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Abstract

We give a pedagogical introduction to the Hamiltonian formalism of general relativity at
an advanced undergraduate and graduate levels. After covering the mathematical pre-
requisites as well as the 3 + 1-decomposition of spacetime, we proceed to discuss the
Arnowitt-Deser-Misner (ADM) formalism (a Hamiltonian approach) of general relativity.
Then we proceed to give a brief but self-contained introduction to homogeneous (but not
necessarily isotropic) universes and discuss the associated Bianchi classification. We first
study their dynamics in the Lagrangian formulation, followed by the Hamiltonian for-
mulation to show the equivalence of both approaches. We present a variety of examples
to illustrate the ADM formalism: (i) free & massless scalar field coupled to homoge-
neous (in particular, Bianchi IX) universe, (ii) scalar field with a potential term coupled
to Bianchi IX universe, (iii) electromagnetic field coupled to gravity in general, and (iv)
electromagnetic field coupled to Bianchi IX universe.
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1 Introduction

General relativity is generally introduced in the Lagrangian formalism (the so-called standard
formalism) to the students. This illustrates the importance of the principle of general covari-
ance. Similar to what we have in classical mechanics where the Hamiltonian formalism (the
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so-called canonical formalism) is an equivalent description as the Lagrangian formalism, this is
true in the context of general relativity as well. But this canonical approach to general relativ-
ity is not as completely obvious. For example, in the covariant formalism, space and time are
treated on equal footing but in the Hamiltonian approach, we need to parametrize time and
create a slicing of “time+space” of the spacetime manifold. This is non-trivial because general
relativity does not admit a natural parametrization for time and thus choosing a particular
time coordinate remains arbitrary in the canonical approach. The purpose of this work is to
go through the details of this procedure and allow for a Hamiltonian description of general
relativity.

Once we have the canonical formalism ready, we see that the formulation of the initial
value problem (the so-called Cauchy problem) is vastly simplified. A vast amount of progress
has been made in the context of the initial-value problem in general relativity [1] and the
associated works of York, Choquet-Bruhat and O’Murchadha [2,3]. One of the central pillars
of the Cauchy problem formulation in general relativity is the Arnowitt-Deser-Misner (ADM)
formalism [4,5] and its applications to various Lorentz invariant classical field theoretical for-
mulations. Simultaneously, the Hypersurface Deformation Algebra (HDA) [6] have played a
significant role in the development of general relativity. This is sometimes taken as an inde-
pendent starting point to develop general relativity. Physics emerging from further deforming
the HDA [7] are the topical areas of interest. We briefly discuss this in Chapter 3.3 and present
a detailed derivation of the HDA in Appendix H.

We cover two major topics in this work: (i) the ADM (Hamiltonian) formulation of general
relativity, & (ii) homogeneous cosmological solutions of the Einstein field equations (the so-
called “Bianchi” class of universes). Mathematically speaking, the isotropic and homogeneous
universe, namely the FRWL cosmological model is a subset of the Bianchi universe in which the
anisotropy parameters vanish.! FRWL cosmological model is highly relevant for our universe
as it lies within the experimental limits placed through CMB (Cosmic Microwave Background)
observations and the paradigm of inflation [8]. However the equations of motion of general
relativity predict that a deviation from isotropy might have happened at very early epochs
(before the inflation), so studying the anisotropic homogeneous models makes sense in these
regards.

We have tried to be detailed and self-contained in this work while addressing both of these
pre-requisites. The readers are expected to have familiarity with the basic concepts in general
relativity and know how to derive the FRWL cosmological solution from the Einstein field
equations. The structure is as follows.

Chapter 2 deals with the mathematical preliminaries required for this work. It focuses
on developing the mathematics required for the two approaches towards general relativity,
namely the Lagrangian formulation as well as the Hamiltonian formulation. In particular, Sec-
tion 2.2 provides a brief but rigorous derivation of Einstein field equations using the Einstein-
Hilbert action in the Lagrangian formulation. Concepts of hypersurfaces, embeddings and
other related foundational topics are discussed which form the basis of 3 + 1—description of
general relativity.

Chapter 3 deals with the Arnowitt-Deser-Misner formalism (a Hamiltonian approach) of
general relativity. Section 3.1 delves into decomposing the spacetime into 3 4+ 1—foliation of
space and time. After describing this procedure, the ADM formalism is discussed in Section 3.2.
The chapter concludes with the discussion on Hypersurface Deformation Algebra (sometimes
known as the Dirac algebra) in Section 3.3 which can be viewed as an independent starting

IDifferent Bianchi universes have different topologies, just like FRWL universes. Thus to make this sentence
more precise, the closed FRWL universe is the isotropic case of Bianchi IX, the flat FRWL universe is a special case
of Bianchi I & Bianchi VII;, and the open FRWL is of Bianchi V & Bianchi VII,. See the chart 129 for the Bianchi
classification.
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point of general relativity [9,10]. A detailed derivation of the HDA is provided in Appendix H.
Chapter 4 provides a brief but self-contained introduction to homogeneous but anisotropic
universes (the “Bianchi” class of universes) where we start with the classification of topologi-
cally different homogeneous cosmologies in Section 4.1. We introduce a form of basis, known
as the invariant basis, in Section 4.2 which we show to be particularly well-suited to study
homogeneous cosmologies. We express the Einstein field equations in invariant basis in this
section as well. Then we discuss the dynamics, as examples, of Bianchi I and Bianchi IX uni-
verses in the Lagrangian formulation in Section 4.3 where all the results are re-derived in the
Hamiltonian formulation in Chapters 5.1 & 5.2, thereby showing their equivalence.

Chapter 5 is completely devoted to do the canonical analyses of the homogeneous cos-
mologies that we encountered in Chapter 4. Again as examples, we present the ADM analysis
of Bianchi I and Bianchi IX universes in Sections 5.1 & 5.2 where we re-establish the results
obtained in the Lagrangian formulation in Chapter 4.3. We then proceed to give two more
examples to further practice the ADM formulation: (i) (Section 5.3) a free & massless classical
scalar field coupled to Bianchi IX universe, and (ii) (Section 5.4) we extend the previous sys-
tem to the case of a classical scalar field with a potential term. Through these two examples,
we study their dynamics and phenomena such as Mixmaster dynamics (first encountered in
Chapter 4.3.2 and re-established in Section 5.2.4) & quiescence (introduced in Section 5.3.1).

Chapter 6 extends the ADM analysis done in Chapter 5 to the case of Einstein/Bianchi
IX-Maxwell-Scalar Field system. Section 6.1 contains a 3 + 1—decomposition of Maxwell’s
equations and the continuity equation which we use in Subsection 6.1.1 to present the full
Einstein-Maxwell equations of motion for the general case of electromagnetic field coupled to
gravity. Then in Section 6.2, we take a step back and derive the ADM action whose variations
lead to the equations of motion presented in Subsection 6.1.1. Finally in Subsection 6.2.1,
we specialize to the case of homogeneous cosmology, in particular Bianchi IX universe and do
the ADM analysis of Bianchi IX-Maxwell system. In Section 6.3, we study a free & massless
classical scalar field coupled to the Bianchi IX-Maxwell system in the Hamiltonian formalism
and calculate explicitly its equations of motion. Although the procedure has been known in
the literature, the explicit calculations and the results obtained in Sections 6.2 & 6.3 have not
been reported to the best knowledge of the author. Thus these two sections can be considered
a new component of this work, albeit not original.

Chapter 7 summarises this work and discusses future prospects such as extending these
results to Yang-Mills field as well as to other more general inhomogeneous universes. Appen-
dices contain involved & detailed calculations that have been taken out from the corresponding
chapters and relegated therein to maintain the flow of reading.

For the purposes of this work, we will always be interested in the bulk and will always
(unless stated otherwise) ignore the boundary terms arising, say, due to integration-by-parts.
Therefore, two of the crucial concepts missing in this work are: ADM mass & ADM momentum.
The sign of the metric g, will be taken as (—,+,+,+) and cosmological constant A will be
set to zero (unless stated otherwise). The units we will be working with are the natural units
where we set the Newton’s gravitational constant G and the speed of light c, both equal to 1.
This work is completely based on classical Physics and every entity encountered should be
taken as classical objects. Greek indices, such as u, v, a, ..., denote the full spacetime compo-
nents (which in 3+ 1—D means running over {0, 1, 2, 3}) while Latin indices, such as i, j, a,...,
denote the spatial components only (which in 3—D means running over {1,2,3}). The only
exception will be when we introduce invariant basis in Chapter 4.2 where both Greek and
Latin indices will denote spatial components with Greek denoting invariant basis while Latin
denoting coordinate basis. There should be no confusion for the readers as what Greek in-
dices mean (spacetime components versus spatial components in invariant basis) will always
be clear from the context. See footnote 6 in Chapter 4 for further comments.
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2 Mathematical preliminaries

In this chapter, we set up the mathematical machinery behind general relativity. In Section 2.1,
we start with defining crucial mathematical operations which are inevitable in the study of
general relativity. The basic definitions and useful formulae of general relativity are already
summarized in Appendix A. After briefly discussing the definitions, we proceed to directly
deal with general relativity. There are two major approaches: the Lagrangian (or the so-called
standard) as well as the Hamiltonian formulations of general relativity. Section 2.2 completely
derives from the basic the Einstein field equations using the Lagrangian approach starting from
the Einstein-Hilbert action. Section 2.3 prepares the readers for the Hamiltonian formulation
which is discussed at length in Chapter 3.

2.1 Definitions

Covariant derivative or connection

We consider a differentiable manifold M over which we define a covariant derivative (or con-
nection) V as a map:

V:T(r,s)— S(r,s+1), (D
where T and S are tensor fields of rank (r,s) and (r,s + 1), satisfying the following properties:

(a) Vislinear: V(aT + bS) = aVT + bVS where T and S are tensor fields of same rank
and {a, b} are scalar constants.

(b) For a given tensor field T and a scalar field f, we have df as a tensor of rank (0, 1) with
tensor components J, f, and the connection satisfies: V(fT)=df ® T+ fVT.

(c) Given the bases sets {e,} and {6} of the tangent and the cotangent spaces T,(M)
and T)(M) respectively, we have: Ve, = AgMGﬁ ® ey, Where Agu are the connection
coefficients defined in Appendix A.

The connection becomes a metric connection if we have a well-defined metric g,,, on the
differentiable manifold M and the connection satisfies Vg,,, = 0. In this particular case, the
connections are known as Christoffel symbols whose formula is provided in Appendix A.

In terms of components, we have:

oA”
Vv _ AV YV AA _ gV v Al
V, A _A;u_ axu+AMA _A,M+Au/1A R @
VA, =A, = aA”—MA =A,, —A* A
ety T V;.U_ax“ yuf A T v yul A

Tensor density

For a given tensor T of rank (r,s), the corresponding tensor density is defined as:

w
Tt g pp = V181 T2 % g 6 s ®

where g = determinant(g,,,) and W € R is the weight of the tensor density.
With this defined, the covariant derivative of a tensor density is a direct generalization
(using Vg, =0, 50 V,g =0):

w T% % g 5 B
VuTO% " g .8, = V8] Vu[ W
Vgl

— | |Wv T %1020y
=vig U B1Ba...Bs *

5

4)
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Integral curve and flow map

For any given vector field X = X*J, on a differentiable manifold M and an open subset I C R,
we define the integral curve of X at point p as follows:

a, : [— M,
5

s> a,(s),

such that:
2,(0)=0,
da, (©6)
—— =a,(s0) =X (a,) V sp€l.
ds S 0
Then the integral curve defines the flow map qﬁf as follows (where U C M is an open
subset):

qbf U— M,
)
p—> ap(s),
such that:
dap )
_|30 = ap(SO) =Xso(ap) . (8)

ds
This flow map qbf has the following properties:
@ ¢5(P)=a,(0)=p = ¢5=1L
() ¢pfopf =¢%, Vs,teR,

(@) qbf is a diffeomorphism, and
@ [¢X] =95,

Lie derivative

The flow map allows us to define something known as Lie derivative of any differentiable
tensor field of rank (r,s) along the vector X, evaluated at point p, as follows:

[(6%), Toxm ] - ©)

[Lx(TY], = &
s=0

In terms of components, which is most commonly used by physicists, we have:

[‘CX(T)]MMM V9eVs XAaA THtr Vi Vg
—Thtr L OXP — =T B X (10)
+ THibry 3, XA+ TH 28, X7

V1. Vs

For our purposes, we are interested in the special case of V being torsion-free, namely
FSV = +F3M, where the Lie derivative takes the form:

[Lx (T, Ly, = XA, TH

A...
—T er

1o Vs

VXt — = THReA X 1D
+ T“l"'“r;\...vsvleA +...4+ THibr vl...avvsxk'

1.

1 Vy.. Vg

Lie derivative satisfies the following properties as can be checked by direct computation:
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(a) Lx(T) is linear in both X and T,

(b) Ly : T(r,s)— S(r,s): Lie derivative of a tensor field of rank (r,s) is another tensor field
of rank (r,s),

(c) for a given scalar field f, we have Ly (f) =X(f) =X"9,f, and

—

(d) for a given vector field V#, we have Ly V¥ = [)? s V].

2.2 Lagrangian formulation of general relativity

As a reminder, we are using the natural units (G = ¢ = 1), setting the cosmological constant
A =0, and always ignoring all boundary terms (unless stated otherwise) throughout this work.
After discussing all the variations with respect to the metric in the following paragraphs, we
will derive the Einstein field equations using the Lagrangian formulation.

Variation of metric

Variations 6¢"” and &g, are related as:

gaAglﬂ = 5% = 5g,lw = _guagvﬂagaﬁ > (12)

where minus sign is noted.
We also have the Jacobi’s formula:

6g=2gg""08,y=—88uy08"", (13)

Variation of Christoffel symbols

The variation is:
1
6F7L,uv ZE (6glv,u + 5g,u)\,v - 6g;w,7t)
1
=5 (VuBgay + V082~ Va58u) (14)

1
+ 5 [F;A5gm + Flfv5g,1(7 + FfMSgM +T,,68u0— Ffub'gm — Ffﬁgw]

(Vubgar + V0882 —V288uy) + 17,680 - (15)

N+~

= 51—‘11,111 =

We will also be needing:

TP = 5gP Ty + 874 6Ty,
PATC 1 pA pPATO (16)
=—8 Fuvagal'i' Eg (vu5glv+vv5gul_vl5guv)+g FM 5gal

v

1
= 8T8, = 287" (Vu88ay + V16840 — V288ys) 17)

which can be shown to be a tensor of rank (1,2),
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and

A A
51—‘51) = 5gH Fluv + g“ 51—‘1‘“}

1
= _gaug/a’l(SgaﬁF;LW + gl’fA |:§ (Vuégm + Vv6g,M —V;ﬁg,”) + ng5go-li| (18)

1
= T8 08ap + 58V, 68 + 1,80 80p

v

1
=|6TH, = ngvv5gw. (19)

Variation of curvature

We can start from the complete definition of the Riemann curvature tensor as provided in
Appendix A and vary it with respect to the metric, or we can make our lives easier by choosing
a local inertial frame where we can always make FAV = 0 which is valid in any Lorentz frame
(tangential to the spacetime manifold). Accordingly this greatly simplifies the variation of the
Riemann curvature tensor as follows:

O6RP =§ [FP —TP ] (Lorentz frame) , (20)

ouy ov,u ou,v

where we now replace the partial derivative J, with covariant derivative V, and realize that
this is a tensor identity, therefore it should be valid in all frames of reference. This leads to the
Palatini identity:

= 5R’;W=V“5F£V—VV5F£H. (21)
Accordingly we get:
— A A
= | 6Ryy = V8T, — V817, . (22)

Proof: By definition, we have:
—pA A A A A P
Ryy=R},,= QAFW - EVFM + Flpl"f“ —To.0,

_ A A A A A TP -
= 5Ruv = 87&5Fm_av5rm + 5Flpf‘f“ + Flpérfu _SFVPFM_FVP6FM'

(23)

Then we use eqgs. (17, 19) to get the desired result: 6R,,, = vlarp{; — VH5F£V.
Next we evaluate another important result which will also be used in the context of
3—dimensions in Appendix F (recall V, g,s = 0):

— A A
g""6Ry,, = V3 (g“”ﬁf‘w) —Vu (gWSF)w) 24)
=, (g""6Th, —gH*sTL, ) .
We again use eqgs. (17, 19) to get:
= g""oR,,, = (V'V"—¢gl"VV,)6g,,

= (guagvﬂ _guvgaﬁ)vuvvggaﬁ (25)

= g!“"5R“v = Vl [gkagvﬁ _glvgaﬁ]vvé-ga/a’ .
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Now using eq. (22), we can also calculate the variation of Ricci scalar with respect to the
metric as follows:

6R=—-R""6g,,+g""oR,,
= —RMV5g,,+g"" [ V,6TF, —V,6TF, |
=—R"5g,,+ v,6v* . (26)
A
= g‘”gp v,o (v,u5glv_vl5guv)
=VHV"5g,,—V*V,51nlg|

Thus we have finally:

=| 6R=—R"&g,, + V'V’5g,,—V'V,51ng|. 27)

Action of general relativity

The total action functional is:
S=8y+S,,, (28)

where Sy is the Hilbert term for pure gravity and S,,, is the matter action, both given by:
SH:f d4XV ‘CH = F d4X\/ R
= f d*x+/—gLy,
14

where V is the volume over which the integration is done.

(29)

Variation of the Hilbert term
We apply the chain rule to get:
1
6Ly =1~ [6(g""Ruvv/—58)]
1 og
=—— |:2‘/__gg‘“’RW + (5g‘”RW + g‘“’5RW) \/—g:I .

167
Then we use the Jacobi’s formula (eq. (13)) to get:

1
[(Rm—zgwR) 5g“”+g‘“’5RW:| v—g. (B

(30)

1

Ly = —
H™ 16n

Then we use Palatini identity (eq. (21)) to get:

V—gg" R, = v/—gg"" [V, 6T, — v, 17, |
= V=gV, [g""6TP, —gP 5T | = 3, (V—g&VF),

where we already introduced the variation 6V* above. This becomes a full derivative, which
we choose to ignore as we are never considering boundary contributions. We are, therefore,
finally left with:

(32)

167

68y = 1 J (Ruv — %gWR) V—gsghd*x. (33)
1%
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Variation of the Matter Term

We get by applying the chain rule again:

5L,

6S, = f |:—5g‘“’\/—g +£m51/—gi| d*x
%

ogHY

5L 1
= f [ s _Emgwi| V—g&gh"d*x.
v

ogny 2

(34)

We define the stress-energy tensor T, as Ty, = — % + Ly 8,y to get:

1
oSy = -3 Jv Tuv\/—giig“"d“x. (35)

Einstein Field Equations

Combining the Hilbert term and the matter term, we get the variation of the full metric as:

1 1
6S =08y +0S, = Ten JV [Ruv_ EgWR—STrTW:I V—gbghd*x. (36)

Then we enforce the action principle and equate 6S = 0O to get the Einstein field equations:

1
Ruv_igszgnTW' (37)

Gur=Gyy

from which we get the desired conservation of the stress-energy tensor (see the text below eq.
(A.12)):
v, T =0. (38)

Note that we have ignored the cosmological constant A throughout but the entire anal-

ysis goes through if we replace | R — (R—2A) | to get the full Einstein field equations (this

prescription of replacing R with (R—2A) is in general a powerful heuristic of restoring the
cosmological constant):

1
Ry,— ngR + guyA=81Ty,. (39)

2.3 Prerequisites of Hamiltonian formulation of general relativity

We now set up the space where we shall be working. We consider a submanifold N' ¢ M
through the embedding & : N' — M (injective and structure preserving). In particular,
d : N — &) is a diffeomorphism where $(N) ¢ M is a k—dimensional submanifold
(k < n). We will identify A" and ®(N). This is shown in Fig.(1) [11].

We now assume that the spacetime (M, g,,,) is globally hyperbolic?> namely that its topology
is R x X where X is an orientable 3—dimensional manifold (see Fig.(2) [11]). Accordingly we

2A spacetime M is said to be globally hyperbolic if it admits a spacelike hypersurface = (called the Cauchy
surface) such that every timelike or null curve without end points intersects 3 only once.

10
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Figure 1: Embedding 3—D manifold in 4—D manifold [11].

can foliate the spacetime by 3—manifolds (hypersurfaces) X, (t € R) such that (we iden-
tify ¥, with {t} x X):
M={]z,. (40)

teR

Then we assume the following about %, :
(a) No two X, will intersect with each other.

(b) The initial hypersurface ,_, will encode the initial information giving rise to the space-
time as prescribed by the equations of motion.

(c) Hypersurfaces X, arise as level surfaces of a scalar function t which will be interpreted
as a global function time.

(d) All %, are spacelike.

As an aside, we are imposing the assumption (d) for our purposes but in general the foli-
ation allows to have hypersurfaces 3 of three types (recall our convention of the signature of
the metric: (—,+,+,+)):

(i) spacelike hypersurface if the induced 3—metric (defined below) is positive definite, i.e.
signature is (+,+, +) having a timelike normal vector,

(i) timelike hypersurface if the induced 3—metric is Lorentzian, i.e. signature is (—,+,+)
having a spacelike normal vector, and

(iii) null hypersurface is the induced 3—metric is degenerate, i.e. signature is (0, +, +).

We will always stick to the first type, namely a spacelike hypersurface with a timelike normal
vector.

This construction allows us to define a normal vector n* on each of the spatial hypersur-
face 3,. This is shown in Fig. (2). We can interpret n" as the 4—velocity of a normal observer
whose worldline is always orthogonal to 3,. Clearly n" is a timelike vector which we shall
always take to be normalized. In our metric signature convention, this means n*n, = —1.

We have defined our hypersurface X, as that of a surface with constant ¢t where t is a
scalar field on M. So the 1-form dt is normal to X, in the sense that every vector on X,
has a vanishing inner product with dt. Accordingly the metric dual of d¢, namely g,t, is
also normal to the hypersurface %, where J,t is timelike if X, is spacelike. Thus we see a
resemblance between the structure of J,t and n,. Indeed upto a normalization constant, we

11
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Figure 2: Foliation of globally hyperbolic spacetime M [11].

can write n, = Q9,t where Q = Q(x") is a normalization constant which is fixed by the

u
i u _ U U _ sttO2 _ 1
condition n*n, = —1. Also n* = n, = g"’n,n, = g""Q°. Thus we have Q = :l:m. We
choose a negative Q2 to allow n* to be a timelike vector and we thus get:
0
n,=-— O
u - 3
/— 400
8 (41)
g
nt=_—

Then the spacetime metric Euv (the 4—metric) induces a 3—dimensional Riemannian metric
vij on X, such that vy, = g, +n,n, < y*" = g"”+nkn”, where despite being a 3—D object,
we have still used Greek indices for y;; because we can regard it as an object living on space-
time. Any time Greek indices can be converted to Latin indices to get back the 3—dimensional
results on spacelike hypersurfaces ,. Then we get explicitly for the induced 3—metric:

0j

0|~

rh =060 +n"n, = ( A (42)
j

This induced metric is also used as a projector. We have two types of projection:

(a) Spatial projection (spacelike): given a tensor T,,, its spatial part is given by

T:v = YSYV Taﬁ .

(b) Normal projection (timelike): Normal projector N is defined as N}} = —n,n* = &5 —7%.

Accordingly any vector V* can be decomposed into spatial and temporal parts as follows:
VE =88V = (Y + NIV =VS + VT, (43)

Just like g, on M defines a unique covariant derivative V,, the 3—metric y;; defines in
a unique way a covariant derivative D; (the Levi-Civita connection) on X,. This can be taken
to be torsion free and compatible with the metric in 3—D on each hypersurface %,, just like

the full 3+1-D case. Accordingly, in 3—D we have | D,,y,p = 0 |, just like in 3+ 1—D we have

V.8qp = 0. The relation between the 3— and 4—covariant derivatives is given in eq. (B.4) in
Appendix B.
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The 3—metric then defines the 3—Christoffel symbols as:

1
Ot = 27" (8 vo + 8yY0a = Bo¥ar) - (44)

Like 3+ 1—D, the covariant derivative in 3—D defines the intrinsic curvature of each space-
like hypersurface X, as follows:

[Dy,D,]V*=®RG VP, (45)

where ®R% 1P =0, Ricci tensor @R,z = ®R”  and Ricci scalar )R = ®)R 5y*P
Buv af aup af
But this only provides the information about the curvature intrinsic to the hypersurface
and provides no information at all that how %, fits in (M, g,,,). This is what is captured by
extrinsic curvature tensor K, defined as:

K,, = —)/Z}fevanﬂ . (46)

The properties of the extrinsic curvature tensor K, ,, are:

(a) symmetric in u and v by construction,

(b) purely spatial by construction: n"K,,, = —}/Zyg %Va (nﬂ n“) = 0 where we made use of
eq. (B.4), Dyyap = 0 and n“nu = —1 is just a constant,

(c) measures how the normal to the hypersurface changes from point to point, &

(d) also measures the rate at which the hypersurface deforms as it is carried along the nor-
mal, thereby capturing intuitive notion of how the curvature varies from one hypersur-
face to the next.

There is an associated concept known as the acceleration of a foliation a,, that, as the name
suggests, captures how rapidly the curvature changes from one hypersurface to the next. It is
defined as:

a,=n"V,n,. (47)

This allows us to express the extrinsic curvature tensor in two other equivalent ways than
eq. (46). They are:

@ | Kyy=—Vyn,—nya,.

Proof: We realize n"V,n, = %V,, (n“nu) = 0. Thus we have from the definition in eq.

=1
(46) that:
K,, = _Yz’}/gvan/j =— (5;’: + nuna) (5/3 + nvnﬂ) Vang
=— (5}‘1 + nun“) (5/3) Vang
=-V,n,—n,a,.
1
(b) KMV = _EEHYPW .
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Proof: We start from the RHS and use £, g,, = 2V(,n,, to get:

LpYuy=Ln (gm, + nunv) =2Vn,+n,Lan, +n,Lhn,
= 2[Vuny +nguny | = —2K,,

1
= KI“’ = _EEHYPW .

Clearly either of these two definitions also satisfy the aforementioned properties of K,
and indeed in the literature, sometimes the definition of K, is taken to be either of these two
instead of eq. (46).

Just like the Ricci scalar in 3 + 1—D, we have something known as the mean curvature or
extrinsic curvature scalar, defined as (keeping in mind that K,,, and thus K are 3—objects living
on X,):

K =g"Ky, =1""K,, . (48)

It can be shown to be equivalent to K = =V n* = —L, (In(det(y))). The physical meaning
captured by K is that it measures the fractional change of 3—dimensional volume along the
normal n* from one spacelike hypersurface to the next.

There is a note to be made. Even though the indices used are Greek for the 3—metric,
it is understood that only the spatial components are non-trivial. This is a rule in gen-
eral that if Greek indices are used for any mathematical object which are 3—objects living
on a spacelike hypersurface 3, only the spatial components matter and we can safely re-
place all Greek indices with Latin ones. Accordingly, for example, the covariant derivative
induced by v, is denoted by D, that satisfies D,y,,,, = O simply means D;y,, = 0. Thus,
{Yuw DM,(E’)F;V, (B)R‘: aﬁ’KHV’K } are 3—objects (as their respective contractions with the nor-
mal vector n* are zero), living on X, and accordingly the Greek indices can be replaced with
Latin ones as only the spatial components are relevant.

The final ingredient that is required as a mathematical pre-requisite are the famous Gauss,
Codazzi, Mainardi relations. Without them, the 3 + 1—decomposition cannot be done and this
is the foundation of the Arnowitt-Deser-Misner (ADM) formalism of general relativity. They
have been proven in complete detail in Appendix B. Here we list the final results.

¢ Gauss Identities:

— Gauss relation:

ey oY ya(‘*)RgW—(S)Rg p KgK5,3—K/§Ka5. (49)

— Contracted Gauss relation

vhrp PRy + v aun v @R = ORyp + KKop — Ky K - (50)
— Scalar Gauss relation (or generalized Theorema Egregium):
@R +2%R,,nn” = OR+K* — K ;KY. (51)

The original Theorem Egregium proposed by Gauss is a special case of this result
and is derived using this result in Appendix B.
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¢ Codazzi-Mainardi Identities:

— Codazzi-Mainardi relation:

yhnoyhyyWRE = DpKl — DKy . (52)

— Contracted Codazzi relation:

4 —
r“n"™R,, =D, K —D,K". (53)

This completes our requirement of all the required mathematical machinery and we are
now in a position to decompose spacetime into spatial and temporal parts.

3 Hamiltonian formulation of general relativity

In this chapter, we develop the methodology of decomposing general relativity, which is a
Lorentz invariant theory, into temporal and spatial components. In doing so we realize that
general relativity apriori does not admit a natural parametrization for time and there always
remains an arbitrary choice for the time coordinate. But having such a split of “time+space”
enables us to deal with time-varying tensor fields on spatial hypersurfaces. This allows for the
formulation of the so-called Cauchy problem (the initial value problem) in general relativity
[1-3]. In Section 3.1, we discuss in detail the setup required to do so. One of the crucial
elements of this section is to introduce 4 new functions, namely the lapse function N and the
shift functions N which are functions of spacetime. Then the entire 3+ 1—decomposition of the
globally hyperbolic spacetime manifold M, based on the mathematical machinery developed
in Chapter 2.3 as well as these four new functions, are detailed. In Section 3.2, we finally
develop the canonical formulation and derive the Hamiltonian of general relativity based on
the works of Arnowitt-Deser-Misner [4,5]. As a reminder, we will only be considering bulk
terms and will throughout ignore the boundary terms. Accordingly the discussions on the
ADM mass & momentum are excluded from this treatment. In Section 3.3, we discuss the
Hypersurface Deformation Algebra (HDA), or the Dirac algebra, which will provide us the
insight into the Hamiltonian and diffeomorphism constraints that we derive in Section 3.2.
The HDA is sometimes taken as an independent starting point to develop general relativity
[6,7,9,10]. In the Minkowski limit, the HDA boils down to the well-known Poincaré algebra.

3.1 3+1-decomposition of spacetime

As seen in Chapter 2.3, we do the dimensional splitting between time and space by assuming
the spacetime manifold M to be globally hyperbolic and endowed with a metric g,,,. As shown
in eq. (40), the spacetime is foliated into spacelike hypersurfaces %, on which a 3—metric y,,,
(or v4;) is induced by the 4—metric g,,,. But despite the machinery developed in Chapter 2.3,
this is not sufficient for the 3 + 1—formalism to be completely equivalent to the 4—geometry
of the full spacetime. We still need to specify the geometry between the hypersurfaces. This
is done by introducing four new variables: the lapse function N and the shift functions N
which provide the additional information required for a complete description of the spacetime
manifold M.

15


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.73

SCIl SciPost Phys. Lect. Notes 73 (2023)

Lapse & shift functions

The definition of the lapse function N is:

1
N = , (54)
/_goo
and that of shift function N is:
Ni=N2g0, (55)

There is another object known as the normal evolution vector, that will be useful later and
is defined as:

m* = Nn", (56)

where n* is the normal vector defined in eq. (41). Physically it shows the evolution from one
hypersurface to another as shown in Fig. (3) [12].

The claim is: {N,N',y; i} completely determine the spacetime geometry which we will prove
it below in the rest of this Section 3.1. Before proceeding to show this, we first need to develop
an intuition about the lapse & shift functions and what they mean physically. The geometrical
interpretation of these functions is shown in Fig. (3) [12]. n" is the normal vector to the
hypersurface and thus n"Ndt = m"dt leads “a” to the next adjacent hypersurface %, 4, at
point “b” and then shift functions measure the difference of coordinates on the hypersurface
Yi+d: between “b” and the time evolution point of “a”, namely “c”. There is another inter-
pretation of the lapse function: if we consider an observer moving with the 4—velocity n*,
then the elapsed proper time 67 between two events as measured by this normal observer is
given by 67 = N6t (t is the coordinate time) which simply means that the lapse function N
associates an infinitesimal interval of coordinate time t to the proper time 7 as measured by a
normal observer whose world lines are orthogonal to X,. Thus the lapse and the shift functions
tell how to relate coordinates between two hypersurfaces where the lapse function measures
the proper time to go from one hypersurface to the next one and the shift functions measure
changes in the spatial coordinates on the same hypersurface. In this way, these 4 functions
capture the geometry in between the hypersurfaces and coupled with the 3—metric y;; (i.e.
the set {N,N,y; i}) completely determine the spacetime geometry of M (which is completely
captured by the 4—metric g,,). We will now make this statement more precise.

4—metric & its inverse

Using the definitions of N and N from egs. (54, 55), we already some of the components of
the inverse metric g"”. Then we can write the whole matrix as:

_1 | N~

VY __ 2 2
g" _( N 97 ) (57)

N2 N2

where QU are the unknown functions which will determine the inverse 3—metric. For the
metric g,,,, we take an ansatz by keeping in mind that the only knowledge we already have in
advance in that the 3—metric g;; must be the v;;:

A | B;
uv = (B‘l;_Yl]L) > (58)

where A, B; (B; is the same as B; with a different index as g,,, is symmetric in its indices) are
unknown functions.
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1
aﬁ'fa =+ d.’fz‘a

Figure 3: Geometric interpretation of lapse and shift functions [12].

Thus we solve for A, B;, Q2 using the identity g,,,g”” = 67, as follows:

gipgp():Nle(—BiJrYiij)_:O = B;=r1uN*,
gOpgp_Ozm(_A'i'YilgNkNl.):l = A?YikaNl—Nz,. (59)
88" =y (NFNT + QM) =5, = QU =N%*U—NINJ.

Thus we have finally:

wy N; |Yij ’ N- ij _ N'NJ

Then if we take det(g,,,) = g (Where g < 0 due to signature of 4—metric being (—, +, +, +))
and det(y;;) = v (where y > 0 on the spacelike hypersurface %, due to signature being
(+,+,+)), then they are related as (upon direct computation):

vV—g=N/7. (61)
Finally, using eq. (41) and definitions in egs. (54, 55), we can express the normal vector
as:
n, = (~N,0,0,0),
(1 N (62)
=(—=——].
N N

Before we start to decompose the 4—Riemannian curvature in 3 + 1—form, we need to
express the remaining 3—objects introduced in Chapter 2.3 and in this chapter in terms of
lapse and shift functions. We state the final results here whose detailed proofs can be found
in Appendix C.

a, =D,In(N), L.yt =0,
v,n,=-K,,—n,D,In(N), Vum”z—NKll’—n“D”N+n”VHN,

Lay™” = 2NK*, Loy, =—2NK,,, (63)

LK., =Ny*yPv, K,5—2NK, KP K—l[DN DN, — 7y ]
mSuy — Y“Yv ntvaff — upthy > ,uv_ﬁ u y 1t D, uw— Yur]-
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The last equation on the right, upon rearranging, gives the equation of motion for
3—metric y,,, in terms of 3—objects and govern the evolution of 3—metric on a spacelike hy-
persurface %,.

There is an additional important result which allows us to deduce a crucial corollary. The
result is obtained from the Lie derivative of K, to get the Lie derivative of K along m", given
as follows:

L,K=NL,K=Ny"V,K,,. (64)

Proof: Consider the LHS and make use of eq. (63):

ﬁmK = ,Cm ('}/UKU)
= (Loy") Kij + (LnKij) 1Y
= 2NKYK; + (Ny&y PV, Kop — 2NK; KE ) 7
b .
= NY?YJ' V. Kap — ZNKicK;YU
=Ny7V,K;; =y VK.
Corollary: We know in general that y;; and V,, (or V,,,) do not commute (as 3—derivatives
D; are compatible with 3—metric, not 4—derivatives). But this identity suggests that we can
replace YV, K;; with £, K. Thus the corollary we have is that for a scalar field f and a vector
X, Lyxf = Vxf and thus we are able to write y/V,K; j = L£,K. Thus contraction with yi
commutes with V even though V;y" # 0 due to the presence of a 3—object K. This also
means that YV, K;; = L, K.
Now we are in a position to 3 + 1—decompose the Riemann 4—curvature (LHS of Einstein
field equations) and 4—stress-energy-momentum tensor (RHS of Einstein field equations) fol-
lowing which we will decompose the Einstein field equations in 3 + 1—variables. We will

only present the results here and the derivations of all the results presented can be found in
Appendix D.

Projection of 4—curvature

With the aforementioned complete set of results obtained, we can proceed to decompose the
Riemann curvature tensor. We start with the definition of the 4—Riemann tensor when applied
to normal vector n*, namely:
p— @pp o
[V, v, ]n? =WRE n. (65)
We now project this twice onto the hypersurface ¥, using the induced 3—metric and once
along the normal n" to get:

1
A
ot I =K+ Vi1 o+ DD ©©

Similarly we do the same procedure of projecting the Ricci tensor and the Ricci scalar to
get them in terms of the 3 4+ 1—variables:

1
YZYE (4)Raﬁ = (3)Ruv + KK[M/ - YZYﬂ vvnKa/} - ND.UDVN 5 (67)

and

.. 2 .
R =GR+ K?+KYK;; —2V,K — ~D'DiN. (68)
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Thus we have successfully (3 + 1)—decomposed spacetime curvature in terms of the
3—dimensional objects, namely K,,, (and the associated K), y,,, the lapse function N, the
shift functions N and 3—Riemann tensor of ¥,. See Appendix D for the detailed proofs.

Projection of 4-stress-energy-momentum tensor

Once the curvature tensor has been decomposed, this finally helps us to project Einstein field
equations into 3 + 1—formalism. Without the cosmological constant, Einstein field equations
in natural units read as R, — 3g,,,R = 8nT,, where T,,, is the stress-energy-momentum
tensor which is symmetric in its indices. We have already projected the LHS of this equation
and now we need to project the RHS, namely T,,, into energy density (projected twice along
the normal, as measured by a normal observer moving with 4—velocity n*), momentum density
(projected once along the normal and once along the hypersurface, making it tangent to %,)
and stress tensor (projected twice along the hypersurface) as follows:

E=T,n"n" (Energy Density),
Po =—T,n"y,, (Momentum Density), (69)
Sap = Twy’;yg (Stress Tensor).

Here we can define stress scalar as | S = y®F Sqp | and stress-energy-momentum scalar as

T =gh"T,,. Then we see that S, T and E are not all independent but related by:

T= Tuvg'uv = T,uv(}/'uv_ nIJnV)

S[T=5-F] 7

With these projections of T}, taken, we have projected the LHS as well as the RHS of the
Einstein field equations separately and it’s time to combine them.

Projection of Einstein field equations

We finally combine the results obtained in the last two subsections to finally project the Einstein
field equations in terms of 3 + 1—variables. Since the equations involve rank 2 tensors, we can
take two projections corresponding to each indices and we have three possibilities for doing so:
(i) projecting twice along the spatial hypersurface %, (ii) projecting twice along the normal
vector n*, & (iii) mixed projections involving (once) along X, as well as along n*. We perform
the calculations for all three cases and we get the final results as (derivations can be found in
Appendix D):

* Both Projections along %, : This is purely spatial projection:

1 1
®IRyp — 2K 43 Kj; +KKop — 5 [L£Kop +DyDgN | =81 [saﬁ — 5Yap(S— E)] | (7D)

* Both Projections along n*: This is purely temporal projection (also called the Hamilto-
nian constraint):

®R—K; ;K + K = 167E. (72)

* Mixed Projections along %, and n* (also called the momentum constraint):

DgkP —D K = 8np, . (73)
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These three equations collectively contain the same amount of information as the covariant
form of the Einstein field equations: (4)Ruv — % gw(“)R = 8nT,,. We know that a symmetric
n(n+1)

2

matrix A of size n xn has independent elements, therefore the Einstein field equations in
covariant form is a set of 16 equations out of which 6 are dependent leaving us with 10 inde-
pendent equations (since it is symmetric in 4 & v where they run over spacetime components
{0,1,2,3,4}, so n =4). These 10 independent equations solve for the exactly 10 independent
components of the metric g, (as it is symmetric in its spacetime indices as well). This is
true in terms of 3 + 1—variables too: eq. (71) is symmetric in the indices a & 3 where the
indices are spatial (thus n = 3 & it contains 6 independent equations), eq. (72) is a scalar
equation (so 1 independent equation), and eq. (73) is a vector equation with one free spatial
index a (therefore 3 independent equations), putting the total count in 3 + 1—variables to 10
independent equations just like the covariant form.

Now we are in a position to finally introduce the formalism on which this entire work is
based upon and that is the Arnowitt-Deser-Misner (ADM) formulation of general relativity.

3.2 ADM formalism of general relativity

In the canonical Hamiltonian formalism, just like the case of classical mechanics, time holds
a privileged position among the coordinates x* and the time evolution of tensor fields on
spacelike hypersurfaces are governed by Hamilton’s equations of motion which are first-order
differential equations in time derivatives. The advantage of this approach is that it allows for
a clear formulation of the initial value problem (also called the Cauchy problem). But it is
significantly difficult to obtain a Hamiltonian picture because the metric g,,, contain some re-
dundancies in the covariant approach to general relativity. Capturing those redundancies can
be tricky in the Hamiltonian approach. Moreover we know that Hamilton’s equations of mo-
tion are closely connected to Poisson brackets which in turn is closely related to commutation
relations in quantum mechanics. Therefore, the Hamiltonian formalism becomes a pre-cursor
in the grand attempt to canonically quantize gravity. But we need to first identify the uncon-
strained canonical variables in order to be able to write down their Poisson brackets and this
identification of unconstrained canonical variables from the total set of variables can require
significant effort. The Hamiltonian formalism we are interested in is known as the Arnowitt-
Deser-Misner (ADM) formulation of general relativity and we will develop it in this section
based on the entire mathematical machinery built in Chapters 2.3 & 3.1. The structure will
be as follows: we will first derive the Einstein-Hilbert action in 3 4+ 1—variables, then proceed
to find conjugate momenta to dynamical variables in order to write down the Hamiltonian
of general relativity, and finally evaluate the equations of motion from this Hamiltonian. In
principle, they should contain the same amount of information as the Einstein field equations
in covariant form. We only focus on the vacuum case (pure gravity) in the bulk.

Einstein-Hilbert action in 3 + 1—variables

We derive this using the projection of 4—curvature (eq. (68)) but an alternate derivation using
the scalar Gauss relation (eq. (B.16)) is possible and is done in Appendix E.
The Einstein-Hilbert action for pure gravity without the cosmological constant is given by:

1
Sy =— | PRy —gd*x. (74)
l6m

Now we already know the decomposition of ‘YR from eq. (68) as well as for /—g from
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eq. (61). Also d*x = dtd>3x. Thus we have:

ty

1 . 2 .

=>Sy=—o /| dt d3xNﬁ[(3)R+K2 + KK —2V,K — —DlDiN]. (75)
167 J,. %, N

But the last two terms contain pure divergences which can be ignored (since we are only
interested in the bulk), as we will show now. Just like 4—divergence in terms of 4—covariant
derivative is given by eq. (A.4), we have a similar result in 3 + 1—variables for a scalar func-
tion f:

ip_ 1 9 ( -0f
oot 2 (L)

We use this relation to simplify:

VYD;D'N = ,(/70'N) . (77)

Similarly, we make use of the eq. (A.3), reproduced here for convenience:

1
v, Vt=—-08,(v/—gVv%). (78)
Y ‘/_—g ( 8 )

Then we use /—g =N ,/7 (eq. (61)), substitute V¥ = Kn® and recall K = -V n* (below eq.
(48)) to get:
0. (vV/—8V*) =N y7V,(Kn®)
=N /7 (V n*)K +N /7n*(V,K)
~——
=K (79
= N /7n*(V,K) =, (v/—gV*) + N y/7K>
= N /7V,.K =3, (v/—gV*)+N7K>.
Thus we plug eqgs. (77, 79) into eq. (75) and read off the Lagrangian density £;; (since
2
Sy = f;l dt fo d3xLy) to get:

1

Lo =
H™ 16n

[(®R—K*+KYK;)Ny7—2(0,(v/73'N)+3,(V¥NKn®))].  (80)

Ignoring the total diverges (boundary terms), we finally get the Einstein-Hilbert action for
pure gravity in 3 + 1—variables (also known as the ADM action) where the pre-factor ﬁ is
ignored without loss of generality:

ty
stf dtJ d>xN 7 (PR—K? +KK;;) . (81)
ty pans

An alternate derivation is provided in Appendix E.

Hamiltonian Formalism
From eq. (81), we can read off the Lagrangian density:
Ly =Ny7(®PR-K*+KK;;), (82)

and the Lagrangian is given by L = f d3x Ly which in turn gives the action Sy = f dtL.
The first observation to make is that Sy (or consequently Ly) depends on the set
{r.7i,N ,N,3.N,8.N}. But it does not depend on {N,N} which, as shown in Appendix F,
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gets translated into the fact that N & N serve as Lagrange multipliers (& thus are not dy-
namical variables). However, on a first glance, it is logical to assume then that {y,N,N} and
their conjugate momenta (defined below) are the dynamical variables of the system but as
we will find out, only 7;; and its conjugate momenta (denoted by n'/) are dynamical vari-

ables leading to equations of motion while {N,N} are Lagrange multipliers (& thus are not
dynamical variables) leading to constraints relations. Readers are directed to Appendix F for
a mathematically detailed discussion of this.

As a quick refresher, in classical mechanics having the Lagrangian L = f d3xL where
L=1L(q,q9) (q={q;}fori=1,2,3,...,nis the generalized coordinate) has canonical momenta

corresponding to g; defined as ' = g—f. Thus the Legendre transformation of £ gives the

Hamiltonian H as: H(q,m) = >, nlg; — L. We are going to have the same approach here
where we will find the conjugate momenta corresponding to {y,y;;, N ,N} and then take the
Legendre transform of £y (eq. 82).

The simplest are the conjugate momenta corresponding to N and N:

9Ly _
N = )
ON
9Ly _ (83)
Nt aNl 5

because, as discussed above, £ is independent of N and N.

Next we need to evaluate the conjugate momenta 7'/ conjugate to the components of y;;

as mif = 95u,
aﬂj

evaluate this, we first note that y and y are taken as independent variables, much like what

we do in classical mechanics, and the set {y;;, n, Vijs 7'} is taken as an independent set of

nt¥ contains six independent components and is symmetric in its indices. To

variables. Next we realize that in the definition of 3—Ricci scalar )R, we just have 3—metric

o®
appearing and not its derivatives, thus ayR

= 0. Finally we make use of the relation in eq.
ij

(63), namely K, = W [Dqu +D,N,— Yuv]’ to get:

0Ky
ab _ 5151 8
37, = an e (84)

Then we are in a position to finally explicitly evaluate '/ as follows:

9Ly 0 )
nl =2 = — N /7(®R-K?+K¥PK
aYij aYij[ ( ab)]
=Ny7=——[—-K*+KYK;;| =N /7= [—2K : +2K“b—,“]
aYij[ U] 07ij 37ij 97ij
2 (ybK,
=N,y 6’ _2KM 2KabaK‘1b
07ij 97ij 97ij (85)
=NJ7 o [ 2Kyab8( ‘”’)+2K‘1ba “b]
BYU 3YU aYU
1 .
_ b i b
_Nﬁ[—ZK}f" (—ﬁ5a5é)+2K“ ( N5a5;))]

={ nl = 7 (Ky7 —KY).

Clearly ¥/ is a contravariant tensor density of weight one as /y" with W = 1 enters the
expression. Also the 3—metric is responsible for shuffling the indices up or down in 7%/,
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But we want our final result to be completely written in terms of {®'R, Y,N ,N}, so we need
to simplify it further. We have the expression from eq. (63) about K;; = % [Dl-N i+ DjN; —7; j]
which we use now to eliminate the reference of the extrinsic curvature completely from 7/ as
follows:

n = 7 (Ky" —KY) = V7 [Kapr**r" —Kapr'y"* ], (86)
where we plug the expression for K, and finally get:
=| il = ;/]3 [2y7DN* —DINT — DIN' + (y ™yt —y Uiy 7 ] (87)

Now we have the ingredients to calculate the ADM Hamiltonian density but before we
proceed, we realize that the extrinsic curvature appears in £y in eq. (82) and we need to get
rid of these terms in favour of the lapse and shift functions. Using eq. (85), we can re-arrange
it to get:

g 1 .
KY = ny —2nY ). 88
5 f( y" ) 88)

Contracting with the 3—metric gives for Yinij = K as follows (using y"/ vij = 3 and

Y, j=m):

i, 1 T

Finally we can write the evolution equation of the 3—metric using the expression from eq.
(63) about K;; = % [DiNj + D;N; — )’/ij] and replacing K;; with eq. (88) to get:

. N
Yij=DiNj+DjNi_ﬁ(nYij_2nij)' (90)

Plugging eqgs. (88, 89) into eq. (82), we get for Ly:
Ly =Ny7(PR-K? +KifKij)
2
=Ny7®R- Nf— + f( [) (ny" —2nmY) (ryy; —2m5) o1)
_~/_(
4y

5 5 y
2_on?-2n +47Tl]7'tij) .

=N/7R- N[
4y

Thus we have for the Lagrangian density in terms of {*)R,y, N, N} as follows:

N g
v =Nﬂ(3)R+—(nlJni-——n ) (92)
H 1/7 Jj

We can finally calculate the ADM Hamiltonian density using this form of Lagrangian density
(eq. 92) and egs. (83, 90) as follows:

Hy = nyN + nyN' + 7y — Ly
- N N 1 (93)
= rll [DiNj +D;N; — — (myy; —2nij)] - [N,/y(3)R+ — ( Uy — —7'52)]
VY VT

to finally get for the ADM Hamiltonian density:

y N . 2
:>HH:27'EUD1-NJ-—N‘/?(3)R+ﬁ(ni]’ﬂ'll_%) . (94)
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An alternate expression is:

. .. N .. 7'[2
= Hy = 2D; (n'N;) — 2N;D;n — N 73R + W (nijnu — ?) . (95)

Note that D;7t/ is the 3—covariant density of a tensor density with weight W = 1 and just

like eq. (4), we have D;nV/ = /v D; [%] with W = 1.

The ADM Hamiltonian Hppy = fz d3xHy can be written in a more meaningful way as
follows:

Hppy = H[N]+D[N’]=NH+ N’D;, (96)

where H[N ] is the Hamiltonian constraint given by:

1 (n? i
— 3 _ Bp_ | = _ ij.
H[N] = thd XN[ VTR ﬂ( 2 T nl])i| , 97)

and D [N i] are the diffeomorphism constraints given by:

mﬁki[d%wpammﬂ. (98)
)

We will see the physical interpretation of the Hamiltonian and diffeomorphism constraints
in the Section 3.3. Also by varying the ADM action (eq. (81)) with respect to N and N, as
done in Appendix F, we get the following constraint relations that needs to be satisfied on any
spacelike hypersurface %, :

H~O,

99
]D)jNO, ©9)

where ~ symbol is called weakly equal to which simply means that this equality needs to
be satisfied only on the hypersurfaces and not in between them. Note that the Hamiltonian
constraint is 1 constraint equation while the diffeomorphism constraints contain 3 constraint
equations.

Hamilton’s equations of motion

We are now in a position to determine the 12 Hamilton’s equations of motion corresponding
to:

hy= o, = —g;*‘ij . (100)
We start with the ADM action eq. (81) and use eq. (94) to get:
ty
SapMm = J dtJ d3x (nij}'fij —H)
ao I (101)

J ool (-5
= dt | d°x n’]Y--—(2n11D~N-—NﬁR+_(ﬂ..nu__))].
t = Y o JY Y 2

In order to calculate the equations of motion, we need to impose the boundary conditions
(where 0%, denotes the boundary of the hypersurface %,):

ON|sx, =5Ni|azt = 8Yijlax, =0. (102)
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However there are no restrictions on the conjugate momenta 7"/ which are treated as inde-
pendent variables.

So we have to vary this ADM action with respect to {N, N , i, Y; j} which we have taken to
be a set of independent variables from the start. This is done in complete detail in Appendix F.
We will present the results here. Variations with respect to N & N lead to something known as
constraint relations that need to be satisfied on a hypersurface, and with respect to 7'/ & v; j
lead to equations of motion telling about actual evolution of tensor fields in time on a spacelike
hypersurface X;. They are given by:

* Constraint equations:

- 5SADM =0 = - (N is a Lagrange multiplier),

- ECSSAI\%M =0 =|D =0 (N; are Lagrange multipliers).

* Hamilton’s equations of motion:

58Sy . oH

5‘;5]1” =0 = Yij = 57‘[1 DN +DN ZNKU,
_ OSppm L ij — _O0H

ry O =1 57,

which for the sake of completeness is given by the full expression as follows:

2
.. TT ..
= i =Ny (R = yiR) ¢ 2 (et = T )y
f( 57 ) 2[( 2)}’
_2N 1 - 3
(n: ml — Enn”) + 7 (D'D’N —y"D.D°N)

VT
+D,(nN®)—n"*D.N/ — /°D.N".

As a redundancy check, we realize that the equation of motion for the 3—metric is the same
as what we had obtained in eq. (90) where we replaced Kjj with eq. (88). The evolution of
the conjugate momenta is a new result while the 4 constraint relations simply help us conclude
what we stated above that the lapse and the shift functions are Lagrange multipliers (& thus
are not dynamical variables). These dynamical equations also lead to fundamental Poisson
brackets among the canonical variables of the system, namely:

{rij»viet,my =0
{r', 7}, =0, (103)
{Yij: nkl}l(y,n) = 5f<5ﬁ >

where the Poisson brackets are calculated with respect to variables y;; and n*l. The definition
of the Poisson bracket is taken as:

{f (), k(M my = st [

6f(x) 6h(y)  6f(x) 6h(y) ] (104)

6yij(z) omii(z)  oml(z) 6y(2)

As an aside, without proof, we note that reintroducing the cosmological constant A has
no effect on the definition of 7%/ and a simple relabelling R — (R— 2A) leads to correct re-
sult throughout without any exception. Thus we conclude that the Hamiltonian formalism of
general relativity has no change with the reintroduction of A through this simple relabelling.
Although we are never considering the boundary terms, it can be stated here without proof
that even with the inclusion of boundary terms in the Lagrangian formulation as well as the
Hamiltonian formulation, nothing changes after the substitution R — (R —2A) everywhere.
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(@ (b) (©

Figure 4: Geometric interpretation of constraints: (a) diffeomorphism constraint, (b)
diffeomorphism + Hamiltonian constraints, (c) Hamiltonian constraint [1].

Now we move to the Hypersurface Deformation Algebra (HDA), also known as the Dirac
algebra, where we will have a physical interpretation of the Hamiltonian constraint and the
diffeomorphism constraints.

3.3 Hypersurface deformation algebra

We realize that H[N] and D[N ] are constraints as both vanish on any hypersurface %,. Hence
these constraints must be preserved as the system evolves. Accordingly we expect that H[N]
and D[N ] form a first class set of constraints,” i.e. they will form a closed system of constraints
under the action of the Poisson brackets. Indeed they do and the constraint algebra or more
commonly known as the Hypersurface Deformation Algebra (HDA) or the Dirac algebra is [9,10]
(which can be taken as an independent starting point for general relativity):

@ {DEL, D71} m =D L:7 ] =D[[E21],
) {DIELHIGT} m =H[Le ], (105)

© {H[¢LH[o T}y =D [y (x) (¢80 —08;9)].

A detailed derivation of the HDA is provided in Appendix H. We focus here on the graphical
interpretation of constraints as shown in Fig. (4) [1]. The vector fields generating the tan-
gential and normal deformations of the spatial slice form an algebra* under the commutator,
which finds a representation in the deformation algebra formed by the phase space quantities
H[N] and D[N] under the Poisson bracket. Thus we have a clear geometrical interpretation
for the Hamiltonian constraint H[N] and the three diffeomorphism constraints D[N ]: H[N]
takes us from one hypersurface %; to another hypersurface 3, (whose travel length is propor-
tional to N) while D[N ] allows for movement on one hypersurface itself (whose travel length
is proportional to N). And irrespective of which operation is done first followed by the next,
the algebra remains closed.

In other words, if we consider (a) in eq. (105), the Poisson bracket for two diffeomorphism
constraints is yet another diffeomorphism constraint, implying that if we compute two diffeo-
morphism constraints in different orders, then this would lead us to two different points on the
same hypersurface and thus we need another diffeomorphism to connect the two points on the
hypersurface. Similarly (b) in eq. (105) implies that if we compute Hamiltonian constraint
followed by the diffeomorphism constraint, then we reach a point on the next hypersurface
but the reverse order of computing would take us somewhere in between the two hypersur-
faces and that’s why we need a Hamiltonian constraint at the end to get us to the same point

3A function f defined on the full phase-space is called a first class constraint if its Poisson brackets with all
the constraints of the system vanish weakly, namely {f,®;} ~ 0 (where ®; are the constraints of the system).
Any function that is not a first class constraint is a second class constraint, namely it has one or more non-weakly
vanishing Poisson brackets with all the constraints of the system.

4yJk(x) appearing in (c) are spacetime functions, not just constants, that emerge from the geometrical defor-
mations of hypersurface.
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as reached first. Finally, (c) in eq. (105) means that computing two different Hamiltonian
constraints in different orders both lead to the next hypersurface but at different points and
hence we need a diffeomorphism constraint on the next hypersurface to connect those two
points. This is exactly what is shown in Fig. (4).

As a special case, if we restrict to linear deformations, namely linear coordinate changes
of flat slices y;; = 6;; (the Minkowski limit), it can be shown [13] that the HDA reduces to the
Poincaré algebra under linear diffeomorphisms (where P, is the generator of translations, M,,,,
is the generator of Lorentz transformations and 7, is the Minkowski metric):

{P;,L:PVH()/,TE) =0,
{M,u,v:PpH(y,ﬂ:):nuppv_nvppu: (106)
{Muw Mp,o-”(y,rc) = nuvaa - nuanp - nva,up + nvaM,up .

4 Homogeneous cosmologies

After giving a detailed introduction to the ADM formalism of general relativity, we now shift
towards giving a brief but self-contained introduction to homogeneous cosmologies. We stick
to the assumption of homogeneity but would relax the criterion of isotropy. As we are aware
in case of homogeneous and isotropic universe, we have one independent variable and that is
the acceleration parameter a(t) that appears in the Friedmann-Lemaitre-Robertson-Walker
(FRWL) metric [14]. In the case of homogeneous but anisotropic universe (FRWL being a
special case®), we will see that there are more than one type of cosmological solutions that are
inequivalent to each other. In Section 4.1, we discuss this classification of homogeneous but
anisotropic universes, something known as the Bianchi classification. Then in Section 4.2, we
discuss a set of basis vectors well-suited for homogeneous cosmologies, namely the invariant
basis and go on to show how the Einstein field equations look in this basis. In Section 4.3,
we discuss the dynamics of the Bianchi models in the Lagrangian formulation and then, as
examples, specialize to the case of Bianchi I & Bianchi IX universes. We recover these results
for Bianchi I & Bianchi IX universes in the Hamiltonian formulation in Chapters 5.1 & 5.2
respectively, thereby showing the equivalence of these two formulations. We always consider
the vacuum case in the bulk.

4.1 Bianchi classification

We rely heavily on the resources [15, 16] for this section. By homogeneous, we are referring
to those spacetimes which have spatial homogeneity [15,16]. We do not deal with the case
of entire spacetime manifold being homogeneous where the metric is the same at all points
in time and space because such a universe cannot expand at all. A spatially homogeneous
spacetime (or simply the homogeneous spacetime from now onward) is defined as a mani-
fold possessing a group of transformations that leave the metric invariant, or in other work a
group of isometries. Accordingly there is a set of vectors, known as the Killing vectors &, that
generate such invariant transformations (Lzg = 0) whose orbits are spacelike hypersurfaces
foliating the spacetime manifold which we encountered in Chapter 2.3. So we start with a
brief overview of Killing vector fields following which we make the definition of homogeneity
mathematically more precise and what it means in the context of cosmology. Then finally we
discuss the Bianchi classification.

>Different Bianchi universes have different topologies, just like FRWL universes. Thus to make this sentence
more precise, the closed FRWL universe is the isotropic case of Bianchi IX, the flat FRWL universe is a special case
of Bianchi I & Bianchi VII, and the open FRWL is of Bianchi V & Bianchi VII,. See the chart 129 for the Bianchi
classification.
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Killing vector fields

The Lie algebras of Killing vector fields are responsible for generating infinitesimal displace-

ments that can lead to conserved quantities and allows for a classification of homogeneous

cosmologies. Before we delve into that, let’s focus on Killing vector fields themselves.
Consider a group of transformations

xt— x™ = f¥(x,a), (107)

.....

group and let a, be the identity such that f*(x,ay) = x*. Then taking an infinitesimal trans-
formation ay + da about identity leads to:

dad
=4 (x) (108)

/ ofH
xt—xt=fH(x,ay+ ba) %f“(x,a0)+(i)(x,a0)5aa
——
=xH
:>x“—>x/“%x“+§55aa
=(1+8ab&,)x".

The first-order differentiable operators {£,} (total r of them) are the generating vector
fields, also called the Killing vector fields, defined as:

d
=g
Ep =8 IR (109)
where the components a:e given by {& ’g } and satisfy Lrg,, = 0. Thus we have
x™ a1+ 8aPEp)xH ~ 5@ s x . This is for infinitesimal transformations of the group.
Finite transformations of the group are represented by:
st — xM = W Caxh (110)

.....

The Killing vector fields form a Lie algebra where the basis {£,} is closed under commu-
tation:

[ga) gb] ::I:C(ibgc: (111)

where C?, are the structure constants of the Lie algebra and =+ refer to the left-/right-invariant
groups.
This algebra allows us to define a natural inner product as follows. Suppose {e,} is a basis
of the Lie algebra g of a group G:
leq,ep] =C; e, (112)

Then we can define y,;, = C;,C gc = Ypq (Symmetric by definition) that allows for a natural

inner product on the Lie algebra (when det(y,;) # 0) as follows: y,, = e,.e, = yY(eq, €p). This
is known as the semi-simple group which is our primary interest.

Mathematical definition of homogeneity

With this introduction about Killing vector fields, we now proceed to define homogeneity. Sup-
pose that the group acts of a manifold M as a group of transformations x* — f*(x,a) = f¥(x)
and let us define the orbit of x: f;(x) = {f,(x)|a € G}. This constitutes a set of all points
that can be reached from x under the group of transformations. Thus we define the group
of isometry at x is G, = {a € G|f,(x) = x} (it is the subgroup of G which leaves x fixed).
Suppose G = {ay} and f;(x) = M and every point in M can be reached from x by a unique
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transformation. Then G|G, = {aay|a € G} = G where G, is the group isotropy at x. Thus G
is diffeomorphic to M. Then for a given basis {e,} of the Lie algebra of a three dimensional
Lie group G, the spatial metric at each point of time is specified by the spatially constant inner
products: e,.e, = g4p(t) (6 functions of time). This is the definition of spatially homogeneous
universes that we are interested in. We will see later that Einstein equations become ordinary
differential equations for these six functions for pure gravity case. In three dimensions, the
classification of inequivalent 3D Lie groups is called the Bianchi classification and determines
various symmetry types for homogeneous 3-spaces which is analogous to how k = —1,0,+1
determines the possible symmetry types for homogeneous and isotropic (FRWL) 3—spaces.

A homogeneous spacetime is defined by spacelike hypersurfaces ¥, such that for any point
D,q € %, there exists a unique element 7 € G such that t(p) = q (here the Lie group acts
transitively on each %,). Such uniqueness implies that dim(G) = dim(%,) = 3 and thus
G = 3,. As an example, the simplest case of translation group has ¥, = R3. Thus the action of
isometries on X, is just the left-multiplication on G and tensor fields invariant under isometries
are the left-invariant ones on G.

From now on, we specializing to 3 + 1—D where we foliate the spacetime manifold as
M =R x G. We demand the invariance of the line element on each of the hypersurfaces:

dlZ =Yab (xl’xz’ xg)dx“dxb =Y (xq’x/z’ X/S)dxladx/b . (113)

In general for any non-Euclidean homogeneous 3—D space, we have three independent differ-
ential forms w® (a = 1,2, 3) which are invariant under the transformations generated by the
three independent Killing vector fields. We write them as w® = efdx®. The components ey
in the dual basis satisfy the orthogonal relations: (i) efl‘eg =6 fl’, & (ii) eg‘e% = 5%. Thus the
3—line element becomes:

di® =ngp (e2dx?) (efdxb) , (114)

from which we read off the metric as yq, = n4p(t)e; (xi) ef (xi) and the inverse metric as
ri =n*F(t)ed (x1) e/g (x'). Defining volume V = [e4| = e -[e® A e® ] leads to det(y,;) = nV?
where 1 = det(n4p).

With a given basis {e,}, we have the following relation for homogeneous spacetimes (spa-
tial homogeneity):

=Cel. (115)

Proof: The invariance of the line element in eq. (114) means that w?(x) = w%(x’) =
eq(x)dx® = e (x’ ) dx'® where e on both sides is the same function expressed in old and
new coordinates respectively. From this equality, we can deduce:

ox'P
Jdxo

= ef (x’) ed(x). (116)

This is the fundamental differential equation defining the change of coordinates x «— x’ in
terms of given basis vectors é* and its dual €,. The integrability condition of eq. (116) is
known as the Schwartz condition provided by:

9%x'P 9%x'P
dx2dxY  Ixrdx« (117)
)
(ef(x’)e?(x)) e (e{l5 (x")ed(x)) .

=
dxe
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Taking derivatives of é,(x) and €,(x’) on both sides and using the orthogonality conditions of

a.
ea.

36;(36) B deg(x)
Jdxe dxY

( )5( - o¢, ( )5(x) e;’(x)eg(X)=€£(x’)[

8x’5 ] . (118)
Multiplying and contracting on both sides by ef{(x)eZ(x)e;; (x’ ), we get:

aef (x’) aef x/ aef (x) 3€f (x)
= ef (x') eg (x’) aﬁx/a - ;x(/y ) - ef (X)eg (x) aﬁx5 - ﬁéxY . (119

Basically, the LHS and the RHS are the same functions denoted in the new and the old coordi-
nates respectively. Since the coordinate system is arbitrary, we have LHS = RHS = constant,
where we choose the group structure constants C;, as the constant to get:

dec e
:(ﬁ—axfi)egef ct,, (120)

which upon contracting with e/ gives us eq. (115)

Here C;, are the structure constants of the Lie algebra for the Lie group G which is by

d
a x>

construction C;, = —C; . Defining a vector as X, = e/ we have:

[X0,Xp]=CE X, . (121)

Thus the condition of homogeneity is then expressed by the Jacobi identity:

[[Xa:Xb]:Xc]+[[Xb)Xc]3Xa]+[[Xc)Xa]:Xb]:O) (122)
or explicitly:
f ~d f ~d f ~d
Cchf+C Cf +C; C'f—O (123)

Introducing C:, = = €,,4C9° where €, is the 3D Levi-Civita tensor with €153 = +1, we get
for the Jacobi identity:

€peaCeiCct® =0. (124)

Thus Bianchi classification of categorizing inequivalent homogeneous spaces reduces to finding
all inequivalent sets of structure constants. Each algebra uniquely determines the local properties
of a 3D group.

Bianchi classification

In order to have Bianchi classification, we start by realizing that any structure constant can be
written as:
Cp. zebcdmda+5?ab—5‘gac, (125)

where m®® = mba,

Class A and Class B Bianchi models refer to the cases a; = 0 and a; 7# 0 respectively.
Accordingly Jacobi identity becomes

m®a, =0. (126)
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Without loss of generality, we can take a, = (a,0,0) and matrix m®® can be described by
its principal eigenvalues, say, n;, n, and n3 (in 3D). Then Jacobi identity further simplifies to

=>na=0, (127)
which means either a or n; has to vanish. Explicitly we have Jacobi identity as:
[X1,X3] =—aX; +n3Xs,
(X5, X3]=n1X;, (128)
[X3,X1]=nyXy +aXs,

where a > 0 and (a, ny, ny, n3) are all rescaled to unity without loss of generality. Thus Bianchi
classification is given as [17]:

Type a np, ng ng
Bianchi I 0O 0 0 O
Bianchi II 0 1 0 O
Bianchi III 1 0 1 -1
Bianchi IV 1 0 O 1
Bianchi V 1 0 0 O
Bianchivi, a 0 1 -1 (129)
Bianchivi, 0 1 -1 0
BianchiVvil, a 0 1 1
Bianchivil, 0 1 1 0
Bianchi Vil 0 1 1 -1
Bianchi IX 0 1 1 1

Clearly FRWL universe (homogeneous as well as isotropic) is a special case of Bianchi
universes (see footnote 5 at the start of this Chapter 4). Note that Bianchi I is isomorphic
to the R® (3D translation group) for which the flat FRWL model is a particular case (once
isotropy is restored). Thus Bianchi I universe has flat spatially homogeneous hypersurfaces.
Analogously, Bianchi V contains open FRWL as a special case. Another crucial point to be noted
is that not all anisotropic dynamics are compatible with a satisfactory Standard Cosmological
Model [8] but some can be represented as “FRWL model + a gravitational waves packet” if
certain conditions are satisfied [18,19]. As we will see later, for example in the case of Bianchi
IX universe, there is a type of dynamics as one approaches the big-bang singularity where
there is an infinite number of transitions from one free motion to another due to bounces off
the potential wall (just like the case of a billiards ball bouncing off the walls of the billiards
table and travelling freely in between those collisions). Such a behaviour is what Misner called
Mixmaster behaviour [20-22].

The line element of a homogeneous universe can be decomposed as follows:

ds? = ds? — 6 gy G VP dxtdxk, (130)

where ds° denotes the line element of an isotropic universe having a positive curvature con-
stant k = 1 (closed), Gl(,f)(b) is a set of spatial tensors and 64y are the amplitude functions
which are sufficiently small when far from singularity. These satisfy:

(a)(b);l _ 2 (a)(b) (a)(b)k __ (a)(b)i _
Gik;l =—(n"— B)Gik > Gi;k =0, Gi =0. (131)

Here Laplacian is referred to the geometry of a unit sphere.

Choosing a basis of dual vector fields w® preserved under isometries and recalling
yli = pab e(‘xe;j, we can decompose the 4—D line element as:

ds? =N2dt2—naﬂa)“®wﬁ, (132)
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which is parametrized by the lapse function N and w® that satisfies the Maurer-Cartan equa-
tions:

1
do® = Ecgcw’f’ Aot (133)

Then we have explicitly the expressions for Bianchi I and IX universes as:

e Bianchi I:
Cgc =0,
W' =dx, (134)
w? =dx?,
w3 =dx3.
e Bianchi IX:
Cabc = €abc >
1 . .
w = sin(y)sin(6)d ¢ + cos(y)d O,
Y ¢ Y (135)

w? = —cos(y)sin(0)d ¢ + sin(yp)do,
w3 =cos(8)d¢ +dy,

which are the coordinates for a unit 3-sphere. Here C; = €4 €% where C9¢ = diag(1,1,1).

4.2 Invariant basis & Einstein field equations

We recall that the set of transformations generated by Killing vector fields {&;} (i =1,2,3) on
a manifold M form a Lie group, also known as the isometry of the manifold. They are given
by:

[£:.&1]=CfiEe, (136)

where Cg are the structure constants of the Lie algebra which satisfies Cg/a = —Cgﬁ. Thus
in 3—D, we have 9 independent components. Egs. (123, 124) are also its general properties.
Here we are going to discuss about two types of basis states: the invariant basis as well as
triad formalism (a non-coordinate basis). Then we recast all 3—geometrical objects capturing
the curvature of spacelike hypersurfaces in terms of non-coordinate basis. Finally we reduce
the Einstein field equations for the vacuum case in a homogeneous ansatz (provided in eq.
(145)), both in terms of coordinate as well as non-coordinate bases (which coincide with
invariant basis).

Invariant basis

We start with considering a general coordinate system {x'} whose coordinate basis is {3;} and
its dual basis {dx'}. Then the 3—metric is given in terms of this coordinate basis is:

y =y dx'dx) . (137)

But from the definition of Killing vector fields, we have Ly = 0 which in coordinate basis
becomes L dx' =0V i. But we also know that the inner product between basis state and its

dual is a delta function: (dx!, 9;) = 5; Applying the Lie derivative on this equation and using
the chain rule, we get <£§Cdxi, 8j> =— <dxi, Le. 3b>. Thus we have established:

Ledx'=0 & L:8,=0. (138)
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This is the defining relation for invariant basis: a set of basis states that are invariant under
transformations generated by &.. Dual to the invariant basis is called the dual invariant basis.

Before we proceed further of how to construct an invariant basis, we list down the advan-
tages of using this basis in the context of Bianchi (homogeneous) universes:

(a) Components of the 3—metric y are spatially constants on each of the hypersurfaces %,
while only depending on time,

(b) If {e,} are the vector fields associated to the invariant basis, then they form a Lie al-
gebra [ei,ej] = D;,e.. Generally the structure functions D;, are dependent on spatial
coordinates but in case of invariant basis, these are constants.

() D;b = Céb in an invariant basis for Bianchi universes where Cflb is introduced in eq.
(136). This holds at all points on any spatially homogeneous hypersurfaces.

We realize that in general a coordinate basis need not coincide with an invariant basis.
Here we discuss how to construct an invariant basis using (i) a coordinate non-invariant basis,
& (ii) three independent Killing vector fields on Bianchi spatial hypersurfaces. We start with
taking three independent vectors V; at any arbitrary point P on a hypersurface. It is often
convenient to identify them with Killing vector fields &; so that we have V; = 511. &;(P). Then
any 3—vector fields {A,} by construction form an invariant basis if it satisfies the following two
conditions:

M AP)=V,, (D) LA =[E,4;]=0. (139)

It is conventional to denote invariant basis by {é,} and use Greek indices to label them
where a =1, 2, 3. We will be using invariant basis to discuss Bianchi cosmologies in this work.
Note that in general invariant basis {é,} may not coincide with coordinate basis {d;} but if it
does then D7, = C:, = 0.

Triad formalism

Any vector in a non-coordinate basis can be written as a linear combination of the coordinate
basis vectors as follows:
by =€50,, (140)

where indices a and a run over {1, 2, 3} on spacelike hypersurfaces, e, are called triads which
can depend on spatial coordinates and we always take det (eg) > 0 to preserve the orientation
of the manifold.®

Inverse of the triads e are defined as the components of the vectors of the dual non-
coordinate basis in the dual coordinate basis:

6% = e%dx® . (141)
The triads and its inverse satisfy the orthogonality conditions:

a,b _ <b
eaea_aa’

a, a __ a
eaeﬂ—Sﬁ. (142)

A note on notation: The notation used here can be a source of confusion because Greek indices have been
used until now to denote spacetime components while Latin indices are used to denote spatial components. But
here Greek indices are used to denote the non-coordinate basis components (which we will later take to coincide
with the invariant basis in the context of Bianchi cosmologies) while Latin indices are used to denote coordinate
basis components and both runs over spatial parts only. The distinction between these two usages should be clear
from the context.
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The dual non-coordinate basis satisfies the Maurer-Cartan structure equation:

A 1 A A
df* =—=D% 6* A O7
27 By

1 (143)

_ _~ra Aa A Ar

= 2%9 AOY,
where the second line holds only iff the non-coordinate basis coincides with the invariant
basis which is of our interest. Note that Clﬁ = 0 when an invariant basis coincides with

a coordinate basis while Dgﬁ = 0 when a non-coordinate basis coincides with a coordinate

basis. An example for the triads are ei = 52 for Bianchi I universe (where Cgﬁ = 0, see eq.
(134)).

Geometry of hypersurfaces

Now we are in a position to start expressing the geometry of hypersurfaces in terms of triads.
We defined 3—metric in terms of coordinate basis in eq. (137). Then its components in non-
coordinate basis is given by:

— i ,J
hop = yl-je;eﬂ . (144)
The 4—line element of a homogeneous universe becomes:

ds? =—dt? + )/ijdxidxj =—dt? + haﬁ(t)el.ae][.jdxidxj . (145)

Accordingly the connection coefficients in non-coordinate basis are defined as:
Déaéﬁ == (3)1—2:/5 é), 5 (146)

which in terms of triads become:

Dae;j = (B)Fgﬁ el , Diel = (B)Fij}(ef;. (147)

Then the compatibility with the metric D, h,s = 0 implies )T, ;5 = —®)T; .. Moreover
torsion is defined in a non-coordinate basis as:
Th, =1, ~®r] -Dl,. (148)
Thus torsion-free implies T = 0 = (3)F§ﬁ — (B)I‘ga = Dgﬁ = C(’; , Where last equality is true
only when non-coordinate basis coincides with invariant basis. The crucial point is that in a
non-coordinate basis, connection coefficients (3)Fgﬁ are not symmetric in its indices a and f3.
Only when a non-coordinate basis coincides with a coordinate basis, then Dgﬂ = 0 and we
have symmetry restored in case of torsion-free.
Just like the 3—connection coefficients, we can evaluate other 3—geometric objects in non-
coordinate basis whose results are listed herewith:

1
@ —
Tupy =3 (Dayp + Pypa — Dpay) »

(3) =5 @
Rg.5 =0, "Tgg

(149)

(3) a3 (3a (3) (3)
— 951% + @re@re, g @re, _pe Gre

Remember that the indices are raised or lowered using the 3—metric in non-coordinate

basis, i.e. using h,pg. For example, D,g, = ha5Dgy, hM(B)F; = (3)FWP and similarly 3—Ricci

tensor is defined as ®)Rg5 = (S)Rga 5 giving us the following result:

1
(3) - = Y Y Y e
Rup = 5 (aypaﬁ + aYDﬁa + aﬂD;a + aaDm +Dg Dysq
s (150)
»

1
[
+D"%Dy5— D

Y nod Y nod
Days + DlsDoy + DYEDﬁa) .
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Special Case: The case we are interested in is when non-coordinate basis coincides with in-

variant basis. Then D(Z
with:

p = Cgﬁ are constants and their derivatives vanish. This leaves us

1 2
BIRP = 7 [2CP2C, 5+ COPCus + CPOCs, — T (CP + CP) + 88 ((c2)’ —2¢Cs,) ], (151)
where we define C% as Cgﬁ = eaﬂEC‘SY and h = det(hyp).
Now we proceed to give explicit expressions for invariant basis and its dual for Bianchi IX

universe as this is of the most importance to us in this work. Let the invariant basis be denoted
by {y,} (u=1,2,3) and its dual be {c"}. Then:

* Invariant Basis: We have y, = eﬁ(x)aa. Thus:

X1 =—cosrcotf3d. —sinrdy + cosrcscH0y,
X2 =sinrcot00, —cosrdy —sinrcsc6,, (152)
X3 = ar 5

from which we can read off the triads:

el ef, e‘f =—cosrcotf,—sinr, cosrcscH,
eg,eg,eg’:sinrcotG,—cosr,—sinrcsc@, (153)

es, eg,ef =1,0,0.

* Dual Invariant Basis: Recall o = e}(x)dx®. Then:

ol = —sinrd6 + cosrsin 0do,
0% =—cosrdf —sinrsin 0do, (154)
o®=dr+cosfd¢,

from which we can read off the inverse triads:

e},eé,e}b=0,—sinr,cosrsin0,

2 .2 .2 _0 _ o ino

e, ey, e, =0,—cosr,—sinrsing, (155)
3 .3

er,ee,ei =1,0,cos0.

Using these results, a wide variety of useful results can be obtained which will be used
later while imposing the homogeneous ansatz on Bianchi IX ADM Hamiltonian (Section 5.2).
For example, from eq. (144), the homogeneous metric determinant becomes h = ysin?(0).
Similarly D; (sin(@)eé) =0V a’

"We can explicitly check this. For example, consider a = 1, then we have
D; (sin(8)e]) = D, (sin(0)e! ) + Dy (sin(0)e’ ) + D, (sin(6)e? ) .

Now we plug in the explicit forms of triads from eq. (153) to see that D; (sin(@)e{) = 0. Similarly we can check
for a = {2,3}.
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Einstein field equations in homogeneous universes

We are interested in the vacuum case (pure gravity) as usual. This means that the 4—stress-
energy-momentum tensor T, = 0. Using eq. (D.19), we see that the Einstein field equations
become (4)Ruv = 0. We impose on this the homogeneous ansatz for the metric, i.e. eq. (145)
reproduced here for convenience:

ds? =—dt?+ yijdxidxj =—dt®+ haﬁ(t)eiaefdxidxj . (156)

We first present the result in coordinate basis where we start with the metric
ds? = guydxtdx’ =—d t2+7; jdx'dx’ to directly calculate the Christoffel symbols as follows:

1. 1 ..
(4)Fc?b = EYab > (4)F(‘)1b = E}/ac}/cb > (4)1—‘1()1c = (3)1"§C > (157)
while the remaining ones are identically zero. Here (3)FI‘)‘C is defined in an analogous manner
(suited to 3—D) to how (4)1"3/5 is defined in Appendix A. Accordingly the 4—Riemann curvature

is evaluated. Thus (4)Ruv = 0 reduce to the following in a coordinate basis for a homogeneous
ansatz:

1. 1,
“Roo = =5 874 — 77475 =0,

4
1 . b . b
“Rao = 5 (Do = Daty) =0, (158)
1, . 1, . oo
®Ryp = 50Yab+ (Fap¥e—275e75) + PRap = 0.

In non-coordinate basis that coincide with invariant basis, we use (B)Ra = e eﬁ GR ap-
For the homogeneous metric, we now read off the metric from ds? = —dt2 + hqpef eﬁ dx'dx’
and use y;; = hype'e /3 . When non-coordinate basis coincides with invariant basis, recall that
Dg p= CZ p are constants and their derivatives vanish. Thus (4)R = 0 reduce to the following

in a non-coordinate basis (which coincide with invariant basis) for a homogeneous ansatz:
1. 1. 4.
4)p0 _ —
(RY = 5 00hG + Zh{f‘hg =0,
1.
R, = eg R, = S (¢t —8hc3, ) =0, (159)

Oph — ,a,P@pb _ (3
(DR = el (IRD ()Rf"+2—a (Vhit) =0

4.3 Dynamics of the Bianchi models in Lagrangian formalism

We now proceed towards finding a general solution. A general solution, by definition, means
that it has to be completely stable and must satisfy arbitrary initial conditions. A perturbation
should not change the form of the solution. First we discuss the methodology towards finding
a general solution and then specialize to the case of Bianchi I & Bianchi IX universes as these
two cosmological solutions are what we are interested in for the purposes of the work. In
Subsection 4.3.1, we present the solutions of the vacuum case for Bianchi I universe (also
known as the Kasner solutions) while in Subsection 4.3.2, we show Mixmaster dynamics in
Bianchi IX universes.

We take the most general ansatz for a diagonal metric and calculate the Einstein field
equations corresponding to this ansatz. In order to be able to do so, we introduce three spatial
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vectors as e = £(x"), m(x"),n(x") and take the most general diagonal ansatz for h,g (defined
above in eq. (144)) as:

hop = az(t)Zaﬂﬁ + bz(t)mamﬁ + cz(t)nanﬁ . (160)
Then just like we did above, using this metric, the Einstein field equations for a generic
homogeneous cosmological model in an empty space for a generic diagonal 3—metric become:

(abc) 1
abc  2a?b2c? [n%a“_(nzbz_”acz)z] =0,

m_ (abe)y 1 . , .
R = abc +2a2b2c2 [”2” _(Tl1a —nsc ) ]_o,
(abe) 1 \
—R" = n 4
n agbc = 2a2b2c2 [

L _
—R] =

(161)

where (n,ny,n3) = (Cq1,Cyy,Cs3) (recall C;, = €,54C% and eq. (129)) and off-diagonal
terms of Ricci tensor vanish identically due to the choice of the diagonal form of hg.

We now introduce a new temporal variable T as dt = abc dt (where t is the coordinate
time) as well as a = In(a), f =In(b) and y = In(c). Then the Einstein field equations further
simplify to:

2

20, = (n2b2 — ngcz) — n%a‘*,
2

2/577 = (n1a2 —Tl3C2) - n§b4’

162
2y = (nla2 —ny b2)2 - n§c4 R .

1
E(a+ ﬁ + Y)TT = arﬁr + ArYr +ﬂTYT>

2
where A, = g—? and A, = %.

These are the homogeneous Einstein field equations in vacuum corresponding to the most
generic diagonal ansatz for the metric in eq. (160) that needs to be solved.

4.3.1 Kasner solution

The vacuum solutions for the case of Bianchi I universe is known as Kasner solution. For the
case of Bianchi I universe, we realize that from eq. (129) that a = n; = n, = n3 = 0. They all
vanish. Accordingly, the RHS of eq. (162) vanish.

We now proceed to solve for Bianchi I explicitly using eq. (159). We know for Bianchi I
universe from eq. (134) that C/‘;‘Y and the triads e, = 6¢,. We plug this back in eq. (159) to get
(the second equation becomes trivial):

. 1.4,
aph% + 5hghg =0,

1 S (163)
—3, hh" ] =0.
Jh 0( a)
The second equation implies:
\/ﬁhg = constant = ZAQ (say), (164)

where }Lg is a matrix of coefficients that can be reduced to its diagonal form. This makes the

first equation as:
- 2
a__“29Bqa
Oohy = h/lakﬁ . (165)
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Substituting hg from eq. (164) into eq. (165), we get % = constant, solving which
gives:

h=Ct?, (166)

for some constant C. Accordingly eqs. (164, 165) becomes:

W= 228
sz (167)
LA _ < qfBqa
Oohty = —= 5 AAG.

Without loss of generality, we can always rescale the spacetime coordinates x* such that
the constant becomes one, or in other words A3 = 1. Then we substitute hj from the first
equation into the second in eq. (167) where we use A? = 1 to get from the second equation:

2L =1. (168)

Next, putting the constant to unity, if we lower the index 3 in the first equation of eq.
(167) using hg,, we get:

. 2
ha[} == ?A};hﬁy (169)
This is the system of ordinary differential equations that needs to be solved to get the 3—metric.

In order to do so, we diagonalize A}, by its eigenvalues py, py, p3 (all real & different) having
eigenvectors i), 7i®), i®). Then the solution to the system of ODEs in eq. (168) is given by:

hep = tzplng)ng) + t2p2n£‘2)n§52) + t2Ps n(j)ng). (170)

Since the triads for BianchiIis given by e}, = &7, then we can choose the frame of eigenvec-
tors that resemble the spatial coordinates denoted by x!, x2, x2. Thus the spatial line element
of Bianchi I for the vacuum becomes:

dI2 = 221 (dx )" + 622 (dx?)? + £205 (dx®)? (171)

where pq, p,, p3 are called Kasner exponents that satisfy:
s Ai=1 =p1+patps=1,

s =1 =)+ + () =1.
Except for the cases (0,0,1) and (—%, %, %), the Kasner exponents are never equal and one is
always negative while the other two being positive. In fact if we choose a particular ordering
for Kasner exponents, say, p; < p, < ps, then the range of Kasner exponents are:
—1<p <0 0< <g g< <1 (172)
3=P1=9 —P2—3: 3—P3— .

Thus we have solved the vacuum case of Bianchi I universe and realize that (i) volumes
grow linearly in time, (ii) the linear distances grow along two directions while decrease along
the third (unlike the FRWL solution), and (iii) the metric obtained has only one true singularity
at t = 0 with the only exception of {p;, p2, p3} = (0,0, 1) case where using the transformations
t sinh(x®) = ¢ and t cosh(x®) = 7, the metric reduces to a Galilean form having a fictitious
singularity in a flat spacetime. We have used the Lagrangian formulation here to get these re-
sults and will establish the equivalence with the Hamiltonian formulation of Bianchi I universe
in Chapter 5.1.
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4.3.2 Mixmaster dynamics in Bianchi IX universe

Finally we consider the behaviour of the solutions for the Bianchi IX model which is of in-
terest to us. Referring back to eq. (162), for the case of Bianchi IX universe, we have
(ny,ny,n3) = (Cyqq, Cqg, C33) = (1,1, 1). Thus the Einstein field equations become:

20, = (b2 —62)2 —a*,
2B, = (az — 02)2 —b*,

o en = (®— b7 —ct, 179

1
§(a+ /3 + Y)TT = a’L’/jT + ArYr +/57Y'r’

where we recall the definitions of {a, 8, y} = {In(a), In(b),In(c)} while {a, b, c} are defined in
the ansatz for the metric in eq. (160).

We realize that if we neglect the RHS of the first three equations in eq. (173), we recover
the Bianchi I universe (plug (n;,ny,n3) = (Cy1, Cyy, C33) = (0,0, 0) for Bianchi I in eq. (162)
to see this) whose solution is the Kasner solution (derived in Subsection 4.3.1). In this case
the fourth equation no longer remains an independent equation. So the way we proceed now
is to consider the Kasner approximation of the eq. (173) within Bianchi IX universe and study
the dynamics and stability of such solutions within the context of Bianchi IX universe.

In the Kasner approximation, we begin with considering the ordering p; < p, < ps with p;
as being negative for the Kasner exponents that appeared in the Kasner solution (eq. (171)).
We identify p; = py, p» = p, and p; = p, where the spatial vectors £, m & n are defined in eq.
(160). Since flat FRWL universe is an isotropic case of Bianchi I, here p, corresponds to the
scale factor of FRWL solution a(t). Moreover, we derived in Subsection 4.3.1 that t = 0 is the
true singularity of Bianchi I universe, we have the following behaviour of one of the directions
in the vicinity of the singularity:

a~—|p;|Int .
p1<0—-p;=—Ip1l, a~ L increases for t — 0, (174)
t|P1|
while for other two directions:
>0 = ~ Int
P2 = P2=Ipal. B~ IpalInt, decreases for t — 0. (175)

p3>0—p3=Ipsl,y ~ Ips|Int,

Then we have a ~ tP1, b ~ tP2 ¢ ~ tP? = abc = At (A = constant) (since p;+p,+ps = 1).

Since dt = abc dt = Atdt, we have dT = %(t). The initial time is when t — + 00 and the

singularity is at t = 0. Then in terms of 7, we have the initial time at T — +00 and the
singularity is approached when 7 — —o0o. Thus:

ar =Apy, Bz = Apy, Yr =Aps, (176)

which clearly satisfies the Kasner approximation of the four Bianchi IX equations (173) (i.e.,
RHS = 0 in the first three equations). These can be taken as the initial conditions (7 — +00).

Thus the Kasner approximation in eq. (173) cannot persist forever because the RHS always
contains one increasing quantity (eqs. (174)) near the singularity. In order to study its effects,
we focus on eq. (173) where we only consider the increasing terms in the RHS to further
simplify the Einstein field equations as (recall from the definition of a that a = e%):

1 1
Arp = —£a4 = —§e4a ,
1 4 1 4a
TT=+-—qa"= =",
P 2 2
1 1
Yer = +£a4 = 5640‘;
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which can be integrated using initial conditions in eq. (176) as follows:

2 _ 2|p1l A
cosh(2|p;|AT)’

177
b? = b2 exp[2A (p; — Ip1/) T]cosh (2 |py | AT) a7n
c* = cgexp[2A(ps —Ip1) T]cosh (2 |py | A7),
where b, and ¢, are integration constants.
Towards the singularity t — 0 (7 —» —o0), we get [23,24]:
a~exp[—Ap;T],
~exp|A +2p)7T
p[A(p2+2p1) 7], (178)
c~exp[A(ps+2p1)7],
t~exp[A(1+2p;)T].

Thus we have a new Kasner epoch where we express {a, b,c} in terms of the new Kasner
exponents {p},p,,ps} as: a ~ tP1, b ~ tP2, ¢ ~ tP3, such that abc = A’t (compare with the
old Kasner epoch below eq. (175)) where:

s/ — _Ipal A _2|P1|—P2

Py =193p> P2=712p 0
s _ ps—2|pi| /_ (179)
3= 13—2|p11| , A _(1_2|p1|)A

Thus we see the effect of perturbation over the Kasner regime that a Kasner epoch is re-
placed by another one so that the negative power of t is transferred from the { to the m
direction. So if the original solution had p; < 0 then in the new solution, p; < 0 while
p;7 > 0. The exponents of the new Kasner epoch in terms of the old ones are expressed in
eq. (179). Accordingly the previously increasing perturbation in one direction dampens and
eventually vanishes while other perturbations in other directions increase. This leads to re-
placement of one Kasner epoch by another in the Bianchi IX universe. These changes in the
Kasner epochs from one straight line motion to the next straight line motion can be visualized
as a representative point moving on a straight line (one Kasner epoch) and then bouncing
off the potential walls in the Bianchi IX universe and then setting off onto another straight
line motion (another Kasner epoch) until the next collision with the potential walls happens.
Thus we conclude that the Kasner solutions in Bianchi IX universe are unstable. This is the so-
called Mixmaster behaviour. We will encounter this again from a different perspective of ADM
(Hamiltonian) analysis of Bianchi IX universe in Chapter 5.2 where the graphical picture of a
particle bouncing off the potential walls will be made more precise.

5 ADM formalism of homogeneous cosmologies

We study in this chapter the homogeneous cosmologies, like we did in Chapter 4, but in the
ADM formalism. In Section 5.1, we start with the vacuum case of Bianchi I universe, much like
what we derived in Chapter 4.3.1, and recover the results obtained therein. In Section 5.2, we
do the ADM analysis of the vacuum case of Bianchi IX universe where we study its dynamics in
details using the 3+1—variables. We illustrate the Mixmaster dynamics that we already showed
in Chapter 4.3.2 and provide a graphical picture of the mechanism. Mixmaster dynamics
lead to infinite number of shifts from one Kasner epoch to another before the particle reaches
the big-bang singularity. Then to further practice the ADM formalism, we provide two more
examples in this chapter: (i) in Section 5.3, we introduce a free & massless classical scalar
field that is coupled to the Bianchi IX universe, and (ii) in Section 5.4, we extend the previous
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system to the case of a classical scalar field with a potential term. Through these two examples,
we further show that how the Mixmaster dynamics of Bianchi IX universe can be averted in the
presence of a scalar field. This phenomenon of having only a finite number of bounces (finite
number of shifts from one Kasner epoch to another) before the particle reaches the big-bang
singularity is known as quiescence. We wish to remind the readers that we are only considering
classical objects throughout this work.

5.1 Bianchi I universe

We consider the ADM Hamiltonian in eq. (96) and the corresponding Hamiltonian constraint
(eq. (97)) & the diffeomorphism constraints (eq. (98)), then apply them in the context of
Bianchi I universe. We recall from eqs. (129, 134) that BianchiI has flat spatially homogeneous
hypersurfaces. Moreover, in Bianchi I universe, coordinate basis is the invariant basis and
triads are given by e} = &¢,. Accordingly the 3—curvature is zero. Therefore for Bianchi I, the
ADM Hamiltonian (eqs. (96, 97, 98)) reduces to:

Hapy =H[N]+D[N’]=NH+N'D;, (180)

where H[N ] is the Hamiltonian constraint given by:

H[N]Ef d%N[—i(”—Z—niini)], (181)
%, JT\ 2 ’

and D [N i] is the diffeomorphism constraint given by:
D[N]= J d3xN'[—2D/ ;] . (182)
Z
We impose the homogeneous ansatz by making use of the explicit forms of triads e, = 6,
and realizing that in Bianchi I universe, we have the non-coordinate basis coincide with the

coordinate basis, to get (see eq. (145)):

Tij = hap (),

. 183
nil - n (1), (183
where the spatial homogeneity is reflected in either of the bases.
Then the spatial homogeneity of 3—conjugate momenta in Bianchi I leads to:
Dg[N]=0, (184)

as m*(t) depends only on time in the invariant basis.
The Hamiltonian constraint becomes:

Hg[N]= f d®xN (i(naﬁn —n—z)) (185)
% vh )

where the spatial components are put together in the integrand of UZ d3xN ) which we can
t

simply call n. Thus we have the total ADM Hamiltonian for Bianchi I universe as the Hamilto-

nian constraint itself (n being the Lagrange multiplier):

T

n 2
HBianchiI = IHIBI[IV] = ﬁ (ﬂ:aﬁ naﬁ - ? ) (186)
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where the constraint relations become Hgpj,ncnit = Hpiln] ~ 0 as the diffeomorphism con-
straints are trivially satisfied because of being identically zero everywhere.

Of course, the Hamiltonian formalism should lead to the same result as obtained in Sec-
tion 4.3.1. We will show that it indeed is true. We start with calculating the equations of
motion:

ha[j = {haﬁ:HBianchiI} )

. (187)
ﬂ:aﬁ = {naﬁ’HBianchiI} >

where we use the fact that h,g and n* are independent variables but Tap = haghﬁyn‘” &
n=mn h,p are not independent from h,g. We recall the definition of Poisson brackets from
eq. (104) which we reproduce here suited to our variables:

6f(x) 6h(y)  6f(x) 6&h(y)
,h =|d - . 188
{f (), h(y)Hk,m) f z[5haﬁ(2) 59 (z)  57%(z) Shp (2) (188)
Then calculating the brackets and using gzz; =650 )/,5 and g;:t‘i; =06 262, we get:
. 2n 1
haﬁ = — (ﬂ:aﬁ - —ha/jﬂf) B
vh 2 (189)

qop — 21 (nanrﬁ _ lnaﬁﬂ.)
G LA

where there is an additional term in 7t*® corresponding to the variation of % present in

Hpianchi 1 i €q. (186). But that variation term has the coefficient (naﬁ Tap — %2), which we
take as zero due to the constraint relation Hpg;,,hi; & 0. Thus this equation of motion is
weakly equal which is not a problem because we are always doing our analyses on some
hypersurface & not in between them (see eq. (99) & the text below it). Here n = (f d3xN )
contains the entities dependent on spatial coordinates in its integrand which gets integrated
out. Thus imposing the homogeneous ansatz for the metric removes all spatial dependencies
thereby leaving us with only the time dependencies. Accordingly the constraint equations
when expressed in terms of the homogeneous metric ansatz become global constraints.
We can combine these two equations to get:

80 (ﬂashé‘ﬁ) = ﬁashgﬁ + Tfaailgﬁ =0. (190)

Hence na5h5[3 = 7'5% = constant. Then the first equation in eq. (189) becomes of the
form: _
\/Ehg = constant, (191)

which is of the same form as eq. (164). The rest of the argument is the same as followed after
eq. (164) in Section 4.3.1. Thus we have shown for this case the equivalence between the
Lagrangian & the Hamiltonian formulations.

5.2 Bianchi IX Universe

We refer the readers to Section 4.1 where in eq. (135) we summarize the expressions that
hold for Bianchi IX universe. The important observation to be made is that the non-coordinate
basis for Bianchi IX is the same as the coordinate basis used for a 3—sphere embedded in R*
with a constraint on the radius (which we can set to unity without loss of generality), namely
the hyperspherical coordinates x* (u=1,2,3,4) given by [1]:

cosr,
sinrcos@,
S
S

(192)

inrsinfcos¢,

1
%2
3
x*=sinrsin@sing,
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satisfying (xl)z + (xz)z + (x3)2 + (x4)2 =1 wherer,6 €[0,7] and ¢ €[0,27).
The algebra is non-trivial (see eq. (135)), unlike Bianchi I where Cj;ﬁ =0, and is given by
(for Killing vector fields):

(€ Ep]=€ap E". (193)

We again start with the full ADM Hamiltonian (egs. (96, 97, 98)) which we reproduce
here for convenience:

Hapy =H[N]+D[N’]=NH+N'D;, (194)

where H[N] is the Hamiltonian constraint given by:

1 2
H[N]Ef d®xN —\/?(S)R—ﬁ(%—n”nij) , (195)
e Term I
Term II

and D [N i] is the diffeomorphism constraint given by:

D[N]= f d>xN'[-2D/m;;]. (196)
z,

Then we impose the homogeneous ansatz for the metric (eq. (145)) in invariant basis
where we make use of the explicit forms of triads given for Bianchi IX universe (egs. (152)-
(155)) and recall that &% is a tensor density to get:

Yij = haﬂ(t)ef‘ejf.j =>y= hsin%(0),

. o (197)
nt = sin(G)ﬂ:aﬁ(t)e;e;j .
We first focus on the Hamiltonian constraint. Recall the orthogonality conditions of the

triads efe 2 =06 2 and ege;; = 5%. Term II is relatively straightforward where we use:

.. 2
1 2 1 (Tf”}’ij) 1 " 2 sin(0) 2
YR = — TT ﬁh Sinz 9 - — naﬁh )
T2y 2 2 Tsingey " ap) s (0) = == (7 hap)

ﬂn Ty 7h Tap s

to get for term II:

3 1 (n? ij
TermIl = | d°xN|——| — —n"n;
%, vT\ 2

B U %, AN Sin(e)) [_ﬁ (n%hyp)” + %naﬁ naﬁ] (199)

1 ap 2 1
=n|——=(n"hy) + —=n*fn, ),
( Zﬁ( /5) Vi B

(198)

where n = ( f - d3xN sin(@)) contains all spatial dependence in the integrand which gets
integrated out, leaving us with time dependencies only.
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Next we simplify term I for which we need to use the expression for 3—Ricci tensor for
homogeneous universes in invariant basis provided in eq. (151). We contract the indices a
and f in eq. (151) to get:

()R = % [2C90Co5+ CO4Cu5 + C*Cs — CZ (CE +C2) + 62 ((€2)" —2C%7C5,) | . (200)

Then we use 6, = 3 and simplify this expression to get:

= @R = % [4c99C,5—(C2)" — ()" +3(C8)" —6C*Cys |

=[(ca)*—2cPc,p] .

Then we rewrite C; = C“ﬁhaﬂ and C*P Cop = coP nghagh/jy as well as recall that for
Bianchi IX universe, we have C** = §% (see eq. (135)). Thus we have:

(201)

(CO) =(Te(h)?,  C%Cup=Tr(?). (202)

Thus term I becomes:

Term I = f d>xN (—y7*R)
Z,

= 3N si RN N 2 (203)
(Ltd xN sm(Q))[ﬁTr(h ) 2\/E(Tr(h)) :|

_n 2y 1 2

= ﬁ(Tr(h ) 5 (Tr(h)) )

where n = ( f - d3xN sin(@)) contains all spatial dependence in the integrand which gets
integrated out, lteaving us with time dependencies only.

Thus we have for the Hamiltonian constraint in Bianchi IX universe the following (with n
being the Lagrange multiplier):

1

n 1 a a
Hpx[n] = 7 (Tr(hz) -3 (Tr(h))* — 3 (n%hyp)’ + 7 ﬂnaﬁ) ~0, (204)

where n = (fo d>xN sin(Q)) contains all the spatial dependence in the integrand which gets
integrated out, leaving us with time dependencies only.

For the diffeomorphism constraint, we similarly use the explicit form for the triads (egs.
(152)-(155)) and define for the spatially dependent integrand in
n = (th d3xN'! sin(@)) =n%e' to get:

Dpix [1%] = n“D,, = n (2€],nPhs, ) ~ 0. (205)

Thus we have the total ADM Hamiltonian for Bianchi IX universe as follows:

Hpianchi ix = Hpx[n] + D [n*]

1 1
= % |:Tr (hz) —3 (Tr(h))? — > (n“ﬁhaﬂ )2 + P naﬂi| +n¢ (262;[3 ﬁﬁ5h5Y) s

(206)
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where the constraint relations become Hypx[n] ~ 0 and Dy [n*] ~ 0 (non-trivial here unlike
the Bianchi I universe).

As a reminder, we are throughout using the invariant basis, whose importance can be
appreciated by now hopefully in the context of homogeneous cosmologies. Now we proceed
to solve the diffeomorphism constraints for the metric and its conjugate momenta. We use the
form in eq. (205) :

2n66755 57Yﬂﬁahay = 2n5ha1511615ﬁ ﬂﬁa + 2n6ha2522625/5 T[.'ﬂa + Znéha3533635ﬂ ﬂfﬁa
= 2n3h1aﬂ:a26132 + 2n2h1a7'[a36123 + 2n1h2aﬂ:a36213
+ 2n3h2a7'ra16231 + 2n2h3a7'ca16321 + 2n1h3aﬂ:a26312
=—2n! (h2an“3 — h3an“2) —2n? (h3a7r“1 — hlan“S)

—2n® (hlanaz — h2ana1) .
Thus the diffeomorphism constraints in eq. (205) give us the following:

= —2[(n*h. 5 —nP"h,,) ]~ 0. (207)

Then we observe that the LHS contains the matrix commutator as follows:

[ﬁ,h]% = (ﬂ:‘”hTﬁ — ﬂ/”hw) =—[h, n]g , (208)

and the diffeomorphism constraints give us for the Bianchi IX universe:

[n,h]g ~0. (209)

For diffeomorphism constraints to be second class constraints,® we impose a particular
form of gauge fixing. To motivate the choice of gauge fixing to be applied, we calculate
the Poisson brackets using the definition provided in eq. (188). To be clear, for example,
[7,h]; = (m'"h,y — ©*"h,1) and we recall that h,g = hp, as well as 7 = 1P in general.
Then we have:

{[n,h]ﬁ,hlz} =—h;3%0, {[Tf,h]%,:hu} =—hy3~0,
{[n,h];,hz?,} =h13 NO, {[ﬂ:,h]é,hz:g} =—h12NO, (210)
{[ﬁ,h];,hlg}z—h%%O, {[ﬂ:,h]%,h:l:;}:hlzmo,

while the remaining three are:

{[ﬂ,h];,hlz} =hy1—hyy,
{[ﬂ,h]g,hm} =hyy —hs3, (211)
{[ﬂ,h]é,hm} =hy; —hss.

This strongly suggests that the natural choice to impose for gauge fixing is a diagonal
3—metric for hyg. Since the 3—metric commutes with the conjugate momenta (eq. (209)),
accordingly the conjugate momenta ©*? is diagonal as well. The variables used to denote
the diagonal representation of the metric and its conjugate momenta are known as Ashtekar-

8See footnote 3 in Chapter 3.3 for the definitions of first class and second class constraints.
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Henderson-Sloan (AHS) variables [25,26]:

_ di ap _ giao( FL P2 ﬁ)
haﬁ dlag (Ql)QZ} Q3) ) T dlag(Ql ) Qz’ Q3 > (212)
where eq. (211) suggests that Q; # Q,, Q, # Q3 and Q3 # Q; for the diffeomorphism
constraints to be a true set of second class constraints. Furthermore the choice of 7% in
terms of AHS variables also suggests that the set {Q;,Q,,Q3} # 0. Positive definitiveness of
3—metric implies {Q;,Q,,Q3} > 0. Thus we have finally solved the diffeomorphism constraints
by imposing an appropriate choice of gauge fixing. We have defined symplectic potential S

Q;

Once we have solved the diffeomorphism constraints and obtained the form of 3—metric
and its conjugate momenta, we proceed to express the Hamiltonian constraint (eq. (204)) in
terms of these 3—metric and its conjugate momenta. We reproduce eq. (204) here for our
convenience where we now take n’ = = as the new Lagrange multiplier (since n is arbitrary
and can always be chosen to scale like h):

3 .
P.O-:
below eq. (E21) which in terms of AHS variables becomes | S = Z ﬁ
i=1

1 1
Hy[n']=n"| Tr(h?)—= (Tr(h))* —= (ﬁaﬁhaﬁ)z + naﬁnaﬁ . (213)
——— 2 g 2 ~——
Term A Term B Term C Term D

For terms A and B, we use:

Q 0 0
Tr(h) =Tr 0 Q O =Q; +Q2+Q3,
0 0 Q
(214
Q 0 O Q 0 0
Tr(R?)=Tr|| 0 Q 0 |.[ 0 Q 0 ||=(Q)+(Q)*+(Q3)*.
0 0 Qs 0 0 Qs
For term C, we simply have:
(ﬂ:aﬁha/j)z = (ﬂllhll + ﬂzzhzz + 7'[33}133)2 = (P]_ + PZ + P3)2 . (215)
For term D, we have:
nPrup = nP 27y hg, = (P + (P2)* + (P3)?, (216)

where only the diagonal components of % and hqp contribute (see eq. (212)). Plugging
egs. (214, 215, 216) into eq. (213), we finally get for Bianchi IX, the following Hamiltonian
constraint subjected to the choice of gauge (eq. (212)) imposed:

Hpx[n']=n' [{(Q1)2 + (Q2)2 + (Q3)2} + {(P1)2 + (P2)2 + (P3)2}

1 1 (217)
—5 Qi +Q +Q3)2—5(P1 +P, +P3)2] :

This forms the basis of further progress in the rest of this section.

46


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.73

SCIl SciPost Phys. Lect. Notes 73 (2023)

5.2.1 Jacobi variables

We now switch to Jacobi variables {Py, Py, P3,Q1,Q4,Q3} — {x, ¥, k,,k,,D,a} where {k,,k,}
are conjugate variables of {x, y}. Here x and y are called Misner variables and they are mea-
sures of anisotropies (accordingly x = y = 0 gives a homogeneous as well as isotropic cosmol-
ogy). This change of variables to Jacobi coordinates are:

kK ke Ky —_./2
Pl_ ﬁj@+D, Pz—ﬁt@ D) P3_ \/;kz_y-"_D) (218)
Q =ae v'Ve, Q=aevi' ¥, Q3=ae_\/;y.
We further impose:
2 VT
a=v3, D:?, (219)

where v is the 3—volume on the hypersurface and 7 is known as the York time. 7 is the
conjugate variable to v. The Misner variables {x, y} are also called shape degrees of freedom
while the global factor of 3—volume v is called the scale degree of freedom.

With these change of variables, we have for the 3—metric as well as the symplectic potential
S (defined in the paragraph below eq. (212)) the following results:

b, 3Da
S= Z Qi =kx+k,y +——k x+k,y+7v,
i Qi (220)
. 2 .. - X _\/E
hep = diag(Q1,Q5,Q3) = v3d1ag(e 2" V6, ev2 Ve e 3y) ,
where we used v = a2 and 7 = Q.
Next we shift to the Hamlltoman constraint and express in terms of these new variables.
We refer to eq. (217), which we reproduce here for convenience:

e [or) (go) ) 4)] e

We get the following on substitution for separate terms:

3 2 9
D> P | =9p%=2v12,
i=1 4

3
3
Z(Pi)z =k2+ ki +3D*=k2+ ki + szrz,
i=1 (222)

Wl

3 2

Z(Qi)zza [ef}+ef V6 +e fy} (azv),
i=1

3 4 —2x , 2y 2x | 2y 4 x Y x =y
(ZQi) V[V 4 el 4 42 (/B eV iR 4 e .

We can always choose the Lagrange multiplier n in eq. (204) to scale like vA without
loss of generality, and therefore we can set n’ = ﬁ = 1. Thus we get for the Hamiltonian
constraint as:

Hpx = k +k2 8v T +V§U(x,y)m0, (223)
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1 _&x_’_Z_y 1 2‘/§X+2_y 1 ;4y 2y Bx_ ¥y _Bx_ ¥y .
where U(x,y)=|5e 6 Vo +35e 6 V6 +5e/6” —ev6—evs v6—e 6 V5 |iscalled the

. L 4
shape potential whose coefficient is the 3—volume v3.
We can rewrite the shape potential in a succinct way as:

Ulx,y)=f(—V3x+y)+ f(V3x+y) + f(—2Y), (224)

where:

1
f(z)= Eez,z/ﬁ —e5VE, (225)

It is convenient to do another change of variables and express eq. (223) in terms of the
new variables to discuss the dynamics. The change of variables are:

— —‘/7§x0 _ —1
v —V(O)el , T ——FV Po>
X = «/ﬁxz, k, = ?pl , (226)
_y == \/EX N ky = Epz 5
where the conjugate variables are:
{xoapo}:{xlapl}:{XZJPZ}:]-' (227)
Thus the Hamiltonian constraint becomes:
1
My = 5 (=pg +PY+p3) + W’ x',x*) ~ 0, (228)

where W(x°, x!, x?) = v(%;)e_%xoU (x!, x?) is the Bianchi IX potential. This justifies switching
to the new variables in eq. (226) that the Hamiltonian constraint simplifies to eq. (228)
which can be interpreted as the motion in a Minkowski space perturbed by a potential W. In
the context of Bianchi cosmologies, like we discussed in Chapter 4.3.2, this is same as having
Bianchi I solution as a subset of Bianchi IX universe for the regimes where the RHS of eq.
(173) can be neglected.

5.2.2 Shape potential

We start with the expression of shape potential in terms of Misner variables {x, y} from eq.
(224) where f(z) is defined in eq. (225). Then we express the Misner variables in terms of
x!=x/+/2and x?> = y/+/2 as in eq. (226) to get:

= U(xl,xz) =f (—\/gxl + ﬁxz) +f (\/gxl + \/ixz) +f (—2\/§x2) . (229)

Now we plug the explicit form of the function f (z) at these three places on the RHS to get:

_lx2

117 oy 1yp2.2 2 2 _4 1_x2 _x? 2 .2
=>U(x1,x2)=§[e AT LB e ]—(ex Gte ﬁ+e~/§x). (230)

Then we make use of polar representation for the variables {x!, x?} as represented in
Fig. (5). Thus we have:

where r = /(x1)? + (x2)2.

xt =rcos(¢), x%2 =rsin(¢), (231)
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) ¢

7 COS X!

Figure 5: Polar coordinates to simplify Bianchi IX shape potential.
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AV ® 2sin@) 2
= P AN T FEEREY
2sin(9) 2
2cos(¢) + -=
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- sing) 2
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Figure 6: Six functions constituing the shape function U(x!, x?).

Finally with the substitution in eq. (231) in eq. (230), we get:

6
=| U @) = D (—1)i eV OD a0,
i=1

where the set ¢; = {%, 1, %, 1, %, 1} and the six functions y;(¢) are given by:

—
23($) =2cos ¢ + 22L,

26($) = cosp — T2

—4si
Xl(¢)= ‘S/%l¢:

22(P) = zs‘i/rid)
. 3
14(®) =—cos§ — &,

.
25(§) =—2cos ¢ + Z5L,

(232)

(233)

These functions are plotted in Fig. (6). There are few observations to be made from their

graphs:
(a) All six functions are bounded.

(b) For any given value of ¢, at least one out of six functions y;(¢) is positive.

These facts are used in this Chapter 5 and the next Chapter 6 to prove or disprove (depending

on the system in consideration) the phenomenon of quiescence.

5.2.3 Singularities in Bianchi IX universe

We realize that due to the presence of V3 in eq. (223), the overall potential is dynamically
changing. In order to study this dynamics, we now proceed to calculating equations of motion
for v and 7. This will tell us about the locations of big-bang singularities where we expect
v — 0 because at least one of the three spatial dimensions collapses at the singularity, leading
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-100000 50000 50000 100000

Figure 7: Behaviour of volume with time of a Bianchi IX universe showing two big-
bang singularities (one in the past and another in the future).

to vanishing of 3—volume on the hypersurface. Note that since we are considering the vacuum
case of Bianchi IX universe, the vanishing of the 3—volume on each hypersurface of the ADM
formalism is the only signature we have for the big-bang singularity. The equations of motion
for 3—volume and York time are (recall they are conjugate variables):

. OHp 3,

= =——7V%,
ot 4

_ _OHpx _3
B ov 4

where in the second equality of the second line, we used the weak equality Hyx A~ 0 in eq.
(223) to replace the shape potential in terms of other variables.
As expected from its name, therefore, the York time 7 is monotonically increasing as v > 0

always. Similarly we can obtain the behaviour of v by noting that %(V_l) =—0 = %T and

4 1 5 4 (234)
2 1 o220 (12, 12), -1
T v+§v3U(x,y)~4T v+3(kx+ky)v ,

%(V_l) = %1‘: which allows us to plot v as a function of the coordinate time t in Fig. (7). Thus
we have two singularities that are reached in infinite coordinate time t. It has been shown
that even though an infinite coordinate time t — o0 is taken to reach the singularities in
the past and in the future, an observer travelling towards the singularity requires only a finite
proper time [1,27]. Thus these two big-bang singularities (in the past and in the future) of
Bianchi IX universe are essential and genuine singularities.

A brief digression: Singularity in Bianchi I universe

We digress for the moment to discuss the presence of big-bang singularity in Bianchi I universe.
We already showed the presence of a true big-bang singularity in the Lagrangian formulation
in Section 4.3.1 and now discuss the ADM formulation of it. We know that the shape potential
is zero in Bianchi I and we get the following Hamiltonian constraint for Bianchi I universe
(using eq. (223)):

3
Hp = k2 + k§ - gv%z ~0. (235)

Accordingly we are again looking for big-bang singularity whose signature is v — 0. So
we calculate the equations of motion for 3—volume and York time 7 (recall they are conjugate
variables) as follows:

 OHgy 3,
V=T8r T4
(236)
_ OHpx 3 ,
=22 =712y,
ov 4
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—4 -2 2 4 t

Figure 8: Behaviour of volume with time of a Bianchi I universe showing a big-bang
singularity in the past (for D(gy < 0).

which can be integrated to get v(t) = v(o)e_% and 7(t) = T(O)egD(O)t. Here v(qy and 7(g) are

two integration constants and D(gy = 2V((yT (o). We realize that v — 0 happens only once, either
in the past or in the future, depending on the sign chosen for D). For example, if we choose
the negative sign for D(g, then the universe contracts till 3—volume goes to 0 as t — —0Q.
But we realize that this time t is the coordinate time and again it can be shown [1,27] that
the proper time of an observer travelling towards the big-bang singularity is finite and thus
singularity can be reached in a finite amount of proper time, making it an essential and genuine
singularity. For t — 00, the universe will continue to expand forever. This is shown in Fig. (8).

D(()) t

5.2.4 Infinite bounces: Mixmaster dynamics

We can now start analyzing the dynamics of Bianchi IX universe. The first observation to
make is the presence of the shape potential. We plot the 3D version of shape potential that
we obtained in eq. (224) in Fig. (9) while the 2D plot is provided in Fig. (10) [28]. The
colour coding is that blue represents low values while red represents large values of the shape
potential. These plots tell a story that Bianchi IX universe can be imagined as a Bianchi I
universe but with the presence of a triangular billiard table shaped potential. In other words,
we can basically imagine “Bianchi IX = Bianchi I + Shape Potential U(x, y)”. This also makes
the study of Bianchi I universe crucial if we wish to study Bianchi IX. Thus from the viewpoint
of a representative particle traversing the Bianchi IX universe, it keeps moving freely along a
straight line (the so-called Kasner epochs as the equations of motion resemble that of a Bianchi
I universe because U(x,y) ~ 0 when we are far away from the potential walls) till it hits
one of the three walls of the potential as shown in Fig. (9). Due to the presence of v#/3 in
the potential term in eq. (223), the Bianchi IX potential term is dynamic in nature and the
bounces off the potential walls are inelastic, causing the momentum of the particle ,/k2 + k)zl
to decrease with time after each bounce (see [1,27] for more details). When expressed in

terms of new variables in eq. (226), the momentum 4/ p% + pg decreases after each collision.
Each bounce of the particle off the potential walls then changes the direction of the particle
and it sets on a new straight line motion till it again hits the potential wall. The transition that
happens from bouncing off the potential wall is known as Taub transition.

Now what does this tell us about the dynamics of the potential wall? Suppose we go
towards the big-bang singularity in the future where v — 0. We know from eq. (223) that
Hpx ~ 0. During a Kasner epoch, away from the potential walls, the kinetic energy K = k§+k§
needs to be conserved. But upon collisions with the potential walls where the bounces are

inelastic, the momentum (ki + k}z,) (accordingly (pf + p%)) decreases with time after each
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Figure 9: 3D plot of shape potential U(x, y) [28].

bounce. But since Hpx ~ 0, we can deduce that K must hit the potential wall U(x, y) at points
farther and farther away from the origin as the coordinate time t passes. Thus the physical
picture of Bianchi IX universe is that it corresponds to a triangular shaped billiards table where
motion in between are the Kasner epochs (straight line motions) followed by Taub transitions
(inelastically bouncing off the potential walls) with the potential walls moving apart with time
(thereby increasing the size of the triangular shaped billiards table). Hence with the passage
of time, the particle can explore larger regions as can be seen from the numerical simulation
done in Fig. (11) [28].

The next natural question to ask is that since the potential walls are receding, can it happen
that they recede fast enough’ to be never caught up by the particle? If this happens, then
there will be one last bounce off the potential wall after which it will set on a straight line
(Kasner epoch) motion for eternity before hitting the singularity. As we show now here in this
subsection that for the case of pure Bianchi IX universe, this can never happen.

The idea is as follows. We stick to the motion of a particle far away from the potential
walls (Kasner epoch). Then we show that every such Kasner epoch inevitably ends up with a
collision of the potential walls of the shape potential, thereby bouncing off it and setting off
on to another Kasner epoch. Therefore, no matter how far in the future or back in the past we
consider a Kasner epoch, every Kasner epoch ends with a collision and hence, the potential
term in eq. (223) necessarily catches up with the kinetic terms in there. Accordingly there is
no one permanent Kasner epoch that lasts forever till the particle hits the big-bang singularity
but in fact the particle bounces off the potential walls for an infinite number of times before the
singularity is reached. We now implement this idea and make it precise.

We start with calculating the equations of motion during a Kasner epoch where the particle
is far away from the potential walls (W & 0). We use the Hamiltonian constraint in eq. (235)
to get for x* = aaTu]HIBI_q, aswellasp, = —a‘%HBI_q,:

*=n""p,, p,=0, (237)

where u = {0,1,2} and n*” = diag(—1,+1,+1). Integrating them gives the Kasner solutions

That is to say, the potential will decay with coordinate time t to the point of vanishing when t becomes infinitely
large.
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1012
1010

Figure 10: 2D plot of shape potential U(x,y) (minimum is at the origin
U(x =0,y =0)=—3) [28].

x X x

Figure 11: Numerical simulations of a pure Bianchi IX model showing the Mixmaster
behaviour as explained in the text [28].

as:
xM(e)=n""pyt+x5,  pu(t)=p, Vt, (238)

where xg & pg are integration constants or the initial conditions.

Using the final result for the shape potential U(x!, x?) from Subsection 5.2.2 (egs. (232,
233)), we have for W in eq. (248):

_2,0
W(x% x!, x?) = vi3em 75 U(xt, x?)

0
6
= B i, eV &P+ (o)
= ES (1 l
oo (239)
6
=33 Z(—l)ic-e‘%x” (x1)*+(x2)* i o)
0 1 >

i=1

0
where we choose ¢y = arctan(;%) as the direction of the Kasner solution obtained in eq.
1

(238) and ¢; = {%, 1, %, 1, %, 1}. The explicit expressions for y; are provided in Subsection
5.2.2 in eq. (233).
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Then we plug in the expressions for {x°, x!,x2} from the Kasner solutions in eq. (238)
into the last line of eq. (239) and use the Kasner Hamiltonian constraint (eq. (235)) being

weakly equal to zero, namely p, ~ £4/(p1)* + (p,)?, to get'® W — constant Zi6=1 {; where
; are the exponential functions. Focussing on one of the {;, we have:

{i = exp [;—g\/p% T2+ (0 + () () t]
=eXp[\/p%+p§ (n(%)—%)t] :

But we know from Subsection 5.2.2 and in particular Fig. (6) that for any value of ¢,

(240)

we have at least one out of the six functions y;(¢) plotted there such that ( xi(Po)— %)

is positive. Accordingly the potential term in eq. (223) which is of the form v#/3U(x?, x?)
is always exponentially increasing with time t during a Kasner epoch and hence necessarily
catches up with the particle (kinetic terms in eq. (223)) causing that Kasner epoch to end
by setting off the particle to another Kasner epoch till next collision with the potential walls
happen.

Thus we have proved for the vacuum case of Bianchi IX universe that the particle will
always be able to catch up with the potential walls and there will be infinite number of bounces
before the particle hits the singularity in a finite proper time. Therefore in a pure Bianchi IX
model, every Kasner epoch (the time the particle travels freely) will end with a collision with
the potential walls and thus the singularity is reached after infinite bounces. This is what
is known as the Mixmaster behaviour ( [20]) and this is a perfect scrambler of information
as all information of the initial conditions get erased due to infinite inelastic bounces as the
particle approaches the singularity. Also the precise point where the singularity is reached
by the particle remains undetermined and we do not have a defined limit at the singularity.
This is similar to the case of taking the limit of x — 0 in the function sin(%). Hence neither
any information of the initial condition is preserved nor the definite limit at the singularity
is known where the particle reaches, making this a perfect scrambler of information. In the
vacuum case of Bianchi IX universe, quiescence can never be attained.

Now we proceed to two more examples in Sections 5.3 & 5.4 where we do the ADM analysis
of the Bianchi IX universe coupled to a free & massless scalar field as well as a scalar field with
a potential term, respectively. To give the spoiler, the situation is drastically different there. As
proved in Section 5.3.1, the potential walls can be shown to recede much faster for the particle
to be able to catch up to it after a point of time, thereby causing only a finite number of bounces
before the particle reaches the singularity. Thus after a certain finite number of bounces off
the potential walls, eventually there will be a Kasner epoch that will last forever, until the
particle reaches the singularity. This mechanism allows for the scrambling of information to
cease after the last bounce and the information of the initial conditions are actually preserved
at the singularity. Moreover, there exists a direction on the Misner plane that admits a well-
defined limit at the singularity where the particle reaches. Thus the Mixmaster behaviour can
be avoided by coupling to a classical scalar field and this has allowed to continue the classical
solutions through the singularity as reported in the literature [28,29].

Here a negative p, = —4/p? + pZ implies a shrinking solution as we realize from the transformations in eq.
(226) that we need x° — +o00 for v — 0. The corresponding Hamiltonian constraint in eq. (228) for the final
Kasner epoch is H = 1 (—p2 + p? + p2). Thus the equations of motion for x° & p, are: x° = —p, & p, = 0, thereby
implying the solutions: p, = ¢ (constant) & x° = —ct + &°. Thus for x° to be positive at large time t — +00, ¢ <0
and therefore py =c¢ < 0.
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5.3 Free & massless scalar field coupled to Bianchi IX universe

We now consider Bianchi IX universe in the presence of a classical scalar field that is free and
massless. Since we have already done a detailed calculation for the ADM action in Chapter 3.2
& Bianchi IX universe in Section 5.2, we redo the same calculations in the presence of a free
& massless scalar field to get for the ADM action (74 is the conjugate variable corresponding
to the scalar field ®):

ta
SADM+<I> = J dtf d3X (nl]'}}ij"l"rfq)‘i) _HADM+<I>) 5 (241)
th Xy

where the symplectic potential is given by:

SapMLs = f dx (74 med) (242)
%

and the total Hamiltonian Hpy.e = f d>xHapmss = Hapmsa N1+ Dapmre[N'] is given by:

1 2 y 1 1 ‘
Hapmss[N1= | d3xN [—ﬁ(3)R— — (“— — rc”nl-j——ni) += ,/7D‘<1>Di<1>] ,
. /72 2 2
‘ (243)
DADM-HP[N] = J dBXNi [—2Dj7fij+7T¢Diq)j| ,
2

where terms marked in green are the new terms appearing due to the presence of a scalar
field. Note that these equations hold true in general when a free & massless scalar field is
coupled with gravity. We will specialize to homogeneous cosmologies, in particular Bianchi IX
universe, below.

Assumption: We impose a homogeneous scalar field which means that the scalar field has
only temporal dependence but no spatial dependence. Then they simplify to (we will denote
the entities as Sg,Sq, Hp[N] = NHg and Dg[N;] = Ni]D)é) for this assumption):

[ . .
Sq) = J d3X (nl])?ij+7t¢<l>) B

Et
[ 1 (n* 5 1

]HLI)[N]ZJ d3xN[—1/?(3)R—ﬁ(7—n”nl~j—§niﬂ, (244)
%

-
Dy[N] = | d3xN'[—2D/ 7] .
Zt

Now we specialize to homogeneous cosmologies to impose the Bianchi IX homogeneous
ansatz for the metric just like we did in Section 5.2. We realize that since the diffeomorphism
constraints in eq. (244) are unaffected even in presence of a free & massless homogeneous
scalar field, the ansatz that we imposed after solving the diffeomorphism constraint (eq. (209))
remains the same and we still resort to the same AHS variables we did in eq. (212). Then
keeping the variables for ¢ and its conjugate 74 as they are and imposing the change of
variables to Jacobi variables (eq. (218)), we get for Bianchi IX universe coupled to a free &
massless homogeneous scalar field the following Hamiltonian constraint (where we have again
rescaled the Lagrange multiplier n to scale with v/h and chose n’ = % to be unity without loss
of generality):

2
Te 3
Hpx—¢ = ki + k32,+7(I> - §v21’2 +v*3U(x, y). (245)
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Thus we have “Hpy_ = Hpx+Free & Massless Homogeneous Scalar Field”.

Now we enquire about the Mixmaster dynamics & the phenomenon of quiescence corre-
sponding to this Hamiltonian constraint, just like we did for the vacuum case of Bianchi IX
universe in Subsection 5.2.4.

5.3.1 Quiescence in Bianchi IX-scalar field system

Just like the change of variables in eq. (226), it is convenient to do another change of vari-
ables here and express eq. (245) in terms of the new variables. The change of variables &
its justification are the same as mentioned in eq. (226) with the addition of two conjugate
variables {x3, p;} corresponding to the introduction of scalar fields:

V3.0

v=yge 2*, 1= —%v‘lpo,
_ 1
x—\/ixz, k, ‘/—pl, (246)
.)’ = \/EX > k fp2:
d = x3 s Ty = D3,
where the conjugate variables are:
{x° po} ={x",p1} ={x%pa} = {x°,p3} = 1. (247)
Thus the Hamiltonian constraint becomes:

1

My = 5 (=Pg +PY+py +p3) + W(x’,x',x*) ~ 0, (248)

where W(x?, x!,x?) = v(o)e J%XOU(xl,xz) is the Bianchi IX potential (see Subsection 5.2.2
for a simplified expression). During a Kasner epoch, this potential term can be neglected
and we are left with a Hamiltonian constraint that resembles the motion of a free particle in
Minkowski spacetime. Using eq. (220), the metric of the Bianchi IX model becomes in this set
of variables as follows:

1,0 1,1 .2 1 2
—L1x0 . —xl+L +
hop = Voye ¥ dlag(e YTEY et el ,e V3t )
(249)
1 1 1 2
o< diag (e(ﬁpo—}’ﬁ‘ﬁpz) (IP0+P1+ fpz) (T Po— ﬁpz)f) )

We follow the same idea and the strategy here that we employed while exploring quies-
cence in pure Bianchi IX universe in Subsection 5.2.4. We proceed to calculate the equations of
motion during Kasner epochs where W & 0. Thus the Hamiltonian constraint in eq. (248) be-
comes Hp;_g when W ~ 0. Calculating x* = aipuHB—@ aswellasp, = aiu Hp;_s component
wise, we get:

xt=n""p,, pu=0, (250)

where u = {0,1,2,3} and n*” = diag(—1,+1,+1,+1). Integrating them gives the Kasner
solutions as:
MO =n""pyt+x5,  pu)=p) Ve, (251)

where xg & pg are integration constants or the initial conditions.
Now we finally proceed towards proving quiescence. Using the final simplified result of
the shape potential U(x!, x?) from Subsection 5.2.2 (eqs. (232, 233)), we have for W in eq.
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(248):

_2,0
W(xo,xl,xz)zvg/ge AU, x?)

6
= vg/se_%xO Z(—l)icie (D +(x2)* 7i(¢ho)
i=1

6
. _ 2.0 2 7.
:vg/3 E :(—1)lcl~e BXt (x1)*+(x2) X1(¢o)’
i=1

(252)

0
where we choose ¢y = arctan(%) as the direction of the Kasner solution obtained in eq.
1
(251) and ¢; = {%, 1, %, 1, %, 1}. The explicit expressions for y; are provided in Subsection
5.2.2 in eq. (233).

Then we plug in the expressions for {xo, xt, xz} from the Kasner solutions in eq. (251) into

the last line of eq. (252) and use the Kasner Hamiltonian constraint p, ~ + \/ (p1)* + (p2)? + (p3)*
to get'! W — constant Z?:l {; where {; are the exponential functions. Focussing on one of
the {;, we have:

= exp| 2o+ pEpe - VO + (2P o)t .

2
2 p
=exp | y/pI+p5t Xi(d)o)_ﬁ 1+ >

pi+p;

(253)

Now when the potential walls are approached, the Kasner solutions (eq. (251)) lose its
validity of approximation and are no longer true. But since we are dealing with free & massless
homogeneous scalar field, we know that there is no interaction between the potential walls and
the scalar field, thereby ensuring that the conjugate momenta to the field 74 = p5 is conserved
throughout the motion. But the same is not true for p; and p,. As we showed in eq. (245),
the potential term contains a pre-factor of v#/3 and therefore is growing monotonically smaller
with time as v — 0 because the future big-bang singularity of Bianchi IX universe is approached
(see Fig. (7)). Thus k, & ky (accordingly p; & p,) diminish after each collision with the

potential walls because the collisions are inelastic. Hence the entity 4/ p% + p% reduces with
time as singularity is approached just like the 3—volume (which goes to O at the singularity).

2
Therefore ‘/ 1+ p2p+1p2 becomes smaller and smaller with time. Also from Fig. (6), we know
2 3

2
that all the six functions y;(¢,) are bounded. Thus eventually ( xi (Po)— % 1+ I%?’Pz)
1 2

in eq. (253) becomes negative after a certain point of time for each of the ;. Hence there
will be one last Kasner epoch where the particle will set off on a straight line motion for
eternity before hitting singularity as the potential walls will recede exponentially fast (and
exponentially decay with coordinate time t) for the particle to be never able to catch up to
the them. So there will be only a finite number of bounces off the potential walls before the
particle reaches singularity in infinite coordinate time (but finite proper time [1,27]). Thus
quiescence is established.

HAs argued in footnote 10 in Section 5.2.4, we chose the negative sign for p, here as well. The argument is the
same. Here a negative p, = —4/p? + p2 + p2 implies a shrinking solution as we realize from the transformations
in eq. (246) that we need x% = 400 for v —» 0. The corresponding Hamiltonian constraint in eq. (248) for
the final Kasner epoch is H = 3 (—p2 + p? + p? + p2). Thus the equations of motion for x° & p, are: x° = —p, &
Po = 0, thereby implying the solutions: p, = ¢ (constant) & x° = —ct + £°. Thus for x° to be positive at large time
t — 4090, ¢ < 0 and therefore p, = c < 0.
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5.4 Generalization to scalar field with a potential term

We now generalize the system in Section 5.3 to the case of Bianchi IX universe coupled to a
classical scalar field with a potential term V = V(®). With this additional term, we can again
redo the calculations like we did in Chapter 3.2 and again in this Chapter 5.3 to get for the
ADM action (74 is the conjugate variable corresponding to the scalar field ®):

ta
SADM+e = j dtJ d>x (Tfll}}ij“'fcb‘i’ — Hapm+s) » (254)
t =,

where the symplectic potential is given by:

SADM+<I> = f d3X (ﬂij‘}'/ij-{—ﬂq)q.b) , (255)
=,

and the total Hamiltonian Hapye = f d®x M apyiss = Hapmsa [N ]+ Dapyro[N'] is given by:

1 (=? . 1 1 .
HppvralN] = L d3xN [—ﬁ(3)R— e (? — n’lnij—ini + ﬁv@»)) +3 ﬁchI»Di@] ,
DapmsaslN] = J dPxN' [=2D m;+ 74D @],
2[

(256)
where terms marked in green are the additional terms apart from the pure Bianchi IX ex-
pressions. Note that these equations hold true in general when a scalar field in a potential is
coupled with gravity. We will specialize to homogeneous cosmologies, in particular Bianchi IX
universe, below.

Assumption: Just like Section 5.3, we again impose a (spatially) homogeneous scalar field.
Then they simplify to (we will denote the entities as Sy, Sg, Hy[N] = NH and Dg[N;] = N; D,
for this assumption):

Se = ( d3x (nij}'fij+7rq><i>) ,

J=,
HyN]= | doxn —R- L (i La2 )+ rvce) (257)
] JE[ 1/? 2 1 2 ] 2

De[N]= [ d*xN'[—2D'm;;].
Jz,

Now we specialize to homogeneous cosmologies to impose the Bianchi IX homogeneous
ansatz for the metric just like we did in Sections 5.2 & 5.3. We realize that since the diffeomor-
phism constraints in eq. (257) are again unaffected even in presence of a homogeneous scalar
field in a potential, the ansatz that we imposed after solving the diffeomorphism constraint
(eq. (209)) remains the same and we still resort to the same AHS variables we did in eq.
(212). Then again we keep the variables for ¢ and its conjugate 74 as they are and impose
the change of variables to Jacobi variables (eq. (218)). We show explicitly for the additional
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potential term that we have here where we use eq. (197).

f d%NﬁV(@):(J d3stin(9)) Vhv(®)
% %

n
=A@ (258)
=n'Q1Q,Q3V(®)

=n'a®V(®)

=nv?V(®),

where we introduced n’ = n/+v/h in the third line which can be set to unity (see the paragraph
above eq. (223), used the AHS variables in the fourth line to substitute for the determinant of
3—metric haﬁ from eq. (212) and finally shifted to Jacobi variables in the last two lines using
eq. (218).

We have already showed for the remaining terms to reach eq. (245). Thus we get for
Bianchi IX universe coupled to a homogeneous scalar field with a potential term the following
Hamiltonian constraint (where we have again set the Lagrange multiplier n’ to unity):

2
T 3
Hle_q; = kJZC + ki‘i‘?@ - §V27:2 + V4/3 U(x, y)+V2V(¢) . (259)

Thus we have “Hpy_s = Hpx+Homogeneous Scalar Field with a Potential”.

Now we again explore the phenomenon of quiescence (i.e., averting the Mixmaster dynam-
ics) in this system, just like we did in Subsections 5.2.4 & 5.3.1. As shown in Section 5.4.1, not
every form of potential V can lead to quiescence and demanding the condition for quiescence
puts constraints on the type of potentials allowed.

5.4.1 Restriction on the potential to fulfil quiescence

The physical idea is that the potential V should decay fast with coordinate time t so that the
quiescence is achieved. We now make this statement mathematically precise. We start by
change of variables as given in eq. (246) of the Hamiltonian constraint in eq. (259). We get
something very similar to eq. (248) with the addition of a potential term. The Hamiltonian
constraint looks like:

1
Hpix_e = > (—pg +pf +p§ +p§) + W (xo,xl,xz,xg) ~0, (260)

1

where W (xo, xt, x2, x3) is the new potential term dependent on x3 (= &) as well. Its expres-

sion is given by:
4 2.0 0
0,1 .2 .3)_ V-2 1,2 2 —3 3
W(x LX, X%, x )—v(30)e 3¥ U(x , X )+v(0)e YV (x?), (261)

v ~
Term @ Term @

We first briefly discuss term @ The expression appearing here, namely U(x?, x2), can fur-
ther be simplified as done in Subsection 5.2.2 in terms of polar coordinates to get eq. (232).
We have already studied in detail in Section 5.3.1 where we established quiescence corre-
sponding to the shape potential U. There we got an expression for this in eq. (252) and the
final condition was obtained in eq. (253). Eq. (253) implies that if:
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2
2 b
Xi(Po) < —=\|1+ >

—_ [Condition 1 for quiescence], (262)
V3 p3+p3

then the potential term will decay exponentially fast with coordinate time t — +00 in eq.
(253). Here the six y; functions are provided in eq. (233).

Now we focus on term @ which is the main topic of this subsection. Suppose we are in

a Kasner regime where eqs. (250, 251) hold. Then at large time t, we have x° ~ —p,t and

the Hamiltonian constraint tells us that py = +4/p3 + p5 + p2. We know from the discussions
surrounding quiescence in Sections 5.2.4 (footnote 10) & 5.3.1 that p, needs to be negative.
Also x' ~ p;t for i = {1,2,3}. We wish for the potential to decay with time and this gives us
the condition for the type of potential that can allow quiescence to occur:

lim e V3VPItpI+pity (pst)=0 [Condition 2 for quiescence]. (263)

t—o0

Thus for the case of Bianchi IX universe coupled with a homogeneous scalar field in a
potential, we have conditions 1 and 2 to be satisfied by the potential terms (namely, the Bianchi
potential & the scalar potential terms) occurring in the Hamiltonian constraint eq. (260),
namely eq. (261). Note that condition 1 is the same as that for the case of Bianchi IX universe
coupled with a free & massless homogeneous scalar field which we showed in Section 5.3.1.

Let us give examples for both a bad choice as well as a good choice for the potential V (x2).
1+

An example for a bad choice is V(x2) = ()" where {c,e} > 0. Then the term in eq. (263)
looks like:
e V3y (x?) N A AT GO (264)

Thus for large t, the time dependence on time will overpower the time decaying factor in the
first exponential, thereby making this a monotonically increasing function. Quiescence can
never be achieved with this potential term.

Now we present an example for the potential term which satisfies eq. (263). One of the
plausible candidates for inflationary model, namely Starobinsky potential which is within the
current cosmological constraints, satisfies the phenomenon of quiescence. This has already
been noticed in the literature that Starobinsky potential leads to quiescent solutions [30]. The
Starobinsky potential is given as follows:

2

%4 (x3) = (1 —ce” §x3)2 ) (265)

2
. . . _.J2 .
where ¢ > 0 is a constant. Thus at large time t, this behaves as ( 1 —ce”V3P3' | which goes

to a constant value when t — oo. Thus plugging this form of V in eq. (263) shows that
Starobinsky potential allows for quiescence to happen.

6 Extension to Einstein/Bianchi IX-Maxwell-scalar field system

We extend the ADM analysis to the case of classical electromagnetic field coupled to gravity.
As is true for the rest of the lecture notes, topics covered here are already known [31, 32].
Although the methodology to obtain the results presented in Sections 6.2 & 6.3 have been
known in the literature, to the best of our knowledge, this has never been reported explicitly
in complete details like we do here in these two sections. Therefore these two sections can be
considered as a new component in this work, albeit not original.
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In Section 6.1, we perform a 3 + 1-decomposition of Maxwell’s equations of motion and
in Subsection 6.1.1, we present the full Einstein-Maxwell equations of motion in the 3 + 1-
formalism without specializing to any particular cosmological solution. In Section 6.2, we
perform an ADM analysis of the Einstein-Maxwell system and get the ADM action whose vari-
ation leads to equations of motion which are already derived in Subsection 6.1.1. We specialize
to Bianchi IX cosmology in Subsection 6.2.1. In Section 6.3, we couple a free & massless homo-
geneous scalar field (as done in Chapter 5.3) to this Bianchi IX-Maxwell system. Based on the
diffeomorphism and Hamiltonian constraints obtained therein, we proceed to solve the diffeo-
morphism constraints in Subsection 6.3.1, just like the way we did in Chapter 5.2 (eq. (209)).
In Subsection 6.3.2, we then simplify the Hamiltonian constraint based on the 3-metric and its
conjugate momenta obtained therein. Once we have the Hamiltonian constraint, we proceed
to calculate the complete set of equations of motion for the Bianchi IX-Maxwell-scalar field
system in Subsection 6.3.4, thereby concluding this manuscript about the ADM formulation of
general relativity.

6.1 3+ 1-decomposition of Maxwell’s equations

For this section, we rely extensively on the resources [31,32]. We start with the Maxwell’s
equations which we decompose in 3 + 1-form:

VR =—4mj?,

V=0, (266)
where j” is the 4-current, F,, = V,A, —V,A, = JA, — J,A, (identically) and
Y = —%EMVEUFgo-. As per our convention, we define for the Levi-Civita tensor
€2 = —1/./=g & €p123 = ++/—g. The first Maxwell’s equation also gives the continuity
equation:

v, j*=0. (267)

The plan of this section is to first decompose the Faraday tensor and then proceed to de-
compose the Maxwell’s equations. Recall that Einstein field equations have two free indices
and therefore we had to take projections in mathematically 3 possible ways: (i) both projec-
tions along n", (ii) both along %, as well as (iii) mixed projections along n* and %,. This
is done in Appendix D. As clear from eq. (266), there is one free index, hence we can take
one projection only. This leads to mathematically 2 possible ways of projecting in 3 + 1-form,
namely (a) projection along n* and (b) projection along ¥:,. We present both the cases here.
Once this is done, we show the 3 + 1-decomposition of the continuity equation and derive
the stress-energy-momentum tensor for the electromagnetic field that appears on the RHS of
the Einstein field equations. With this derived, we finally present the full Einstein-Maxwell
equations of motion in 3 + 1-variables in Subsection 6.1.1.

3 + 1-decomposition of Faraday tensor

We give the procedure to decompose any arbitrary rank—2 tensor, say T#” as follows:

T = Gy 4 puGly L Gpulpyyy llpuny (268)

where

G uy = Y‘;YE T8 ,

(B)TJ_v = _Y;;YE Ta[} ,
) ul brap (269)
T = —Na¥p T,

11 — v
T = Tlluanu .
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We apply this procedure to the Faraday tensor where T*” = F*”. Due to the anti-symmetry
properties of F*” = —F"_ we have F'1 = 0 as contraction is happening between symmetric
and anti-symmetric indices (see eq. (269)). Thus we have:

FHY — (S)F,uv + nM(S)FJ-V + (S)Fulnv , (270)

where we define electric and magnetic fields as measured by an observer with 4-velocity n* (also
known as the Eulerian observer) as:

EV=—n, F =G Ft

B =—n F*" = @) prlu (271)

Note that the electric and magnetic fields are tangential to the spacelike hypersurface X, (since
contraction with n,, vanishes for both) and thus are 3-vector fields. Accordingly their indices
can be raised or lowered using the 3-metric, for example E,, = y,,,E”. We could have also used
Latin indices instead of Greek without loss of generality.

Thus we have for the Faraday tensor the following 3 + 1-decomposition:

oy = B guy +n*EY — E*n". (272)

We can further simplify this by expressing () F#” in terms of the magnetic field defined in
eq. (271). By plugging the definition of F*” in the definition of B¥, we get:

BH = —n F*H
= +%nve”“°‘ﬁFaﬁ
_ +%nvevua/3 (OB + noEy — Eony) (273)
- +%nvewaﬁ(3)Fa[j’

where we used eq. (272) and nunve‘“""/j = 0 due to completely anti-symmetric properties of
the Levi-Civita tensor. We define the 3-Levi-Civita tensor living on the hypersurface >, :

B)gnal = nvev’w‘ﬁ ) 274)

where as per the convention set for 4-Levi-Civita tensor and making use of eq. (62) where
n, =(—N,0,0,0), we get:

-1 1 1
(3)¢123 = pp (0123 — —N( ) =N =, (275)
V=g Nyy VY

Observe that ﬁ(3)6123 = 1 and thus there is a resemblance between the general 3-Levi-Civita
tensor and the Levi-Civita tensor in a Euclidean (flat) space, namely ﬂ(B)eabc = eggct
Thus we have from eq. (273):

(G)pab = ()eabup (276)

Accordingly the final expression for the 3+ 1-decomposition of Faraday tensor in eq. (272)
using eq. (276) becomes as follows:

F,U,V - (B)GHVUBG + n“Ev - E‘unv) (277)
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and its dual is given by:

1
FY = —EE‘”&IF&T = el g 4 nHBY —BHn”. (278)

We observe that the duality E — B & B — —E that exists in Minkowski spacetime also exists
here. This is a useful knowledge to derive equations of motion for B if the equations of motion
for E are known.

We finally take 3 + 1-decomposition of the Maxwell’s equations in eq. (266) by first pro-
jecting them along n* and then along >.,. We will get a total of 4 equations that are equivalent
to the ones in eq. (266).

Projection along n*
We project the first Maxwell equation along n*:
n,V,F*" =4np, (279)

where we define the charge density as the temporal component of the 4-current as measured
by an Eulerian observer (an observer with 4-velocity n*):

p=-n,j". (280)

Then we have for the LHS:

LHS =V, (n,F*")—F""V,n, = V,EF—F*'V,n,, (281)
~——
Term I Term II

where we used the definition of E* from eq. (271).
We use the identity for 4-divergence in eq. (A.4) from Appendix A to get for term I:

1 a
V,EY = ﬁaa(\/—_gE )= 8, (N y¥E")

1

N

1 T (282)
=E"3,In(N)+ —20,(/TE").

w \/? u

But E* is a 3-vector, thus projecting it onto X, should given the same vector, i.e. E* = yYE”.

Also we have the relation between 3-covariant derivative and 4-covariant derivative in eq.

(B.4) that gives y’ivu = D,. Moreover, since E* is a 3-vector, we have the time component

E° = 0, which reduces the term %5’“ (ﬂE”) to D;E'. So we have for term I'2

V,E"=D,E" +E,a", (283)

where we used the definition of the acceleration of the foliation a” = n”V ,n* = D* (In(N))
from eq. (63) whose proof is provided in Appendix C.
Alternate Proof: We use the relation in eq. (B.4), idempotent property of 3-metric

(yéy? = y{ = 5{ +n/n;) and E is a 3-vector (n,E" = 0), to get:
DME“ = yZ}f‘jVGE”
=yIV,E"=(6% +nn,) V,E”
=V,E"+n’n,V,E” (284)
=V,E"+n°V,(n,E")—n°E"Vn,
=V,E"—E,a",

12Eq. (283) is true for any 3-vector.
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where we used eq. (47) in the last step. We never used any property of the electric field. Thus
this proof shows that this relation is true for any arbitrary 3-vector.

Now we focus on term IT in eq. (281) where we plug the expression for F*” from eq. (277)
to get:

F*V,n,=(®e"B, + nE” —E*n") V,n,, (285)
but a, =n”V,n, from eq. (47) and n*V,n, = %V,, (n“nu) =0 as n*n, = —1. Thus we have
for term II:

F*'V,n,=E"a, = E,d", (286)

which exactly cancels one of the terms in eq. (283).
Thus we plug egs. (283, 286) into the LHS of eq. (279) to finally get:

D,E* =4mp, (287)

where p is defined in eq. (280). We could have used Latin indices instead of Greek too without
loss of any generality on the LHS as the LHS contains 3-objects only.

To project the second Maxwell equation in eq. (266) along n*, we can repeat the above
procedure and use the expression for F**” from eq. (278) or simply use the duality E — B &
B — —E and realize that there are no magnetic charges. Needless to say, both procedure gives
the same result as follows:

D,B" =0, (288)

where again we could have used Latin indices without loss of generality as this equation con-
tains 3-objects only.

Projection onto X,

We start with the first Maxwell’s equation in eq. (266) and take its projection onto the spacelike
hypersurface %, :
YAV, PP = —4nBlje, (289)

where we define the spatial 3-current vector flowing over %, as:

)0 = ya . (290)

We plug eq. (272) for F*” in eq. (289) to get for the LHS (using y% nf =0):

LHS =%V, F* = ¢V, (®F* + ntEY — E¥n”)
=12V, BF* + ¥tV E” + y*E"V n* — y*E*V ;n” (291)
=2V, BF* + ¥tV E” — E°K + EFKY,
where we identified extrinsic curvature scalar as V“n“ = —K from eq. (48) and extrinsic
curvature scalar as K l‘j =—y5V,n" from eq. (46).
We rely on the corollary deduced from eq. (64) where we noticed that if 3-metric is con-

tracted with a 3-object whose derivative is being taken, then we can commute the 3-metric
with the derivative operation. Making use of (i) this, (ii) GF “”n“ = 0, and (iii) the idempotent
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property of 3-metric, the relation between derivatives in eq. (B.4) gives us:

DO = yirpr s VP = vy v CFP
= (6g + n“nﬁ) y(’;vamFﬁ"
— Y;J-va(fﬂ)F(XU _ (S)Fﬁ Vva (nanﬁ)

(292)
=12V BF* —CFP'y  (n*)ng —FFF'V, (ng)n”
=2V F* —CFPy (ng)n®
= Y(’;va('é’)paa —_®pp Vaﬁ ,
where we used integration by parts in the third line and ignored the boundary terms.
We use this relation to replace yﬁVM(S)F ¥ in eq. (291) to get for the LHS:
= LHS = D,®FH* + BFPeqy 4+ yntv E” — E°K + EFK . (293)

We use the definition of Lie derivative for the case of torsion-free (eq. (11)) and the
definition of extrinsic curvature tensor K 3 =—y3V,n” from eq. (46) to get:

Y§LaEP = v (n"V ,EP —E¥V nP)

(294)
=y2n"V,E" + K E",
We use this relation to replace y5n"V ,E” in eq. (293) to get (KSE“ cancels out):
= LHS =D, ®F"* + OFPap +y4L,EP —E°K. (295)

We finally simplify D,(¥)F** by using eq. (276) and realizing that egg J = 1P (see

text below eq. (275)) which is a constant tensor. We use the 3-divergence formula similar to
eq. (A.3) to get:

1
D Gpua — _— 5 /—Y(B)Fua
g JY i )

1
= ﬁau (Petias Bo)

Flat 0 206
OW (296)
= }at 3,B,
Y

= +Petaog g, = Pewmog p .

We plug this into LHS and utilize the RHS from eq. (289) to get the first Maxwell’s equation
onto X, in component form as:

Y§LEP — P79 B, + Pe®oB a, — E*K = —4nj. (297)

Since we are dealing with 3-D spatial hypersurfaces 3;, we can introduce a vector notation
and re-express eq. (297) in terms of vector notation. We begin with using the definition of
vector cross-product to get:

(D xB)* = (3)60‘“08MBU ,

(298)
(Bxa)*= (B)G“WBMaU .
Accordingly we have (using a, = D, InN from eq. (63)):
NMDxB)*—NBxa)*=N([DxB)*—N(BxDInN)*
=N (D xB)*—(B xDN)*
( "= ) (299)

=N (D x B)* + (DN x B)*
=(D x(NB))*.
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We also simplify the Lie derivative term where we use the expressions for n* & n, from
eq. (41) to get:

ygﬁnEﬂ =7p (n"é’aE/3 —Egaanﬁ)
1 NJ E/
=—0,E*+ —0.E*— —0J.N*
N 0 + N J E J (300)
1 1
= —0yE* + —L{E*.
N NN

Thus we get in vector form the first Maxwell’s equation onto %, by plugging egs. (298,
299, 300) in eq. (297) (we could also use Latin indices without loss of generality as all terms
involve 3-objects):

3.E* + LZE* = (D x (NB))* + NKE* — 41N ®)j* (301)

where t is the coordinate time.

We can redo this exercise to project the second Maxwell’s equation in eq. (266) onto %,
or simply use the duality E — B & B — —E and recognize that there are no magnetic charges
to get:

3,B* + LzB% = —(D x (NE))* + NKB*. (302)

3+1-decomposition of continuity equation
The continuity equation reads (eq. (267)):
V,i* =0, (303)
where we have already projected j* in egs. (280, 290) to have:
j* = pn®+®j*, (304)

We plug eq. (304) into eq. (303) and identify the extrinsic curvature scalar as V,n" = —K
from eq. (48) to get:
n*v,p —pK+v,3j*=0. (305)

Now we use the identity we derived in eq. (283) for any 3-vector and apply it to % to
get for the continuity equation in 3 + 1-variables:

L.p+D,Pj*+ % —pKk =0, (306)

where we identified the Lie derivative as £,p =n*V,p = 1% [at p+NJ J; p].

Stress-energy-momentum tensor of the electromagnetic field

The Faraday tensor is anti-symmetric in its indices but the stress-energy-moment tensor T,
that appears on the RHS of the Einstein field equations is symmetric. Thus for the electromag-
netic field, the T}, is defined as:

1 1
Ty = = [FWFg — ZgWFaﬁF“ﬂ] , (307)

. . . u_
which is symmetric and traceless T;, = 0.
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Using eq. (277) for the Faraday tensor, we get the following two results:

F,oF%=—(E,E,+B,B,)+B%,, + E*ngng + 2E°B°®e 5,1,

(308)
F,,F*’ = —2(E*—B?),

where E? = EME,, and B? = BB,. We plug it back in eq. (307) to get (after using
Euv = Yuv— nunv):

1 1
—(E,E,+B,B,)+ 5YW(E2 +B?)+ Enunv(Ez +B?)+ 2E035(3)605(Mn,,)} ,
(309)
where parentheses around the indices imply symmetrization procedure (square brack-
ets imply anti-symmetrization procedure). For example, for any matrix M, we have
Mapy = %(Maﬂ + M,;Y) and M[,p1 = % (Maﬁ —Mﬂy). In general, we have:

|
W 4

1
Meapy.) = > Myaprs

* pE€ permutations

1
Miapy.1= pr} Z (=" My(apy..) -

' pE permutations

We now decompose this tensor T,,, in eq. (309) using the general prescription provided
in egs. (268, 269). We also make use of eq. (69) which we reproduce here for convenience:

E=T,,n"n" (Energy Density),
Do = —Twn“}f:; (Momentum Density), (310)
Sap = Tuv}fﬁyg (Stress Tensor),

where we have replaced the notation for energy density E — £ in order to not confuse it for
the electric field. By plugging eq. (309) into eq. (310), we get the expressions:

1
&E=—(E*+B?),
o ( )
1
Py = 4—n(3)eaWE"B”, (311)

1
Sap = P [vap(E*+B*) —2(E,E +B,Bg)] .

The expression of p, identifies itself as the Poynting vector. It is the momentum density as
measured by an Eulerian observer. Using the expressions in eq. (311) in eq. (309), we have:

Tuv=8n“nv+nupv+punv+sw. (312)

Also using eq. (70), namely T =S —& where T and S are traces Tl‘f & Sﬁ respectively, and
T = 0 corresponding to eq. (307), we have:

S=¢, (313)

for the electromagnetic field. This is a well known result in Maxwellian electrodynamics [33].
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6.1.1 Einstein-Maxwell equations of motion in 3 + 1-form

We have already decomposed the full Einstein field equations in Chapter 3.1 (eqs. (71, 72,
73)) whose details can be found in Appendix D. Then we use egs. (311, 313) to obtain:

* Both Projections along n™":

®)R—K ;K7 +K* = 16nE =2(E*+B?) . (314)

* Both Projections along %;:

DgKP —D,K = 8mp, = 2%, E'B". (315)

* Mixed Projection along n* and %;:

—0iKap — LKeap + N (PRyg — 2K 1K) + KKy ) + DuDpN

1
=8nN [sa,,» —3Yap(S —8)]
= 87'CNSa[5
=N[vop(E* +B*)—2(E,Ep + B,Bg)] ,

(316)

where we used the manipulation for the Lie derivative in eq. (300).

Summary: Maxwell’s equations in covariant form are given in eq. (266). Faraday tensor &
its dual in 3+ 1-variables are expressed in egs. (277) & (278) respectively, where 3-Levi-Civita
tensor is defined in eq. (274). The projections of Maxwell’s equations along the normal n*
are given in egs. (287) & (288). The projections of Maxwell’s equations along X, are given in
eq. (301) (or eq. (297) in component form) & eq. (302). Thus eqgs. (287, 288, 301, 302) are
the 3 + 1-decomposition of the covariant Maxwell’s equations (eq. (266)). The stress-energy-
momentum tensor corresponding to the electromagnetic field is given in eq. (312) where egs.
(311) & (313) are used. Using this on the RHS of the Einstein field equations, we have egs.
(314, 315, 316) as the full 3 + 1-decomposition of the Einstein-Maxwell system.

Now we go one step back and calculate the ADM action of the Einstein-Maxwell system
whose variations (as done in Appendix F) lead us back to these equations of motion (egs. (314,
315, 316)). Having done that, we then specialize to the case of Bianchi IX-Maxwell system
and do its ADM analysis just like we did for the case of scalar field in Chapters 5.3 & 5.4.

6.2 ADM formulation of Einstein-Maxwell system

We present the ADM analysis of the Einstein-Maxwell system in general without any assump-
tion of homogeneous cosmologies. Then in Section 6.2.1, we specialize to the case of Bianchi
IX cosmology, thereby getting the ADM Hamiltonian for the Bianchi IX-Maxwell system which
we will use in Section 6.3 to derive the equations of motion.

The Einstein-Maxwell system for the vacuum case without the cosmological constant is
defined by the following action:

1
SEinstein-Maxwell = J d4X vV —8& [(4)R_ ZFMVFHV] . (317)
Thus we see that the action can be written as “Action = Einstein-Hilbert + Maxwell”. We have

already dealt with the Einstein-Hilbert action and done its ADM analysis in details in Chapter
3.2. We now focus on the electromagnetic Lagrangian density.
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Maxwell system

We start with the electromagnetic Lagrangian density:

ﬁEMz——,/ gg"*g"PF,Fop (318)

But we have in eq. (60) the 3 + 1-decomposition of the 4-metric which we use to expand the
summation in eq. (318) along with eq. (61) to get:

= Loy =— V7 [4N'ATF;; + 4A15,A) + —2A'A, 19)
2( 'Ag) (8:Ag) —4N'37AyF;; + NF, Fij—zF;'FikaNk]

Having this expanded expression for the electromagnetic Lagrangian density in terms of 3+ 1-
variables, in order to calculate its Hamiltonian, we need to calculate the conjugate momenta
IT* corresponding to to the vector potential A;. We realize that only the first line in eq. (319)

survives:
0Ly
DA,

1

1 . . .
== V7 [4N;F/ +407A,— 44! ] (320)

i _

1
== VT [Fro+ N/ Fye o™,

where the presence of /7 tells that I is a tensor density with rank W =1 (see eq. (3)).
The Legendre transform of the electromagnetic Lagrangian density in eq. (318) gives the
Hamiltonian density of the electromagnetic field:

Hem = HiA' — Lem
1 iy o . (321)
=N ﬁHH + - J_F iFY | + N'TUF;; + IT' DA, .

We integrate by parts the last term IT'D;A, to get —A,D;IT' and ignore the boundary terms.
Thus the ADM Hamiltonian of the electromagnetic field becomes:

247

while the ADM action is given by using eq. (321):

HEM:J d3x[N (Lnn ey ~Fij)+Ni(HjFij)—A0(DiHi)], (322)
2[

ta
Spm = f dtf d*x (IA; — Hey ) » (323)
t1 %,

where the symplectic potential is:

Say = f d3x (I'4;) . (324)
=
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Using eq. (322), we get the following Hamiltonian constraint, diffeomorphism constraint
as well as Gauss constraint:

d3x [N (—H IT; + Z\/?FUF 1)] ,

HEM[N]ZNHEMZJ 27

X

DEM[Ni]:NiD(EM)izf d&x [N (TVF;)], (325)
pal

G[Ag] = AgG = J d*x[—A, (D;11Y)],
=

where the total Hamiltonian in eq. (322) becomes:

Hgy = Hgy[N1+4 Dgy[N' ]+ G[Ag] = NHgy + N'D gy +AG - (326)

As shown explicitly in Appendix F, we can vary the ADM action in eq. (323) with respect to
N, N' and A, to get the five constraint relations (thereby implying that N, N' & A, are Lagrange
multipliers):

Einstein-Maxwell system

We now go back to eq. (317) where we just did the ADM analysis for the electromagnetic part.
The ADM analysis of the pure gravity part is already done in Chapter 3.2 where we use the
results from egs. (96, 97, 98) as well as eq. (E21) to get for the combined Einstein-Maxwell
system the following ADM action:

ty
SEinstein—Maxwell = J dtJ dgx (nl]jfij + HlAi - HEinstein—Maxwell) 5 (328)
ty s

where the Hamiltonian density for the Einstein-Maxwell system is:

1 (2 . 1. 1 .
HEinstein—Maxwell =N |:_\/7(3)R - T = (_ -V nij) + I—[lni + Z\/?FUFU]

VT \ 2 2V7 (329)
and symplectic potential is:
S= J x ('l + 1A, . (330)
Xy

The Hamiltonian can then be written as:

H Einstein-Maxwell — f dBX HEinstein-Maxwell = (H[N ] + D[N i] + G[AODEinstein-Maxwell B (33 1)
X t
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to get for the Hamiltonian, diffeomorphism & Gauss constraints as follows:

1 [ 2 . 1 . 1 ..
H[N]=NH= | d°x|N|—-y7PR— —| — —rln, |+ —T11 + - /7F;;F7 ||,
[ ] fzt [ ( \/? 1/7 2 ij 2‘/? i 4\/? ij
D[N]=N'D; = J dx [N (=2D/m;; + IVF;)],
pf

GlAo] = AgG = j &x [~ (D],

ar

(332)
where N, N' & A, are the Lagrange multipliers causing the variation of action (eq. (328))
with respect to them lead to five constraint relations:

H~O0, D; ~ 0, G~O0. (333)

Thus we have found the ADM action of the Einstein-Maxwell system (eq. (328)) which
leads to the equations of motion provided in egs. (314, 315, 316) where we have to use the
definitions of electric and magnetic fields from eq. (271). The readers will notice that every
boxed equation of the Einstein-Maxwell system is of the form “Einstein + Maxwell”.

6.2.1 ADM formulation of Bianchi IX-Maxwell system

Now we specialize to the case of Bianchi IX cosmology where we need to impose the homoge-
neous ansatz on the Hamiltonian, diffeomorphism & Gauss constraints in eq. (332), just like
we did in Chapter 5.2. We impose the following ansatz in invariant basis on top of what we
imposed in Chapter 5.2 in eq. (197) (recall IT' is a tensor density just like 7'/):

Yij = haﬁ(t)ef‘ej =y = hsin?(6),

b — ¢in(0)% (t)el ¢’

T | sin(0) " ( )?aeﬁ, (334)

IT' = sin(6)I1%(t)e,, ,

Ai =Aa(t)ef‘ .

We have already imposed this homogeneous ansatz in Chapter 5.2 for the pure gravity
parts in eq. (332) and we need to impose on the electromagnetic components here. So we
focus on the Hamiltonian, diffeomorphism & Gauss constraints provided in eq. (325).

Detailed calculations of imposing the homogeneous ansatz in eq. (334) on the electromag-

netic components provided in eq. (325) are given in Appendix G. We present the results here
(egs. (G.13, G.17, G.20)):

n 1 h
Hgpm[N]= NHgy = i I:EHO‘H& + Zh“athﬂAregae;v] )
; ; 335
DenN']= N'Dgy; = n°I*Agel )

G[Ag]=AG=0 (identically).

Thus we see that the Gauss constraint is identically zero and while solving the constraint
equations, we again simply need to take care of the diffeomorphism constraints only. In a
general classical Yang-Mills gauge field, the Gauss constraint is not identically zero and we
need to take some combination of the diffeomorphism & Gauss constraints to solve for the 3-
metric (by choosing a suitable gauge that will make the combination a second class constraint)
and its conjugate momenta.

71


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.73

SCIl SciPost Phys. Lect. Notes 73 (2023)

We have already derived the Hamiltonian and diffeomorphism constraints for the pure
Bianchi IX universe in Chapter 5.2 (eq. (206)) which we use here and get for the eq. (332) in
homogeneous ansatz eq. (334) for the Bianchi IX-Maxwell system:

HBianchi IX-Maxwell = (H[N] + D[Ni] + G[AOJ)Bianchi IX-Maxwell (336)

where the Hamiltonian, diffeomorphism & Gauss constraints are:

HBIX—EM[N ] =NH

n 1 1 2
= ﬁ [Tr (hz) - 5 (Tr(h))2 - 5 (ﬂaﬁhaﬁ) + ﬂaﬁ TCaﬁ
1 h
+5 1T, + Zrh““h”AﬁATe{fwefw] ~0,

i i (337)
Dpxem[N'] = N'Dpixemi

= n% | 2}, nPhy, + 1%4gel, |~ 0,
Gprxem[Ao] = AoGpix M

=0 (identically).

Here we keep in mind eq. (G.8) where we saw that in the invariant basis, the Levi-Civita tensor
(e o) which acts as a structure constant (C Tv) for Bianchi IX universe can be raised /lowered
using a Kronecker delta function (67°) and not the 3-metric h,gs. Appendix G contains the
detailed calculations.

6.3 Bianchi IX-3D Maxwell-scalar field system

In order to calculate the equations of motion corresponding to the Hamiltonian constraint
in eq. (337) plus the free & massless homogeneous scalar field, we need to first solve the
diffeomorphism constraints like we did in Chapter 5.2 (eq. (209)). We don’t need to worry
about the Gauss constraint as it is identically zero for a Bianchi IX-Maxwell-scalar field system.

6.3.1 Solving the diffeomorphism constraints

Coupling a free & massless homogeneous scalar field does not change the diffeomorphism
constraints as we proved in eq. (244). The electromagnetic field does, so we consider the
diffeomorphism constraints in eq. (337). We already know the contribution for the pure
Bianchi IX case from egs. (207)-(209). For the electromagnetic case, we have:

n5H°‘A/5 €540 P =’ 11'Age93,6% + n®T1%A €13, + n2IT'Az €55, 5%
+ n2H3A1 6123511 + n1H2A3€312533 + n1H3A2€213522
= nl (H2A3 - H3A2) + n2 (HSAl —_ H1A3) + n3 (H1A2 —_ H2A1) .

Thus we have for the overall diffeomorphism constraints in eq. (337) (Bianchi IX + elec-
tromagnetic field) the following:

2(hgen™ —hp,n™*) + (I1°A5 —T1PA,) 2 0. (338)

We identify the matrix commutation just like in eq. (208) and if we define:

Wi =—- (A" —A,I1P), (339)

N
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then eq. (338) can be written as follows:

[h, 7] ~ W (340)

Just like in Chapter 5.2, we need to make this set of constraints a second class constraint.'?
To motivate the choice of gauge fixing, we evaluate the Poisson brackets using the definition
provided in eq. (188). We again get the same as eqgs. (210, 211). Thus we again choose as an
ansatz for the 3-metric h,g as:

haﬁ = dlag (Ql: Q2J QS) > (341)

where again, eq. (211) suggests that Q; # Q,, Q2 # Q5 and Q3 # Q; for the diffeomorphism
constraints to be a true set of second class constraints. But unlike eq. (209), here the conjugate
metric 7%® does not commute with the 3-metric hs. as clear from eq. (340). Thus in this case
the conjugate momenta is not in the diagonal form unlike eq. (212). We need to solve for the
off-diagonal terms of 7@,

We choose a =1, 5 = 2 in eq. (340) to solve for the strong equality case and use the ansatz
in eq. (341) along with the symmetric property of the conjugate momenta (7%® = +1f%) to
get:

(h]_T’ITTz - hzTTETl) = —% (Aznl —A1H2) ,
= (hllﬂlz — hzzﬂ'Zl) = —% (Aznl —A1H2) B (342)

1
= (QlTClz —Q27T21) = —5 (Aznl —A1H2) .
Thus {a, 8} = {1, 2} in eq. (340) using the ansatz in eq.(341) leads to:
12 21 1 (A2H1 _Alnz)

— = A 343
R N (o Mo (343)

Similarly for the choices of {a, 8} = {1,3} and {«, B} = {2, 3} respectively, we get:
1 (ATt —AT13)

718 = 31

2 (Q1—Q3) (344)
s 1 (A3 — A,113)

2 (Q:—Q3)

The cases {a, 3} = {2,1}, {a, B} = {3,1} & {a, B} = {3,2} lead to the same expressions
above and are not independent. For the diagonal terms {n!, %2, 133}, we use the AHS vari-
ables just like in eq. (212).

Thus we have solved the diffeomorphism constraints to get for the 3-metric and its conju-
gate momenta the following:

Q 0 O
ha/j = 0 Q2 O )
0 0 Q
345
5_11 12 13 (345)
700 = | 721 = 12 g_zz =3 |,
ml=pgl3 32723 B
Qs

where {r'2, n'3 123} are provided in eqs. (343, 344).

135ee footnote 3 in Chapter 3.3 for the definitions of first class and second class constraints.
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6.3.2 Simplifying the Hamiltonian constraint

Recall that we are coupling a free & massless homogeneous classical scalar field (the case
that we solved in Chapter 5.3) to the Bianchi IX-Maxwell system. The complete Hamiltonian
constraint of the Bianchi IX-Maxwell-scalar field system is:

H = Tr(h?)— % (Tr(h))? + % (15)* — % (naﬁhaﬂ)2

1 h
+ 1P o+ ST+ RO ApA el e, (346)
—— g

® @ @)

where we made use of eqs. (244, 337) because “Bianchi IX-Maxwell-Scalar = Bianchi IX
+ Maxwell + Scalar field”. Also we set the Lagrange multiplier n to scale like v/h so that

n’ = ‘= = 1 without loss of generality.

The first three terms are already evaluated in eq. (214) as the ansatz for the 3-metric here
in eq. (341) is the same as in eq. (212). Similarly for the term (—% (n“ﬁhaﬂ )2) in eq. (346),

we have the same result as in eq. (215) because the off-diagonal terms in 7% in eq. (345) do
not contribute. Thus we are left with terms @, @ and @

Terms @, @ & @ become:

Term @ =P Tap = P " %hochps
= h11h11 71'117'[11 + h22h22ﬁ22ﬂ'22 + h33h33 77:3371'33

+ 2h11h22ﬂ'12ﬂ:12 + 2h11h33 7T137T13 + 2h22h337[23 7T23

= (P2 + P2+ P2)" + 2(Q1Qu(m'2)? + Q,Q3(n') + Q,Q3(n2)?)

1 1
Term (y) = EHaHa = Enanﬁhaﬁ
1
=3 [(pl)zhll +(P?)*hyy + (P3)2h33]

1 (347)
=35 [(P1)2Q1 +(P3?Qy + (P3)2Q3:| ,

h
Term @ = Zh““h”"AﬁATeyaa&’ﬁeww5an'
h
= ‘—}2 [h11h22A3A3€312€312 +h' hBAA €913€013 + RPhPALA; 61236123]
1 1 1 1
- 10,00 [—(A Pt (A +
g Theres Q1Q, ’ Q1Q3 2 Q2Q5
1
=3 [Qs(A3)2 +Qy(A)* + Ql(A1)2] .

2]

Therefore plugging eqs. (214, 215, 347) into eq. (346) as well as using the definitions for

{m12, 13 123} from eqs. (343, 344), we get for the Hamiltonian constraint:
1 , 1 n3
H=(Q? +Q§+Q§)+(P12+P22+P32)—§(Q1 +Q,+Q3) —E(P1 +P,+P)* + >
2 2 2
(A1 —A 11%) (At —A 11%) (A2 —A,I1%) (348)
+Q1Q2 3 1Q3 3 2Q3 3
2(Q1—Q2) 2(Q1—Q3) 2(Q2—Q3)

- 9 (e () + 22 (o # (12) + L (3 + (7).
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where the first line represents the Bianchi IX + scalar field system while the second & third
lines contain the Maxwell’s contributions.

6.3.3 Switching to Jacobi variables

We now switch to Jacobi variables like we did in egs. (218, 219) which we reproduce here for
convenience:

k, k ky k _ 2
Pl—_ﬁ 7%+D, PZ—E'F‘/—%"‘D: Py = §ky+D’ (349)
Q1=a€_"%+%, Q= ae'3 ), Q3_ae_\/gy
and
2 vT
a:vS’ Dz?' (350)

We have already done this transformation for the first line in eq. (245), so we just need to
consider the transformations of the Maxwell’s terms in eq. (348).
We start with the second line of eq. (348) containing terms of the form (AgIT* —A,I1P):

.. = 2Q:Q, 2a2e2/V6
33 = (Q1 — Q2)2 - a2 (e—«/ix+2y/1/g + e+«/§x+2y/\/€ — 262}//1/6)
2 1
T (exVE_ /2 ECSChZ(%)’
—x/V2 _ 2
(em/ V2 —ex/2) (351)
_2Q:Q; 1 Z(x—ﬁy)
522 :—2 = = Ch -,
(Q:1—Q3) 2 2v/2
_2Q,Qs 1 ,(x++3y
(Q2—Q3) 2 2v2
We further define: 1
G! =7 (A% —A,11%)
1
G? = (A% — AT, (352)
1
G =2 (A1 —A 1) .
Thus we get for the second line of eq. (348) the following in Jacobi variables:
Second Line =S§,,,(x,y)G" (A, I1)G” (A, 1I), (353)

where S,,,, = diag(Sy1, Saz, S33) and {Sy1, Sz, S33, G, G, G} are defined in egs. (351, 352).
Now we focus on the third line of eq. (348) containing terms of the form ((Aa)2 + (1'[“)2):

Third Line =v23T,,(x,y) [[I*I1" + A,Ap5%5P] (354)

where T, = %diag(e—)f/ﬁﬂ//«/é, ex/«/i+y/«/€, e 2/3y)
Thus as a summary, the Hamiltonian constraint for Bianchi IX-Maxwell-scalar field system

after solving the diffeomorphism constraints in Section 6.3.1 is as follows:

2
T 3
H=k§+k}2,+f—§v272+v4/3U(x,y) (355)

+8,,(6, Y)G* (A, TN G” (A, TD) +v23T,, (x, y) [[I'I1” + A, A5 545 ]
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where we reproduce the shape potential U(x, y) from egs. (224, 225) here:

Ulx,y) = f(=V3x+y)+ fF(V3x + y) + f(—2y), (356)

having f(z)_ ZZ/‘/_ e /8| Also:

1. x+x/§y) (x—ﬁy) x
S E—dla csch? | ———= |, esch? [ ———= |, csch? (—) ,
w g( ( 23 23 /z

z—(A3H2 — AT, AT — AT, AT — A TT2) (357)

. x4y x4y _\/E
T E—d1ag(e itV e 2 e 3y)
uv 2 b b >

where for brevity, we denote the components as S, = diag(S11,S22,S33), G" = (G}, G?,G?)
and T, = diag(Tyy, Taz, T53). The electromagnetic contributions are called the S-potential &
the T-potential, in addition to the (shape) U-potential of the pure Bianchi IX universe. We
plot the the matrix elements of S, & T}, in Fig. (12) and Fig. (13), respectively.

Here the list of conjugate variables is:

{x, k) ={y.k}={v,1}=1
{®,ms} =1, (358)
{A, 1P} =6P.

6.3.4 Equations of motions

We evaluate the complete set of equations of motion for the dynamical variables of the Bianchi
IX-Maxwell-scalar field system, namely the ones contained in eq. (358).

The Hamilton’s equations of motion (with respect to the coordinate time t) corresponding
to the Hamiltonian constraint in eq. (357) and the conjugate variables in eq. (358) are:

X_+3ﬂ i —_@ y — 3;1—]1 i —_aﬂ V= 3;1-]1
Tk, T Taxr YT ek, T ey VT Tar
cofE g yem o _em o om g, om DY
NN omg’ *T o8’ ¢ Tome’ T 9Ag”
We now proceed to show their explicit expressions:
x =2k,
: oU(x,y) oS8 aSs as
—_ 4/3 > 29911 2429922 3429933
e [ G e (o e e IR
oT oT.
023 (a2 + (2) 2L 4 ((A0)2 4+ (112)2 22]
v (a2 + () S (a2 + () S22,
y =2k,
. oU(x,y) S aS
— AR Z I 29211 21299222
ky, =—v 2y [(G) +(G%) } 361)

_ 2 9T
v (@2 @) 52 ((A2)2+(n2)2) T2 (P + PP 2,
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@ Sq1(x,y)

(b) Syr(x,y)

533

(c) S33 (x)

Figure 12: S-Potential for the Bianchi IX-Maxwell system
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(@ Ty1(x,y)

15000
T22 0000

5000

(b) Too(x,y)

Tas

(©) T53(y)

Figure 13: T-Potential for the Bianchi IX-Maxwell system
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-3
v=—v?7,
4
3
T =—VT2—iV1/3U(X,y) (362)
4 3
2
~ 315 [((A1)2 + (Hl)z) Ti1 + ((A2)* + (TT%)?) Ty + ((A3)* + (1T%)?) T33:| ,
é=ry,
o (363)
Ty = O,
, 1 1
A1 = ZV%Tll(X, y)Hl - 5522 (A1H3 —A3H1)A3 + 5533 (AzHl —A1H2)A2 5
(364)
. 1 1
I = —2v3 Ty, (x, y)A; — 552 (A 1% — AT ) 1% + 253 (A It —A 1% 112,
, 1 1
Ay = 205 Toy(x, )12 — 253 (ATt — A TI?) A + 5 (A% — A1) A,
(365)
. 1 1
I12 = —2v3 Ty, (x, y)Ay — PRE (A —A 1) T + S (A2 — A, I13) 113,
) 1 1
As = 2v3 Tyq(x, y)II3 — =S, (A2 — A1) Ay + =Sq (A T2 — AT Ay,
2 2 (366)

. 2 1 1
H3 =23 T33(X,y)A3 — 5511 (A3H2 —A2H3) Hz + 5822 (A1H3 —A3H1) Hl 5

where we use egs. (356, 357) for explicit forms of components.

7 Conclusion & Outlook

We introduced the Hamiltonian formulation of general relativity and homogeneous cosmolo-
gies through this work where we tried to be detailed and self-contained in our approach. We
presented a variety of examples and did their ADM analysis such as a scalar field coupled to
Bianchi IX universe, electromagnetic field field coupled to gravity, & so on. The idea was to
acquaint the readers with the canonical formalism and provide them a hands-on practice of
implementing it. But in order to keep this introductory and detailed, we had to overlook some
topics such as ADM mass & ADM momentum.

The concepts we developed in Chapter 5 such as Mixmaster dynamics and quiescence
play a significant role at the research frontier while trying to resolve big-bang singularities in
various cosmological models. We already know about the inevitability of singular solutions
in general relativity which is captured by the famous Penrose-Hawking singularity theorems
[34-37]. As Stephen Hawking put it,“A singularity is a place where the classical concepts
of space and time break down as do all the known laws of physics...” [38]. But it has been
shown in the literature [28,29] that for the systems considered in Sections 5.3 & 5.4, the
classical degrees of freedom can be evolved uniquely through a timelike singularity, namely
the big-bang. Clearly this contradicts the common understanding of gravitational singularities,
which so far have been considered as regions where the known laws of classical field theory
cease to be valid. The methodology and concepts introduced in this work play a significant
role towards resolving singularities such as these. The arguments detailed in [28,29] do not
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provide a general statement, but showing counter-examples is a beginning towards what we
hope could be, in the future, a general theorem on the continuation through singularities
(similar in spirit to the Hawking-Penrose theorems on the inevitability of singularities). There
is a large amount of work that remains to be done as future research projects and the concepts
introduced here will continue to play a fundamental role towards this goal.

Just as in Chapter 6 where we generalized to the case of Einstein-Maxwell system, the next
natural generalization is to consider a general Yang-Mills classical gauge field. This means
adding an extra Lagrangian density term to the action, just like what we did in eq. (317):

1 o
Lyang-mills = —ZV —gf”v(l)]:ﬁ]ﬁ(i)(j) , (367)

where {(i), (j)} denote an internal index that runs over {1, 2, ..., n} with n being the dimension
of the Lie algebra of the Yang-Mills gauge field [39]. The generalized Faraday tensor is defined
as:

Fi9 =5, AD—0,A@ + g {0 AP AL, (368)
where AL“) is the gauge field, g is the coupling constant and f((ba))(c) are the structure constants
of the Lie algebra. Then just like what we did with the electromagnetic field in Chapter 6,
we need to find the corresponding Hamiltonian of the Yang-Mills field in 3 4+ 1—variables and
show the full Hamiltonian of the Einstein—Yang-Mills system to be of the form “Einstein +
Yang-Mills”. Then again we need to impose the homogeneous ansatz on the Hamiltonian so-
obtained and in doing so, we will observe that, on top of the gauge field having more than
one component, this case introduces also cubic and quartic terms in the Lagrangian, which
will correspond to cubic and quartic terms in the Hamiltonian. Moreover, in this case, even
after imposing the homogeneous ansatz, the non-linearity of Yang-Mills theory implies that the
Gauss constraint won't be identically zero (unlike the electromagnetic case). Thus there will
be several complications when compared to the Maxwell case and solving all the constraints
of the theory will be significantly more challenging.

The next interesting case (or generalization) is that even though we exclusively focused
on the homogeneity assumption, our universe is obviously non-homogeneous on small scales.
Having a Hamiltonian approach for inhomogeneous cosmologies will go a long way in un-
derstanding the (classical) micro-structures of the cosmos. This generalization is expected to
present significant additional challenges, with respect to all the cases mentioned previously.

Finally, we would like to remind that this entire work is grounded in classical Physics. The
Hamiltonian formulation of any classical field theory is a pre-cursor to its quantization as is evi-
dent from the canonical approach to quantum field theory [40]. Accordingly, the Hamiltonian
approach to classical gravity is seen as an imperative step in the grand attempt to quantize
gravity. Various approaches towards this goal, such as Wheeler-DeWitt quantization & loop
quantum gravity, are grounded in the concepts introduced in this work [13]. Then a natural
extension of the models considered here which still lies within the limits of homogeneous cos-
mologies, is that of fermionic fields. Spinors do not couple directly to the metric variables,
but rather to the frame fields (“vielbeins”), which take into account the orientation of spatial
slices. Providing a canonical formalism for such a system will inevitably lead to some inter-
esting consequences especially with the realization that a spinor is fundamentally a quantum
object.
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A Basic definitions & formulae in general relativity

We consider a spacetime manifold {M, g,,} where g, is the corresponding metric defined on
the manifold which is symmetric in both its indices. Then we define Christoffel symbols as:

1
ngz EgHU (aagv0'+avg0'a_aagav) 5 (A.l)

where we have Fﬁ‘v = Fﬁu. The covariant derivative is defined accordingly for a tensor of
arbitrary rank (k,[) as:

Ugfha U . g gl
WV, TH1H2 bk _ao_lek

V1Vge vy VIVa-
U1 Ay 2] A
+FU)LT o Hkvl _|_1" Tlh Mkvlvz o + .- (A.Z)

—T* THib2 bk —l"l T M1k
oV

Avye oy Ay T

where shorthand notation for covariant derivative is V, V" = V” and simple partial deriva-
tive is 9,V” = V” By definition, covariant derivative of the metrlc is 0, V,guy = 0. The
4— dlvergence of : a vector V* is given by:

1
vV, VH = Tgaa (vV—gv9). (A.3)
Also the 4—Laplacian of a scalar function f is given by:
1 0 af
V, Vi = ——— A4
wV'S J/—g OxH ( ax ) (a4)
The Riemann curvature tensor is defined as:
— P A P A
RO, =0,Tf, —8,I0 +T0, T\ —T0T" (A.5)

whose physical meaning can be captured by the action of [VH, Vv] on a tensor X of arbitrary
rank (k,1) as:

_ A
[V, Vo ] XM, Ly =—T] VX

Vi
%3] Az M2 Hr A -
+R™ 00X +RApUX1 N (A.6)
_RpA AR PR p1 Pk — ...
vaan Avbe T vszX LYY >

where T is the torsion tensor defined as a map from two vector fields X and Y to a third vector
field:
T(X,Y)=VyY —VyX—[X,Y]. (A.7)

Defining R,5uy = &, ARﬁ'HV’ we have the following properties of the Riemann cur-
vature tensor: (1) Roouy = —Ropurs () Rpouy = —Rpgwws (i) Rpopy = Ruypos (V)
Rpouv+Rpuv0' +RPV0M =0 Rp[o‘,uv] =0, (V) R[pO',uv] =0, and (vi) VMRPU]MV = 0 (Bianchi
identity) < [[VA,VPJ,VU] + [[VP,VU],VA] + [[VU,VA],Vp] = 0. Clearly, there are
ﬁnz (n2 - 1) independent components of the Riemann curvature tensor where, for example,
n =4 in 3+ 1—dimensions give 20 independent components.
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The Ricci tensor is defined as:

Ryy =R}, (A.8)

which has the property R,,,, =R,,. It can be shown that this can be written as:

1
Ruv = mak [\/@Aﬁv] - AZAA/AJV - aﬂav In (\/ﬁ) ) (A.9)

The Ricci scalar is defined as:
R= R‘Ij = g‘“’RW. (A.10)

The Weyl tensor is defined as the Riemann curvature tensor minus its contractions as fol-
lows:

2 2
Coour =Roouv= 155 (8o1uR 10 — 8otuRup) + =D =2 eudioR, (A1

where n is the full spacetime dimensions. It has the properties: (i) Coour = Clpolurls (i)
Cpauv = Cyvpo’ and (111) Cp[ouv] =0.
The Einstein tensor, which we will also encounter in Chapter 2.2, is defined as:

1
Guy =Ry, — ERgW, (A.12)
which satisfies the symmetric property G, = G,,, as well as V*G,,,, = 0 (which follows from
the Bianchi identity mentioned above) which will be of immense importance concerning the
conservation of energy-momentum tensor as explained in Chapter 2.2.

Finally, we define a geodesic which is the generalization of the notion of a straight line in
Euclidean plane to a general curved manifold. Any parametrized curve x*(A) is a geodesic if
it obeys:

d?xH dxP dx°
fpu DA A.13
dA2 P dA dA ( )
which is also known as the geodesic equation.

B Derivation of Gauss, Codazzi, Mainardi relations

The Gauss, Codazzi, Mainardi relations form the basis of 3+ 1—formalism of general relativity.
We assume the spacetime manifold (M, g,,,) to be globally hyperbolic which admits foliation by
a family of spacelike hypersurfaces %, (t € R is the time parametrization of each hypersurface)

as follows:
M=Jz, (B[ \zv=0). (B.1)
t

Let n* be the normal vector to the spacelike hypersurface %,. Then the 3—metric induced
on each of the hypersurface (y,,) is given by:

Yuv = 8uv tmyun, < yH*"=g"" +nkn’, (B.2)

and
Ya/j = 501/5 + nanﬁ . (B.3)

Accordingly, the covariant derivative induced by v, is denoted by D, that satisfies Dy, =0
(or Dyyij = 0), just like in full 3 + 1—dimensions we have V,g,,, = 0. The relation between
3—covariant derivative and 3 4+ 1—covariant derivative is:

Dp Talmapﬁl,..ﬁq = Yalul e YapquVIﬁl e YVqﬁq Yopva TH1~~~Mpv1qu . (B.4)
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Intrinsic curvature is the Riemann curvature of each hypersurface induced by the 3—metric
¥ v, denoted by ®)R, just like the 4—metric induces the Riemann curvature of the spacetime

manifold M, denoted by R. Intrinsic curvature of a hypersurface is independent of other
hypersurfaces. But we are also interested in knowing that how the curvature itself changes as
one proceeds from one hypersurface to the next. This is what is known as extrinsic curvature K.
The defining relation for the extrinsic curvature tensor can be taken in terms of Lie derivative
along the normal vector n* as follows:

1
Ky =_5£nﬂw: (B.5)
which can be shown to be equivalent to (as done in Chapter 2.3):
K,, = —Yzyfvanﬂ . (B.6)

Similar to Ricci scalar R in 3+ 1—D, we have extrinsic curvature scalar defined by K = y#’K,,.

3 'u, . . . . .
Thus, {y,,, Dw( )Rmﬁ’Kuv} are 3—objects (as their respective contractions with the normal
vector n* are zero), living on ¥, and accordingly the Greek indices can be replaced with Latin
ones as only the spatial components are relevant.

The relations we are about to prove decomposes the 3+ 1—objects (such as tensor (‘YR*

vaf’
scalar R, etc.) living on full spacetime manifold M in terms of 3—objects (summarized
above) residing on the spacelike hypersurface %,.

Gauss identities

Gauss relation

Just like in 3 + 1—D, we have in 3D the following identity valid for any arbitrary vector V*
living on the hypersurface X, (such that nHV“ =0):

— (3)pr
[Da, Dp JV7 =R V. (B.7)
Then we use eq. (B.4) to simplify the LHS as follows:
DyDpV" =Dy (DgV?) = 1" 41”677 , V. (D,VP)
=" 6 oV (Y0P 2V V).
Using the idempotent relation yg }/Q = y7 and the definition of the extrinsic curvature tensor,
we get:

_ P A A P A
= D, DgV" = )f’;y%y;(novunvrlvav +y5Vun m, Vo Vi +y Ty vV, V, V)

(B.8)

—Vlvanl
(B.9)
= ygygygv“nvn"vavl — y‘;yg}f% V’lvunp Veny + ygygygvuvavl
= —Kopyin" VoV —KIKpa V* + iy Byt v, V2.
Then we a «— 8 to get DgD, V" and subtract from D,DgV" to get:

[Das Dp]V" = (KauK}y — K KL ) VE + 1077 By} (Vo Vo VA =V, 9, V) (B.10)

-~

4)RA
( )wavu

Rearranging and using V* = y5, V9 (since V* is a 3—vector), we get:

4 A _ @B)pY A Y A
Yy sty @WRE VA =ORY VA4 (KIKyp —KJKap )V (B.11)

But V* is an arbitrary 3—vector. We finally get the Gauss relation:

15 R = PRy + KiKop — KK ©.12
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Contracted Gauss relation

We simply contract the indices y and a in the Gauss relation (eq. (B.12)) and use the idem-

potent relation of 3—metric, namely ygy’ﬁ = y2 = 0% +n%n,, to get the contracted Gauss
relation:

Y4y PRy + 70 v @RE = OR g+ KKy — KoKy (B.13)

Scalar Gauss relation — generalization of Theorema Egregium

We take the trace of the contracted Gauss relation (eq. (B.13)) with respect to the 3—metric
y* and use the idempotent property of the 3—metric, Kﬁ =K; =K and K,,,K"” = K;;K" to
get:

v (1 PRy, + 1o ron ORE ) = 1% (CRop + KKop — KoK ) (B.14)
4 4 — @ 2 ij
= OR+y2n"n"@RY =R+ K2 —K;KY. (B.15)

Then using yﬁ = 5ﬁ + nfn, and (4)R’$panp n,n"n? = 0 as contractions are done between
symmetric and anti-symmetric pair of indices, we finally get the scalar Gauss relation:

@R+ 2MR, nn” =CR+ K2 —K;KY . (B.16)

This is a generalization of the famous Theorema Egregium which was originally proposed
for 2—D surfaces embedded in Euclidean space R® whose curvature is 0. Accordingly the LHS
vanishes. Moreover the metric g, of R? is Riemannian and not Lorentzian, so Yo =086%—n"n,
instead of what we used above, namely y? = 62 + n*n,. Thus K 2K iK i will have signs
reversed and we get the original Theorema Egregium:

@R—K?+K;K7 =0. (B.17)

We can further simplify this for the special case of 2—D where K;; can be diagonalized in
an orthonormal basis with respect to 2—metric y;; (remember g, is Euclidean), so that
K;; = diag(x, k) where k; and k, are principal curvatures of the 2—D hypersurface X.. Obvi-
ously, K = diag(x, x,). Thus K = k1 +k and Kinij = (x1)?+(x,)?. The original Theorema
Egregium simplifies to:

)R = 2Kk, (Special Case of 2D). (B.18)

Codazzi-Mainardi identities
Codazzi-Mainardi relation

We have for the normal vector n*:

[Va, Vp]n* =R gn”. (B.19)

We project this relation onto the hypersurface ¥, which simply means contracting each of
the free indices with the 3—metric:

Yorgri [V, Ve ln = yoyprh @R ypan’ . (B.20)
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Then using the identity for the extrinsic curvature tensor proved in Chapter 2.3, namely
K,, =—-V,n,—n,a, where a, = n"V,n,, we replace V,n’ to get for the first term on the
LHS:

i

Yhy Ry VY on = vhy iy v, (K2 —afn,)

Pas¥ oY P P P (B.21)

=Ta¥pTp (V“KV +V,afn, +a Van) .

Then we use the relation between 3— and 4—covariant derivatives (eq. (B.4)), namely

D, T/; = YZYXYE Va T;, as well as y;;nv = 0 (since n,, is a timelike vector, so there is no projec-

tion on a spacelike hypersurface %,), yg aP = a” (since a” is a spacelike vector, so projection

onto X, will give the same vector) and the definition of the extrinsic curvature tensor (eq.
B.6), to get:

ygygy;vuvvnp =—D, K" +a"Kup . (B.22)

With this result obtained, we permute a <= 8 (and not u «— v as these are contracted
indices) and then subtract from this result to get the RHS of eq. (B.20) (keeping in mind
Kuy=+K,,):

yhnoyhy R = DKl — D Kj . (B.23)

This is the Codazzi-Mainardi relation. The point to be noted about this relation is that on the
LHS, we have contracted n° with )Rf ,,. Had we contracted n, with RS ,, or n* with
(4)Rf,w, we would not have obtained an independent relation due to the symmetries of the
Riemann curvature tensor and the RHS would at most be different by a minus sign.

Contracted Codazzi relation

In the Codazzi-Mainardi relation (eq. B.23), we contract the indices a and y to get:
yhn?y R0, = DgK —D,K} . (B.24)

Then using y‘; =0 z +n*n,, we simplify the LHS as follows:

(4) — (4) — (4) (4)
ygnay;; RP —(5g+n“np)nay;; R’;W—nayl’; Rm+y;5’ ngnpn"n“, (B.25)

ouvy

-~

=0

where the last term is zero because symmetric-antisymmetric indices {p, o} are contracted.
Thus we get the contracted Codazzi relation:

4 _
r*n"™R,, =D, K —D,K". (B.26)

C Proofs of some results in 3+1-formalism

In this appendix, we prove the following results:
aH:DMIH(N), ﬁm}/ﬁzo,
v,n,=-K,,—n,D,In(N), VMmV:—NKJ—nMD”N+n”VMN,
Ly"" =+2NK*',  Lyy,, =—2NK,,, (CDH

LK

ur =NY4hV, Kop — 2NK, KO K

1 .
upy uv:ﬁ[DquJrDvNu_YWJ'
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We start from the definition of the acceleration of a foliation eq. (47) and use n, =Qv,t

where t € R is a scalar field and Q2 = ——2— = —N (see the paragraph above eq. (41)) to

V="
u=n°Von,=—nV, (NV,t),

=a, =—n° (V,N)(V,t)—n°NV,V,t.

get:

a
(C.2)

But we realize that V is torsion free and therefore when applied to any scalar field, such as t
here, we always have [VO,V“] t =0. We also use V,t = —r;\,—" and n°n, = —1 to get:

1 . o Ny
a, = Zvnun VoN+n"NV, (F)

-1
=n,n’V,In(N)+ n°V,n, +n’Nn, (]W) VN
%V“(n"ng)zO

=n,n’V,In(N)—n,n?V,InN +n°V,n, (C.3)

= (n"n, +69) Vv, In(N) = ySV, InN = D,, In(N)
—_———

=| a, =D, In(N).

After proving this, we use it in the alternative expression obtained for extrinsic curvature
tensor in Chapter 2.3 (below eq. (47)), namely K,,, = —Vn, —n,a, to get the next result:

Vi, =-K,,—n,D,In(N). (C.4)

Next we realize that from the definition of normal evolution vector m™" in eq. (56) that
m" = Nn* and this gives the next result:

v,m"=V,(Nn")=n"V,N+N v,n"
~——

use the above result (C. 5)

= Vum” = —NKJ — nuD”N + n”VMN.

Next we proceed to calculate the Lie derivatives. If we have a 3—object living on X, then
it is invariant under the projection onto X;, namely:

Ty o = YZi },z:),gi _'_Yl‘;zTulu.ur _— (C.6)

Accordingly, as seen in Chapter 2.1, the Lie derivative is a map from tensor field of rank (r,s)
to another tensor field of rank (r,s). For any 3—object on %, the Lie derivative then acts as an
endomorphism of the space of tangent vectors living on X, and thus we get:

Lay*=o0. (C.7)

With this obtained, we can generalize eq. (C.6) for the case of Lie derivatives of 3—objects
as follows:

(LT g g =V YooY (LTI, (C.8)

We realize that V is torsion free, so we can use the special case of Lie derivatives as in
eq. (11) to get:
‘Cm)/;w = mavaY,uv + Yavvuma + Yuavvma . (C.9)
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But we have already obtained V,,m” above which we plug it here to get (using y,,, = g, + n,n,,
V48uy=0and y,,n"=0):

= LY py = MV (v + 1uny) + ¥y (~NKS =1, DN +n"V,N)
+ Yy (-NK%—n,D*N +n®V,N)
= LYy =Nn®V,(n,n,)—n,D,N —n,D,N —2NK,,,
=Nn* (Vanu) n,+Nn%(Vyn,)n,—n,D,N —n,D,N —2NK,,.

(C.10)

(C11)

But we identify n*V,n, =a
this to:

, and use the result from above a, = D, In(N) to further simplify

=| LnYyy =—2NK,, . (C.12)

As a redundant check, since m" = Nn", we get that K, = —%Enyw which matches with the
result obtained in Chapter 2.3 (see below eq. (47)).
Then we use the idempotent identity ¥y, = y;. and L’my; =0 to get:

L (r*rij) =0,
é(ﬁmyik)ykj +yik (L’mykj) =0, (C.13)
= ([,myik) Yij = —}fik (—2NKkj) .
We multiply on both sides by y™ and contract on the index j where we make use of the fact
that ymj)/kj =y = 6 +n"ny but n, ny do not have spatial components (Y = 0). We

get: ) . o
=1y (Lny™) = 2y y*NKy;

(C.14)
=| L,,7"” = +2NK"”.

Next we evaluate the the Lie derivative of extrinsic curvature tensor where we will again
use the fact that V is torsion free and thus be able to use eq. (11) to get:

LnKop =N (V,Kop +KopVpnP +K,5V,n). (C.15)

Recognizing that K,,, is a tangent vector to X, (i.e. a 3—object), so we can use eq. (C.8)
to get:

= ‘CmK;w = YZYQ 'CmKa/i (C 16)
= N734rh (ViKap + Kop Vpn® +K,pVan) .

Then we use the alternative expression obtained for extrinsic curvature tensor in Chapter 2.3
_ B _ .
(below eq. (47)), namely K,,, = —V,n, —n,a,, to replace V,n” and use y,ng =0 to get:

= LK,y = NYYEV,Kop + NK,, 18 (K5 —nga®) + NK, 1% (K2 —n,a?)

o p ’ “ (C.17)
= Ny%rhV,Kap —NK, KO —NK, KE .
But KupKf =P Kyp Ky = KﬁK,,a = KﬁK,,p. Thus we finally get:
= | LKy = N73rhV,Kop —2NK, K. (C.18)
Finally we prove the only remaining result. We start from L, y;; = —2NK;; and realize

m® = Nn“ where n% = (1%, —%) (as obtained in eq. (62) in Chapter 3.1) which enables us to
split the derivative with respect to m into (8t —N kc’)k) and we get for the LHS:

LnYij = 0yij— (ijDiNk + YiijNk +NkaYij) . (C.19)
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But Dy.y;; = 0 and we finally get for the LHS:

1 . (C.20)
=| K, = ﬁ[ N, + DN, —7,,] .

D Projection of Einstein field equations in 3+1-variables

We derive all the results presented in Chapter 3.1. We know the full Einstein field equations
without the cosmological constant term to be (“)R‘W - % gw(“)R = 8nT,,. Accordingly we
need to take projection of the LHS, namely the 4—curvature as well as the RHS, namely the
4—stress-energy-momentum tensor in terms of 3—variables. We will take the projection of the
LHS & the RHS separately and then combine them to project the full Einstein field equations.

Projection of 4-curvature

We start with the definition of the 4—Riemann tensor when applied to normal vector n",
namely:
(AR o = [vav]np- (D.1)

ouvy

Then we project twice on ¥, and once along n* to get:
}fpa}fgn" ((4)ngn‘7) = ypa}fznv [V, V,]n". (D.2)

Then we focus on the RHS to get:

RHS =y,,14n"(V,V,n° =V, V,nf). (D.3)
Then we use eq. (63) to replace V,nf and Vunp as well as n“nM = -1,

yZy%nOVUKW = y(‘iy%VnKuv (since K, is a 3—object) and n"V ,n" = %Vv(n“nu) =0 to

get:

= RHS =y;ygvn1<w—ypay‘/;nvvuz<5

Term A

(D.4)
+pa¥pn” (Von,) DP In(N) +7pav)y (V,DP In(N)) .

Term B Term C

Then term A can be simplified as:

_Ypaanvvqu = _Ypayz Vi (anf) +YpaYzK$ v,n’
=0

=Y paV K5V Vun" =7 KEKG

= _KachU 5

(D.5)

where we used the definition of K, from eq. (46).
Term B simplifies to (using eq. (63) to replace Vg, ny=—1and Km,n” =0):
ypaygn” (anu) DPIn(N) = —ypay’gn”nv (D“ ln(N)) (D? In(N))
1 (D.6)
= 2 (DalN) (DgN) .
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Term C becomes (using eq. (B.4) so that ygvu (D”In(N)) = Dg (D In(N)) as well as
YpaDP = D) to get:

YoaYls (VuDP In(N)) = DDy In(N) = D,Dp In(N)

1
=Dy (ND/&N) (D.7)

1 1
= ~DaDpN — = (DuN) (DgN),

where we used in the first line the fact that for any scalar function f, we have I:Va, Vg ] f=0
where f = In(N) here. The second term on the last line exactly cancels term B above. Thus
combining terms A, B, C and plugging them back in eq. (D.4), we get the desired result:

1
YoaYls VRE,,,n7n” = =Koy Kj + 147y VoK + ~DaDpN - (D.8)

Now to obtain the result for 4—Ricci tensor, we make use of the contracted Gauss relation
(eq. (B.13)) which we reproduce here for convenience:

rhy s @Ry, + Yau"7p n?@R =Ry +KK,p — KoKy - (D.9)

Comparing with eq. (D.8), we see that there are two common terms and subtracting these
two equations lead to the desired result for 4—Ricci tensor:

1
yijﬁ ®R,p =R, + KK, — yijﬁ vViKap = 7 DuDyN - (D.10)

v

Finally, to get the result for 4—Ricci scalar, we contract eq. (D.10) with y*” and replace
Greek indices with Latin indices in terms containing 3—objects to get:

.. 1 ..
YR, = CR+ K2 — YUV, K;; — 7 DiDiN
A,—/
=V,K (D.11)
1 ..
=CR+K2-V,K — ~ 7DD,

where we used the corollary deduced from eq. (64) in Chapter 3.1. Then we use
r*” = g"” + n*n" to split the LHS and get:

1 ..
@R+ @R, ,n"n” =CR+K*—V,K — NYUDL-D]-N . (D.12)

Now we compare this equation with the scalar Gauss relation (eq. (B.16) derived in Ap-
pendix B) which we reproduce here for convenience:

@R+ @WR,,,nn” = CR+K?—K;;KY . (D.13)

We use this equation to replace (4)an“n” in eq. (D.12) to finally get the desired result
for 4—Ricci scalar:

g 2 .
R =GR+ K*+KYK;; —2V,K — NDIDI-N. (D.14)
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Projection of 4-stress-energy-momentum tensor

There are three possible types of projection possible for T,,,, all of them defined in eq. (69).
The relation between T and S is also derived in eq. (70). One extra relation to show is between
stress scalar S and the stress-energy-momentum tensor T,,,. We have (using vh =65 +nkn,):

Saﬁ = T,u,ngYE

(D.15)
= Top + Engng +nP (Tapn/j + Tpﬂna) .
Then the corresponding trace of S,5 becomes:
S=S.p7%F
= (Tap + Engng +n° (Typnp + Tppng)) v’ (D.16)

=| S =T,,y"".

Thus, taking trace of 4—stress-energy-momentum tensor T, with respect to 4—metric gives
4—stress-energy-momentum scalar T while taking its trace with respect to 3—metric gives
3—stress scalar S.

Projection of Einstein field equations

The Einstein field equations with A = 0 are given by:
1
Ry = 5 8ur R =87T,,, (D.17)

where T, = T,,. We can recast this equation in terms of trace of T,, by contracting this
equation with g#” to get (using g""g,,, =4 and T,,,g"”" = T):

R =—8nT. (D.18)

We substitute this relation back into eq. (D.17) to get:
1
(4)Ra[3 ZSH(Taﬁ_Ega[ST) . (D.19)

The RHS is basically the traceless part of the stress-energy-momentum tensor.
Now we start projecting the Einstein field equations in 3 ways possible (as discussed in
Chapter 3.1).

Total projection onto X,

We start with eq. (D.19) and project it twice (since there are two indices) onto %, by using
the 3—metric. Then the LHS is given by:

LHS = yhy; @Ry, . (D.20)
But this is exactly the quantity that we evaluated in eq. (D.10). We further use eq. (63), in

particular £,,K,,, = N}fﬁ)fﬁ V. Kop — 2NKWK§, to get:

1
= LHS = WR 5 — 2K, K] + KKop — 5 [£nKup +DuDpN | . (D.21)

Next we consider the RHS:

1
RHS = yly} [Sﬁ(Taﬂ —EgaﬁT)]. (D.22)
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But using the definitions from eq. (69) and T =S —E, we get:

1
= RHS =87 (Sa,j — 8ap(S —E)) . (D.23)

Thus the total projection of Einstein field equations along spacelike hypersurface %, is
given by:

1
®Ryp — 2KapKj; + KKy — N [ £Kop + DouDpN |
(D.24)

1
=8r I:Saﬁ - Eyaﬁ(S —E)] .

Note that all tensors involved in this equation are tangent to %, as expected. Furthermore
this equation can be re-arranged to provide for an equation of evolution of K;; along the normal
to the hypersurface %, as follows:

L,K;; =—DD;N +N [Ry; — 2KyK! + KK |

(D.25)
+4nN [y;;(S—E)—2S;;] .

Total projection along n*

This time we start from eq. (D.17) and project it twice along n* (so as to obtain an equation

orthogonal to ;) as follows (using n“n"gW = n“nu =-1):

1
n“n’“(“)Rw — En“nvgw("')R =8nn*n"T,,,
v(4) L (0-26)
n*n"*“R,,+ -""R=8nE.
2

We realize that the LHS is the same as the the LHS of scalar Gauss relation (eq. (B.16)) which
we use to eliminate (4)RW and “R to finally get:

®R—K;;KY +K? = 167E. (D.27)

This is also known as the Hamiltonian constraint.

Mixed Projection along >, and n"

We again start from eq. (D.17) and project once along %; using the 3—metric as well as along
the normal using n* as follows:
n“yg(“)Rw =8nnty)T,,
— (D.28)
= n”yZ(“)RW =—87mp,,
where we made use of the fact that gwn”y‘é = n“y’; =0.

Now we compare this with the contracted Codazzi relation (eq. (B.26)) which is repro-
duced here for convenience:

r*n"™R,,, = D,K — D K", (D.29)
and use this to eliminate n“}fz(“)RW to finally get:
DyKP —D K =8mp,. (D.30)

This is also known as the momentum constraint or the diffeomorphism constraint.
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E Alternate derivation of the ADM action

We begin with the Einstein-Hilbert action for pure gravity without the cosmological constant:

L

S, =
H™ 16n

J (4)R\/—gd4x = f d4x£H. (E.1)

Then we make use of scalar Gauss relation (eq.(B.16)) which is reproduced here for con-
venience: -
R =GR+ K2 —K;;K7—2%R,, ,n"n". (E.2)

But we make use of the defining relation for the curvature tensor in terms of commutators
and contract with n* and n”:

(4)an“n” = n”[VH,Vv] n*. (E.3)
Thus we have: -
R =CR+K2—K;K7—2n"[V,,V,]n". (E-4)

But now we have the following relation:
n"[V,,V,]n" =V, (n"V,n*—n*V,n")— (V") V,n* + (V4n*)> . (E.5)

Proof: Ignoring any boundary term arising due to integration by parts, we have for the

RHS :
RHS =(V,n*)(V,n%)+n"(V,V,n%)
—(Ven®) (V,n*)—n*(V,V,n") (E.6)
— (Von*)(V,n®) + (V4n®)?
= RHS =n*(V,V,n%)—n*(V,V,n") )
= RHS =n"(V,V,n*)—n*(V,V,n*)= LHS, '

where we applied integration by parts twice on the second term that led us to the next line in
eq. (E.7) (ignoring boundary terms).

Now we plug eq. (E.5) in eq. (E.4), make use of Vun“ = —K (below eq. (48)), rewrite
(V") V,n* = (V*n*)V n,, use the definition of K, in terms of acceleration a,, (see below
eq. (46)) and realize Kw,n” = a“n“ =0 to get:

= WR=CR+K*—K;KT —2[V, (n"V,n®—n?V n*) —K*K,, +K?]. (E.8)
If we ignore the total divergence, then we get:
= WR=CR—K?+K;KV. (E.9)

We plug this back into the action to finally get the Einstein-Hilbert action for pure gravity
in 3 + 1—variables (ignoring the pre-factor ﬁ without loss of generality):

ty
SH:f dtf &*xN 7 (PR—K*+KVK;;) . (E.10)
ty 2

This exactly matches with eq. (81) and thus concludes our alternate derivation of this
result.
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F Variation of the ADM action

We start with the ADM action, either in the form provided in eq. (81) or eq. (101), and
extremize it with respect to {N,Nj, i,y 7} which we equate to zero to get the corresponding
equations of motion. As we show below, the equations of motion corresponding to N and
N; are the constraint equations which simply imply that N and N serve the role of Lagrange
multipliers (& thus are not dynamical variables) while the ones corresponding '/ and y; j are
the actual evolution equations governing time evolution of tensor fields (namely y;; and mti
on spacelike hypersurfaces %,).

In order to calculate the equations of motion, we need to impose the boundary conditions
(where 0%, denotes the boundary of the hypersurface %,):

6N|sx, = 5Ni|azt = 8Yijlax, =0. (E1)

However there are no restrictions on the conjugate momenta 7'/ which are treated as inde-
pendent variables. The set {y;;, 7'/ ,N,N} are also taken as an independent set of variables.
We now vary the ADM action with respect to {N,N, 7'/, y; it

Variation with respect to Lapse function N

We start with the ADM action provided in eq. (81) which is reproduced here for convenience:
ty
SaDM :J ch d>xN 7 (CPR—K*+KVK;;) . (E2)
ty pans

For the sake of convenience, let’s define S =N /7 ((3)R —K?+KUK; j). We realize that )R
does not depend on N and v is taken independent of N. Thus we have:

58 y oK - OKjj
N V7 (PR—K? +KYK;;) +N\/?(—2KW + 2K 6_]\1]) . (E3)

We make use of the relation in eq. (63), namely K;; = % [DiNj + D;N; — )’/ij] and realize
that N is independent from its spatial derivatives, just like we have in classical field theory
where we take ¢ and ¢ ; as independent, to get:

aKij _ 1 o1 1
N -~ N2 [DiNj“LDiNj_Yij]__ﬁKiﬁ )
8K 3 0Ky 1

T () = A —
an = an 0Ke) =15 =K.

Thus we have:

55 3 2 51 2 2 2 51
:ﬁzﬁ(( JR—K +K11Kij)+Nﬁ(ﬁK - 5KKy

= v7(®R+K>—KYK;) = 0.

(E5)

We compare with eq. (72) to realize that the Hamiltonian constraint in the vacuum case
vanishes:
E=0. (E6)
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Now we will show that E = 0 & H = 0. For this, we need to use egs. (88, 89) to get for
(®R+ K2 —KVK;;):

2

N 1 N N

GR + K2 — KUK, = DR+ Z— — o (! —2n) (my; —2m;)
v 4y

2

1 ..

:(3)R+n———(377:2—277:2—217:2+47r”17:i]~) (E7)
4v 4y

2
= (3)R+ 1 (TC— —TCijTCij) ,
Y\ 2

which is basically the integrand of the Hamiltonian constraint in eq. (97). Thus we have
established a constraint relation:

oS
oMM Lo & E=0 < H=0. (E8)
ON

Variation with respect to Shift functions N;

In order to find the variation with respect to N;, we parametrize the action using some arbitrary
parameter A and evaluate:

ds
dA

_ 4
a0 dA

[(3)R K2+ Kinij]Nﬁ- (E9)
A=0

We realize that ®)R is independent of A and only depends on the 3—metric. Thus we get:

= — = 2N —KyY +KY)— . E10
dA{—o ﬁ( ' ) dA |- (F10)
But from eq. (85) we identify ,/y (K}fij —KY ) = 1 to get:
ds ij
= —| =—2aNnri—-2 F11
dA |- " 2=0 1

Next we use the relation in eq. (63), namely K;; = ﬁ [DiNj + D;N; —)'/ij] and use the
symmetric properties of K;; = +Kj; to get:

dK;; 1 - (de ) E12)
dA |, 2N '\ dA|,0/) ‘
Plugging back, we have:
ds .. dn; )
= —| =-21YD; (— . (E13)
dA |- "\ dA L,

But using integration by parts, we have:
dN

iy dN; . dN; . ;
nl]Di(—J ):Di (TEU —J )—Di(n”) —J
da da

A=0 2=0

E14
an (E14)
where the first term on the RHS is a pure divergence and we ignore it. Thus we are left with:

>
A=0

ds

£ —iop ()N,
= +2D; (1) 6N (E15)

jo
A=0
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' dn; .
where we defined 6N; = K We have imposed 6N |55, = 0.

Thus we get:

68 -
— =2D;n" =0. (E16)
SN; '

Comparing with eq. (98), we get:
D;=0. (E17)

We now show that D; = 0 < p, = 0 where p, is defined in eq. (69). Consider the
projection of Einstein field equation in eq. (73) reproduced here for convenience:

DK} —D;K = 8mp;. (F18)
Then we make use of eq. (85) to get (recall D;y,;, = 0)
D;n = D; (7 (Ky7 —KY)) = 7 (D'K —D;KY) . (E19)

Thus D; "/ = 0 implies the LHS of eq. (F.18) being zero, which in turn implies p ;= 0. Hence
we have established the three constraint relations:

5S
M0 e p=0 & D=0 (F20)

J

Variation with respect to conjugate momenta 7'/

We start with the ADM action eq. (81) and use eq. (94) to get:

ty
Sapm = f dtf d*x (TCU}"U _HADM)
t s

R e O e G
= dt | d°x 7'E1J)'/~~—(27'CUD~N‘—N\/? R+—(7’E~~7‘CU——)):| .
. 5 ij itVj ‘/? ij 2

Here S = fx d3x (nij Yi j) is known as the symplectic potential.

(F21)

We recall that {y;;, N,N;, 77} are all independent from one another. Also ®)R just depends

on the 3—metric. Moreover:
a2 . omn
omii T omii
0 TCabYab
omii
F] ﬂ:ab (F22)
omii
= 2nyab5?5§’

Again if we define for our convenience

.. N .. 1'[2
S = ﬂl]’}’ij —(ZﬂquiNj —N\/?(S)R-i' ﬁ (T!,'ijﬂfl] - ?)) 5

then we have:
68

St

= N !
:57'51] [Yl]_leN]_ﬁ(znl]_nYl])] =0. (F23)
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This finally gives us the equation of motion for the 3—metric:

oH N
ot VY

As a redundant check, from eq. (88), we identify (Znij — nyij) = —%Ki ; and we get back
the result from eq. (63), namely K;; = % [DiNj + D;N; — )'fl-j].

Variation with respect to 3-metric v;;

We start with:

ta
SaDM :f dtJ x (' —Hy) - (F25)
th 2,
Then using integration by parts on the first term on the RHS and ignoring boundary terms,
we get:
5S f2 5
ﬂ:—f dt J 5yij(r'c”+ﬁ)d3x =0. (E26)
5Yl] t Zt BYU
Here we will use eq. (94) for evaluating SYU Hy
We recall that T;—f = 0 but 55“7‘: # 0 as 7y, = TY,.qYsp, thus, for example,
ab . .
—5”5“;: =2m! nv.

Here we will make use of relations obtained in Chapter 2.2 but in the context of 3—D on a

hypersurface %,. We will use, for example, the Jacobi’s formula 5y = Y75y ..

So now we focus on ?{T{* in eq. (E26), which is explicitly written as (using eq. (94)):
ij

y N N
5, Hy=25, 2nUD.N-—N,/?(3)R+—(n..nlf——) . (F27)
vij ' tH Yij itYj ij 2
N N—— 4/
Term A Term B ’ ~
Term C

Term C is the simplest to evaluate where we make use of the aforementioned Jacobi’s
formula to get:

N T N T N T
5),,. — ﬁijﬂl]—n— :5),,. — ’/Tl'jTL'l]—n_ +_5Y ﬂijﬁl]—ﬂ-—
av 2 AW 2) A 2

Y

Term B is relatively straightforward as well if we call from Chapter 2.2 the variations of
4—Ricci scalar and apply the same formula for 3—D case here along with using the Jacobi’s
identity again (recall that N and y;; are independent variables):

(E28)

5,, [-Nv7®R]=-N6&, (v7)PR—N 75, (°R)

1 (E29)
_ Nﬁ((g)Rab _ 5},ab(z)R) _N /7ybsOR.

But using the variation of 4—Ricci tensor for 3—D case from Chapter 2.2 (eq. (25)), we see that
ﬁyabé(g)Rab =0, [ﬁ (y” 5(3)1"1.‘1’. —g% 5(3)l"ijj)] =0, [ﬁ5za]. But using the 3—divergence
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formula similar to 4—divergence from Appendix A, we get D,6Z¢ = %aa(ﬂéz 4). So we
have for term B:

8y, [-NyT®R]=Ny7 ((3)Rab — %yab“’)}z) —N./7D,(6Z%). (E30)

We apply integration by parts on the last term on the RHS and ignore the boundary terms to
get (recall that D,y = 0):

1
5y, [-Nv7T®R]=Ny7 ((3)Rab — Ey‘“’(f"')R) +/76Z°D,(N). (E31)

Now we simplify the expression for 6Z° using the expression for the variation of Christoffel
symbol from Chapter 2.2 for our 3—D case:

_ 3 3
57P = )/‘”5( )F,fv_va5( )Fﬁv

(E32)
= ("7 8yPh =P 6y ) Oy + (P =P ) 60T,

But using the variation for 6 (3)rluv from Chapter 2.2:

1
(r#ryPt =P ) 600L,,, = 3 [P yP* =P " ) (8Y avp + 8T unw — 87wt ]
= P Py 3 — T TP EY -

Thus on plugging this back and simplifying, we have the following result after switching
to 3—covariant derivatives:

§Z% = yH"yPA (V675 — VibY ) - (E33)

Now we use this result to simplify the second term on the RHS of term B in eq. (E31) as
follows:

5VaDaN = YabYCd (Da5}/bc - Dc5Yab) DdN (F34)
=D, [(y**D°N —y*D°N) 67y | — (D*D°N — y*®D.DN) 57, , ’

where we again integrate by parts and use the boundary condition 674555, = O to finally get
for term B:

1
5y, [-NvTOR]=Ny7y ((B)Rab — Eyab(s)R) — v7(D*DPN —y**D.DN) . (E35)
Finally for term A, we need to expand D;N; by using the formula for 4—covariant derivative
in Appendix A for 3—D case to get:

ON;
_ J 3
DiNj = — —Orin, (F36)

and then use the variation of 3—Christoffel symbols with respect to the 3—metric from Chapter
2.2. After ignoring the boundary terms, we get for term A:

8y, [2n7DN; ] = (219" DoN® — > DN . (E37)

Now we make use of the constraint relation eq. (F.20) which implies D,/ = 0 as well as the
symmetrization on indices i and j (because we are calculating 5YinH which is symmetric in
its indices) to finally get for term A:

&y, [2nDiN;] = D, (n*°N® + nP*N® — n?"N¢) . (E38)
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Thus we plug eqs. (E28, E35, E38) in eq. (E27) and then plug this back into eq. (E26)
leads to the following equation of motion for the 3—conjugate momenta:

7t

57—[H
Ovij

N 2\ .
207 (“Cdnw_ ; )YU
Y 2

(77: ) — Errrr”) + 7 (D'D’N —yD.D°N)

1
=—N RY — ~yUR
‘/_( 2" )
2N

Y
+D, (nN®)—n"“D N/ — n/*D_N".

j
(E39)

G Imposing homogeneous ansatz on electromagnetic Hamiltonian

We have the electromagnetic Hamiltonian derived in eq. (326) where the constraint relations
are given in eqs. (325, 327). The homogeneous ansatz that we need to impose is provided in

eq. (334).

Hamiltonian constraint

Let’s start with the Hamiltonian constraint which we reproduce here from eq. (325) for con-

venience:

HEM[N]=NHEM=f d®x | N
X

—n 'TI; + = /YF;;FV G.1
277 «/_ (G.1D)
Term A Term B

Term A becomes after using eq. (334) and orthogonality relations of triads (eq. (142)):

Term B simplifies to:

Lo 1 a,i g B
Term A = ﬁﬂ II; = M—'GH e, sinOllge; sin6
sin
1
= Z_JHSiDOHaHﬁ(gg (GZ)
1
= ——sin OTI°I1
2vh ¢
_1 ij _ 1\/E ino iAj iaj
Term B = - /7F;F" = - Vhsin [(D'A7)(D:A;)— (D'A) (DiA;) ]
(G.3)

hsin 6 ,)/iijn (DmAn) (DiAj) - Yim}/jn (DmAn) (Din)

VT v
Term B.1 Term B.2

where we can simplify term B.1 by using eqs. (146, 147) as well as relations in invariant basis

— 0.
such as D; = e? Ds:

Term B.1 =h“°‘ mhwef ”(e Ds {Aﬁ(t)eﬁ})(

a0 })
=h““5755hmA (DA (t)el e (D e ) D et
u’a B T v o 6%n Y~j
—" ,
=18 ed =G ¢! (G.4)

_ puanvo j n(3) B 5(3) T Y
=h"*h"" AgA e, I sén Fw j
_ 3 3
= hHh" ApA, ¢ )roff ®re,
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where we took out Ag(t) and A;(t) out of spatial derivatives because they only depend on
time in the invariant basis. Also we suppressed the explicit notation Ag(t) to Ag where the
time dependence is understood.

We observe from eq. (G.3) that term B.2 is the same as term B.1 with indices i and j
swapped. Thus we have similarly for term B.2:

Term B.2 = h““eLezh”"ef;eg (ean5 {Aﬁ(t)ef }) (e;Dy {AT(t)eiT})
= h““6fj5ghmAﬁ(t)AT(t)eLeg (Dgef) (Dyef)
—(S)Fﬁ o =0Tz el (G.5)
_ 3B ,5(3 !
= h"*h" AgA; e’ e”( )Fa5 n( )F:Y ;

_ 3 3
— huahvaAﬁAT( )1—-50( )FEM ,
We plug egs. (G.4, G.5) into eq. (G.3) to get for term B:
1 .
= Term B = 5 Vhsin6 [h““h”"AﬁAT(B)FfU ((B)FJV — (B)FVTM)] . (G.6)

We already noted in eq. (148) that in invariant basis for Bianchi IX universe, the connection
is not symmetric and for a torsion-free case which we have been considering throughout, we
have:

3 3 — —
Gy -y =pF =cp, (G.7)

where C;V = efw for Bianchi IX universe (eq. (135)). Also from eq. (135), we have
Cly = €uoC7" where C?7 = diag(1,1,1) = 677. Therefore in the invariant basis, the Levi-
Civita tensor (€,,,) which acts as a structure constant (C;V) for Bianchi IX universe can be
raised /lowered using a Kronecker delta function (6°") and not the 3—metric h,p:

67 €yye = ew, 6wezw = €guy (Bianchi IX). (G.8)

Then using eq. (G.7) in eq. (G.6) to get:

ao ;w

= Term B = > \/Esm@ [h““th AL GIrp ¢ ]

(G.9)
hsin 6 [h*“h"AgA,PTF €,,,677].
Next we can express the only affine connection remaining in term B as:
1 1
3 _ 3 3
Ol =5 Mo + T ]+ 5 [Tl =17, (G.10)

where the RHS is “symmetric+anti-symmetric” parts respectively of the LHS. We also note that
h““h”"(g)f‘fa = ()TPLY which is then contracted with the (completely anti-symmetric) Levi-
Civita tensor in eq. (G.9). Thus the symmetric part on the RHS of eq. (G.10) vanishes and we
are left with the anti-symmetric part. Thus we replace (3)Ffa by its anti-symmetric part in eq.
(G.10) into eq. (G.9) to get:

1 . 1
= Term B = 5 Vhsin [h“ahWAﬁAT (5 ((B)Ffo - (3)F£a)) emv5”] . (G.1D)

But (B)FO/fU - (S)Ffa = fgo = €3400"P to get:

1
= TermB = Z\/ﬁsinG [R“* R ApA, €006 €,,,67" ]

YUY
(G.12)

hsm@[h“ath A€l e* :|

ao uv
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Finally we plug in egs. (G.2, G.12) into eq. (G.1) and collect the spatially dependent term
asn= (f): d3xN sin 9) to get for the Hamiltonian constraint of the electromagnetic field:

1
= | Hyy[N] = NHgy = %[znan + hh“"‘h”"AﬁA ef e W], (G.13)

where we keep in mind eq. (G.8) and the text above. Also we can always choose n to scale as
vh so that we can put n’ = % = 1 without loss of generality.

Diffeomorphism constraints

We reproduce the diffeomorphism constraints from eq. (325) for convenience:

]D)EM[Ni]zNi]D)(EM)izf &x |N'(IVF;) | (G.14)
P S~~——
Term C

We focus on term C where we use F;; = D;A; — D;A; and impose the homogeneous ansatz
in eq. (334) to get:

Term C = IUF,; = sin(0)11%, [ e¥ D, (Aﬁ(t)ef) — D, (Aﬁ(t)ef)]

[
= sin(0)%e}, [efAp(00D, (¢f ) —erap (0D, ()], (G15)
D,

where we use egs. (146, 147), namely ( )—(B)Fﬁ e’ and D, ( )—(3)1“/56 to get:

= Term C = [UF,; = sin(6)[1%, [ e¥A, (t)(3)rfu b — ¥ A (0T e |
—s1n(0)HaA/5[ 50 Ffa5(’§]
of _ P
_s1n(9)H"‘Aﬁ[ b —raa] (6.16)

ﬁ
€5a

=sm(9) HaAﬁ615a5Aﬂ ,

depends only on time

where we used in the second line the orthogonality relations of triads (eq. (142)), eq. (G.7)
& the texts below it in the third line as well as eq. (G.8) in the fourth line.

We plug eq. (G.16) into eq. (G.14) to get for the diffeomorphism constraints for the
electromagnetic field:

= | Dey[N'] = N'Dgy; = n°T%Apel | (G.17)

where we again keep in mind the relation eq. (G.8) and the corresponding text below it.

Gauss constraint

We reproduce the Gauss constraint from eq. (325) for convenience:

G[Ao]:AOG=J d®x | A, (DY) | . (G.18)
I S—

Term D
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Now we impose the homogeneous ansatz (eq. (334)) here to get:

Term D = A, (D;IT') = AoD; (T1%(t) sin(0)e’,)

‘ (G.19)

= Ao T1%(6)D; (sin(6)e’) .
Now we use the relation corresponding to the explicit forms of triads for Bianchi IX universe
provided in Chapter 4.2 at the end of the subsection “Geometry of Hypersurfaces” (see footnote
7 therein for the proof of this identity), namely D; (sin(@)e;) = 0, to realize that the Gauss
constraint is identically zero for electromagnetic field in a Bianchi IX universe:

=|G[A)]=A,G=0 (identically). (G.20)

H Derivation of the hypersurface deformation algebra

We prove here the following constraint algebra, known as the Hypersurface Deformation Al-
gebra (HDA), or the Dirac algebra:

(a) {DIN'],DIM/ 1} | ¢y = D[ LyiM! ] = —D[ £y, N'] = D[[N, M]],
(b) {]D)[NJ] ]HI[N e =H[LyN]=H[N/GN], (H.1)
(o) (HIN]HIM 1} i,y = D[y (Ng;M —MEN)],

where we use the following definition of the Poisson brackets:

6f(x) 6h(y)  &f(x) 5h(y)]
5Yij(z)57fij(z) 57Tij(z)5)’ij(z) .

{F (), (M m) = JdS [ (H.2)

The definitions of the Hamiltonian contraint (sometimes also known as the super-
Hamiltonian) and diffeomorphism constraints (sometimes also known as the super-momentum)
are taken from eqs. (97, 98) reproduced here for convenience:

]HI[N]EJ d?’xN[ \/_(S)R—L(n—z—n”rc ﬂ
%, VY \ 2 v
D[NJEJ d*xN'[—2D ;] .

=

Just like in classical mechanics where momentum generates translations, the diffeomor-
phism contraints (or the super-momentum) generates spatial deformations on the spatial hy-
persurface X, which are tangential to the hypersurface and described by the spatial vector
fields N. Similarly the Hamiltonian constraint (or the super-Hamiltonian) generates normal
deformations of the spatial hypersurface, moving it forward as described by the lapse function
N. This is how N and N describe the evolution of any physical object living on the spatial
hypersurface. This can be quantified as follows: for an infinitesimal deformation of the spa-
tial hypersurface by SN and 6N, any function F that depends on the phase space variables
changes by an amount 6F (thus F — F 4+ 6F) given by:

(H.3)

§F ={F,H[6N1}|¢;.;y + {FDIGNT} |y (H.4)

This is shown in Fig. (4) where it is also illustrated that the HDA (eq. (H.1)) implies a closed
constraint algebra. We first prove @ and then proceed to prove @ & @ together.
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Proof of @

We use the definition of Poisson brackets in eq. (H.2) to evaluate the LHS of @:

SH[N] SH[M]
57 qp(x) 6mP(x)

{H[N],H[M]} |y r) = fdg ( —(N <—>M)) ) (H.5)

Thus we need to evaluate two variations, namely & ]HI[N land 6 ]H[[N ] (where we can anytime
swtich N — M) where 1t is understood that 5 = V and o, . Also the Yij is taken
independent from the ¢

Variation with respect to 3—conjugate momenta

Using the definition of the Hamiltonian constraint from eq. (H.3), we get:

6, H[N]=6 d3x£ n®rdy vy ik
T b \/? acl bd — 2

= J d?’x% (27 4y pa6 1 — 5 (n%y ) (H.6)
d%%( %nyab)iinab.

Variation with respect to 3—metric

Next we evaluate variation with respect to y,;, where we make use of variations derived in
Chapter 2.2.

6, H[N]= J d*xN [— (6,v7)®R— 76, PR +5, (%) (nabnab _ 71'?2)

) (H.7)
+ﬁ (nab5ynab — 7'55ﬂt)i| .
We make use of the following results:
. abg
(@) 6yT = gm0y = Uyrler = yabsy,,,
(i) 6(%)= 59207 = 5917 8 ap = 52757 ap
(iii) Tap = TECdYacde = 5)/7Tab =YacVbd 6)/77:“1 +2nCdde5Yac ’
~———
=0
(v) m=n%y,, = 0,7 ="Yap 5Y7tab +1 8y .
~—
=0
Then eq. (H.7) becomes:
1 2
H[N] = J d*xN —%r“béyab@fz—m#”z&—z—yabém (n“incd - “—)
27 2
Term A
(H.8)

(2nab Cdde‘SYac _nnab5Yab)

(be—c)= Znacnbﬁy b
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We focus on term A:

Term A =— f d>xN 75, (PRypy?) = —f d>xN /7 (6@ Ry, + PRy, 5v%0) . (H.9)

We can write the second term as: IR, 67 = —®)R,,y%yP?5y.4. We have already derived
for the first term appearing here in eq. (25) to get (in 3—D):
Y 5@ Ry, = =D, [D* (v67pe) — DP (r*“5y5c)] - (H.10)

Thus we have for term A (recalling that D,y;; = 0):
= Term A = f d*xN /7 [DAAD (r®*674p) = D(r°*67ap)} + PRear ™y 67 4p |
= f d®x /7 [(D°DN) y** 5y 4p — (DD N) Y8y 4y + N v TPR "1y 3]

= f d*x [ 7 (DDN)y** 8y 4y — T (DD"N) 8yap + N yTHR?P 574 ]

(H.11)
where we applied integration by parts when going from the first line to the second on the first
two terms on the RHS and ignored the boundary terms. Therefore using eq. (H.11) in eq.
(H.8), we get:

N
= 5,H[N] = J 7| =L 5y RN TR 51 + VT (DN 570
—v7(DD°N) 5 IR AP (H.12)
Y Yab 21/77/ cd 2 Yab .

N a a
+ﬁ (27r cnféyab—nn béyab)i| .

Rearranging finally gives us:

7'[2

1 N
3 3)pab ab(3 ab cd
:5YH[N]_JCI X|:N1/Y(( )R — =Y ( )R)——‘}’ (71? ”cd__)

2_N ac b_nnab c ab _ (papb
+ﬂ(n - )+ﬁ{(DcD N)y** —(D°D N)}]éyab.
(H.13)

Putting together

We have successfully calculated the variations of the Hamiltonian constraint with respect to the
3—metric in eq. (H.13) and its conjugate momenta in eq. (H.6). We use these two equations
in eq. (H.5) and simplify. One helpful observation is that there is a symmetry between N «— M
and thus any term that does not contain derivatives of N &/or M will cancel out in eq. (H.5).
Hence we need to only keep terms in eqs. (H.6, H.13) where derivatives of lapse function
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occurs while plugging in eq. (H.5). We have:

SH[N] SH[M]

{H[N],H[M]}l(y,n) :Jdgx( 5}, b Smab

-~ m)

=JfxHWWQWMW“VWWWWD%%mrémmﬂ—Wewﬂ}

1 1
=2fd3x Myab (DcDCN)(nab_EnYab)_M (nab_EnYab)(DanN) _(N‘_)M)

Term B Term C

(H.14)
We apply once the integration by parts on terms B & C and ignore the boundary terms:

1
Term B = My®® (D,D°N) (nab — Enyab)

3 M
= M (D,DN) (n _ 7”) - —T” (D°D.N)

— +(D.N)D* (%) (H.15)
- (D.N) (DCM)g +M (D,N) D (g) ,

symmetric in N and M, thus cancels out

and

1
Term C =—M (nab — Enyab) (D*DPN)

_ b a _1
=(D°N)D [M(ﬂ:ab zmab)] (H.16)

1 1
(DPN)(DM) (nab - Enyab) +M (DPN) D® (nab - Em"b) .

symmetric in ’a’ and ’b’, thus in N and M

Plugging eqs. (H.15, H.16) in eq. (H.14), we get:

:>wﬂNLHUWBkWﬂ=2er%{[M(Dgnzr(g)+A4uﬂN)Da@%b_%NYM)}
(v > M)

-

= 2J d*x {M (D°N)yyq (D. 1) — (N > M)}
[

=2 | d®x[(D°N)M —N (D°M)]yp4D n

.
= zJ &x[(DyN)M —N (D,M)]y"¥D, 7§

_ [ 3 _ bd c
=2 | d°x[MJ,N —NoyM]y’“D.m5.

J
(H.17)
Then we use the definition of the diffeomorphism constraints in eq. (H.3) to get:
= {H[N],H[M 1}, -y = —D[y** (M3,N —N&,M)] . (H.18)
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But —D [}fbd (Mo,N —NBbM)] =+4D [ybd (NoyM — MabN)], therefore we have proved @:

= | {H[N],H[M },n=D[y* (No;M —MJ;N)]. (H.19)

Proofs of @ & @

We now prove @ & @ together. First we prove a general relation whose special cases directly

lead us to relations @ & @

General result

We define:
fM] = J d3x M bl...bmfal...an bl'"b’”(}’ij: n), (H.20)

where f is a function of phase space variables and M is independent of them. Then by defini-
tion, we have:

= f[LgM] = J x (LyMy b ) faya, 0 i ) (H.21)

We calculate the Poisson bracket {ID)[N 0, f[M ]} |(y, =) for a general f and as always, keep
ignoring the boundary terms whenever we apply integration by parts. We start using the
definition in eq. (H.2) to get:

5D 5f 5D 5f ] (H22)

i _ | 43 _
{DIN'], FIM1} |y = f d°x [Syij(x) sri(x)  5mi(x) 5y (x)

Using the variation of the diffeomorphism constraints with respect to the 3—metric y;; and
its conjugate momenta 7'/ from Appendix F, we have:
SD[N]

—Eﬁnij(x), 570 (x) =+L;7ii(x). (H.23)

SD[N] _
5yj(x)

Therefore plugging eq. (H.23) in eq. (H.22) gives:

= {DIN'], (M} = j d'x [—(ﬁﬁﬂ”) (55 )~ (SQW)]
ij

] ) (H.24)
NI 6y,
_ f dBxMo-ty [_ (Lz=) (%) - (Em’ij) (L .

5}”1;‘

But f, 1manb1'"bm is a function of phase space variables, hence using chain rule, we have:

7 b;..b ij ii 5fNa1...anb1'"bm 5fa1...anb1mbm
Lifor.a, ) = (Lam? )| =5 5 [+ (Lar) | —5 —— | (529
ij

Thus we get:

= {DIN'], F M1} |y ) = —f dPxm@ny oy (Lifaa, Oy m)
(H.26)

= J d’x (‘CNMalmanbl...bm)fal...anblmbm(}/ij: ),
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where we applied integration by parts in the second line and ignored the boundary terms. But
from eq. (H.21), we identify the RHS to be f[L£zM]. Thus we get the general result to be:

= | {DIN'], f[MI} .y =f [L5M ], (H.27)

for any general f defined in eq. (H.20).

Proof of @

We substitute f[M]=D[M]in eq. (H.27) to get:

{DIN'],D[M1} |(;. ) =D[LyM | =—D[LyN]=D[[N,M]. (H.28)

Proof of @

We substitute f[M] =H[N] in eq. (H.27) to get:

{DIN'),H[N1} I, ) = H[L3N] =H[N/3;N]. (H.29)
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