlled-U” commutes with the gate, while a Z
error acting on a “X -controlled-U” produces an additional error U on the corresponding qubit.
From this observation, it is clear that a multi-qubit controlled gate built with X and Z operators
does not convert Z errors if and only if U is composed of Z operators only. In other words, the
eligible gates cannot contain more than a single X control: the CZ gate and the CNOT gate
are not forbidden by our bias-preserving definition, while the “X -controlled-X ” gate is.

The same analysis carries through straightforwardly to a higher number of qubits. Using
only X and Z operators, it is necessary to use at least three qubits to construct a non-Clifford
gate (gates that do not belong to the first two levels of the Clifford hierarchy). Out of the four
gates of the form

{U1 − controlled− U2 − controlled− U3, U1,2,3 ∈ {X , Z}} ,

only those that contain zero (the CCZ) or one (the CCX gate) X operator do not convert Z type
errors into X type errors.

The second condition that needs to be fulfilled by a bias-preserving gate in addition to
not convert Z-type errors into X or Y -type errors is that it should be implementable in a
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Figure 12: Schematic illustration of the no-go theorem for a bias-preserving X gate
on a two-level system, and of the trick used to work around this no-go in the case of
the cat qubit.

bias-preserving manner. While the first condition is agnostic to the specific technology im-
plementing the qubit but rather only depends on the structure of the unitary itself, this second
condition can only be checked on the description of the process actually implementing the
gate on a given physical platform. Let us consider, for instance, rotations around the X (or Y
axis). As discussed above, only the π-rotation around the X axis is a viable candidate for a
bias-preserving implementation. The authors of [63] rightfully noted that the structure of the
noise induced by the implementation of the gate may have no reason to be highly biased: in
the case of a π-rotation around the X -axis, for instance, the effect of a slight over-rotation or
under-rotation may introduce an error proportional to X rather than Z , thus re-introducing
bit-flip errors that are not exponentially unlikely.

We argue in the next subsections that all the candidates introduced above can indeed be
implemented in a bias-preserving manner on cat qubits. Because the exponential bias in the
noise structure comes from the distance in the phase-space between the two computational
states, one general guiding principle that needs to be followed when designing such imple-
mentations is that this distance should never be decreased during the process implementing a
gate.

This guiding principle is necessary, but sufficient only for the gates that commute with the Z
errors at all times during the execution of the gates. It has been shown in [10] how such gates,
that include arbitrary rotations around the Z-axis or the C Z gate, can be implemented using a
weak Hamiltonian in presence of the strong two-photon dissipative dynamics. The effect of the
weak Hamiltonian implementing the gate is to induce a slow evolution in the two-dimensional
stable manifold of the cat qubits. The precise bias-preserving implementation of these gates is
discussed in subsection 4.2.

The gates that do not commute with the Z error pose additional challenges, and were usu-
ally discarded from general hardware agnostic studies of computing with biased noise qubits
(see e.g [63, 64]). Indeed, considering again the π-rotation around the X -axis of the Bloch
sphere, it is actually impossible to design a bias-preserving implementation without leaving
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the code subspace. The intuition of why an X gate cannot be performed in a bias-preserving
manner without leaving the code space is illustrated in Figure 12, taken from [65]. A continu-
ous process that rotates the state | −α〉 to |α〉 (and vice-versa) without leaving the code space
takes the state through a path on the surface of the Bloch sphere (green arrows in Figure 12).
If a phase-flips occurs, say, at the middle of this evolution (red arrow), then the remaining part
of the process (green arrow) results in a bit-flip after the gate is executed. The way around
this no-go theorem is to rather design an implementation that takes the state outside the code
space (blue arrow) during the whole evolution, in such a way that the errors that occur during
the evolution cannot introduce bit-flip errors. The idea was originally introduced to perform
a bias-preserving CNOT gate in the context of Kerr-cat qubits [66]. The gates that are imple-
mented in this manner are also discussed in subsection 4.2. The rest of the section is organized
as follows.

In subsection 4.2, we describe the precise implementations of all the operations in the set

S ′ = {P|+〉,P|0〉,MX ,MZ} ∪ {Z(θ ), Z Z(θ ), Z Z Z(θ )} ∪ {X , CX,SWAP, CCX} ,

with a particular focus on the bias-preserving property of the implementation. This set is split
in three subsets, corresponding to three different ways to achieve a bias-preserving implemen-
tation, and discussed separately in subsection 4.2. The first one concerns state preparation and
measurement. Here, the bias-preserving property is either trivial or comes from considerations
very specific to the realization of the operation. The second subset contains the gates that are
realized through the quantum Zeno effect, by using a weak Hamiltonian that triggers the accu-
mulation of the desired “dynamical phase” in the cat qubit subspace. Here, the bias-preserving
property is ensured by the fact that phase-flips commutes with the continuous process imple-
menting the gate, and by the fact that the two-photon dissipation is always turned on. The
last subset is composed of the gates that are implemented using a continuous deformation
of the code space that impart a topological π phase around the X axis of the Bloch sphere.
The bias-preserving implementation of these gates is decomposed in two parts: first, the two-
photon dissipative scheme is made time-dependent, and for multi-qubit gates, conditional, in
order to implement the required code deformation. Additionally, we argue that the fidelity
of these gates is greatly improved by adding a Hamiltonian during the gate execution. We
emphasize that these (optional) Hamiltonians are not required for the gate implementation,
nor for the bias-preserving property of the gates, but merely to greatly reduce the phase-flip
errors induced by the non-adiabaticity (finite time) of these gates.

Then, in subsection 4.3, we either give or derive explicitly analytical error models for the
dominant phase-flip error probabilities, As will become clear upon inspection of the error mod-
els, the phase-flip errors occurring during the execution of the gates come from two different
sources that we both take into account. The first are the phase-flip errors induced by the main
error channel of the quantum harmonic osillator, namely the photon loss, characterized by the
single photon dissipation rate κ1. The second source of phase-flip errors is the finite time of
the gates.

Last, in subsection 4.4, we discuss how all the proposed implementations can be realized
within the framework of circuit QED. We describe how the weak Hamiltonians required for
the Zeno gates have been realized [50] or could be realized. Last, we discuss the realization
of the topological gates. This can be split in two parts: the (required) implementation of the
time dependence of the two-pumping scheme that realized the topological deformation of the
cat qubit code space, and the (optional) implementation of the feed-forward Hamiltonians
that might be added during the gates execution to reduce the phase-flip errors induced by
non-adiabaticity.
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4.2 Bias-preserving implementations

State preparation and measurement.

Measurement of the X operator. The only measurement on the cat qubit required in the
construction of the scheme is the measurement of the X operator, whose eigenstates are the cat
states |C±α 〉. Because these states have a well-defined photon-number parity, the measurement
of X can be realized by a photon-number parity measurement. Here, the “bias-preserving”
property of this operation is trivially ensured by the fact that, every time an X measurement
is needed in our circuit, it is performed on an ancilla qubit whose state is discarded after
the measurement and prepared again in a fresh state. The measurement of the X operator
could be either destructive or quantum non-demolition (QND) as it is only used on ancilla cat
qubits, which are discarded after the measurement, except at the very end of the execution
of the quantum algorithm where the data cat qubits are also measured (destructively) to get
the output of the algorithm. The QND parity measurement proposed in [67] and realized
in [31,68] is perfectly suitable for our scheme. The main idea behind this protocol is to couple
to an ancilla (transmon) qubit to the mode whose photon-number parity is to be measured via
the dispersive interaction Hamiltonian

H = −χ|e〉〈e|a†a .

The unitary evolution generated by this Hamiltonian on a time interval T = π/χ is given by

U = |g〉〈g|I + |e〉〈e|eiπa†a ,

entangling the state of the ancilla with the parity of the state of the cavity. Preparing the ancilla
qubit in a superposition state |+〉= 1p

2
(|g〉+|e〉), the effect of the unitary U is to flip the ancilla

to the state |−〉 = 1p
2
(|g〉 − |e〉) when the cavity contains an odd number of photons and to

leave it unchanged otherwise. A measurement of the σx operator of the qubit thus reveals the
parity of the cavity state.

Note that in order to perform such a parity measurement, the two-photon driven dissipa-
tion on the measured cat qubit has to be turned off. However, given that these measurements
are performed on ancilla cat qubits that are thrown out after each measurement, the absence of
protection during the measurement merely affects the measurement fidelity and does not have
any consequence on the rest of the circuit. Fidelities of photon-number parity measurement
of about 98.5% have been previously achieved using this protocol [32].

Measurement of the Z operator. The measurement of the Pauli Z operator of the cat qubits is
not required to obtain a universal set of gates at the logical level [9]. Yet, it might be required
to design new logical operations, or to simplify some of the logical circuits. Note that the
eigenstates of the Z operator are (exponentially close to) the coherent states | ±α〉, such that
a destructive measurement of the Z operator can be implemented e.g the protocol used to
measure the phase of a coherent state of [69].

Preparation of the cat states |C±α 〉. The preparation of the eigenstates of the X operator is
trivially compatible with the noise bias since a bit-flip does not affect these states, as noted
in [63]. Indeed, because the cat states |C±α 〉 have equal population on the | ± α〉 states, the
bit-flip operator X cannot modify these population. One way to prepare the even cat state
|+〉 = |C+α 〉 is performed by initializing the quantum harmonic oscillator in the vacuum state
|0〉 and turning on the driven two-photon dissipation [10]. Indeed, the two-photon driven
dissipation conserves the photon-number parity, such that unique steady state of the system is
given by the even cat state. Such a state preparation has already been realized experimentally
[18] and the fidelity of this operation is set by the ratio between the two-photon dissipation
rate κ2, setting the rate of convergence to the cat state, and the undesired single-photon loss
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rate κ1, setting the parity jump rates (equivalent to phase-flip errors) mixing the even cat with
the odd one. Then, the odd cat state |−〉 = |C−α 〉 can be prepared from the even cat state by
applying the Z described later in this subsection. The preparation of the cat states can also be
performed using an active protocol rather than relying on the passive two-photon dissipation.
Such protocol, like the mapping of an arbitrary state of a transmon to a cat qubit [70], have the
advantage to be faster and to produce states with higher fidelity. A fast and reliable operation
that prepares a given state on the cat qubit is immediately followed by the activation of the
stabilization scheme. In particular, in the experiment [50], the state |C+α 〉 was generated using
optimal control techniques which can significantly improve the fidelity with respect to a passive
preparation with two-photon driven dissipation.

Once again in order to construct a universal set of fault-tolerant gates at the logical level,
one only requires that the physical cat qubits can be initialized in the states |C±α 〉 [9]. However,
the preparation of a cat qubit in the coherent state |0〉 ≈ |α〉 could be useful for further logical
circuit implementations.

Preparation of the coherent state |α〉. The eigenstates of the Z operator of the cat qubit are
exponentially close to the coherent states |±α〉. A fast and reliable preparation of these states
is realized by applying a strong microwave pulse to the oscillator initialized in the vacuum
state to generate a displacement D(±α), and to turn on the two-photon driven-dissipative
stabilization immediately after the displacement. Note that unlike the cat states |C±α 〉, the |±α〉
are not intrinsically robust to bit-flip errors, as the bit-flip error operator induces population
transfer between |α〉 and | −α〉.

Here, the preparation of the state |α〉 is only bias-preserving in the sense that the phase of
the microwave pulse applied to displace the oscillator state from the vacuum to the coherent
state |±α〉 can be made very precise, such that the state of the oscillator after this displacement
is in a certain coherent state |α̃〉 in the neighbourhood of |α〉, where |α̃〉 is in general slightly
different from |α〉 to account for the small imprecision in the displacement. Then, the two-
photon pumping is activated just after the displacement, such that the state |α̃〉 relaxes to the
coherent state |α〉. The resulting bit-flip probability (i.e, the probability to be in the state |−α〉
after a displacement D(α) has been applied to the vacuum) can be very small. Indeed, the
population of the state | − α〉 at the end of this protocol is (roughly) given by the probability
that a phase error of at least π has occurred in the displacement, which can be sufficiently
small. However, because here the “bias-preserving” is ensured solely by the fact that the phase
of microwave pulses is very well controlled, it is specific to our circuit QED implementation of
the scheme and it is important to check that the probability of a bit-flip error occurring during
this protocol is of the same order as the exponentially suppressed bit-flip error of the cat qubit.

Dynamical phase gates with the Quantum Zeno Effect.
Z(θ ) gate. The Z(θ ) gate is the rotation of an arbitrary angle θ around the Z axis of the

Bloch sphere of the cat qubit:

Z(θ ) = e−i θ2 Zα = cos
θ

2
Iα − i sin

θ

2
Zα . (33)

It was first proposed in [10] and realized experimentally in [50]. The subscript α in the Pauli
operators Iα and Zα are here to emphasize that these are operators the Pauli operators acting
on the cat qubit. They can be expressed as

Iα = |C+α 〉〈C+α |+ |C−α 〉〈C−α | ,
Zα = |C+α 〉〈C−α |+ |C−α 〉〈C+α | .

In the rest of this section, the subscript α is dropped and the operators acting on the cat
qubit are simply written using the usual qubit notations. The Z(θ ) gate is realized by applying
a weak resonant drive described (in the rotating frame of the cavity mode) by the Hamiltonian
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H = εZ a+ε∗Z a† in the presence of the two-photon driven dissipation modelled by the Lindblad
super-operator κ2D[a2−α2], with |εZ | small with respect to κ2. The combination of these two
dynamics implements the gate as follows. The fast two-photon driven-dissipative part of the
dynamics confines the state in the cat qubit manifold, while the single photon drive induces
a change of the photon number parity. If the cat qubit is initialized in the state |C+α 〉, of even
photon number parity, the effect of the weak drive is to induce Rabi oscillations between the
even cat |C+α 〉 and the odd cat |C−α 〉. The rate of these Rabi oscillations is set by the first order
perturbation induced by the Hamiltonian, given by the projection of the Hamiltonian on the
cat qubit subspace

�

|C+α 〉〈C+α |+ |C−α 〉〈C−α |
� �

εZ a+ ε∗Z a†
� �

|C+α 〉〈C+α |+ |C−α 〉〈C−α |
�

= 2ℜ[αεZ]Z +O(e−2|α|2) .

The fact that the effective dynamics, up to the first order in the small parameter εZ/κ2,
is given by the projection of the perturbative Hamiltonian is the well known quantum Zeno
effect. A rigorous mathematical derivation proving this fact can be found e.g in [71].

The oscillation rate is maximized when the phase of the drive is opposite to the phase of
α such that αεZ is a real number, and the rotation of an angle θ is obtained by applying the
weak drive during a time

T =
θ

4αεZ
=

θ

4
p

n̄|εZ |
.

Z Z(θ ) gate and CZ gate. The same recipe can be readily applied to construct the two qubit
entangling gate [10]

Z1Z2(θ ) = e−i θ2 Z1Z2 = cos
θ

2
I1 I2 − i sin

θ

2
Z1Z2 ,

where the subscript (1,2) label the two cat qubits. This gate is realized by applying a weak
beam-splitter Hamiltonian

H = εZ1Z2
a1a†

2 + ε
∗
Z1Z2

a†
1a2 ,

in the presence of the two-photon driven dissipation on both of the cat qubits. Here and for
all the multi-qubit gates involved in this work, we always assume that the same α is used
for the two (or more) cat qubits. This assumption is made for the sole purpose of reducing
the number of notations, but this assumption can be relaxed everywhere is this work and all
the gates presented can be straightforwardly adapted to cat qubits of different sizes α and β .
Taking εZ1Z2

to be real, the projection of H on the two cat qubit subspaces gives the oscillation
rate ΩZ1Z2

= 2|α|2εZ1Z2
such that the rotation Z1Z2(θ ) is obtained upon the application of the

weak Hamiltonian during a time

T =
θ

4|α|2εZ1Z2

=
θ

4n̄εZ1Z2

.

The two gates Z(θ ) and Z1Z2(θ ) commute, such that one can be combine them. For
instance, noting that a controlled-Z gate can be decomposed as

C Z = (−1)|11〉〈11| = e−i π4 (I1−Z1)(I2−Z2)

and taking α real, the CZ gate is implemented through the Zeno effect by applying the Hamil-
tonian

H = εC Z

�

−(a1 + a†
1 + a2 + a†

2) +
1
p

n̄
(a1a†

2 + a†
1a2)
�

,

for a time T = π/(8
p

n̄εC Z).
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Z Z Z(θ ) gate. From a theoretical point of view, the above Zeno mechanism can be gener-
alized to construct arbitrary rotations on n qubits. However, the weak Hamiltonian required
is of higher order with each added qubit, which makes it increasingly hard to implement, for
reasons that we detail in the experimental subsection 4.4. The same trade-off is encountered
in the case of the topological gates introduced next.

For instance, the three qubit entangling gate Z Z Z(θ ) (which, combined with C Z and Z
gates, can be used to implement e.g the CCZ gate) can be generated e.g using the weak Hamil-
tonian between the three cat qubits a1,2,3

H = εZ1Z2Z3
a1a2a†

3 + h.c. ,

for a time T =
θ

8|α|3εZ1Z2Z3

.

Topological phase gates with adiabatic code deformation.
X gate. As we have argued in subsection 4.1, the only rotation around the X -axis that does

not convert Z errors into X or Y errors is the rotation of an angle π, the Pauli X gate. The
problem of the bias-preserving implementation can be roughly stated as such. How can we
design a process, having a unitary action on the two-dimensional subspace of the cat qubits,
that implements a rotation of the coherent state |α〉 to the coherent state | − α〉 (and vice-
versa) while ensuring that the physical errors of the quantum harmonic oscillator (e.g. photon
loss) result in at most an exponentially small population remaining on the state |α〉 after the
transfer is done? As we have seen in subsection 4.1, there is no process that can realize this
while keeping the state of the system inside the two-dimensional cat qubits manifold during
the gate execution. Rather, this is realized using an excursion outside the code space, that can
be thought of as a continuous adiabatic deformation of the code space, obtained by varying the
complex number α of the two-photon dissipation κ2D[a2 −α2] in time. When the variations
of α(t) are sufficiently slow with respect to κ−1

2 , the driven-dissipative dynamics modelled by
the super-operator κ2D[a2 − α(t)2] stabilizes the two-dimensional manifold spanned by the
coherent states |α(t)〉 and |−α(t)〉 at all times t, realizing a slow motion of the fixed points of
the dynamics in the phase-space.

Remarkably, the quantum information is preserved while the code space is deformed, pro-
vided the two states |α(t)〉, | −α(t)〉 remain sufficiently separated in phase-space at all times.
This point is crucial in order to implement a unitary operation within the cat qubit manifold.
The state |ψ0〉 = c0|α〉+ c1| − α〉 at time t = 0 evolves under the effect of κ2D[a2 − α(t)2],
with α(0) = α, to

|ψ(t)〉= c0|α(t)〉+ c1| −α(t)〉 ,

provided that at all times intermediate times t ′ ∈ [0, t], the two following conditions are
satisfied

|α̇(t ′)|/|α(t ′)| ≪ κ2 ,

|〈α(t ′)| −α(t ′)〉|2≪ 1 .

The X gate is realized by choosing a “path” function α(t) such that |α〉 and | − α〉 are
swapped, e.g α(t) = αeiπt/T , t ∈ [0, T] where T ≫ κ−1

2 is the gate time. Indeed, the swap
|α〉↔ |−α〉 corresponds to the map |C+α 〉 → |C+α 〉 and |C−α 〉 → −|C−α 〉 which is an X operation
for the cat qubit.

The process implementing the X gate thus swaps the two states | ± α〉 while keeping the
quantum information encoded in the superposition of these states intact. With this regard,
the gate consists in imparting a topological π-phase to the coherent states. We call this phase
“topological” because the state of the system during the execution of the gate does no longer
belong to the cat qubit subspace. It is only at the end of the gate that the state is brought
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Figure 13: Wigner function of the state of a cat qubit during the execution of an X
operation. The green dots are the Wigner functions of the instantaneous steady states
of the dynamics ρ̇ = κ2D[a2−α(t)2]. These attracting points are slowly rotated from
±α to ∓α on the dashed circle, as shown by the green arrows. When this rotation
is performed slowly, the cat follows the attractive points (red arrows). Reproduced
with permission from Ref. [9].

back into this manifold together with an exact π-phase. This phase is not affected by the
imprecision in the rotation angle. Indeed, the phase of the coherent states | ± α〉 are locked
to the phase of the pump drives. In this sense, each cat qubit is defined with respect to its
own pumps. Therefore, even if the rotation angle is not precisely π, which could happen
e.g. because of the amplitude and phase fluctuations of the pumping drive, the state has still
accumulated a topological π-phase with respect to its local oscillator. This is to be contrasted
with the accumulation of the dynamical phase realized inside the code manifold for the Zeno
type gates of the previous section.

Note that in addition to this topological π phase, there is a geometric phase accumulated
due to the particular path taken by α(t). However, this phase is the same for the two states
| ±α〉 and correspond to a physically meaningless global phase.

In the ideal case of a loss-less harmonic oscillator and in the limit where the gate time
T = +∞, the fidelity of this operation with respect to the X operator is 1. This operation is
bias-preserving as the errors caused by the finite gate time are only of the phase-flip type, but
the bit-flips remain exponentially suppressed in the size of the cat n̄. Intuitively, this is possible
because the two-photon pumping is never turned off during the gate execution. A schematic
representation of this evolution in the phase-space is depicted in Figure 13.

To reduce the phase-flip error rate due to the finite gate time, called the non-adiabatic
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errors, the feed-forward Hamiltonian

H = −
π

T
a†a ,

is turned on while the pumping is being rotated. This Hamiltonian generates the unitary
R(t) = ei πT a†at which rotates deterministically the qubit state

R(t)|ψ0〉= c0|α(t)〉+ c1| −α(t)〉 ,

so that it remains at all times in the kernel of the time dependent dissipative channel:
�

a2 −α(t)2
�

R(t)|ψ0〉= 0 .

In presence of this Hamiltonian, there is no need to proceed adiabatically, that is the gate time
T can be arbitrarily short.

CNOT gate. The idea behind the X gate can be adapted to realize a controlled-X (CNOT)
gate between two cat qubits, which consists in applying an X gate to the “target” cat qubit
when the “control” qubit is in the computational |1〉 ≈ | − α〉 state and applying the identity
otherwise

CNOT= 1
2(I1 + Z1)⊗ I2 +

1
2(I1 − Z1)⊗ X2 .

In terms of operators acting on the cat qubit, the CNOT gate can be written

CNOT≈ |α〉〈α| ⊗ (|α〉〈α|+ | −α〉〈−α|) + | −α〉〈−α| ⊗ (|α〉〈−α|+ | −α〉〈α|) .

The approximation is exponentially precise in |α|2. This operation is realized by making a
rotation of the pumping of the target qubit implementing the X gate that depends on the state
of the control qubit, by modifying the dissipation channels of the cat qubits La = D[La] and
Lb =D[Lb(t)], with:

La = a2 −α2 ,

Lb(t) = b2 − 1
2α(a+α) +

1
2αe2i πT t(a−α) ,

where we denote by a (resp. b) the mode of the control cat qubit (resp. target cat qubit).
The dissipation channel on the control qubit La is the two-photon pumping scheme stabilizing
the control cat qubit. The second dissipation channel, however, acts on the target cat qubit
but also depends on the first mode a. It should be understood as follows: when the control
qubit a is in the state |α〉, the operator Lb(t) acts on the target mode as b2 − α2, stabilizing
the idle code space, but when the control qubit is in the state | − α〉, the pumping becomes
b2 − (αei πT t)2, thus implementing the time-dependent two-photon pumping dissipation used
for the X gate. Just like for the X gate, the pumping is always turned on during the gate
and the bit-flip errors remain exponentially suppressed throughout the gate, ensuring that the
CNOT gate preserves the biased structure of the noise.

In the case of the X gate, the geometric phase corresponded to a physically meaning-
less global phase, but here this phase is conditioned on the state of the control qubit. As a
consequence, the geometric phase induces a deterministic rotation around the Z-axis of the
control qubit. The rotation angle is given by

ϑ = −i

∫ T

0

〈±α(t)|
d
d t
| ±α(t)〉d t = π|α|2 .

This deterministic geometric phase can be removed by applying the appropriate Z(θ ) operation
discussed above. Another option is to ensure the rotation angle ϑ is a multiple of 2π, either by
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setting the number of photons to be an even integer or by choosing a path α(t) such that the
result of the integral is a multiple of 2π. Even in this case, the fluctuations along the chosen
path will inevitably lead to a certain imprecision in the final value of the geometric phase,
leading to additional phase-flip errors.

A major part of the phase-flip errors induced by non-adiabatic effects can be compensated
in the same way as for the X gate, by adding a Hamiltonian evolution of the form

H =
1
2
π

T
a−α

2α
⊗ (b†b− n̄) + h.c. ,

while rotating the pumping. In presence of two-photon pumping, this Hamiltonian is an ap-
proximation of the “ideal” Hamiltonian that would perfectly cancel all of the non-adiabatic
errors

H∗ = −
π

T
| −α〉〈−α| ⊗ (b†b− n̄) ,

which triggers a rotation of the target cat qubit in the phase-space conditional to the control
cat qubit being in the state | − α〉. Similar Hamiltonians have been already realized using
parametric methods [72], (see subsection 4.4).

Toffoli gate. The Toffoli gate is the three-qubit controlled-controlled-X gate (CCX)

Toffoli= 1
4(I1 + Z1)(I2 + Z2)I3 +

1
4(I1 + Z1)(I2 − Z2)I3

+ 1
4(I1 − Z1)(I2 + Z2)I3 +

1
4(I1 − Z1)(I2 − Z2)X3 .

This unitary is in the third level of the Clifford hierarchy, thus it does not belong to the
Clifford group. In many of the schemes achieving universality, the non-Clifford operations
are the most difficult operations to implement. While the Toffoli gate is undeniably the most
complicated gate of the physical gate set, its implementation is similar to the two-qubit CNOT
gate.

Similarly to the CNOT gate, only the dissipation channel of the target cat qubit needs to
be modified, La =D[La], Lb =D[Lb] and Lc =D[Lc(t)],

La = a2 −α2 ,

Lb = b2 −α2 ,

Lc(t) = c2 − 1
4(a+α)(b+α) +

1
4(a+α)(b−α) +

1
4(a−α)(b+α)−

1
4 e2i πT t(a−α)(b−α)] .

Here, La and Lb keep stabilizing the two control modes a and b in manifolds spanned by
| ± α〉, and Lc rotates the two-photon pumping on the target mode c only when the control
cat qubits are in the state | −α,−α〉.

In theory, assuming the required couplings between any number of modes are available,
the mechanism behind the topological X, CNOT and Toffoli gates can be straightforwardly
adapted to implement the n-qubit entangling gate Cn−1X belonging to the n-th level of the
Clifford hierarchy, where Cn−1 denotes the controls on the first n − 1 qubits. Note that in
practice, the implementation of the required dissipative channels would involve non-linear
processes of higher order which are much more complex to realize and that would typically
be weak.

As for the CNOT gate, the deterministic geometric phase associated to the path taken by
the target cat qubit can also be eliminated by tailoring the path followed in the phase-space
by the cat states during the execution of the gate, or by physically applying Z(θ ) and Z Z(θ )
gates.

Similarly to all the topological gates implemented on the cat qubits involving a continuous
evolution of the code space, the fidelity of the dissipative implementation can be improved
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by adding a feed-forward Hamiltonian whose role is merely to reduce the phase-flip errors
induced by non adiabaticity. Again, the systematic construction of such a Hamiltonian is based
on the adaptation of the ideal feed-forward Hamiltonian for the X gate to the particular case
where this rotation is realized conditionally on some control cat qubits state. In the specific
case of the Toffoli gate, the target cat qubit (mode c) undergoes a rotation in the phase-space
implementing the X gate only when the joint state of the two control cat qubits is | − α,−α〉.
Thus, in analogy with the X gate, a “perfect” feed-forward Hamiltonian that would exactly
cancel the non-adiabatic phase-flip errors is

H = −
π

T
| −α〉〈−α| ⊗ | −α〉〈−α| ⊗ c†c .

Just like for the CNOT gate, the projectors on coherent states are not Hamiltonians that
can be implemented; but they can be well approximated by (where the approximation on the
cat manifold is exponentially good in α)

| −α〉〈−α| ≈
α− a

2α
,

and the resulting approximate Hamiltonian that we propose to apply while a Toffoli gate is
performed to remove most of the non-adiabatic phase-flip errors is thus given by

H = −
1
2
π

T
a−α

2α
⊗

b−α
2α
⊗ (c†c − n̄) + h.c.

SWAP gate. The two-qubit SWAP gate, which acts like its name suggests, is trivially com-
patible with a bias-preserving implementation as it does not convert Z-type errors into X - or
Y -type errors. The SWAP gate is often useful to adapt logical circuits to actual constraints on
the connectivity graph of the physical qubits. Noting that a SWAP gate can be implemented us-
ing three CNOT gates establishes that the SWAP gate can be implemented in a bias-preserving
manner, but there is a more direct way to do this. Following the guiding principle of the
CNOT gate, the SWAP gate is realized by replacing the regular two-photon dissipation opera-
tors La = a2 − α2 and Lb = b2 − α2 by the following time-dependent operators that combine
both modes

La(t) = a2 − 1
2 ab
�

1− e2i πT t
�

− 1
2α

2
�

1+ e2i πT t
�

,

Lb(t) = b2 − 1
2 ab
�

1− e−2i πT t
�

− 1
2α

2
�

1+ e−2i πT t
�

,

for t ∈ [0, T]where T is the SWAP gate time. The instantaneous joint kernel of these operators
is the four dimensional Hilbert space spanned by the set of coherent states

¦

|α,α〉 , | −α,−α〉 , |αei πT t ,−αe−i πT t〉 , | −αei πT t ,αe−i πT t〉
©

.

Recalling that |0〉 ≈ |α〉 and |1〉 ≈ |−α〉, these two dissipation channels implement the correct
mapping corresponding to a SWAP gate:

|α,α〉 → |α,α〉 ,
| −α,−α〉 → | −α,−α〉 ,
|α,−α〉 → | −α,α〉 ,
| −α,α〉 → |α,−α〉 .

Similarly to the others gates that are implemented using a rotation of the steady states of
the driven-dissipative super-operators in the phase space, the phase-flip errors of a SWAP gate
caused by non-adiabaticity are reduced when the Hamiltonian

H = −
π

4α2T
(a†a− b†b)(α2 − ab) + h.c.
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is added during the gate. The operator (α2 − ab)/2α2 acts as identity on the states
|αei πT t ,−αe−i πT t〉 and | − αei πT t ,αe−i πT t〉 while it vanishes on the states |α,α〉 and | − α,−α〉.
The above Hamiltonian thus reduces to the required rotating term π(a†a− b†b)/T only when
the cat qubits are in a state that is moved around in the phase space, and vanishes otherwise.

4.3 Error models

In this subsection, we detail the error models of the various gates introduced above. We give
a particular attention to the CNOT gate, as this gate is crucial for the stabilizer measurements.
We analyze the error models resulting from two different sources of errors: the single-photon
loss of the quantum harmonic oscillator at a rate κ1, and the non-adiabaticity of the gates.
Actually, apart from state preparation and measurement, and in the absence of any source of
decoherence, all the gates have unit fidelity in the limit where the gate time is infinite. We
discuss phase-flip and bit-flip errors in two different ways.

The phase-flip errors are exponentially dominant. For these errors, we give explicit an-
alytical formulas. More precisely, the analytical formula for the phase-flip errors induced by
photon loss are explicitly calculated. The analytical formula for the phase-flip errors induced
by non-adiabaticity are derived using a combination of a systematic adiabatic elimination the-
ory to guess the scaling of the formula together with a numerical fit to determine the constant
prefactor. Using this method, we were able to derive the non-adiabatic phase-flip errors for
the topological gates (actually, the X gate has no non-adiabatic phase-flip error when the feed-
forward Hamiltonian is added). A thorough study of all the gates on dissipative cat qubits was
recently published in [73]. This paper applies a new method, based on the “shifted Fock basis”
adapted to the cat states, and derives analytically the non-adiabatic phase-flip errors for the
Zeno gates, thus completing the analysis of phase-flip errors. For the sake of completeness,
we give these formulas without including the derivation, which is thoroughly exposed in [73].
Because the phase-flip errors induced by the natural losses of the quantum harmonic oscillator
increase with the gate time, while the phase-flip errors induced by non-adiabaticity decrease
with the gate time, the combination of these two sources of errors gives rise to an optimal
finite gate time that minimizes the phase-flip errors.

We claim that the cat qubit encoding, the two photon stabilization, and the careful bias-
preserving implementations of the gates, result in gates for which the bit-flip errors are ex-
ponentially suppressed even during the execution of the gates, this point being crucial for a
hardware-efficient scaling towards fault-tolerance [9]. Here, we give numerical evidence for
this claim by performing numerical process tomography of two gates, the Z(θ ) and the CNOT
gate, for increasing cat sizes, for which the exponential suppression of bit-flips is indeed ob-
served.

Identity and SPAM errors. The dynamics of an idling cat qubit subject to photon loss is
modelled by the master equation

dρ
d t
= κ2D[a2 −α2]ρ +κ1D[a]ρ , (34)

where κ2 is the rate of the engineered two-photon dissipation and κ1 the rate of single
photon loss. The exponential suppression of bit-flips for the idling cat qubits was discussed in
subsection 2.3 and Figure 7. Here, we discuss rapidly the model for phase-flip errors. The pho-
ton loss operator a induces a phase-flip error on the cat qubit, a|C±α 〉 = α tanh(|α|2)±1/2|C∓α 〉.
Thus, the phase-flip error probability induced by single photon loss at rate κ1 during a time
T is given by pZ = n̄κ1T . This leading order contribution can be calculated explicitly by con-
sidering the evolution of the cat state |C±α 〉 under the evolution (34). Assuming that κ1 ≪ κ2
such that the dynamics remains in the cat qubit manifold and looking for a solution of the form
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Figure 14: Numerical simulation of the non-adiabatic errors of the Z = Z(π) gate
implemented by the master equation (35). The non-adiabatic phase-flip error Z is
linearly suppressed with the gate time T , while the bit-flip type errors X and Y are
exponentially suppressed with the mean number of photons n̄.

ρ(t) = (1− p(t))|C+α 〉〈C+α |+ p(t)|C−α 〉〈C−α |, the evolution of the population of the cat states is
given by (dropping the terms exponentially small in α)

ṗ(t) = κ1n̄(1− 2p(t)) .

Thus, starting from the initial cat state |C±α 〉 (p(0) = 0), the phase-flip error probability is given
by p(t) = 1

2(1−e−2n̄κ1 t)≈ n̄κ1 t when n̄κ1 t ≫ 1. Finally, we expect that the preparation of the
cat states |C±α 〉 and the measurement of these states can be performed with a similar phase-flip
error probability pZ = n̄κ1T , where T is the typical preparation and measurement time.

Z(θ ) gate. The master equation describing the rotation of an angle θ around the Z axis in

time T =
θ

4
p

n̄|εZ |
is

ρ̇ = −i[εZ a+ ε∗Z a†,ρ] + κ2D[a2 −α2]ρ . (35)

The phase-flip errors induced by photon loss at rate κ1, described by adding the term
κ1D[a]ρ to the above master equation, commute with the gate at all times. For this reason,
the effect of photon loss can be accounted for separately, and the phase-flip errors induced by
photon loss are the same as in the memory case

pZ[photon loss] = n̄κ1T =
κ1
p

n̄θ
4|εZ |

.

Furthermore, in [73], the analytical formula proposed for the non-adiabatic phase-flip errors
is

pZ[non-adiabaticity] =
θ2

16κ2n̄2T
=

θ |εZ |
4κ2n̄3/2

.

We perform a numerical simulation of master equation (35) in Figure 14, for a rotation of
angle θ = π and in the absence of photon loss (that is, to check the non-adiabatic error model).
The dotted points (numerical results) are in good agreement with the analytical formula (blue
curve).

Taking into account both the phase-flip errors induced by photon loss and by non-adia-
baticity, the total phase-flip error probability for a Z(θ ) gate implemented in time T is given
by

pZ = n̄κ1T +
θ

16κ2n̄2T
,
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which is minimal for T ∗ =
p
θ

4n̄3/2pκ1κ2
, for which the phase-flip rate is

pZ =
p
θ

2
p

n̄

√

√κ1

κ2
.

C Z gate. The same analysis has been carried through in [73] for the Z Z(θ ) gate, from
which the CZ gate can be implemented by combining the single qubit Z rotations. While the
errors induced by photon loss result in independent Z errors on the two cat qubits with same
probability n̄κ1T as before, it is shown that the non-adiabatic phase-flip errors result in both
independent Z1 and Z2 errors as well as correlated Z1Z2 errors. The analytical formula for the
overall phase-flip errors are given by

pZ1
= pZ2

= n̄κ1T +
θ2

64κ2n̄2T
,

pZ1Z2
=

θ2

32κ2n̄2T
.

Note that the photon loss induced errors increase linearly with T while the non-adiabatic
errors decrease linearly with T . The optimal gate time minimizing these errors is given by

T ∗ =
p
θ

4
p

2n̄3/2pκ1κ2

.

X gate. The master equation implementing the topological X gate in time T is given by

ρ̇ = i
hπ

T
a†a,ρ
i

+κ2D
�

a2 − (αei πT t)2
�

,

where the (optional) Hamiltonian term is added to compensate the non-adiabatic phase-flip
errors while the dissipative term implements the continuous deformation of the cat qubit sub-
space. Actually, for this gate, the Hamiltonian removes all of the non-adiabatic phase-flip
errors. Indeed, in the rotating frame of this Hamiltonian, the dynamics reads

ρ̇ = κ2D[a2 −α2] ,

which is simply the two-photon stabilization. Thus, for this gate, there are only the phase-flips
errors induced by photon loss, which are given by

pZ = n̄κ1T .

CNOT gate. We now investigate the error model of the CNOT gate. As we have argued
before, this gate is particularly important for error correction, such that a detailed analysis is
provided. In particular, we numerically check that the analysis is robust when adding addi-
tional sources of errors on the quantum harmonic oscillator, including thermal excitation and
dephasing.

In order to understand the effect of the loss of a photon during the execution of the CNOT,
let us consider the operation approximately generated by the two dissipation channels La and
Lb. In the cat qubits subspaces where the dynamics is confined, these channels implement a
unitary operation of the form:

U(t) = |α〉〈α| ⊗ I + | −α〉〈−α| ⊗ ei πT tb†b ,

with U(0) = I ⊗ I and U(T ) = CNOT.
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Consider the effect of a loss of a single photon of the control mode a at an arbitrary time
t ∈ [0, T]. The noisy quantum operation Ea performed instead of the CNOT is given by

Ea = U(T − t)[a⊗ I]U(t)

= α|α〉〈α| ⊗ I −α| −α〉〈−α| ⊗ eiπb†b

= [a⊗ I]CNOT ,

which can be written in terms of Pauli operators for the cat qubits as

Ea = Z1CNOT.

In other words, the loss of a photon on the control cat qubit causes a phase-flip on that qubit
but does not affect the target cat qubit.

On the other hand, a photon loss occurring on the target cat qubit b at time t propagates
as

U(T − t)[I ⊗ b]U(t) = (I ⊗ b)(|α〉〈α| ⊗ I + e−iπ T−t
T | −α〉〈−α| ⊗ eiπb†b)

= (I ⊗ b)(|α〉〈α| ⊗ I + e−iπ T−t
T | −α〉〈−α| ⊗ I)CNOT.

The resulting error
I ⊗ b(|α〉〈α| ⊗ I + e−iπ T−t

T | −α〉〈−α| ⊗ I) ,

induced by the propagation of the photon loss can be expressed in terms of the Pauli operators
of cat qubits as

Uerr(θ ) =
1
2
(1+ Z1)Z2 +

1
2

eiθ (1− Z1)Z2 ,

where θ = −iπ(1− t/T ) is a random phase. The time of the jump being uniformly distributed
over the interval [0,T], the noisy operation Eb̂ can be written

Eb(ρ) = n̄κ1T

∫ 0

−π

dθ
π

Uerr(θ )ρ̃Uerr(θ )
†

= n̄κ1T
�

1
2

Z2ρ̃Z2 +
1
2

Z1Z2ρ̃Z1Z2 +
i
π

Z1Z2ρ̃Z2 −
i
π

Z2ρ̃Z1Z2

�

,

where ρ̃ = CNOTρCNOT is the image of ρ by a perfect CNOT operation and n̄κ1T is the
average number of photons lost in each mode during the execution of the gate. Note that
this analytical formula is an approximation that only accounts for the effect of the loss of a
single photon loss. In addition to this dominant phase-flip error corresponding to the loss of a
single photon, the cat states are also slightly deformed towards the center of the phase space,
causing (exponentially small) bit-flip errors. Importantly, while the bit-flip are still exponen-
tially suppressed with the cat size as e−2n̄, the constant prefactor in front of this exponential
suppression is significantly larger than for the case where the two-photon dissipation is time
independent. Also, the loss of more than a single photon result in a phase-flip error rate slightly
different from this one. However, the numerical simulation of the process confirms that this
approximation captures well most of the errors that are caused by photon loss.

The factorization of the operation Eb as a perfect CNOT gate followed by some noise op-
erators makes it easier to analyze the effect of the errors. The first two terms indicate that the
effect of photon loss on the target cat qubit produces two types of errors of the same strength:
phase-flips on the target cat qubit 1

2 Z2ρ̃Z2 as well as a correlated phase-flips on both qubits
1
2 Z1Z2ρ̃Z1Z2, with some degree of coherence between these two errors.
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When losses on both modes are taken into account, the noisy CNOT gate Ea,b is described
by the Kraus map:

Ea,b(ρ) =
∑

k=1,2,3

Mkρ̃M†
k ,

where, noting r = 1
2 arcsin(2/π), the Kraus operators are given by

M1 =
p

n̄κ1T Z1 ,

M2 =
Ç

n̄κ1T
2 (cos r I1 + i sin rZ1)Z2 ,

M3 =
Ç

n̄κ1T
2 (sin r I1 + i cos rZ1)Z2 .

Let us now consider the phase-flip errors induced by non-adiabaticity. The addition of the
feed-forward Hamiltonian

H =
1
2
π

T
a−α

2α
⊗ (b†b− n̄) + h.c. ,

compensates most of the errors induced by the finite gate time T , and it is possible to char-
acterize the remaining errors. Using the systematic adiabatic elimination techniques of [71],
one can check that it is only composed of phase-flips on the control cat qubit Z1, with a rate
proportional to (n̄κ2T )−1. The exact coefficient of proportionality is estimated by a numerical
fit and is found to be around 0.159:

pZ1
[non-adiabaticity] = 0.159(n̄κ2T )−1 .

We note that using the shifted Fock basis, the authors of [73] derived an approximate error
model and found that

pZ1
[non-adiabaticity] =

π2

64
(n̄κ2T )−1 ,

in close agreement with our numerical estimation
π2

64
≈ 0.154.

The probability of the “environment” induced phase-flip errors, e.g by photon loss, increase
linearly with the gate time T , whereas phase-flip errors caused by non-adiabaticity are reduced
when the gate time is increased. This opposite behavior gives rise to a finite optimal gate time
T ∗ for which the gate fidelity is maximal.

More precisely, taking into account phase-flip errors caused by both photon loss and non-
adiabaticity, the total phase-flip error probability on the control cat qubit is given by

pZ1
= pZ1

[photon loss] + pZ1
[non-adiabaticity] = n̄κ1T + 0.159(n̄κ2T )−1 .

The gate fidelity F of the implemented CNOT operation, defined in equation (36), is given by

F =
q

1− (pZ1
+ pZ2

+ pZ1Z2
) =
Æ

1− 2n̄κ1T − 0.159(n̄κ2T )−1 .

The highest value of the fidelity that can be achieved is set by the ratio κ1/κ2

F =
√

√

√

1− 1.13

√

√κ1

κ2
,

achieved for the optimal gate time

T ∗ = 0.282

�

n̄

√

√κ1

κ2

�−1

κ−1
2 .
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Figure 15: Process tomography of the CNOT gate in presence of noise. The CNOT
process is numerically simulated for n̄ = 7 photons cat qubits using two different
error models. First, we consider photon loss on both modes κ1D[a] + κ1D[b]
(a-c). Then, we consider a more elaborate error model including photon loss
κ1(1 + nth)D[a] + κ1(1 + nth)D[b], thermal excitations κ1nthD[a†] + κ1nthD[b†]
(nth = 10%) and dephasing on both modes κφD[a†a] + κφD[b†b] (d-f).
In both cases, we set κ1/κ2 = 10−3 and the gate time is chosen optimal
T ∗ = 0.282[n̄pκ1κ2]−1 ≈ 1.27κ−1

2 (see main text). We plot the real part of the
process matrix χ (a,d), and the real (b,e) and imaginary (c,f) part of the error matrix
χerr. In the lower row (g,h,i), we check the validity of the analytical error model for
photon loss for various gate times and cat sizes. The dots illustrate the simulation re-
sults where the full master equation in presence of loss is considered, the plain lines
correspond to the analytical formula provided in the main text. The blue dots cor-
respond to the diagonal process matrix element corresponding to Z1 errors, the red
dots correspond to the coinciding diagonal matrix elements corresponding to Z2 and
Z1Z2 errors. The green dots correspond to the off-diagonal elements corresponding
to the coherence between Z2 and Z1Z2 errors. The pale magenta dots correspond
to the off-diagonal elements corresponding to coherence between Z1 and I , this co-
herence is due to high-order non-adiabatic effects (not included in our model). The
black dots correspond to all of the remaining errors, including bit-flip type ones. It is
clear that these errors are exponentially suppressed with the mean number of pho-
tons n̄. Reproduced with permission from Ref. [9].
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For the ratio κ1
κ2
= 10−3 considered in Figure 15, this theoretical formula predicts a gate fidelity

of F = 98.2%, in agreement with the numerical simulation.
The validity of this error model is checked numerically in Figure 15 (a,b,c). The full master

equation of the system is simulated in presence of photon loss. The process matrix χ plotted
in (a) completely characterizes the quantum operation E performed via the relation [5]

E(ρ) =
∑

mn

χmnPmρP†
n ,

where {Pj} is the set of two-qubit Pauli operators. The gate fidelity F is defined as [5]

F(U ,E) =min
|ψ〉

F(U |ψ〉,E(|ψ〉〈ψ|)) , (36)

where U = CNOT is the perfect CNOT operation the minimum is taken over the set of all
possible two-qubit states |ψ〉. The unitary of the perfect CNOT is factored out in order to obtain
the process error matrix χerr (real part in (b), imaginary part in (c)), which characterizes the
noise alone:

E(ρ) =
∑

mn

χerr
mnPmρ̃P†

n ,

with ρ̃ = CNOTρCNOT the image of ρ by a perfect CNOT. In other words, we decompose
the noisy CNOT into a perfect CNOT followed by some noise process, characterized by the
process error matrix χerr. As can be seen in the real part of χerr (Figure 15-b), photon loss and
non-adiabaticity only cause phase-flip errors Z1, Z2 or Z1Z2.

We further investigate our theoretical model for errors caused by photon loss by plotting
in Figure 15(g,h,i) the values of the coefficients of the error matrix χerr (marked by colored
squares) as a function of gate duration. The blue dots correspond to phase-flip errors on the
control cat qubit Z1 induced by a combination of non-adiabatic errors and the photon loss.
The plain blue line corresponds to the analytical formula

pZ1
= n̄κ1T + 0.159(n̄κ2T )−1 .

The red dots represent the phase-flip errors on target qubit Z2 and the correlated phase-flip
errors Z1Z2. These values coincide and are given by

PZ2
= PZ1Z2

= 1
2 n̄κ1T ,

as is represented by the plain line in red. The off-diagonal term corresponding to the coherence
between Z2 and Z1Z2 errors (green dots) also fit very well our expectation. The pale purple
dots correspond to the off-diagonal term representing the coherence between I and Z1 errors.
In order to capture such a coherence, one needs to push the non-adiabatic perturbation tech-
niques [71] up to third order, which we have not done yet. Most importantly, the remaining
errors (namely the ones that contain an X or Y Pauli operator) represented by the black lines
are exponentially suppressed by the cat size, that confirms the bias-preserving aspect of the
gate.

As discussed in subsection 2.3, in presence of the two-photon pumping scheme, any physi-
cal noise process with a local effect in the phase space of the harmonic oscillator causes bit-flips
that are exponentially suppressed in the size of the cat qubits, thus preserving the biased struc-
ture of the noise. We now provide a numerical evidence of this fact for a more elaborate set
of physical noise processes for the superconducting cavity: photon loss a, thermal excitation
a† with a non-zero temperature, and photon dephasing a†a.

In Figure 15, we characterize the performed operation by plotting the process matrix
χ (d), and the real part (e) and imaginary part (f) of the error matrix. In this simula-
tion, κ1/κ2 = 10−3, the photon loss is given by κ1(1 + nth)D[a] and thermal excitations by
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κ1nthD[a†] with nth = 10%, and the dephasing on the cavity is given by κφD[a†a] with
κφ = κ1.

Note that the resulting error matrix and gate fidelity are barely affected by the added ther-
mal excitations and photon dephasing. The addition of thermal noise and dephasing slightly
decrease the fidelity of the operation, from 98.2% to 97.8%, but as expected, this decrease is
caused by an increased rate of phase-flip errors, while all bit-flip errors remain exponentially
suppressed.

Very interestingly, the phase-flip error probability induced by the cavity dephasing was
computed explicitly in the recent work [73]. The fact that cavity dephasing at rate κφ , de-
scribed by the dissipation super-operator κφD[a†a], can lead to phase-flip errors might be
surprising. Indeed, the dephasing operator a†a commutes with the photon number parity op-
erator (−1)a

†a, such that one may naively think that it cannot induce transitions between the
two cat states |C±α 〉 of well-defined photon number parity. While this is in general true for an
idling cat qubit, the photon number parity of the cat states during the execution of the CNOT
gate does not remain well-defined, thus exposing the cat state to some dephasing-induced
phase-flips. In [73], it was shown that cavity dephasing κφD[a†a] results in a phase-flip error
only on the control cat qubit, with probability

pZ1
=

1
2
κφ n̄T .

Indeed, this results from the combination of conditional dissipation Lb(t) and a noise process
leading to leakage out of the code space. Indeed, all leakage at a rate κl of the target cat qubit
would lead to phase-flips of the control cat qubit at a rate κl/2.

Toffoli gate. The effect induced by photon loss during the execution of the Toffoli gate can
be derived in the same way as for the CNOT. A photon loss occurring on one of the two control
modes a, b does not propagate to the other modes and results in a dephasing error Z1 and Z2,
respectively. When the target mode c loses a photon, it gives rise to a correlated error between
the three modes. More precisely, the noisy Toffoli operation Ea,b,c can be decomposed into a
perfect Toffoli operation, again denoted by

ρ̃ = Toffoli ρ Toffoli ,

followed by a noise process modelled by the Kraus map

Ea,b,c(ρ) =
∑

k=1,2,3,4

Mkρ̃M†
k ,

M1 =
p

n̄κ1T Z1 ,

M2 =
p

n̄κ1T Z2 ,

M3 =
p

n̄κ1T (cos r(I1 I2 −Z12)− i sin rZ12)Z3 ,

M4 =
p

n̄κ1T (sin r(I1 I2 −Z12)− i cos rZ12)Z3 ,

where Z12 =
1
4(I1 I2 − Z1 − Z2 − Z1Z2) acts on the two control cat qubits.

Because of the analogies in the way the CNOT and the Toffoli gates are implemented, it
is useful to think of the Toffoli gate as a CNOT where the control state | − α〉 is replaced by
| − α,−α〉. In particular, the methods of [71] that we used to characterize the effect of non-
adiabaticity predict similar results for the Toffoli gate. We anticipate that the effect of the finite
gate time is to dephase the “trigger” state | − α,−α〉 with respect to the other three possible
states of the pair of control cat qubits. In terms of Pauli operator, this only results in phase-flip
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errors Z1, Z2 and Z1Z2 on the two control cat qubits with equal probability p ≈ 0.085(n̄κ2T )−1

but it does not cause any error on the target cat qubit, or bit-flip type errors. We note that the
thorough analysis of [73] include the non-adiabatic phase-flip errors for the Toffoli gate and
are in accordance with these predictions.

4.4 Towards experimental realization of bias-preserving gates

We now discuss how all the different operations proposed above could be realized within the
framework of circuit QED. As it will become clear throughout this section, all the recipes for
realizing these operations belong to the well studied class of parametric methods with circuit
QED. The multi-wave mixing property of Josephson junctions in a transmon or in a more elab-
orate circuit such as the ATS [39] can be combined with the application of microwave drives
(also called pumps) at well chosen frequencies to realize the stabilization of the cat qubits,
and to process the information encoded in them. Throughout this subsection, one can roughly
judge of whether the implementation that we propose is reasonable for near-term experiments.
Indeed, while low orders parametric processes (at most quadratic or cubic) are now more and
more common in the framework of circuit QED, it remains a formidable challenge to engineer
higher order non-linearities with sufficient strength. In all of the implementations proposed
below, we restrict ourselves to (rather) low order non-linearities with these facts in mind, such
that our whole scheme shall seem reasonable to implement in a near future. Specifically, the
most difficult operation to implement experimentally (according to the non-linearity order
metric) should be the feed-forward Hamiltonian required for the reduction of the phase-flip
error rate of the Toffoli gate.

Z(θ ) gate. The use of quantum Zeno dynamics to perform bias-preserving rotations around
the Z-axis of the cat qubit was demonstrated experimentally in [50]. In addition to the (time-
independent) two-photon dissipation realized as detailed in Section 3, the continuous rotation
around the Z axis is triggered by turning on a weak resonant drive at the frequency of the cat
qubit mode ωa.

Z Z(θ ) gate. The Hamiltonian required for the Z1Z2(θ ) gate is the following “beam-splitter”
Hamiltonian

HBS = εZ1Z2
(ab† + ba†) ,

where a and b are each hosting a cat qubit.
This Hamiltonian was recently realized experimentally [74], using the four-wave mixing

capability of the Josephson junction in presence of two pump tones. More precisely, denoting
ξ1, ξ2 and ω1,ω2 the normalized amplitudes and frequencies of the two pumps, respectively,
and by c the anharmonic mode of the transmon used in the bridge configuration to mediate
the coupling between a and b, the Hamiltonian of the system in a displaced rotating frame is
given by

H = −EJ cos[ϕa(ae−iωa t + a†eiωa t) +ϕb(be−iωb t + b†eiωa t)

+ϕc(ce−iωc t + c†eiωc t + ξ1e−iω1 t + ξ∗1eiω1 t + ξ2e−iω2 t + ξ∗2eiω2 t)] .

Expanding the cosine to second order and keeping the non-rotating term when the fre-
quency matching conditionω1−ω2 =ωa−ωb is verified produces the required beam-splitter
interaction

H int/ħh= g(eiϕab† + e−iϕa†b) ,

where ϕ is determined by the relative phase of the two drives and the coupling coefficient
is

g = EJϕaϕbϕ
2
c |ξ1||ξ2|=
p

χacχbc|ξ1||ξ2| ,

where χac (resp. χbc) is effective cross-Kerr strength between a and c (resp. b and c).
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Figure 16: Proposal for an experimental implementation of bias-preserving CNOT
and Toffoli gates for cat qubits using a transmon as the non-linear element. A
similar sketch can be drawn to use a fluxed pumped ATS instead as the source of
non-linearity. (a) Setup for implementing a bias-preserving CNOT gate. The cat
qubits are encoded in high-Q cylindrical post-cavities (in blue, resonance frequen-
cies ωa and ωb). The two cavities are coupled via a Y-shape transmon as in [75]
to a low-Q stripline resonator (in red, resonance frequency ωd) playing the role of
the buffer mode. The system is driven with three micro-wave pumps at frequencies
ω1 = 2ωb −ωd , ω2 = (ωa −ωd)/2, ω3 = ωd . (b) Similar setup for implementing
a bias-preserving Toffoli gate with three cat qubits encoded in high-Q post-cavities
(frequencies ωa,ωb,ωc) all coupled to a single stripline resonator (frequency ωd).
The system is driven with five micro-wave pumps at frequencies ω1 = 2ωc −ωd ,
ω2 = ωa +ωb −ωd , ω3 = (ωa −ωd)/2, ω4 = (ωb −ωd)/2, and ω5 = ωd . Repro-
duced with permission from Ref. [9].

X gate. The realization of the X gate requires to modify the two-photon pumping scheme
continuously in time to implement the effective dissipation operator

κ2D
�

a2 − exp(2iπt/T )α2
�

,

In section 3.1, we have seen that the complex number α that parametrizes the two-dimen-
sional cat qubit subspace is given by α=

Ç

−εd
g2

. Thus, the phase of this complex number can
be tuned by changing the phase of the resonant drive applied on the buffer εd between 0 and
2π in a time T . Hence, the realization of the dissipative part of the X gate is actually a straight-
forward modification of the two-photon pumping scheme already realized experimentally.

In order to remove the phase-flip errors induced by the non-adiabaticity of this variation,
one can additionally implement a Hamiltonian of the form −∆a†a with ∆ = π/T . This can
be done by taking the pump at frequency 2ωa−ωb−2∆ instead of 2ωa−ωb and furthermore
detuning the drive εd from resonance by value ∆.

CNOT gate.
The implementation of a CNOT gate between two cat qubits encoded in storage modes a
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and b requires the implementation of the two dissipative channels

κ2D[a2 −α2] ,

κ2D
h

b2 −α2 −
α

2
(1− e

2iπt
T )(a−α)
i

.

The implementation of the second one can be realized by coupling the two storage modes
a and b to a buffer mode d, using a Y-shape transmon similar to [75] or a fluxed pump ATS
(see Figure 16). Driving the buffer mode at three different frequencies

ω1 = 2ωb −ωd ,

ω2 =
1
2(ωa −ωd) ,

ω3 =ωd ,

one can engineer an interaction Hamiltonian of the form

HCNOT = (gbd b2d† + g∗bd b2†d) + (gad ad† + g∗ad a†d) + (εdd† + ε∗dd) .

Note that following the experiment [74], the “beam-splitter” conversion triggered by the pump
at frequencyω2 could also be realized by two pumps at frequenciesω2,ω′2 verifying the match-
ing condition ω2 −ω′2 =ωa −ωd .

In this interaction Hamiltonian, the first term gbd b2d† + g∗bd b2†d models the exchange of
two storage photons at frequencyωb with one buffer photon at frequencyωd via a pump pho-
ton at frequency ω1. The second term gad ad† + g∗ad a†d models the exchange of one storage
photon at frequency ωa with one buffer photon at frequency ωd via two pump photons at
frequencyω2. The amplitudes and phases of gbd and gad are modulated by the amplitude and
phase of the corresponding pumps. Finally, the last term εdd†+ε∗dd models the resonant inter-
action of the drive at frequency ωd with the buffer mode. Similarly to the driven two-photon
dissipation, one can adiabatically eliminate the highly dissipative buffer mode to achieve an
effective dissipation operator

κ2D[b2 + caa+ c]

where the dissipation rate κ2 is roughly given by 4|gbd |2/κd , κd being the loss rate of the
buffer mode, the complex constant ca is given by gad/gbd and the complex constant c by
εd/gbd . Similarly to the X -operation, it is clear that by varying the amplitudes and phases
of the pump at frequency ω2 and the resonant drive at frequency ωd , one can engineer a
dissipation operator with time-varying constants ca and c given by

ca(t) = −
α

2

�

1− e
2iπt

T

�

,

c(t) = −
α2

2

�

1+ e
2iπt

T

�

.

This corresponds to the dissipator required for the bias-preserving CNOT operation. Impor-
tantly, the time-dependent function ca takes the value 0 at times t = 0 and t = T . For this
reason, before and after the gate, the two cat qubits involved in the CNOT are defined by their
own local oscillators. The fluctuations of the pumps during the execution of the gate merely
result in a slight modification of the geometric paths taken. This can only lead to small fluctu-
ations of the geometric phase and therefore an effective phase-flip type error. The phase-flip
probability induced by the non-adiabaticity of the evolution can be reduced by adding the
effective Hamiltonian

H =
1
2
π

T
a−α

2α
⊗ (b†b− |α|2) + h.c.
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Such a Hamiltonian has also been recently implemented using a detuned parametric pumping
method [72].

Toffoli gate. In order to realize a bias-preserving Toffoli gate between three cat qubits
encoded in storage modes a, b and c, further to two-photon driven dissipation on the two
control cat qubits, a time-dependent dissipator given by

κ2D
�

c2 −α2 +
1
4

�

1− e
2iπt

T

�

(ab−α(a+ b) +α2)
�

is required. Similarly to the CNOT gate, a way to achieve this is to couple the three modes to a
highly dissipative buffer mode as shown in Figure 16. Driving the buffer mode at five different
frequencies ω1 = 2ωc −ωd , ω2 =ωa +ωb −ωd , ω3 = (ωa −ωd)/2, ω4 = (ωb −ωd)/2, and
ω5 =ωd , one can engineer an effective interaction Hamiltonian of the form

HToffoli = (gcd c2d† + g∗cd c†d) + (gabd abd† + g∗abd a†b†d) + (gad ad† + g∗ad a†d)

+(gbd bd† + g∗bd b†d) + (εdd† + ε∗dd) .

Here again, all these effective terms are achieved in a parametric manner and using the 4-wave
mixing property of the Josephson junction. The amplitude and phase of each interaction term
can be modulated by the amplitude and phase of the associated pump. After the adiabatic
elimination of the buffer mode, we achieve a dissipation operator

κ2D[c2 + cabab+ caa+ cbb+ c] ,

where κ2 is given by 4g2
cd/κd , and the complex constants cab = gabd/gcd , ca = gad/gcd ,

cb = gbd/gcd , c = εd/gcd . By varying the amplitudes and phases of the pumps in time, we
obtain time-varying constants

cab(t) =
1
4

�

1− e
2iπt

T

�

,

c(t) = −
α2

4

�

3+ e
2iπt

T

�

,

ca(t) = cb(t) = −
α

4

�

1− e
2iπt

T

�

.

This implements a bias-preserving Toffoli gate between the cat qubits encoded in the three
modes a, b and c. Here again, it should be noted that the functions cab, ca, cb vanish at the
beginning and at the end of the gate execution, so that each cat qubit gets back to being
defined by its own local oscillators. Similarly to the CNOT gate, the pump fluctuations during
the gate only result in a slight increase in the rate of phase-flip type errors, but do not lead to
unsuppressed bit-flip type ones. In order to reduce the phase-flip probability induced by the
non-adiabaticity, we use an additional Hamitonian

H = −
1
2
π

T
a−α

2α
⊗

b−α
2α
⊗ (c†c − |α|2) + h.c.

This Hamiltonian is the most complicated parametric Hamiltonian to realize in this scheme.
While, in theory, it could be realized as previously by using a high-order multi-wave mixing
with appropriate pumps, this approach would produce the required term with a very small
amplitude. Instead, a better strategy to engineer this Hamiltonian could be to use a cascade
of low-order multi-wave mixing such as the ones realized [76,77]. However, due to the com-
plexity of engineering this higher order Hamiltonian, perhaps the first generation of Toffoli
gates could be implemented without this improvement.
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5 Conclusion

In these notes, after a general introduction to quantum error correction, autonomous error
correction and bosonic codes as hardware shortcuts, we have focused on dissipation based cat
qubits. We have demonstrated that such qubits can be seen as qubits where one component of
noise (bit-flips) is robustly and exponentially suppressed by increasing the average number of
photons in the Schrödinger cat state that encodes the information. We have overviewed the
experimental approaches to realize and stabilize such a qubit using superconducting circuits.
We have also provided a thorough discussion of logical gates that can be performed on such
qubits while preserving the exponential bit-flip suppression.

Note that, more recently another type of cat-qubit confinement based on Hamiltonian Kerr
effect has been considered and similar studies on bit-flip suppression, bias-preserving logi-
cal gates and their experimental realization have been performed. This topic has not been
discussed in these notes. The interested reader can find an extensive overview of this topic
in the references [66, 69, 78–81]. In particular, the two recent references [80, 81] provide a
comparison between the two types of Hamiltonian and dissipative confinement.

Finally, we do not discuss here how such biased noise qubits can lead to a significant over-
head reduction in realizing a fault-tolerant quantum processor. This topic has been thoroughly
discussed in the references [9,63,64,73,82–86]. In particular, the three references [9,73,86]
focus on the case of cat qubits and propose a fault-tolerant approach based on a repetition
code or a thin surface code of cat qubits. These references demonstrate how the set of ele-
mentary bias-preserving operations introduced in Section 4 are sufficient to reach a universal
set of fault-tolerant gates at the level of the repetition code.
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