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Foreword

Massimiliano Esposito
Progress in nonequilibrium physics has been quite spectacular over the last 25 years. The

trigger was without doubt the discovery of fluctuation theorems in many seemingly different
contexts (thermostatted dynamics, Hamiltonian dynamics, stochastic dynamics) and the need
to come up with a coherent understanding of the relation amongst these various fluctuation
theorems. This effort converged into what is often called nowadays, broadly speaking, stochas-
tic thermodynamics, encompassing the description of both classical and quantum systems. But
at the same time that stochastic thermodynamics was being consolidated, research in the field
also diversified and started interfacing with many new research areas.

The doctoral school (Post)Modern Thermodynamics that was held at the University of Lux-
embourg in December 2022, 5-7, represents that evolution. The first three courses covered
classical topics in stochastic thermodynamics: Defining Markov jump processes, analyzing
them with elements of network theory, constructing the thermodynamic quantities (e.g. en-
tropy production, local detailed balance, affinities), and analysing the role of coarse-graining.
The emphasis on first-passage times and martingales in courses 1 and 9 is already a move
toward more recent developments in stochastic thermodynamics, which showed that various
first-passage problems can be constrained by thermodynamics. Courses 6 and 4 reflect the
importance that the study of chemical reaction networks using stochastic thermodynamics
has taken over the last decade. These systems are ideal to study the fate of stochastic ther-
modynamics in the macroscopic limit. Indeed their deterministic description can be viewed
as emerging from a large volume limit. Course 5 introduces large deviation theory, which
provides a powerful tool to characterize how nonequilibrium fluctuations scale in such a
macroscopic limit. Course 8 analyses instead metastability, another phenomenon arising in
the macroscopic limit (or equivalently in the low noise limits), and uses it to provide key in-
sight into the central concept of local detailed balance. Course 10 focuses instead on quantum
thermodynamics, another field that has attracted significant attention over the last decade
and that aims at extending the concepts from classical stochastic thermodynamics to quantum
systems and making contact with concepts from quantum information theory.

5

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.80


SciPost Phys. Lect. Notes 80 (2024)

Matteo Polettini took the lead in organizing this doctoral school and did it in a truly col-
lective manner, involving many young researchers. He also added a philosophical flavor to
it, with a session dedicated to discussing foundational issues in thermodynamics and maybe
decoding the enigmatic title of the school. A report on this session is the object of the last
course 11.

We received numerous very enthusiastic feedback from the participants showing that the
event was a real success. The hope is that the present lecture notes will help many young
researchers enter the rapidly evolving field of nonequilibrium thermodynamics.

Introduction

Pedro Harunari, Vasco Cavina, William Piñeros and Matteo Polettini
In early December 2022, amidst the first snowflakes and city lights illuminating Christmas

markets, we gathered in the small city of Luxembourg for an immersive week dedicated to
thermodynamics. The school+workshop provocatively named (post)Modern Thermodynam-
ics brought together approximately 130 physicists to delve into ongoing research, established
principles and interpretations of thermodynamics, and their recent unfoldings.

The first part of the event was a school aimed at, but not limited to, graduate students.
Experts in their fields gave 2-hour-long lectures on topics such as stochastic thermodynamics,
quantum thermodynamics, mathematical methods for statistical physics, and chemical reac-
tion networks. Our goal was to provide introductory courses on relevant areas of research
and improve the toolboxes of young researchers. More than textbook-style lectures, we asked
lecturers to include a twist of their own research, making the process a bit more personal and
communicating state-of-the-art developments to the students. This resulted in ten different
lectures about the frontiers of thermodynamics by teachers with different original takes on a
theory that puzzled physicists for a good part of the last three centuries.

The disparity of background, experiences and points of view of our teachers profoundly
enriched the scientific discussion during the school but also compelled us to look for a way to
increase its cohesion. In a manner befitting good physicists, we decided to run an experiment
and to assign to each of our lecturers an “angel”, whose role was to help in preparing the
lectures and avoid overlaps within the program. Another important task assigned to the angels
was to help in standardizing the notation among the various contributions: Much confusion
arises from assigning distinct names/symbols to the same ideas such as e.g. entropy production
versus entropy production rate, order of indices, negative versus positive signs conventions for
directed heat flows, etc. During the lectures and in this version of them, we and the angels
did our best to dissipate this confusion and strived to present a treatment that is notationally
and conceptually homogeneous.

Given the pedagogic character of the lectures, we prepared the following notes with the
help of some young participants of the (post)Modern Thermodynamics school. The contri-
bution of the students to the event was invaluable, their curiosity and excitement being the
main driving forces behind all the scientific discussions. Having them collaborate on these
lecture notes was therefore a natural way to try and capture their energy and enthusiasm on
the exposition of these subjects.

Of course, a team composed primarily of students preparing the notes was not without
its challenges despite the healthy number of volunteers. We identified room for improvement
in distributing workload and coordinating the various perspectives from members of different
seniorities. Nonetheless we found we could partially integrate these differences via an internal
“peer-review” process where team members could discuss and receive feedback on each other’s
content. Altogether, we believe the effort was an instructive exercise in collaborative academic
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writing for both students and organizers.
Our final communal experiment, reported in lecture 11, was an open-ended discussion to

reflect on fundamental issues in and about thermodynamics. This took the form of a set of
suggested questions, both by organizers and participants alike, in which everyone could also
contribute an answer anonymously online for later in-person discussions. One of the most
surprising outcomes of the survey was the lack of a common interpretation on the foundations
of thermodynamics, showing how even in the presence of universally accepted experimental
results and a well-established formalism there is still room for disparate conceptual beliefs.
These differences sparked an interesting philosophical debate that was highly appreciated by
participants of the school+workshop and led us to believe that there could be more space for
this kind of discussion at scientific conferences.

The event itself was held free of charge following funds from already awarded grants. We
were additionally able to offer financial aid, by means of free accommodation, to all students
who requested it. This allowed participants from less fortunate backgrounds to join the school
and attend in person. In total, 20 students benefitted from this opportunity, increasing the
overall pool of students.

Post-(post)Modern Thermodynamics, we ran a survey that revealed that most participants
were satisfied with the chosen themes and overall organization. The criticism that stood out
was the lack of time for relaxation and discussion in view of the dense program. We believe
this problem could be circumvented by relaxing the number of lectures/talks or by making
clear that participants understand they are not obliged to attend all the sessions as science is
social, and conferences are made for exchanging.

As will be clear in our notes, thermodynamics is a melting pot of ideas and techniques from
many branches. This entails that sometimes the same words is used for different concepts and
the same object is called by different names. In preparation for the school, we asked lecturers
to discuss and converge to (at least some pieces) of a unified notation, and we even ventured
as far as suggesting our own notation. The proposal was only partly accepted. In the free
discussions during the school it emerged that students in fact were more confused about the
use of words rather than notation, e.g. between “equilibrium” and “detailed balance” rather
than the fact that a stochastic process sometimes has a hat and sometimes is uppercase. This
makes us think that a systematic dictionary between present-day thermodynamics and the
other sciences, as well as its past, is much needed, but that it cannot just be about notational
conventions. In an early version of these notes we included our modest proposal of a unified
notation, but then realized this is not the best tool to initiate this kind of conversation, and
other participatory tools should be proposed.

We tried to make this school an opportunity for young researchers to grow, a “rich and
challenging environment for the individual to explore”, using the word of Noam Chomsky (to
whom our social event, a widely participated billiard tournament, was dedicated).

We hope these lecture notes and the reported experience will serve the community of
thermodynamicists for many more such future events.

Outline

The first three lectures, Chaps. 1, 2 and 3, deal with the dynamics of Markov processes de-
fined over networks, and how thermodynamics is tied to them. Lectures 4 and 5 address
chemical reaction networks from deterministic and stochastic standpoints, presenting both
analytical and numerical approaches, with particular attention to their nonequilibrium ther-
modynamics. Lectures 6 and 7 address the large deviation principle for describing fluctuations
of observables in the limits of long times and large systems, and Lecture 8 discusses in more
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detail the metastable states that arise between these limits. Lecture 9 introduces martingale
theory and its recently discovered connections to thermodynamics. Lecture 10 overviews the
mathematical framework of quantum statistics and presents a consistent approach to defining
thermodynamic quantities at the quantum level. Finally, lecture 11 wraps up with a discussion
on thermodynamics fundamentals considering the input of school attendees, as we elaborated
above.

We prepared a tentative unified notation and invited lecturers/angels to discuss and em-
ploy it at will. By no means did we intend to impose a standard on the field, but rather
implement a time-saving tool when reading across the different sets of lectures and their re-
lated concepts. Some lecturers agreed to it, some others preferred maintaining diversity as a
pedagogical tool. Interestingly, the parts that were more agreed upon were the more standard
mathematical ones (linear algebra, graph theory) while little agreement was found in the use
of symbols for thermodynamic quantities, apart from S for entropy. In the meantime, the issue
became a topic of informal discussion during the event, and even more so the disambiguation
of concepts such as “reversibility”, “microscopic reversibility”, “detailed balance”, etc.

1 Markov chains and first-passages

Ken Sekimoto, Pedro Harunari and Charles Moslonka.1 The time evolution of numerous
systems across scientific domains is well described by the mathematics of Markov chains. We will
introduce the formalism, its predictions, and how to use it both analytically and numerically.
The problem of first-passage times in continuous-time Markov chains (CTMCs) will be motivated
and solved. Finally, we will connect the discussed points to thermodynamics and the discrete-time
version.

1.1 Introduction

In this lecture we will introduce the main concepts and methods used in the study of Markov
Chains.

In particular, the first part, which was conducted by Ken Sekimoto, will be centered around
Markov chains in continuous time. Here our main goal is to set up different tools, such as the
transition network (TN), master equations, and modified networks to adapt to the first-passage
time problems.

In the second half-lecture (Subsections 1.7 and 1.8), conducted by Pedro Harunari, we
are going to connect the different tools developed for continuous-time Markov chains to the
discrete-time framework. We will first introduce those elements in the first part, and then we
will present more recent developments about the first-passage time of transitions.

1.2 Continuous-time Markov chains: Basic notions

1.2.1 Notations and definitions

For basic notations, we will denote by {a, b, c, . . . } or {a1, a2, . . . } the discrete set of states, and
X̂ t is the random variable representing the state X t of the system at time t, where t ∈ [0;+∞).
The time evolution of X is a stochastic process, and its history {X t , t ∈ R+} is also a random
variable. The sample space Ω is the set of all possible histories. We will usually denote X0 by
a0.

We recall the Markov property for such a stochastic process:

1KS was the main lecturer; PH was the angel and lectured the second half; CM wrote this chapter.
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(a) A single transi-
tion.

(b) Multiple tran-
sitions over several
destinations.

Figure 1.1: Possible transition configurations illustrating Eqs.(1.1) and (1.2).

Definition 1. X t is a continuous-time Markovian process with respect to t if the conditional
probability p

�

X̂ t+d t = a|X̂[0,t]
�

is independent of Xs for all s < t.

The statistics of X̂ t+d t only depends on the realization of X̂ t . It is usually said that the
system forgets the past after every time step of length d t.

1.2.2 Transition rates

For two different states a ̸= b, the conditional probability p(X̂ t+d t = b|X̂ t = a) is of the order
O(d t) for a Markovian process. We denote by Rba > 0 the proportionality coefficient, such
that:

p(X̂ t+d t = b|X̂ t = a) = Rbad t +O(d t2) . (1.1)

For several destinations {a1, a2, a3} we have in a similar way:

p(X̂ t+d t = ai|X̂ t = a) = Rai ad t +O(d t2) . (1.2)

A Markovian process is characterized by the set of states and the transition rates among them.
Note that, to the linear order O(d t), the transition rates do not interfere with each other.

In physics, one may consider discrete problems derived from an underlying continuous
process thanks to coarse-graining procedures. As an example, let us consider a random walker
traveling in Europe, as in Fig.1.2. We only measure the country code with respect to time.
Right after crossing a border, the walker has - for a short time period - a large probability of re-
crossing the same border. Thus, if the temporal coarse-graining was not introduced, one might
see multiple erratic transitions between two country codes before the walker finally moves far
enough from the border.

This discretization is typically non-Markovian. To obtain a Markovian trajectory in the new
discrete-state continuous-time model, we need to weaken the time resolution of the trajectory,
that is, introducing a time step ∆t such that faster phenomena are integrated over. More
precisely, transitions a → b such that Rba ≳ (∆t)−1 should not appear in the discrete-state
model. Thermodynamically, this state coarse-graining is equivalent to adding a heat bath to
mask details. Descriptions with different resolutions can thus have different thermodynamics.

1.2.3 Transition networks

We use a network -or graph- representation for each Markov chain, in which the nodes are the
states of the system, and the directed edges represent the non-zero transition rates. For the
following part of the lecture, we consider ergodic transition networks i.e from any node, all
the other nodes are reachable through directed edges. See Fig.1.4.

Remark 1. In some other lectures of this School and Workshop, we encounter chemical reaction
networks (CRN), where each node represents the state of particular constituent molecules, instead
of the state of the whole system. This description will not be discussed in this chapter.

9
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Figure 1.2: Continuous trajectory of a random traveler in Europe, with the different
countries shown in red.

Figure 1.3: An example of ergodic transition network with four different states.

1.3 Simulating a trajectory: Gillespie’s algorithm

Now that the basic notions of continuous-time Markov chains have been introduced, we may
ask ourselves how to generate sample histories so that the statistical properties are verified.
The main idea of such an algorithm is to generate a list of jumps at specific times, e.g X t=a→ai
with i ∈ {1, . . . , n}.

A first but naive idea is to try a jump at every small time segment δt. This method may
work but is not practical, as it is quite inefficient and could be approximate if δt is too big.

A better-and exact-approach is the Gillespie algorithm. The idea is to generate a waiting
time T̂ between consecutive jumps. The probability of having T̂ > τ where τ > 0 is:

p(T̂ > τ) = exp

�

−
n
∑

i=1

Rai aτ

�

. (1.3)

PROOF. The event T̂ > τ is equivalent to having no transitions during time intervals
�

τ
M

�

k ≤ t <
�

τ
M

�

(k+ 1) for every k ∈ {0, 1, . . . M − 1}.
Thus, we have:

p(T̂ > τ) =

�

1−
n
∑

i=1

Rai a
τ

M

�M
M→∞
−−−−→exp

�

−
n
∑

i=1

Rai aτ

�

. ■
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Figure 1.4: Three examples of non-ergodic transition networks. The nodes colored
in red represent potentially unreachable states.

Figure 1.5: Choice protocol for the arrival state: The transition rates are “shrinked”
to map the interval [0,1].

We then generate such a waiting time T̂ through a uniform random variable Ŷ . We have:

p(T̂ > τ) = p(e−
∑n

i=1 Rai a T̂ < e−
∑n

i=1 Rai aτ) (1.4)

= e−
∑n

i=1 Rai aτ . (1.5)

Introducing Ŷ := e−
∑n

i=1 Rai a T̂ and y := e−
∑n

i=1 Rai aτ, we have:

p(Ŷ < y) = y ⇒ Ŷ is a uniform random variable on [0,1] . (1.6)

After generating Ŷ with a built-in function, we can find T̂ such that Ŷ = e−
∑n

i=1 Rai a T̂ .
To determine the arrival state, we notice that, in a Markovian process, the destination is

determined at the last infinitesimal interval d t. We thus have:

p(destination is ak) =
Raka

∑n
i=1 Rai a

, (1.7)

and the state can be decided with another uniform random variable on [0,1], see Fig.1.5.

Remark 2. We can generalize this idea: Given a 1D probability density ρ(x), we can construct a
random variable X̂ that obeys ρ(x). The cumulative probability up to x ∈R is:

p(X̂ < x) =

∫ x

−∞
ρ(x ′)d x ′ .

Since this is equivalent to p(
∫ X̂
−∞ρ(x

′)d x ′ <
∫ x
−∞ρ(x

′)d x ′) =
∫ x
−∞ρ(x

′)d x ′, we can define

Ŷ :=
∫ X̂
−∞ρ(x

′)d x ′, which is a uniform random variable on [0, 1], and find X̂ by this relation.
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Figure 1.6: Score vs Rank of 134 students. The dotted curve is the actual data, and
the smooth curve represents the continuous fitting score=ψ(rank= r).

Exercise 1.2 Letρ(x , y)∈R2 a probability density of a two-component random variable Ẑ=(X̂ , Ŷ ).
Describe a way of generating Ẑ from two, mutually independent, uniform random variables on
[0,1] denoted (ξ̂, η̂).

Exercise 2. Consider the individual scores of a class of 134 students, with their rank sorting
by increasing order (Fig.1.6). We denote by r the rank and by ψ(r) ∈ [0, 20] the score of the
r-ranked student. We consider the score as a random variable.

• Show that p(score <ψ(r)) = r/134.

• Find the score probability density - over the interval [0, 20] - using ψ(r) without inverting
ψ(r).

In Sec. 5, a python implementation of the algorithm is given for a simple chemical reaction
network.

1.4 First-passage time problems

Consider a Markovian transition network such as the one depicted in Fig.1.3. Given an initial
condition X̂ t=0 = a0 and the ergodic hypothesis, the probability of the process X̂ t never visiting
a state ai is zero. We can, therefore, define a time T̂F P at which X̂ t visits ai for the first time.
The random variable T̂F P is called the first-passage time (usually abridged FPT [1]), and is
a special case of stopping-time. We have in particular p(T̂F P < +∞) = 1. Numerically, the
sampling of T̂F P can be done with a Gillespie algorithm. Moreover, we can obtain analytical
results for its statistics, such as p(T̂F P > τ).

1.4.1 Master equation

Let us consider N (≫ 1) copies of the transition network, starting at X̂ t=0 = a0. For t > 0,
each copy evolves independently. At a time t we find ≃ N pt(ai) copies in the state X̂ t = ai ,
with 0 ≤ pt(ai) ≤ 1 and

∑n
i=0 pt(ai) = 1. Between t and t + d t, the population i.e the

probability of finding the system in a certain state, changes by N pt+d t(ai)−N pt(ai). In parallel,
counting all the possible transitions coming to the state ai from other states allow us to write
the population influx as: +

∑

k(̸=i)(Rai ak
d t) (N pt(ak)). Likewise, the probability out-flux

coming from the state ai to all of the other states is: −
∑

k(̸=i)(Rakai
d t) (N pt(ai)). Therefore,

we have the following equality between time-variation and flux:

N pt+d t(ai)− N pt(ai) =
∑

k(̸=i)

(Rai ak
d t) (N pt(ak))−

∑

k(̸=i)

(Rakai
d t) (N pt(ai)) . (1.8)

2The solution to the exercises can be found at the end of this section.
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Dividing by Ndt and taking the N →∞ limit, we obtain the so-called master equation:

dpt(ai)
d t

=
∑

k(̸=i)

Rai ak
pt(ak)−

∑

k(̸=i)

Rakai
pt(ai) . (1.9)

We can define the net probability flow from ai to ak: Jakai
:= −Rai ak

pt(ak) + Rakai
pt(ai), also

known as current, so that:
dpt(ai)

d t
= −

∑

k(̸=i)

Jakai
. (1.10)

The probability flow Jakai
can be seen as the difference of two semi-flows: The out-going flow

Jakai
:= Rakai

pt(ai) , (1.11)

and the in-coming flow
Jai ak

:= Rai ak
pt(ak) . (1.12)

Thus
Jakai

= Jakai
−Jai ak

. (1.13)

The semi-flows characterize the effect of each individual possible transition, and are of particu-
lar importance when considering the transition network modifications that will be introduced
in Section 1.5. For a pair of states ai and ak, we say that the ai ↔ ak transition is reciprocal
if Jakai

= Jai ak
. In this case, there is no net flow between them.

We have now switched from an individual history framework to a flow of population frame-
work. We can now obtain a formal solution to the set of master equations. We regroup the
state probabilities in a column vector: p⃗t := (pt(a0), . . . , pt(an))†. We also introduce the diag-
onal elements, such that: Rai ai

:= −
∑

k(̸=i) Rakai
. We can now write all of the master equations

as a vector-matrix equation:
d p⃗t

d t
= R p⃗t . (1.14)

The matrix R is called the rate matrix, and its off-diagonal elements are the transition rates:
(R)ki = Rakai

. A formal solution for every t is thus:

p⃗t = eRt p⃗0 . (1.15)

Remark 3. We recall the definition of the exponential of a matrix M:

eM :=
∞
∑

n=0

Mn

n!
. (1.16)

We can write the propagator–that is the path integral from an initial state to a particular
later state (in this case p(X̂ t = ak|X0 = ai))–as:

p(X̂ t = ak|X0 = ai) =
�

eRt
�

akai
. (1.17)

1.4.2 First-passage time from master equation

We can use the vector master equation to study the statistics of T̂F P , through the usage of
absorbing boundary conditions (for more details, the reader may refer to Chapter XII of [2]).
Figure 1.7 represents qualitatively the procedure. The master equation allows to generate
individual trajectories up to a time t. In a way, we know the intersection (and the subsequent
statistics) of the trajectories {a(t)} with a vertical line of coordinate t (Fig.1.7(a)). The first-
passage time problem is, in this framework, a sort of reverse problem. We want to know
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Figure 1.7: (a) Trajectories generated by the master equation d p⃗t
d t = R p⃗t representing

a state variable a with respect to time t. (b) Illustration of the first-passage time of
each trajectory at the state a∗. (c) The same trajectories on the modified network,
with an absorbing state at a∗.

Figure 1.8: (a): Example of a first-passage time problem at the state a2 (in red)
where a0 (in blue) is the starting state. (b): Modified transition network, where a2
is now an absorbing state (cross), with out-going transitions having been removed
(light-gray lines).

the (first) intersection-time of the trajectories with a horizontal line representing a particular
state (a∗ in Fig.1.7(b)). The main idea is to modify the transition network, by introducing
particular absorbing states, meaning that all out-going transitions from them are removed. In
the trajectory-space of Figure 1.7, that means that once a trajectory has reached the state of
interest a∗, it becomes stationary (Fig.1.7(c)). We then solve the master equation (Eq.1.14)
for the now-modified rate matrix. From this we can deduce the statistics of interest, such as
p(T̂F P < t) or the mean first-passage time. Below we detail this procedure applied to the
network depicted in Fig.1.3.

Now, we provide a step-by-step example procedure of network modification to obtain first-
passage times. We consider the 4-states transition network depicted in Figs. 1.3 and 1.8(a),
with a (4×4) rate matrix R. Our goal is to compute the statistics of the FPT reaching the state
a2 starting from a0.

• We first remove the destination node (or nodes if we consider more than one state of
arrival) of the FPT problem, in this case a2, and replace it with an absorbing state, that
is a state from which no transitions are possible. This transformation of the transition
network is depicted in Fig.1.8(b). We denote the modified rate matrix by R∗, Eq.(1.19).

• We now consider the reduced state space, where all the absorbing states have been
removed. In our example, the reduced state space is (a0, a1, a3), and the corresponding
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probability vector is p⃗∗t = (p
∗
t (a0), p∗t (a1), p∗t (a3))†. The reduced master equation reads:

d p⃗∗t
d t
= R∗ p⃗∗t , (1.18)

with

R∗ =





−Ra1a0
− Ra2a0

− Ra3a0
0 Ra0a3

Ra1a0
−Ra2a1

0
Ra3a0

0 −Ra0a3
− Ra2a3



 . (1.19)

• From Eq.(1.18), we obtain the solution, given the initial condition p⃗∗0: p⃗∗t = exp(R∗ t) p⃗∗0

• We can now compute the cumulative probability of the first-passage as an integral of the
probability semi-flow towards the absorbing state over time:

p(T̂F P < t) =

∫ t

0

[J ∗a2a0
+J ∗a2a1

+J ∗a2a3
]ds (1.20)

=

∫ t

0

[Ra2a0
p∗s (a0) + Ra2a1

p∗s (a1) + Ra2a3
p∗s (a3)]ds (1.21)

= 1−
�

p∗t (a0) + p∗t (a1) + p∗t (a3)
�

= 1− 1⃗∗ · p⃗∗t , (1.22)

with 1⃗∗ = (1,1, . . . 1) the unit row vector over the reduced state space. While Eq.(1.22)
is understood by the complementary event, T̂F P ≥ t, it can also be derived from the first
line using a kind of Gauss-Stokes theorem.

• The FPT probability density ρF P(t) is then obtained from Eqs.(1.18) and (1.22):

ρF P(t) =
d
d t

p(T̂F P < t) = −1⃗∗ ·R∗ p⃗∗t . (1.23)

From Eq.(1.23), we can compute the quantities of interest–for example, the mean first-passage
time conditioned to the initial state p⃗∗0 = (1,0, 0)T:

〈T̂F P |X̂0 = a0〉=
∫ ∞

0

tρF P(t)d t

=

∫ ∞

0

t
d
d t

p(T̂F P < t)d t =

∫ ∞

0

t
d
d t

�

p(T̂F P < t)− 1
�

d t

=
�

t(p(T̂F P < t)− 1)
�+∞

0 −
∫ ∞

0

(p(T̂F P < t)− 1)d t

= 0+

∫ ∞

0

1⃗∗ · p⃗∗t d t

=

∫ ∞

0

1⃗∗ · exp(R∗ t)p⃗∗0d t = −1⃗∗ ·R∗−1 p⃗∗0 , (1.24)

where R∗−1 denotes the inverse of the modified rate matrix, knowing that exp(R∗ t)p⃗∗0 → 0⃗∗.
It is possible to prove that R∗ is invertible, but it is not a straightforward task; the reader may
refer to Ref. [3], in particular its SM2, where it is shown that a survival matrix does not have
any vanishing eigenvalue and therefore its determinant is nonzero. Note that the original
matrix R is not invertible since 0 is an eigenvalue. Note also that 1⃗∗ ·R∗ ̸= 0.
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Figure 1.9: Columns and rows of the matrices Q and Q−1.

Remark 4. We can derive this last result with a different approach attributed to Kramers [4]. We
consider the reduced master equation, Eq.(1.18), complemented by a source term J on the initial
state p⃗∗0. The equation reads:

d p⃗∗t
d t
= R∗ p⃗∗t + J p⃗∗0 . (1.25)

The steady-state, denoted ⃗p∗∞, is:
⃗p∗∞ = −JR∗−1 p⃗∗0 . (1.26)

By multiplying 1
J 1⃗∗ from the left,

1
J

1⃗∗ · ⃗p∗∞ = −1⃗∗ ·R∗−1 · p⃗∗0 = 〈T̂F P |X̂0 = a0〉 . (1.27)

Reminder: Linear algebra of master equation. We recall the spectral decomposition of the
diagonalizable matrix R: R= QΛQ−1 where Λ= diag(λ1,λ2, . . . ,λn) is the diagonal matrix of
eigenvalues, and Q is the eigenbasis representation matrix.

We have RQ = QΛ, and the columns of Q denoted by v⃗µ are the right-eigenvectors of
R. Similarly, we have Q−1R = ΛQ−1, so the rows of Q−1, denoted by u⃗ν are the (row) left-
eigenvectors of R, see Fig.1.9. We have: Q−1Q = I ⇔ u⃗ν · v⃗µ = δνµ (orthonormality of the
dual bases) and QQ−1 =

∑

µ v⃗µ · u⃗µ = I (completeness). The latter follows from the former.
Since

exp(Rt) = exp
�

QΛQ−1 t
�

=
+∞
∑

n=0

(QΛQ−1)n tn

n!

= Q

�+∞
∑

n=0

Λn tn

n!

�

Q−1 = Qexp(Λt)Q−1 , (1.28)

we have
exp(Rt) =

∑

µ

v⃗µeλµ t u⃗µ . (1.29)

Remark 5. Numerically the exponential eR∗ t is computed using spectral decomposition,
R∗ =

∑

µ v⃗∗µλµu⃗∗µ, that is, eR∗ t =
∑

µ v⃗∗µeλµ t u⃗∗µ. Once eR∗ t is obtained, p⃗∗t is given by the matrix-

vector product, p⃗∗t = eR∗ t p⃗∗0

• The matrix R or R∗ can have complex eigenvalues.

• All eigenvalues of R∗ must have strictly negative real part because p⃗∗t with any initial state
a0 should decay to the reduced zero-vector, 0⃗∗, for t →∞.
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Figure 1.10: (a): Original transition network, with the transition of interest a3→ a0.
(b): Modified TN to study the first-transition time from a3 to a0, with an additional
absorbing state (crossed state a∗0 on the right).

Figure 1.11: Modified TN to study the second transition time from a3 to a0, with a
replica (a′i states) and an absorbing state (crossed state a∗0 on the right).

• The (non-reduced) rate matrix R must have at least one null eigenvalue: The steady-state
distribution, ν⃗0 satisfies Rν⃗0 = 0. The corresponding left null eigenvector ν⃗0 has all com-
ponents 1, a consequence of the conservation of the total probability: For all p⃗t , we have
d/d tν⃗0 · p⃗t = ν⃗0 ·R · p⃗t = 0. For further spectral properties of the rate matrix, the reader
may refer to Perron-Frobenius theorems and their consequences [5].

The FPT problem shows how network modifications can be used to derive quantities of in-
terest of the original network. We can sometimes add nodes or even replicate the original net-
work so as to adapt to more advanced first-passage problems. Below, we study different event
statistics on the same model of network, through more convoluted semi-flow re-directions.

1.5 Other first event problems

1.5.1 First and second transition time

We are now interested in the first transition time, which is the first time a specific transition
happens in the network, see Fig.1.10(a). In this case, we can cut the transition of interest, and
replace it with a transition to an absorbing state, see fig.1.10(b). In this case, the semi-flow,
J ∗a∗0a3

= Ra0a3
p∗t (a3), gives the transition time statistics.

We can extend this strategy to other transition orders, such as second transition times, as
shown in Fig.1.11. In this case, we make use of replicas of the system without the transition of
interest, linking the two states to account for the first transitions. In the example of Fig.1.11,
the second transition statistics are computed with one replica, linking the states a3 and the
state a0 of the replica, and then an absorbing state from a′3.
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Figure 1.12: (a): Original transition network, starting from a0. (b): Modified TN to
study the first-passage time to a3 before reaching a2.

Figure 1.13: (a) Original TN in which we study the relative first occurrence of tran-
sitions between a2 and a3 (in light pink). (b) The modified TN where two absorbing
states have been added to measure the individual semi-flows.

1.5.2 FPT with competitions

We can also put competitions on first-passage times. For example, in Fig.1.12 we study the
first-passage time to a3 before the state a2 is reached. In this case we replace both states by
absorbing states. Then, the modified semi-flow J ∗a3a0

= Ra3a0
p∗t (a0), gives the statistics in

question. We can evolve this idea to study the first-transition time for a3 → a2 before the
reversed transition a2→ a3. By placing two absorbing states at the end of opposite transitions
(Fig. 1.13), one can assess the occurrence of one or the other (see Section 1.8).

1.5.3 FPT of consecutive transitions

As a last example, we can study FPT of consecutive transitions. For example (Fig.1.14) we may
want to study the sequence of transitions a2 → a3 → a0. In this case, we keep the original
states a3 and a2, but we add a replica of the intermediate state a′3 and an absorbing state a′0.
Then, the probability flow from a′3 to a′0 gives the FPT density of the consecutive transitions.

1.6 “Markovianization” of non-Markov problems

Those network modification and state replication techniques can also be used to perform exact
“Markovianization” of non-Markov problems. For example, we consider a 1D chain of states
with jump probabilities depending on the actual state and the previous jump realization. We
define the stochastic jump X̂k that takes the value +1 when the walker goes from a state n to
the state n+ 1, or the value −1 when the walker goes from n to n− 1 at stage k. We suppose
that the probability of having

�

X̂k = ±1
�

depends on the value of the previous jump. The jump

18

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.80


SciPost Phys. Lect. Notes 80 (2024)

Figure 1.14: (a): Original transition network. (b): Modified TN to study the consec-
utive transitions a2→ a3→ a0. In this case we compute the probability flow from a′3
to a′0.

Figure 1.15: Scheme of a 1D chain network on which a non-Markov jump process
occurs.

Figure 1.16: Modified transition network derived from Fig.1.15. The non-Markovian
process is rendered Markovian thanks to the double chains.

probabilities p(X̂k = ±1|Xk−1 = ±1) are defined as follows:

Jump probability
Condition k-th jump = +1 k-th jump = −1

(k− 1)-th jump = +1 (1− θ )w θw
(k− 1)-th jump = −1 θw (1− θ )w

We can map this problem to a Markovian transition network, via a replica of the whole chain,
to allow the conditions on X̂k+1 to be taken into account.
In the example depicted in Fig.1.16, the states {n′} are only reached from the left to ensure
that the previous transition was +1. Similarly, the states {n′′} are reached from the right,
ensuring that the previous transition was −1. We then link the states with transition rates in
accordance with the table to fully describe the Markovian network. We can then apply the
previous techniques to obtain, for example, FPT statistics. Note that n′ and n′′ both describe
the same original state n, and their statistics must be added to obtain the original one.
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Figure 1.17: Typical trajectories for the three different cases. Note that the smaller
θ is, the more spread trajectories are. This effect is explained qualitatively by the
dependency of the diffusion coefficient D with θ (Eq.1.34).

The random walk exhibits a directional persistence when the parameter θ differs from 1/2.
The 0 < θ < 1/2 case typically represents “run and tumble” processes, whereas 1/2 < θ < 1
represent turn alterations (typical trajectories are depicted in Fig.1.17). Otherwise, if θ = 1/2,
the process is a Markovian random walk. This “fine-graining” method of Markovianization pre-
serves the time resolution of the underlying process - as opposed to coarse-graining methods
(discussed above in Sec.1.2.2).

Remark 6. The topology of the TN in Fig.1.16 is isomorphic with that of the run-and-tumble
model of an active swimmer [6]. In the latter model the the nodes n′ and (n− 1′′) in Fig.1.16 is
associated to the position n.

Calculation of the diffusion coefficient. Since the tumbling transition rate is θw, the prob-
ability density of this period is P(t)d t = (θw)e−θwt d t. During this period, a number n of runs
occurs with a Poissonian distribution P(n|t) = e−(1−θ )wt

n! [(1 − θ )wt]n. The joint probability is
then,

P(t, n)d t =
e−(1−θ )wt

n!
[(1− θ )wt]n(θw)e−θwt d t . (1.30)

Note that, using the gamma function identity Γ (n) =
∫∞

0 e−x xn−1d x = (n− 1)! with n ∈ N∗,
we have the probability of n runs before tumbling, P(n):

P(n) =

∫ ∞

0

P(t, n)d t

=

∫ ∞

0

e−(1−θ )wt

n!
[(1− θ )wt]n(θw)e−θwt d t

= (1− θ )nθ
∫ ∞

0

e−wt

n!
(wt)nwdt

= (1− θ )nθ
1
n!

∫ ∞

0

ex xnd x = (1− θ )nθ , with x = wt . (1.31)

The run length ℓn is given by ℓn = n + 1, in taking account of the initial unit step associ-
ated with the tumbling. For the N pairs of periods of forward and backward runs, the total
time is T = (

∑N
k=1 t+k ) + (

∑N
k=1 t−k ) and the total displacement is X = (

∑N
k=1 ℓ

+
k )− (

∑N
k=1 ℓ

−
k ).

For each period we apply P(t±k , n±k ), where ℓ±k = n±k + 1. The quantity of interest is the ra-
tio




X 2
�

/(2 〈T 〉), where 〈•〉 denotes the expected value, or average. Since different ℓ±k ’s are
mutually independent,

〈T 〉= 2N 〈t〉 , (1.32)



X 2
�

= 2N(E



ℓ2
�

− 〈ℓ〉2) = 2N(



n2
�

− 〈n〉2) . (1.33)
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Figure 1.18: Discretization of time on the transition network. Stationary transitions
are shown in red.

From P(n) we find



n2
�

− 〈n〉2 = (1−θ )
θ2 , while from P(t) we find 〈t〉 = 1

θω . Altogether, the
diffusion constant is

D =




X 2
�

2 〈T 〉
=




n2
�

− 〈n〉2

2 〈t〉
=

w
2

1− θ
θ

. (1.34)

Here w is the total frequency of jump, either rightward or leftward.

1.7 Discrete-time Markov chains

1.7.1 A link between discrete and continuous Markov chains

Let us consider the previously studied transition network, see Fig.1.18. The dots represent the
different states of the systems and the arrows are the possible transitions. In discrete-time, the
network has a similar shape, but the iteration of steps creates the possibility of sojourns when
the system remains in the same state.3 Those transitions are added to the graph, symbolized
by the circular arrows. We now consider time as a discrete variable: t = n∆t with n ∈ N and
∆t is the unitary step duration. We define the stochastic (or transfer)4 matrix P by

P := I+∆tR , (1.35)

where R is the rate matrix for the continuous-time master equation. P defines how the popu-
lation probability is dynamically flowing in the network. The off-diagonal elements are given
by:

(P) ab
a ̸=b
=∆t(R)ab = p(X̂n+1 = a|X̂n = b) , (1.36)

for a and b two states of the system. Since (R)ab is the probability per unit time that the
system jumps from b to a, (P)ab is the probability of jumping to state a at time (n + 1)∆t
given that state is in b at time n∆t. Here X̂n represents the random variable associated to the
state occupied at time n, and p is the probability measure.

The diagonal elements are:

(P)aa = 1+∆t(R)aa = 1−∆t
∑

b(̸=a)

(R)ba . (1.37)

The diagonal element (R)aa is, according to the continuous-time framework, the negative sum
of all transition rates stemming from state a (this results comes from the conservation of the

3Some transitions may happen at a finer resolution, but are not visible at the present level of description (see
Section 1.2.2).

4The value of∆t has to be small-enough to ensure the nonnegativity of all its entries, which is a technical detail
that will not affect the connection to CTMCs.
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probability norm during processes). Paa is thus the probability of not jumping at all:

(P)aa = p(X̂n+1 = a|X̂n = a) . (1.38)

Note that those transitions do not appear explicitly in the continuous-time framework.
The evolution equation of the probability vector p⃗ over the state space is:

p⃗n+1 = Pp⃗n , (1.39)

which gives element-wise:

pn+1(b) =
∑

a

(P)bapn(a) (1.40)

=
∑

a

p(X̂n+1 = b|X̂n = a)pn(a) (1.41)

=
∑

a(̸=b)

(P)bapn(a) + (P)bbpn(b) . (1.42)

From Eqs.(1.36) and (1.37), we obtain:

pn+1(b) =
∑

a(̸=b)

∆t(R)bapn(a) + [1+∆t(R)bb] pn(b) , (1.43)

or equivalently:

pn+1(b)− pn(b)
∆t

=
∑

a(̸=b)

(R)bapn(a)−
∑

a(̸=b)

(R)abpn(b) . (1.44)

Taking the limit∆t → 0+ in Eq.(1.44) with n= t allow us to verify the continuous-time master
equation dp⃗/dt = Rp⃗. For this reason, everything said in the discrete-time framework holds in
the continuous-time limit, given that we take a small enough time step∆t. This equivalence is
sometimes used in the other direction, switching from continuous to discrete time to prevent
dealing with exponentially-distributed time intervals. This shift of description can make proofs
easier with the results holding in both cases as they are a time limit away.

Now we discuss the solution of the evolution equation. In order to write a propagator for
the evolution equation, we apply Eq.(1.39) n times:

p⃗n = Pn p⃗0

= (I+∆tR)n p⃗0 . (1.45)

Pn in the above is, therefore, the propagator. If we let ∆t → 0+ with n∆t fixed, we again
recover the exponential propagator of the continuous-time formulation:

p⃗n = (I+∆tR)t/∆t p⃗0 −−−−→
∆t→0+

eRt p⃗0 . (1.46)

In the following table we sum up the differences between the continuous and discrete formu-
lations.

Element Continuous framework Discrete framework

Stochastic Matrix Rate Matrix R Transition probability matrix P

Dynamics Master Equation dp⃗
dt = Rp⃗ Evolution Equation p⃗n+1 = Pp⃗n

p(X̂ t+∆t = b|X̂ t = a) (R)ba∆t (P)ba

Diagonal elements (R)aa = −
∑

b(̸=a)(R)ba ≤ 0 0≤ (P)aa ≤ 1
Propagator (eRt)ba (Pn)ba

Conservation of prob.
∑

b(R)ba = 0
∑

b(P)ba = 1
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Figure 1.19: In order to compute the first-passage time to the square state from the
open circle state the network (a) is modified. The arrival state is replaced by an
absorbing state where the escape probabilities to other states are 0 (b).

Note that the elements of R have the dimension of the inverse of time whereas the elements
of P are dimensionless. It is also worth mentioning that discrete-time processes are simpler to
simulate in a computer program as we do not have to draw random time steps with a Gillespie
algorithm (as described in Section 1.3). In the discrete case, ∆t is fixed and the operator only
has to draw the probabilities (P)ba from a uniform distribution between 0 and 1.

1.7.2 First-passage times

In a similar way as the continuous-time framework, we can compute the first-passage times
by introducing absorbing states in the network, as shown in Fig.1.19. The only difference
is that the stationary transition (dashed red line) cannot be removed like the other escape
probabilities (Fig. 1.19(b)). Except for this remark, we refer to Section 1.4 for the computation
of first-passage times. Note that for the problem to be properly defined, we need to assume
the ergodicity of the considered network.

1.8 First-transition times and hidden networks

1.8.1 Introduction and experimental setups

In this subsection, we are no longer interested in the time when a state is reached for the first
time. Instead, we want to measure the first time that a specific transition is realized in the
network. This is still a very active topic of research and the reader may refer to the recent arti-
cles [7] and [8] for more details. As an illustration, consider the popular model of a molecular
motor moving along a microtubule and the monitoring of its activity (Fig1.20 (Left)). The
only visible change in this system is the forward or backward movement of the motor. Indeed
the whole metabolism behind is quite difficult experimentally to monitor precisely, and it is
impossible to observe each molecule of ATP and ADP going in and out of the system. By con-
trast, the movement of the molecular motor itself can be measured accurately in experiments.
The different states of the molecular motor are modeled by the Kinesin model. In this model,
the different metabolic steps are represented by transitions in a network. Yet, the only visible
transition is the movement of the motor, symbolized by the solid green line in Fig.1.20(right).
All the other transitions and states are hidden from the observer.

Another experimental setup is a system of two quantum dots between two electrodes
(Fig.1.21(a)). Each quantum dot can be occupied by one electron coming either from the
electrodes or the other dot. The states of the system consist of vacant or occupied quantum
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Figure 1.20: (left) Schematic of a molecular motor walking along a microtubule,
consuming ATP as an energy source and releasing ADP as a byproduct. (right) Bi-
cyclic Kinesin model, where the states and the dashed transitions are hidden. Only
the transition along the solid line is visible.

Figure 1.21: Quantum dot experiments. Only one detector is placed (a), so that only
a part of the possible transitions are observable. The equivalent network in shown
on the right (b). The plain red transition is visible whereas the dotted ones are not.

Figure 1.22: Example of a possible trajectory Γ .

dots denoted, respectively, by 0 or 1. For the two dots, the possible states are 00,01, 10 and
11. The electrons are free to move in the system and to enter and leave through the electrodes.
If we place only one detector between the two quantum dots, we do not have access to all the
possible transitions (Fig.1.21(b)). In this case only the 01↔ 10 transition is visible.

1.8.2 Inference from transition statistics

We now consider only the visible transition and its occurrences in a more formal manner. The
observed trajectory (history) Γ is therefore a list of waiting times t i (with i ∈ N) between
occurrences of visible transition li , starting at t = 0. See Fig.1.22 for an illustration.

In a similar manner as in Section 1.5, we can map the question of the first occurrence of a
specified transition to the question of the first occupation of a specific state, by again modifying
the transition network in a particular way with absorbing states, as shown in Fig.1.23. Note
that the visible transition rates are kept the same in the modified network. In this case, the
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Figure 1.23: Example of a transition network with hidden states (dotted filled cir-
cles) and transitions (dotted curves), and one visible transition (solid curves). The
network can be modified to switch from a first-transition time problem to a first-
passage time problem, thanks to the addition of absorbing states. Note that, in this
case, these absorbing states cannot be physically-meaningful initial positions, as they
are only computational artifacts.

first-transition time will be the first-passage time to one of the absorbing states, whatever
happens in the hidden part of the system.

Considering a trajectory Γ with observed transitions {li}i∈N, we compute the first-transition
time of li+1 given that we start (at t = 0) at the end of the preceding transition, li . With the
modification trick in mind, we can now write the density of first-passage time according to
Eq.(1.23) of Section 1.4.2:

ρPT(t) = Rli+1
p∗t (li+1|li(t = 0)) , (1.47)

where Rl is the transition rate of l. Here, p∗t (li+1|li(t = 0)) denotes the probability that-in the
modified transition network-the system is in the state located at the tail of the transition li+1
at time t, given that the system was in the state at the tip (head) of transition li at time t = 0.
The system can, therefore, perform any succession of hidden transition during 0 and t with
no visible transitions occurring, because the absorbing states prevent those events. The time
t is hence called the “intertransition time”.

From the statistics of the intertransition time (which are experimentally measurable quan-
tities), one can probe characteristics of the whole system, such as the amount of disorder of
the molecular system, bounds for the entropy production rate and the thermodynamic effi-
ciency, insights of the hidden network topology and possibly more quantities that are yet to be
found [7,8].

Solution to the exercises

Exercise 1 Let us first take care of the x component. Similar to the 1D case, we define X̂
such that:

ξ̂=

∫ X̂

−∞
ρx(x)dx , (1.48)

whereρx(x) is the marginalρx(x) =
∫

R
ρ(x , y)dy . In practice, one needs the inverse function

of the cumulative probability distribution which can be computed analytically or numerically.
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For a given X̂ , we define Ŷ such that:

η̂=

∫ Ŷ

−∞
ρ(y|X̂ )dy , (1.49)

where ρ(y|x) denotes the conditional probability density: ρ(y|x) = ρ(x , y)/ρx(x). Then,
for given (x , y), the probability attributed to the surface element (d x ∧ d y) by the random
variables ξ̂ and η̂ is:

dξ∧ dη= ρx(x)d x ∧
�

ρ(y|x)d y +

�∫ y

−∞

∂

∂ x
ρ(y ′|x)dy ′

�

d x

�

(1.50)

= ρx(x)ρ(y|x)(d x ∧ d y) + 0= ρ(x , y)(d x ∧ d y) , (1.51)

because (d x ∧ d x) = 0. Therefore, X̂ and Ŷ corresponds to the density ρ(x , y).

Exercise 2

• Question 1 : This is the definition of a ranked series. Since the interval of ranks is
[0,134], the fraction r/134 is the number of scores below the score of the r-th student,
which isψ(r). Hence r/134= p(Ŝ <ψ(r)), where Ŝ is the random variable correspond-
ing to the score of a randomly chosen student.

• Question 2 : By taking the derivative of the relation, p(score<ψ(r)) = r
134 , with respect

to r, we have ρ(ψ(r))ψ′(r) = (134)−1. Then the parametric presentation, (134ψ′(r))−1

vs ψ(r) gives the relation ρ(s) vs s.

2 Network thermodynamics

Sara Dal Cengio, Nahuel Freitas and Paul Raux.5 We introduce the basic concepts and com-
putational tools of network theory. We discuss their use in the thermodynamics of Markov jump
processes, including the Markov chain tree theorem and the Schnakenberg decomposition of forces
and fluxes. We draw connections with the deterministic description of electrical circuits and chem-
ical reaction networks, highlighting similarities and differences.

2.1 Introduction

This chapter is dedicated to motivate the use of graph theory in the field of nonequilibrium
thermodynamics. Graph theory found its first application in electricity. Therein, Kirchhoff gave
a major contribution to the field by stating the current and the voltage laws, opening up to the
understanding of electrical circuits as nonequilibrium systems involving one (type of) potential
and current. Since then, graph theory has expanded its scope. Generalised Kirchhoff Current
Law and Kirchhoff Voltage Law have been developed to accommodate systems with multiple
currents and potentials, such as chemical reaction networks (CRN). A vast recent literature on
this subject can be found [9–13], but the review by Schnakenberg in 1976 [14] is considered
as seminal in the field. In this lecture, we focus on two representatives of this literature: The
Markov chain tree theorem and the decomposition of observables on a graph. These notes are
organised as follows: in the first subsection, we introduce the elements of graph theory needed
to describe a Markov chain on a graph; in the second subsection we recall some elements of
linear algebra and use them to prove the Markov chain tree theorem; the last subsection is
dedicated to the decomposition of physical observables on the graph.

5SDC was the lecturer; NF was the angel; PR wrote this chapter.
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2.2 Elements of graph theory

In this first subsection, we introduce the few basic elements of graph theory that we need in
order to illustrate the relevance of graph theory in nonequilibrium thermodynamics. Across
this subsection, we will illustrate the definitions on the four vertex graph already used as an
example in [14] (See Figure 2.1).

2.2.1 Graph, incidence matrix and spanning tree

Let G(N , E) be a connected graph with N vertices and E edges. We denote respectively V
and E , the vertex space and the edge space of G, so that dim(V) = N and dim(E) = E. We
assign to each edge e an arbitrary orientation by defining a source vertex s(e) and a target
vertex t(e), so that an edge can be more precisely denoted as e ≡ (s(e) → t(e)) (see Figure
2.1). We emphasize that this orientation is a convention used to describe the network and
does not convey any physical meaning concerning the directionality of transitions. Indeed, in
physical cases, transitions along an edge e can be performed in both directions according to
micro-reversibility. We denote −e the reverse direction: −e ≡ (t(e)→ s(e)).

Incidence matrix. The incidence matrix D, characterizing G, is of size N × E, and is defined
as follows:

D i,e = δi,t(e) −δi,s(e) , (2.1)

where δi, j denotes the Kronecker delta, and the indices i and e span respectively V and E .
Eq. (2.1) encodes the fact that each edge has exactly one source and one target. As a conse-
quence, the row vector ℓ⊤ = (1, . . . , 1) is a left null vector of D, so that:

∑

i

ℓiD ie =
∑

i

D ie = 0 , ∀ e . (2.2)

It follows that the lines of D are not linearly independent and the rank of the incidence matrix,
rankD, is strictly less than N . Specifically, since graph G is connected,

rankD = N − 1 . (2.3)

Proof:

• First, the rank nullity theorem of linear algebra relates rankD with the dimension of the
kernel, dim(kerD), so that:

rankD = rankD⊤ = N − dim(kerD⊤) , (2.4)

where D⊤ is the transpose of matrix D. Thus, to prove that rankD = N − 1 is fully
equivalent to show that dim(kerD⊤) = 1.

• We have seen already that the vector ℓ belongs to kerD⊤. Ad absurdum, let assume
that there exists another vector, independent from ℓ, which belongs to kerD⊤. If such a
vector exists, one could build, by linear combination with ℓ, a non-zero vector ℓ′ ∈ kerD⊤

containing a 0 component ℓ′i = 0; this is impossible since, using Eq. (2.2) by recursion
along the connected graph G, starting from vertex i, we find ℓ′j = 0 ∀ j. This is against

the original assumption ℓ′ ̸= 0; thus the kernel of D⊤ is uniquely spanned by ℓ and
rankD = N − 1.
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Figure 2.1: This graph has four vertices and five edges. The vertex space is
V = (1,2, 3,4). The edge space is E =

�

e1, e2, e3, e4, e5

�

. Consider for example edge
e1. The arbitrary orientation chosen here gives: s(e1) = 2 and t(e1) = 1 so that e1 is
the edge connecting 2→ 1.

Example: Figure 2.1 shows an oriented graph with four vertices and five edges. From
now on, we will denote it Gex. The vertex space and the edge space are respectively given by
V = (1,2, 3,4) and E =

�

e1, e2, e3, e4, e5

�

. With this ordering of the vertices and the edges, the
incidence matrix of Gex reads:

D =







1 0 0 0 1
−1 1 1 0 0
0 −1 0 1 −1
0 0 −1 −1 0






. (2.5)

The first column in D corresponds to e1. It has only two non-zero entries:

• A 1 for the target vertex of e1: t(e1) = 1.

• A −1 for the source vertex of e1: s(e1) = 2.

Spanning tree. Let define a spanning tree TG as a sub-graph of G such that:

• TG contains all the vertices of G.

• All the edges in TG are edges of G.

• TG is connected, i.e. there exists a succession of edges from any vertex to any other.

• TG contains no loop, i.e. no cyclic sequence of edges.

Several remarks follow:

• TG is not unique.

• TG contains exactly N −1= rankD edges, and its corresponding incidence matrix is full
column rank. This is due to the absence of loops.

• The definition of a spanning tree does not specify its edge orientation. If the edges of a
spanning tree are oriented all towards vertex i, the spanning tree is said to be rooted in
i. We denote the set of i−rooted spanning trees as T i . In the following, we denote with
T the set of undirected spanning trees, i.e. spanning trees with no edge orientation (see
Figure 2.2).
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Figure 2.2: T : Set of un-directed spanning trees of Gex.

Example: The 8 un-directed spanning trees of Gex are given in Figure 2.2. The set of
1-rooted spanning trees is given in Figure 2.3. Consider in particular the spanning tree circled
in grey in the upper left corner of Figure 2.3, that we denote T 1

Gex
. T 1

Gex
is one element of the set

T 1 and it consists of the three first edges of G: (e1, e2, e3). Accordingly, the incidence matrix
of this spanning tree, denoted D, corresponds to the three first columns of D in Eq. (2.5) so
that:

D =







1 0 0
−1 1 1
0 −1 0
0 0 −1






. (2.6)

2.2.2 Cycles and cocyles

From a given choice of spanning tree TG , two subsets of E can be identified:

• The set of chords is the set of edges that do not belong to TG . Since removing the chords is
equivalent to opening all the loops of G, the cardinality of chords is equal to the number
of loops of G, i.e. c = E−N +1 . From the viewpoint of the incidence matrix, the chords
correspond to c linearly dependent columns of D. We denote by α the index spanning the
set of chords. In the example in Figure 2.3, the set of chords whose removal generates
T 1
Gex

is (e4, e5).

• The set of cochords is the set of edges that belong to TG . From the viewpoint of the
incidence matrix, the cochords correspond to N − 1 linearly independent columns of D.
This encodes the absence of loops in TG . We denote by γ the index that spans the set of
cochords. In the example of Figure. 2.3, the set of cochords of T 1

Gex
is (e1, e2, e3).

In what follows, we always order the edges of G such that 1≤ γ≤ N − 1 and N ≤ α≤ E.

Cycle. A cycle is the loop obtained by placing back a chord in TG and removing the cochords
that do not belong to the loop just created. By convention, we assign to the cycle the orien-
tation of its generating chord. Then, formally we define cycle vectors cα ∈ E as vector with
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Figure 2.3: T 1: Set of 1-rooted spanning trees of Gex.

components:

cαe =







1 , if e belongs to the cycle generated by the chord α ,
−1 , if − e belongs to the cycle generated by the chord α ,
0 , otherwise.

(2.7)

Given the one-to-one correspondence between chords and cycles, we index them with the
same index α.

Example: Figure 2.4 shows how to obtain the cycles of Gex out of T 1
Gex

. For instance,

placing back the chord e4, we obtain the cycle cα=4. The cochord e1 (dashed line in Figure
2.4) does not belong to cα=4, it is thus removed. The orientation of cα=4 is given by the
orientation of e4 in Gex. The edges that belong to cα=4 are (e2,−e3, e4). Thus the cycle vector
of cα=4 reads:

cα=4 =











0
1
−1
1
0











. (2.8)

Cocycle. Removing a cochord from TG creates a cut, i.e. it separates TG into two discon-
nected components called islands. We name respectively source (target) island the island that
contains the source (target) vertex of the generating cochord. Then, a cocycle is defined as
the set of edges in G which reconnects the two islands, from source to target. Accordingly the
cocycle vectors cγ ∈ E are formally defined as vector with components:

cγe =







1 , if e belongs to the cocycle generated by the cochord γ ,
−1 , if − e belongs to the cocycle generated by the cochord γ ,
0 , otherwise.

(2.9)
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Figure 2.4: Cycles of Gex built out of T 1
Gex

.

Given the one-to-one correspondence between cochords and cocycles, we index them with the
same index γ.

Example: Figure 2.5 shows how to obtain a cocycle of Gex. We start by removing the co-
chord e2 from T 1

Gex
. This creates a cut in the graph, with the two vertices of e2, here s(e2) = 3

and t(e2) = 2, belonging to two disconnected components. Accordingly, we name source
island the disconnected component containing vertex 3 and target island the component con-
taining vertex 2. Then, the cocycle generated by e2, denoted as cγ=2, is the set of edges that
reconnects Gex from source to target. In this case, these edges are (e2,−e4, e5) and the cocycle
vector of cγ=2 reads:

cγ=2 =











0
1
0
−1
1











. (2.10)

Several remarks go as follows:

• ∀ α, cα ∈ kerD. This means that for all α, the following property holds:
∑

e

D iecαe = 0 , ∀ i , (2.11)

which encodes the fact that, along a cycle, every vertex has exactly one incoming and
one outgoing edge.

• All cocycle vectors are linearly independent since, by construction, every cochord be-
longs to exactly one cocycle. Hence:

cγ · eγ
′
= δγ,γ′ , ∀1≤ γ,γ′ ≤ N − 1 , (2.12)

where eγ is the canonical vector of E associated with the cochord γ so that eγe =
∑

eδγ,e.
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Figure 2.5: Blue edges: Cocycle built out of the removal of one cochord from T 1
Gex

.

• All cycle vectors are linearly independent since, by construction, every chord belongs to
exactly one cycle. Reformulating this in mathematical terms, we have:

cα · eα
′
= δα,α′ , ∀N ≤ α,α′ ≤ E , (2.13)

where eα is the canonical vector of E associated with the chord α so that eαe ≡
∑

eδα,e.

• Cycles and cocycles span orthogonal sets, namely:

cα · cγ = 0 , ∀α,γ . (2.14)

This follows from the definition of cycles and cocycles which ensures that
�

±eγ, eα
�

∈ cα

iff
�

eγ,∓eα
�

∈ cγ.

It follows that cycles and cocycles (cγ, cα) form a basis for E . Specifically cycles span kerD and
cocycles span its orthogonal complement space, the coimage of D, imD⊤.
We hereafter summarize the major algebraic properties encountered so-far:

kerD ⊥ imD⊤ , (2.15)

kerD = span cα , (2.16)

imD⊤ = span cγ . (2.17)

2.3 Network theory applied to CTMC: The Markov chain tree theorem

In this subsection, we are interested in the case in which the graph G describes a CTMC. Within
this framework, it is often of interest to look for the steady-state distribution of the CTMC as
it gives a first insight into the dynamics of the system. The Markov chain tree theorem [15]
gives a nice interpretation of the stationary state of a Markov chain in terms of algebraic
graph theory. The outline of this subsection is the following: First we recall properties of the
Markovian dynamics. Then, we recollect the necessary linear algebra basics needed to prove
the theorem. Lastly, we provide a proof.
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2.3.1 Markovian dynamics in a nutshell

For a more complete introduction to Markovian dynamics and its application to stochastic
thermodynamics, the reader can refer to [16].
A Markovian dynamics on a connected graph G satisfies the master equation:

∂t pi(t) =
∑

j

�

r(i| j)p j(t)− r( j|i)pi(t)
�

=
∑

e

D ie je(t) ,
(2.18)

where D is the incidence matrix of G, r(i| j) is the transition probability rate to jump from j to
i, and we have introduced the net probability flux along the oriented edge e as:

je ≡ r(e)ps(e) − r(−e)pt(e) , (2.19)

where r(e) ≡ r(t(e)|s(e)) and r(−e) ≡ r(s(e)|t(e)). The second equality in Eq. (2.18) shows
that, apart from a minus sign, the master equation can be interpreted as a continuity equation
for the probabilities pi ’s, with D a discrete divergence operator. The master equation can also
be written as follows:

∂t pi(t) =
∑

j

Ri j p j(t) , (2.20)

where we have introduced the N × N rate matrix defined as:

Ri j = r(i| j)−

�

∑

k

r(k|i)

�

δi j . (2.21)

Then, probability conservation, namely
∑

i pi(t) = 1 ∀t, is ensured by the fact that the ele-
ments of the columns of R sum to 0:

∑

i

Ri j = 0 , ∀ j . (2.22)

Eq. (2.22) is a null linear combination of the lines of R. It implies that the row vector ℓ⊤ [that
we already met] is a left null eigenvector of R, and that R has determinant 0. Since the graph
is connected, Perron-Frobenius theorem ensures the uniqueness of the left null eigenvector, as
well as the existence of a unique stationary state [17], since dim(kerR) = dim(kerR⊤) = 1.
Accordingly, this stationary solution p(∞) is obtained as a right null eigenvector of R:

∑

j

Ri j p j(∞) = 0 . (2.23)

Then one way to obtain the stationary probability distribution of our CTMC is to directly com-
pute the right null eigenvector of R. However, we will see that a graph theoretical expression
of p(∞) can also be found.

2.3.2 Markov chain tree theorem

As introduced in 2.2, let T be the set of un-rooted spanning trees of G and T i be the cor-
responding set of i-rooted spanning trees. Then, we define the weight vector w ∈ V with
components:

wi =
∑

T
w(T i) =

∑

T

∏

e∈T i

r(e) , ∀ i , (2.24)
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Figure 2.6: a) Oriented graph G with 3 vertices. b) Set of 2-rooted spanning trees
of G.

given by the sum over all spanning trees of the product of their transition rates with the edges
oriented toward i. The Markov chain tree theorem states that the stationary distribution is
given by the following formula:

pi(∞) =
wi

∑

j w j
. (2.25)

Example: Let us illustrate the theorem by computing the stationary probability of a CTMC
on a graph G with vertex space V = (1,2, 3) and edge space E = (e1, e2, e3) (See Figure 2.6).
According to the Markov chain tree theorem, to compute the stationary probability to be in
state i, we need to compute the weight wi . To do so, we need to find all the spanning trees of
G rooted in state i. Figure 2.6 shows for instance the three spanning trees rooted in state 2.
Then the weight w2 is obtained by summing, among the possible rooted spanning trees, the
products of the transition rates. Here, for state 2, we thus have:

w2 = r(1|3)r(2|1) + r(2|1)r(2|3) + r(3|1)r(2|3) . (2.26)

The process can be repeated for states 1 and 3 to obtain w1, w3. By normalizing Eq. (2.26),
we then obtain the stationary probability to be in state 2:

p2(∞) =
r(1|3)r(2|1) + r(2|1)r(2|3) + r(3|1)r(2|3)

Z
, (2.27)

where Z =
∑

i wi .

2.3.3 Proof of the theorem

There exists no trivial proof of the above theorem. In this subsection, we propose a compact
proof for CTMC following the spirit of [18].

Linear algebra. We start this proof subsection with a short reminder of linear algebra. Given
a square matrix A, the cofactor matrix of A denoted C A is defined as follows:

(C A)i j = (−1)i+ j (MA)i j , (2.28)
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where (MA)i j is the determinant of the matrix obtained by removing line i and column j from
matrix A, also called minor of A. It can thus be written as (MA)i j ≡ detA⧹(i, j).
The adjugate matrix is defined as the transpose of C A:

adjA= (C A)
⊤ . (2.29)

We will use the following property of the adjugate matrix:

AadjA= adjA A= detA1 , (2.30)

where 1 is the identity matrix. Finally, we introduce the Cauchy-Binet formula that will be
used later on. Let A and B be two conformable matrices of respective size m× n and n×m.
The Cauchy-Binet formula reads:

detAB =
∑

Sn
m

detA(S
n
m)detB⊤(S

n
m) , (2.31)

where Sn
m denotes the sub-ensembles of m elements out of (1, ..., n). The cardinality of such

sub-ensembles is the binomial coefficient:
�n

m

�

. Then, A(S
n
m) corresponds to the m×m matrix

whose columns are the columns of A indexed by Sn
m, and the same holds for B⊤.

Usefulness of the adjugate matrix: As a first lemma, we show that the diagonal of the
adjugate matrix of R is related to p(∞). Since detR = 0, Eq. (2.30) applied to the rate matrix
gives:

R adjR = 0N , (2.32)

where we have denoted 0N the null matrix of size N × N . Therefore, every column of the
adjugate matrix is a right null eigenvector of R. Given that dim(kerR) = 1, it means that
all columns of adjR are proportional to each other. Moreover, using the second equality of
Eq. (2.30), we have:

R⊤ (adjR)⊤ = 0N , (2.33)

meaning that the column vectors of (adjR)⊤ are in kerR⊤. This in turn implies that every vector
of (adjR)⊤ is proportional to ℓ. Therefore, denoting v i the i-th column vector of (adjR)⊤, we
have ∀ i v i = αiℓ , with αi ∈R. It follows that every columns of adjR is equal to (α1, ...,αN )

T .
In particular, they are all equal to the vector given by the diagonal entries of adjR. Since this
vector lives in kerR, we obtain from it the stationary probability by imposing normalization:

pi(∞) =
(adjR)ii

∑

i (adjR)ii
. (2.34)

We have shown how the adjugate matrix relates to the stationary distribution of our CTMC.
We now turn to the task of drawing a connection to graph theory.

Connection with graph theory: We have shown in the last paragraph that the columns of
adjR are all equal. We may thus write:

(adjR)i j = (adjR)ii = (MR)ii , (2.35)

where the second equality originates from the definition of the adjugate matrix Eq. (2.29).
The connection to graph theory goes as follows. First, we have seen in subsection 2.3.1 that
the dynamics of the CTMC can be described either in the space of probabilities pi with the rate
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matrix R or in the space of probability fluxes je with the matrix D. We now show how to relate
the two above matrices. First we introduce the matrix R defined as:

Ri,e = r(−e)δi,t(e) − r(e)δi,s(e) . (2.36)

Then, we realize that R can be written in terms of R and D as follows:

R = −DR⊤ . (2.37)

Eq. (2.37) makes explicit the relation between the rate matrix of the CTMC and the incidence
matrix D containing information on the topology of the underlying network. Taking back
equation (2.35), we have:

(adj− R)ii = (adj− R)i j = (MR)ii
= detD⧹(i,.)R⊤⧹(.,i)
=
∑

SE
N−1

detD
(SE

N−1)
⧹(i,.) detR(S

E
N−1)
⧹(.,i)

=
∑

T
detD(T )⧹(i,.)detR(T )⧹(.,i) .

(2.38)

In the second equality we have replaced R by its definition in terms of D and R. To compute
(MR)ii , we have to remove line i and column i of R, which is equivalent to removing line
i of D and column i of R⊤, indicated respectively as D⧹(i,.) and R⊤⧹(.,i). In the third line,
we have used the Cauchy-Binet formula introduced earlier. Here the sub-ensembles are the
choices of N − 1 columns of D⧹(i,.) and R⧹(.,i). One then has to compute the determinant of
the resulting (N − 1)× (N − 1) square matrices. Crucially, the only choices that contribute to
the determinant are the ones in which the chosen N −1 elements are linearly independent. In
graph theory, the set of choices of independent edges is the set of spanning trees. Therefore,
the sum over SE

N−1 can be changed on a sum over T . For all T , matrices D(T )⧹(i,.) and R(T )⧹(.,i)
are full-rank and can be made upper triangular using elementary row and column operations.
Notably, given the common structure of D and R (see Eq. (2.1) and Eq. (2.36)), the required
elementary operations are the same for the two matrices, leaving the sign of the product of
determinants unchanged. Once the two matrices are reduced in upper triangular form, their
determinant is given by the product of the diagonal entries. By an adequate labeling of the
lines and columns, D(T )⧹(i,.) and R(T )⧹(.,i) can be made upper triangular with respectively −1 and
−r(e) diagonal entries for every edge directed inward vertex i, and +1 and +r(−e) diagonal
entries for every edge directed outward vertex i (see Appendix A in [19] for details). It follows
that the resulting product of rates corresponds to a sum over spanning trees rooted in i and
we may write:

(adj− R)ii =
∑

T

∏

e∈T i

r(e) = wi . (2.39)

Finally, ensuring the normalization of the probabilities pi ’s completes the proof.

2.4 Network theory applied to observable decomposition

In this subsection, we apply the notions of cycles and cocycles introduced in subsubsection
2.2.2 to the decomposition of physical observables on G. Thermodynamics imposes strong
conditions on the decomposition. We show in particular that we are able to locate thermody-
namic processes on subsets of G.
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2.4.1 Observables decomposition

Fluxes. We first recall that (cγ, cα), as well as (eγ, cα) and (cγ, eα) form bases of the edge
space E , due to the orthogonality conditions in Eqs. (2.12-2.13). Therefore, since the vector
of probability fluxes j(t), whose components are given by Eq. (2.19), belongs to E , we may
decompose it as follows:

j(t) =
N−1
∑

γ=1

Jγ(t)eγ +
E
∑

α=N

Jα(t)cα , (2.40)

where coefficients Jγ(t) ≡ j(t) · cγ and J c
α(t) ≡ j(t) · eα, and we used the orthogonality

properties Eqs. (2.12-2.13). Therefore, coefficients Jγ(t) for1 ≤ γ ≤ N − 1 in Eq. (2.40)
correspond to the N −1 probability fluxes flowing across the cocycles. More can be said about
these coefficients. Indeed, at steady-state, the master equation (2.18) reduces to:

D j(∞) = 0 . (2.41)

Thus, at steady state j(∞) lives in the kernel of D. Since cycles form a basis of kerD, the only
term that survives at steady state is the cycle term of the decomposition, so that:

j(∞) =
E
∑

α=N

Jα(∞)cα . (2.42)

This last equation is precisely the Kirchoff Current Law (KCL) which implies that N −1 cocycle
fluxes are transient and vanish in the steady state, Jγ(t →∞)→ 0∀γ. Therefore, the analysis
of the steady-state fluxes alone only requires the knowledge of a reduced number of degrees
of freedom on the graph, whose number is given by the cardinality of cycles c.

Forces. We now do the same for the affinity vector A(t) ∈ E whose components are defined
as:

Ae(t) = log

�

r(e)ps(e)(t)

r(−e)pt(e)(t)

�

. (2.43)

We put forward the following decomposition for the affinity vector:

A(t) =
N−1
∑

γ=1

Aγ(t)cγ +
E
∑

α=N

Aα(t)eα , (2.44)

where coefficients Aγ(t) ≡ A(t) · eγ and Aα(t) ≡ A(t) · cα, and we used the orthogonality
properties Eqs. (2.13-2.12). Therefore, the coefficients Aα for N ≤ α ≤ E corresponds to the
cycle affinities, i.e. the affinities summed along cycles. Let us compute them explicitly by
making use of Eq. (2.43):

∀α , Aα(t) = A(t) · cα

=
∑

e

Ae(t)c
α
e

=
∑

e

cαe log

�

r(e)ps(e)(t)

r(−e)pt(e)(t)

�

= log

 

∏

e

�

r(e)ps(e)(t)
�cαe

∏

e

�

r(−e)pt(e)(t)
�cαe

!

= log

�
∏

e(r(e))
cαe

∏

e(r(−e))cαe

�

,

(2.45)
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where the first equality was obtained using Eqs. (2.13) and (2.14). To go from the fourth to
the fifth equality, we used the fact that the probabilities are vertex quantities and therefore
their product along a cycle does not depend on the orientation. Several remarks:

• The cycle affinities only depend on the transition rates.

• If Aα = 0 ∀α, then Eq. (2.45) ensures that the Kolmogorov criterion is fulfilled, namely
that the product of transition rates across all cycles is the same in the forward and back-
ward directions. This is a sufficient and necessary condition for the Markov chain to be
reversible. It is also equivalent to the detailed balance property.

• The condition Aα = 0 ∀ α is also called Kirchoff voltage law (KVL).

• For a reversible dynamics, i.e. when KVL is satisfied, all the affinities are conservative,
which implies the existence of a potential vector V(t) ∈ V such that:

A(t) =
∑

γ

Aγ(t)cγ = −D⊤V(t) , (2.46)

where we made use of the decomposition Eq. (2.44) and in the last equality we used
the fact that cocycles span the imD⊤. Given that D⊤ can be seen as a discrete gradient,
Eq. (2.46) is a potential condition for conservative affinities.

• As a last remark, if fluxes fulfill KCL, namely j(t) ∈ kerD, and affinities fulfill KVL,
namely A(t) ∈ imD⊤, then Tellegen’s theorem is satisfied and we have:

j(t) · A(t) =
∑

α,γ

JαAγcα · cγ = 0 . (2.47)

Entropy production. Using the decomposition for the fluxes and for the affinities in-
troduced above and the orthogonality relations expressed in subsection 2.2.2, we obtain a
decomposition for the entropy production rate (EPR) as follows:

σ(t)≡ A(t) · j(t)

=

�

∑

γ

Aγ(t)cγ +
∑

α

Aα(t)eα
�

·

 

∑

γ′

Jγ′(t)eγ
′
+
∑

α′

Jα′(t)cα
′

!

=
∑

γ

∑

γ′

Aγ(t)Jγ′(t) cγ · eγ
′

︸ ︷︷ ︸

=δγ,γ′

+
∑

γ

∑

α′

Aγ(t)Jα′(t) cγ · cα
′

︸ ︷︷ ︸

=0

+
∑

α

∑

γ′

Aα(t)Jγ′(t)eα · eγ
′

︸ ︷︷ ︸

=0

+
∑

α

∑

α′

Aα(t)Jα′(t)eα · cα
′

︸ ︷︷ ︸

δα,α′

=
∑

γ

Jγ(t)Aγ(t) +
∑

α

Jα(t)Aα(t) ,

(2.48)

Thus there are again two cases:

• At steady-state, we know that the only remaining fluxes are the fluxes across the cycles
Jα(∞). Therefore, in the long-time limit, the EPR simplifies to:

σ(∞) =
∑

α

Jα(∞)Aα(∞) . (2.49)
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Figure 2.7: An example of CRN. a) Reaction 1 requires the enzyme E to bind to the
substrate S to generate the complex ES. Similarly, reaction 3 requires the enzyme
E to bind to the substrate S∗ to form the complex ES∗. Consequently, the reaction
network is not a graph and its dynamics is non linear. We need a hypergraph to
represent it. b) By chemostating S and S∗, the network becomes effectively linear.
The concentration of S and S∗ are no longer dynamical variables and they enter in
the dynamics via the rescaled transition rates k̃+1 ≡ k+1 xchem

S and k̃−3 xchem
S∗ .

• If the chain is reversible we have seen that Aα = 0∀α, therefore the EPR reduces to:

σ(t) =
∑

γ

Jγ(t)Aγ(t) , (2.50)

and it vanishes in the long-time limit since Jγ(t →∞)→ 0∀γ.

As a last remark, if the chain is both at steady state and reversible, i.e. if both KCL and KVL
are fulfilled, then both terms in Eq. (2.48) vanish. The system is in an equilibrium steady-state
with zero entropy production:

σ(t) = 0 , ∀ t . (2.51)

2.5 An example of chemical reaction network

As a summary, we apply the Markov chain tree formula and the observable decomposition
to the example of a CRN inspired from biochemistry and shown in Figure 2.7. The reaction
network describes the activation of a substrate S → S∗ via the enzyme E that binds to the
substrate to form the complex ES. The latter complex also decomposes in the free enzyme and
the new substrate S∗. A first observation is that the chemical network is non-linear and cannot
be represented as a simple graph. Specifically, reactions 1 and 3 in panel a) of Figure 2.7
involve three species and cannot be represented as simple edges connecting a single vertex
(species) to another one. This is typically the case in chemical reaction networks which involve
interactions many-to-many and thus map to hypergraphs (we refer to [19] for a generalization
of the graph-theoretical notions introduced here to hypergraphs). We assume in the following
that the CRN follows the mass action kinetics and denote x i the concentration of species i.
Using the mass action law, we can for instance write the kinetic equation for the concentration
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of ES through reaction 1 and 2. It reads:

d xES

d t
= k+1 xS xE − k−1 xES − k+2 xES + k−2 xES∗ . (2.52)

Clearly, this kinetic equation is non linear due to the first term on the right-hand side. Here
to illustrate the results developed in the previous subsections on graph theory, we choose to
fix the concentration of S and S∗ via external chemostatting. The chemostating is performed
by connecting the system with two reservoirs of respectively S and S∗, held at concentrations
xchem

S and xchem
S∗ . Then, the concentrations of S and S∗ no longer vary, and the network can be

reduced effectively to a linear network on the states (E, ES, ES∗), for which a graphical repre-
sentation can be exploited (see Figure 2.7). Then, the kinetic equation (2.52) also reduces to
a linear equation in the dynamical variables xE and xES:

d xES

d t
= k+1 xchem

S
︸ ︷︷ ︸

k̃+1

xE − k−1 xES − k+2 xES + k−2 xES∗ . (2.53)

We are thus left with a linear continuity equation formally analogous to the master equation
(2.18) where the x i(t)’s are the analogue of the probabilities pi(t) and the ki ’s are the analogue
of the transition rates r(i| j). Figure 2.7 panel b) represents the graph that can be obtained
out of our linearized set of kinetic equations. For CRNs, the analogous of the incidence matrix
is called stoichiometric matrix. Each column of the stoichiometric matrix corresponds to a
reaction of the CRN. We denote S the stoichiometric of our example which reads:

S =





−1 0 1
1 −1 0
0 1 −1



 . (2.54)

Since the graph of the CRN is unicyclic, the unique cycle vector reads:

c =





1
1
1



 , (2.55)

where we dropped the index α. Since there is only one cycle, the force driving the CRN out of
equilibrium is going to be the cycle affinity A= c · A. We can compute it as follows:

A= A · c = log

�

k̃+1 xEk+2 xESk+3 xES∗

k−1 xESk−2 xES∗ k̃
−
3 xE

�

= log

�

k+1 k+2 k+3
k−1 k−2 k−3

�

︸ ︷︷ ︸

1

+ log

�

xchem
S

xchem
S∗

�

︸ ︷︷ ︸

2

.
(2.56)

We find two terms:

1. the first term depends only on the transition rates.

2. the second term depends only on the concentration of the reservoirs that we used to
chemostat S and S∗.
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The first term of equation (2.56) vanishes whenever the transition rates fulfill the Kolmogorov
criterion which states that the following ratio must be one:

k+1 k+2 k+3
k−1 k−2 k−3

= 1 . (2.57)

Then A reduces to:

A= log

�

xchem
S

xchem
S∗

�

. (2.58)

Accordingly, the out of equilibrium driving force of the CRN relies only on the difference be-
tween the two chemostat concentrations.

Finally, we can make the link with the Markov chain tree formula. Assuming Eq. (2.57)
ensures that the chain is reversible and, in the absence of chemostatting, it relaxes to an equi-
librium steady state. We then use a parameterization of the transition rates in terms of the
standard chemical potential of thermodynamics µ0

i of species i, namely:

k+e
k−e
= eµ

0
s(e)−µ

0
t(e) . (2.59)

This also ensures the following property at the level of spanning trees:

w(T i)
w(T j)

= eµ
0
j−µ

0
i , (2.60)

where w(T i) is the product of the transition rates along the rooted spanning tree T i . Then,
the Markov chain tree formula simplifies considerably leading to:

x i(∞) =
wi

∑

j w j
=

∑

T w(T i)
∑

j

∑

T w(T j)
(2.61)

=

∑

T w(T i)
∑

T w(T i)
∑

j eµ
0
i −µ

0
j

=
e−µ

0
i

∑

j e−µ
0
j

, (2.62)

which is the equilibrium solution of thermodynamics.

3 Stochastic thermodynamics

Massimiliano Esposito and Danilo Forastiere.6 These lecture notes contain an informal in-
troduction to stochastic thermodynamics, which is a dynamical theory of mesoscopic systems in
contact with external reservoirs which is fully compatible with statistical mechanics, and repro-
duces its main results when the full system is allowed to reach thermodynamic equilibrium. The
stochastic dynamics of discrete systems is introduced in Section 3.1. For simplicity, in Section 3.2
we develop the stochastic dynamics and thermodynamics of a small system in contact with a sin-
gle ideal reservoir in equilibrium, and at the average level. Then, in Section 3.3 we explain how
to treat genuine nonequilibrium situations, in which the external reservoirs are characterized by
different temperatures and therefore preclude the system from reaching equilibrium. Section 3.4
explains how to extend the formalism to cases in which the mesoscopic states of the system have
internal entropy and how to deal with transfer of matter between reservoirs. Finally, Section 3.5
introduces the fundamental tools needed to develop stochastic thermodynamics at the level of the
single stochastic trajectories, namely the fluctuation theorems.

6ME was the lecturer; DF was the angel and wrote this chapter.
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Figure 3.1: Graphical representation of the ME (3.1). In a small time interval dt, a
system in the state i can jump to j with a probability given by Wjidt.

3.1 Stochastic dynamics

We start from a system described by the Master Equation (with the graphical representation
given in Fig. 3.1) with a possibly time-dependent generator W

dt pi =
∑

j

Wi j p j =
∑

j ̸=i

(Wi j(t)p j −Wji(t)pi)
︸ ︷︷ ︸

Ji j

, (3.1)

where conservation of normalization implies
∑

j Wji = 0 or equivalently Wii = −
∑

j ̸=i Wji ,
and where Ji j denotes the probability current from j to i.

The steady state is obtained as right-null eigenvector of W and thus satisfies the linear
equation W pss = 0. It is unique for an ergodic Markov process7 by the Perron-Frobenius
theorem [2, 20]. If a time-dependent driving protocol is applied from the environment, the
generator becomes time-dependent; in this case, we can define the instantaneous steady-state
pss(t) which satisfies

∑

i Wji(t)pss
i (t) = 0 at every time and for each j, and which becomes

time-independent when the time-dependent driving is stopped. In absence of time-dependent
driving every initial condition relaxes to pss, as it can be seen introducing the relative entropy
(or Kullback-Leibler divergence, [13,21]), which is the positive function defined as

D(p|p′)≡
∑

i

pi ln
pi

p′i
(3.2)

= −
∑

i

pi ln
p′i
pi
≥ −

∑

i

pi

�

1−
p′i
pi

�

= 0 . (3.3)

The inequality follows from the normalization
∑

i pi =
∑

i p′i = 1 and from the fact that
− ln x ≥ 1 − x (which is easily obtained, for example, considering ln x =

∫ x
1 ds 1

s ≤
∫ x

1 ds
for x > 1 and analogously for x < 1, and which has the geometrical interpretation depicted
in Fig. 3.2).

The relative entropy D(p|pss) is zero only at the steady-state and its time-derivative is
always negative, meaning that it is a Lyapunov function [22]. In fact

−dt D(p|pss(t)) = −
∑

i

dt pi ln
pi

pss
i
−
∑

i

pidt ln pi

︸ ︷︷ ︸

=0

+
∑

i

pidt ln pss
i . (3.4)

The second term vanishes by normalization using the ME (3.1). The third term only occurs in
presence of time-dependent driving protocols. On the other hand, the first term obeys

−
∑

i

dt pi ln
pi

pss
i
= −

∑

i j

Wi j p j ln
pi

pss
i
= −

∑

i j

Wi j p j ln
pi p

ss
j

pss
i p j

(3.5)

≥
∑

i j

Wi j p j

�

1−
pi p

ss
j

pss
i p j

�

= −
∑

i

pi

pss
i

∑

j

Wi j p
ss
j = 0 , (3.6)

7Defined by an irreducible generator W .
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x

y
x − 1

ln x

Figure 3.2: Graphical representation of the inequality ln x ≤ x − 1.

Figure 3.3: Closed system (no flux of matter) evolving at the fixed temperature T
of the environment. The transition rates obey local detail balance in the form (3.7)
since the system needs relax to equilibrium in absence of driving.

where we used the ME (3.1) in the first equality, the normalization property of the generator
∑

i Wi j = 0 in the second and fourth equalities, the inequality − ln ≥ 1 − x and finally the
definition of the steady state. Therefore, when no driving is present and dt p

ss = 0, we have
the Lyapunov property dt D(p|pss)≤ 0.

As a side remark, notice that the matrix W̃i j ≡Wi j
pss

j

pss
i

is a rate matrix (
∑

i W̃i j = 0) which
defines a different Master Equation rate matrix with the same steady state pss as the original
matrix W .

3.2 Stochastic thermodynamics for a single reservoir of energy

Basic theory. We assign the energies of the states εi(t), the system is closed and in contact
with a reservoir at temperature T (therefore β = 1

kBT ), and we assume local detailed balance
[23–25]:

Wi j

Wji
= e−β(εi−ε j) . (3.7)

Examples of rates satisfying eq. (3.7) are given later in this section, and are graphically de-
picted in Fig. 3.4.

Consider the average energy 〈E〉=
∑

i εi(t)pi(t). Its rate of change in times is given by

dt 〈E〉=
∑

i

pidtεi

︸ ︷︷ ︸

Ẇ

+
∑

i

εidt pi

︸ ︷︷ ︸

Q̇

. (3.8)
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This corresponds to the First Law of thermodynamics. The quantities Ẇ and Q̇ have the di-
mensions of energy over time but they are not derivatives with respect to time for a generic
protocol. A remark on notation: In these notes we use dt ,∂t for total and partial derivatives
and the overdot only to mean that a quantity has dimension of a rate of change, but without
implying that it is a derivative.

The identification of the heat is motivated by the following identity

Q̇ =
∑

i j

Wi j p jεi =
∑

i j

Wi j p j(εi − ε j) =
1
2

∑

i j

Ji j(εi − ε j) , (3.9)

obtained using the conservation of normalization
∑

i Wi j = 0 in the first equality and a sym-
metrization over nodes in the second. Inserting local detailed balance (3.7) in eq. (3.9) we
get

−
Q̇
T
=

kB

2

∑

i j

Ji j ln
Wi j

Wji
, (3.10)

from which we see that in a transition governed by LDB the entropy change in the reservoir is
given by the heat divided by the temperature. The entropy of the system is

S = −kB

∑

i

pi ln pi . (3.11)

Its time derivative is the entropy change in the system and reads

dtS = −kB

∑

i

dt pi ln pi = −kB

∑

i j

Wi j p j(ln pi − ln p j)

= −
kB

2

∑

i j

Ji j ln
pi

p j
.

(3.12)

Therefore the rate of entropy change in the universe (i.e. the entropy production rate) is
obtained summing (3.10) and (3.12),

σ̇ ≡ dtS −
Q̇
T
=

kB

2

∑

i j

(Wi j p j −Wji pi) ln
Wi j p j

Wji pi
≥ 0 , (3.13)

where the inequality follows from (a− b) ln a
b ≥ 0 for positive a, b. The entropy production is

zero only when p satisfies detailed balance Wi j p
eq
j =Wji p

eq
i . The equilibrium state is a steady

state as
∑

j Wi j p
eq
j = 0 for which the canonical distribution holds. This can be obtained from

the local detailed balance condition8 (3.7) by summing over j and imposing normalization

1=
∑

j

peq
j =

∑

j

Wji

Wi j
peq

i = peq
i eβεi

∑

j

e−βε j , (3.14)

which implies

peq
i =

e−βεi

∑

j e−βε j
≡ e−β(εi−Feq) , (3.15)

where we introduced the equilibrium free energy Feq ≡ −kB T ln
∑

j peq
j . Since the system is in

contact with a single reservoir, in absence of driving over energies it will relax to equilibrium.
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Figure 3.4: Illustration of systems characterized by different types of rates. (a) Spin-
boson (b) Arrhenius (c) Bose (d) Fermi (e) Mass-action chemistry.

Examples of rates. We list here some important examples of rates satisfying LDB. They
characterize the systems depicted in Fig. 3.4.

Spin boson. The rates at which a spin in contact with a bosonic bath switches between
up and down are given by

W+ =
ħh

4|∆|
γ(|∆|)

�

coth
β∆

2
− 1

�

, (3.16a)

W− =
ħh

4|∆|
γ(|∆|)

�

coth
β∆

2
+ 1

�

. (3.16b)

The LDB condition

ln
W+

W− = −β∆ , (3.17)

follows from the property coth x
2 − 1 = 2

ex−1 = ex(coth x
2 + 1). Drude-Ullersma model [2, 26]

is obtained setting γ(∆) = 2
π

α2

α2+∆2 .

Arrhenius rates. These rates can be obtained as the coarse-graining of a diffusion process
in a multi-well potential. See e.g. [2] (Ch. XIII.6) and [25].

Wi j = Γ exp
¦

−β(E∗i j −φ j)
©

, (3.18a)

Wji = Γ exp
¦

−β(E∗ji −φi)
©

. (3.18b)

The rates involve the free energy φi = εi − Tsi , where the entropic contribution arises from
the curvature near the minima of the energy [see Fig. 3.4 (b)]. The barrier between the two
states is symmetric, E∗i j = E∗ji = E∗. The LDB (3.7) therefore takes the form

ln
Wi j

Wji
= −β(φi −φ j) . (3.19)

8For the present case of a system in equilibrium with a single reservoir, local detailed balance and detailed
balance are equivalent (see e.g. [2] Ch.4).
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Fermi rates. These rates describe the interaction of a two-level system with a bath obey-
ing Fermi statistics. See [27].

Define x = ε− µ. The Fermi statistics is f (x) = e−β x

e−β x+1 , therefore 1− f (x) = 1
1+e−β x . The

Fermi rates are given by

W+ = Γ f (ε−µ) , (3.20a)

W− = Γ (1− f (ε−µ)) , (3.20b)

satisfying (3.7).

Bose rates. The Bose statistics is given by

n(x) =
e−x

1− e−x
. (3.21)

Correspondingly 1+ n(x) = 1
1−e−x . The Bose rates are given by

W+ = Γn(ε−µ) , (3.22a)

W− = Γ (1+ n(ε−µ)) , (3.22b)

satisfying (3.7).

Mass-action chemistry. Consider the chemical reaction A + X −−*)−− Y + B occurring in a
container of volume V , where the concentrations of A and B are externally maintained constant
by a chemostatting mechanism [28]. The mass-action transition rates W(NX ,NY ),(N ′X ,N ′Y )

for going
from the state with (N ′X , N ′Y ) particles of species X and Y respectively to the one with (NX , NY )
particles are given by

W(NX−1,NY+1),(NX ,NY ) = k+[A]NX/V , (3.23a)

W(NX ,NY ),(NX−1,NY+1) = k−[B](NY + 1)/V . (3.23b)

The kinetic constants obey the constraint [28]

ln
k+
k−
= −β(µ0

A+µ
0
X −µ

0
B −µ

0
Y ) , (3.24)

where µ0
i is the standard chemical potential of the species i and for ideal solutions the chemical

potential is obtained from the Gibbs free energy as µi =
∂
∂ Ni

gi(Ni) = µ0
i + kB T ln Ni!. It is then

possible to show that (3.23) satisfy

ln
W(NX−1,NY+1),(NX ,NY )

W(NX ,NY ),(NX−1,NY+1)
= −β{gX (NX − 1) + g(NY + 1)− g(NX )− g(Ny)} . (3.25)

Similar considerations can also be applied to non-ideal solutions [29].

Nonequilibrium free energy. We can introduce the nonequilibrium free energy:

F = E − TS . (3.26)

When the temperature of the environment is not allowed to vary, the nonequilibrium free
energy changes in time according to

dt F = dt E − TdtS (3.27)

= Ẇ − T σ̇ , (3.28)
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using first (eq.(3.8)) and second law (eq. (3.13)) in the second equality.
Therefore we can express the entropy production rate in the form

σ̇ =
Ẇ − dt F

T
, (3.29)

which is the analogous of Kelvin’s classic formulation of the second law of thermodynamics.
The nonequilibrium free energy can be related to the relative entropy between the actual

state and the equilibrium state at a given temperature. In fact, using the definitions (3.2) and
(3.26) we find

kB T D(p|peq) = kB T
∑

i

pi ln pi − kB T
∑

i

pi ln e−β(εi−Feq) (3.30)

= −TS + E − Feq = F − Feq . (3.31)

It is important to note that in absence of driving (i.e. when no external power is provided,
Ẇ = 0) F is a Lyapunov function for the system, meaning that dynamics will bring it to its
minimum value (the equilibrium one). This can be seen using (3.29) combined with (3.31)
gives

T σ̇ = Ẇ − dt F = −kB Tdt D(p|peq)≥ 0 . (3.32)

In the following, we will also make use of the identity

Ẇ − dt F
eq = −kB T

∑

i

pidt ln e−β(εi−Feq) = −kB T
∑

i

pidt ln peq . (3.33)

After summing and subtracting dt F
eq to the entropy production in eq. (3.29), eq. (3.33) gives

σ̇ = −kB

�

∑

i

pidt p
eq
i + dt D(p|peq)

�

(3.34)

= −kB

∑

i

dt pi ln
pi

peq
i

= −kB

∑

i j

Wi j p j ln
pi

peq
i

. (3.35)

Special transformations.

1. Reversible transformations. If the transformation is extremely slow, every state of
the system is at every time only slightly distant from its equilibrium value (see [30] for more
details), pi = peq

i +δpi . Therefore

ln
pi

peq
i

= ln

�

1+
δpi

peq
i

�

≃
δpi

peq
i

−
1
2

�

δpi

peq
i

�2

+O

�

�

δpi

peq
i

�3�

. (3.36)

The resulting entropy production is a second order quantity in the relative variation of the
states,

σ̇ ≈ −kB

∑

i j

Wi j p
eq
j

�

1+
δp j

peq
j

��

δpi

peq
i

+
1
2

�

δpi

peq
i

�2�

(3.37)

= −kB

∑

i j

Wi j p
eq
j
δpi

peq
i

+ kB

∑

i j

Wi j p
eq
j
δpi

peq
i

δp j

peq
j

−
kB

2

∑

i j

Wi j p
eq
j

�

δpi

peq
i

�2

, (3.38)

since the first sum vanishes by normalization.
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2. Sudden switch. Driving faster than the typical relaxation rate of the dynamics does
not give time to p to change in time. Therefore, like in an isolated system

σ̇ ≈ 0 , Q̇ ≈ 0 , dtS ≈ 0 . (3.39)

Crucially, however, Ẇ = dt F ̸= 0.

Nonequilibrium state as a resource. We consider again the dissipated free energy expressed
via eq. (3.29)

T σ̇ = Ẇ − dt F
eq − kB Tdt D(p|peq)≥ 0 . (3.40)

Integrating it with respect to time and defining the total entropy production σ ≡
∫ t

0 d t ′σ̇(t ′)
we obtain the integrated form of the Kelvin formulation of the second law

Tσ =W −∆Feq
︸ ︷︷ ︸

Wirr

−kB T D(p(t)|peq(t)) + kB T D(p(0)|peq(0)≥ 0 , (3.41)

where the equilibrium distribution at different time can change because the energy levels
{εi} are varied by the externally supplied work. Note, however, that the above calculation is
restricted to isothermal conditions.

In a transformation between equilibrium states (p(0) = peq(0) and p(t) = peq(t)), the
contribution coming from the relative entropy cancels and eq. (3.41) implies that irreversible
work is positive (Wirr ≥ 0), or equivalently

W ≥∆Feq . (3.42)

This is exactly Kelvin’s formulation of the second law for transformations between equilibrium
states.

However, preparing the system in a nonequilibrium state p(0) ̸= peq(0) allows the irre-
versible work

Wirr = Tσ
︸︷︷︸

≥0

+ kB T D(p(t)|peq(t))
︸ ︷︷ ︸

≥0

−kB T D(p(0)|peq(0))
︸ ︷︷ ︸

≤0

, (3.43)

to become negative due to the nonequilibrium free energy stored in the initial condition, thus
achieving extraction from the nonequilibrium initial state, which acts as a resource for the
environment [31] (see Fig. 3.5).

3.3 ST for multiple reservoirs

We can generalize the above treatment to the important case of multiple reservoirs.
The local detailed balance takes the form

ln
W (ν)

i j

W (ν)
ji

= −βν(εi − ε j) , (3.44)

where the index ν now spans the different reservoirs in contact with the system. Each of the
reservoirs, in isolation, would impose a well defined equilibrium state as the steady state of the
dynamics of the system. However, the simultaneous interaction of the system with different
reservoirs frustrates the relaxation to any of the equilibria identified by each of them, and
consequently heat and particle flows ensue. The dynamics follows the master equation (3.1),
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Figure 3.5: Extreme cases for free energy transduction, with red crosses correspond-
ing to vanishing contributions. The resource term kB T D(P0|P

eq
0 ) due to the nonequi-

librium initial state can be either completely lost (W = 0 and σ = kB D(P0|P
eq
0 )) if

no extraction protocol is applied, or optimally extracted via a reversible, quasi-static
protocol (for which σ = 0 and W = −kB T D(P0|P

eq
0 )) following a sudden change of

the potential from two to single well, followed by an adiabatic deformation back to
two wells.

Figure 3.6: Systems in contact with multiple reservoirs. (a) Schematic depiction of a
generic system (b) scheme of a 2-levels system in contact with two baths at different
temperatures.

where we assume that the reservoirs affect the system independently of each other, leading to
an additive generator W =

∑

νW (ν) [23].
We identify the heat in each reservoir as being

Q̇(ν) =
1
2

∑

i j

1
2
(W (ν)

i j p j −W (ν)
ji pi)

W (ν)
i j

W (ν)
i j

. (3.45)

This gives for the entropy production rate appearing in the second law (3.13)

σ̇ = dtS −
∑

ν

Q̇(ν)

T
(3.46)

= kB

∑

ν,i, j

1
2
(W (ν)

i j p j −W (ν)
ji pi) ln

W (ν)
i j p j

W (ν)
ji pi

≥ 0 , (3.47)

where the inequality follows from (a− b) ln a
b ≥ 0 for positive a, b.

Applying the log-sum inequality [21]
∑

n an ln an
bn
≥
�∑

an

�

ln
∑

n an
∑

n bn
(for nonnegative
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an, bn), to the sum over the index ν of the reservoirs in eq. (3.47), after defining the prob-
ability flow jνi j =W (ν)

i j p j due to each of the reservoirs, we have

σ̇ =
1
2

∑

ν,i, j

( jνi j − jνji) ln
jνi j

jνji
=
∑

ν,i, j

jνi j ln
jνi j

jνji
≥
∑

i, j

�

∑

ν

Wν
i j

�

p j ln

�

∑

νWν
i j

�

pi
�

∑

νWν
ji

�

p j

. (3.48)

This means that lumping together rates coming from the interaction with different reservoirs
underestimates the entropy production. In particular, there could be detailed balance effective
models that do not resolve between different reservoirs and that therefore estimate a vanishing
entropy production even for a system which is out of equilibrium.

Example: The above fact can be seen easily by considering the 2-levels system (p0 = 1− p1)
in contact with two reservoirs of Fig. 3.6 (b) which is governed by the master equation
dt p0 = W01p1 −W10p0. It reaches a stationary state when the detailed balance condition
W01p1 = W10p0 is satisfied, thus leading to an estimate of zero entropy production when the
latter is computed with the lumped rates W . However, since W =

∑

ν=l,r Wν, the steady
state entropy production rate computed using the correct formula (3.47) is nonzero whenever
there is a difference in the temperatures of the two reservoirs. Therefore, when in contact with
multiple reservoirs the steady state toward which the state of the systems relaxes by virtue of
the Perron-Frobenius theorem will not coincide with the equilibrium state given by the Gibbs
distribution (3.15). Therefore, in absence of external time-dependent driving, after a suffi-
ciently long time the system will be in a nonequilibrium steady state (NESS) characterized by
a positive entropy production rate σ̇ss ≥ 0.

The first law now takes the form — obtained following the same steps as for eq. (3.9)

dt E =
∑

i

dtεpi +
∑

i

εdt pi = Ẇ +
∑

ν,i, j

jνi j(εi − ε j) (3.49)

= Ẇ +
∑

ν,i, j

1
2
( jνi j − jνji)(εi − ε j) = Ẇ +

∑

ν

Q̇ν , (3.50)

where Q̇ν is the heat flowing in the ν-th reservoir.
If we are in presence of reservoirs indexed by ν = 0, . . . , N , and we choose T0 as the

reference temperature which appears in the nonequilibrium free energy definition (3.26), we
can rewrite the entropy production rate (3.46)

T0σ̇ = T0dtS − Q̇0 −
∑

ν≥1

T0

Tν
Qν (3.51)

= Ẇ − dt F
0 +

∑

ν≥1

�

1−
T0

Tν

�

Qν (3.52)

= Ẇ − dt F
eq,0 +

∑

ν≥1

�

1−
T0

Tν

�

Qν − kB T0dt D(p(t)|peq(t)) . (3.53)

Two remarks are needed here. First, the second equality we used the first law (3.50) to solve
for Q̇0, the definition of nonequilibrium free energy (3.26) and we have identified the Carnot
efficiency ηνC = 1 − Tν

T0
of the heat exchanged with the ν-th reservoir, which is zero when

evaluated for T0 (i.e., no power output can be extracted from a single heat reservoir, that is
from an equilibrium environment). Second, in the third equality we made use of the identity
for the nonequilibrium free energy in terms of the equilibrium one plus a relative entropy,
eq. (3.31).
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Figure 3.7: System coupled to energy and matter reservoirs.

In a nonequilibrium steady state it reduces to

σ̇ss =
∑

ν

�

1
T0
−

1
Tν

�

Q̇ν , (3.54)

which is analogous to the expression obtained in macroscopic nonequilibrium thermodynamics
[32].

3.4 Internal entropy and matter transfer

We can generalize the description to include states with internal entropies and to allow for the
exchange of particles with the reservoirs.

Each node is now characterized by a number of particles ni , a mesoscopic energy εi = eini
(ei being the average energy per particle in state i), and an internal entropy si . The aver-
age values of these observables in a state characterized by the distribution p are respectively
〈E〉 =

∑

i εi pi , 〈N〉 =
∑

i ni pi and S =
∑

i(si − ln pi)pi . Notice that the Shannon entropy has
been slightly extended to take into account the mesoscopic entropy. Energy and particles are
conserved quantities for the (isolated) total system obtained considering the mesoscopic sub-
system together with all the reservoirs. Given a reservoir with temperature Tν and chemical
potential µν, we can define the nonequilibrium free energy associated with the mesoscopic
states as φi = εi −µνni − kB Tνsi . The local detailed balance becomes

ln
Wν

i j

Wν
ji
= −βν

�

φνi −φ
ν
j

�

. (3.55)

The fluxes of the conserved quantities can be derived considering their balance equations. For
the number of particles we have (repeating the same steps used for eq. (3.9))

dt 〈N〉=
∑

νi j

Wν
i j p jni =

∑

νi j

1
2
(Wν

i j p j −Wν
ji pi)(ni − n j) =

∑

ν

IνN , (3.56)

introducing the particle currents for each reservoir, IνN ≡
∑

i j
1
2(W

ν
i j p j−Wν

ji pi)(ni−n j). Analo-

gously, we introduce the energy flows IνE ≡
1
2

∑

i j(W
ν
i j p j −Wν

ji pi)(εi −ε j) to write the first law

in a form in which the chemical work contribution Ẇchem appears explicitly,

dt 〈E〉=
∑

i

dtεi pi

︸ ︷︷ ︸

Ẇd

+
∑

ν

�

IνE −µ
ν IνN

�

︸ ︷︷ ︸

Q̇ν

+
∑

ν

µν IνN
︸ ︷︷ ︸

Ẇchem

. (3.57)

The identification of heat flow with

Q̇ν =
1
2

∑

i j

(Wν
i j p j −Wν

ji pi)
�

(εi −µνni)− (ε j −µνn j)
�

(3.58)

=
1
2

∑

i j

(Wν
i j p j −Wν

ji pi)
�

(φi + Tνsi)− (φ j + Tνs j)
�

, (3.59)
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takes into account the fact that part of the energy flow is associated to the transfer of particles
between different reservoirs, and therefore it should not be counted as heat (as it does not
“heat” the reservoir). Indeed, one can easily verify that at equilibrium with a single reservoir
eq. (3.59) gives the Clausius formula for the entropy change for a given heat flux once the
equilibrium distribution peq

i = Z−1e−βφi is introduced.
The second law can obtained computing

dtS =
∑

i

dt pi(si − ln pi) =
∑

ν,i, j

1
2

�

Wν
i j pi −Wν

ji pi

�

�

si − s j − ln
pi

p j

�

. (3.60)

The expression for the entropy production rate, encoding the second law, is consequently

σ̇ = dtS −
∑

ν

Q̇ν

Tν
=
∑

ν,i, j

1
2

�

Wν
i j p j −Wν

ji pi

�

ln
Wν

i j pi

Wν
ji pi
≥ 0 . (3.61)

Alternatively, using Q̇ν = IνE −µ
ν IνN and using the first law (3.57) to isolate the reservoir with

ν= 0, used as a reference, we can write

T0σ̇ = T0dtS − I0
E +µ

0 I0
N −

∑

ν≥1

�

IνE −µ
ν IνN

�

(3.62)

= Ẇd − (dt 〈E〉 −µ0dt 〈N〉 − T0dtS) +
∑

ν

�

1
T0
−

1
Tν

�

IνE −
∑

ν

�

µν
Tν
−
µ0

T0

�

IνN , (3.63)

and therefore

σ̇ =
Ẇd − dtΦ

0

T0
+
∑

ν≥1

�

FνE IνE + FνN IνN
�

, (3.64)

with the nonconservative forces defined as FνE =
1
T0
− 1

Tν
and FνN =

µν
Tν
− µ0

T0
. The decomposition

of the entropy production (3.64) obtained here can be refined using the conceptually simi-
lar but more general framework of Refs. [12, 13]. There, it is also proved that the number of
fundamental force NF can be expressed as the difference between the number of intensive vari-
ables associated to the reservoirs NI and the number of conserved quantities that characterize
the total system NC , namely

NF = NI − NC . (3.65)

The important case of tight-coupling between currents, namely when the transfer process for
different conserved quantities (e.g. the one of matter and energy) occurs simultaneously, is
discussed in Ref. [33].

3.5 Fluctuation theorems and thermodynamic uncertainty relations

Until now, we have considered the average value of thermodynamic observables, where the
averaging process sums over all possible stochastic trajectories compatible with the dynamics.
Stochastic thermodynamics, however, can be formulated also at the level of the single trajec-
tories [34, 35]. Let’s indicate with Γ a trajectory in the state space. We define an operation
of time reversal Γ → Γ̃ , which changes the order of the visited states and the sign of all the
observable which are odd under time-reversal. Furthermore, it reverses the time-dependence
contained in the time-dependent driving protocols, if present.

We have the following trajectory level entropy production

σ(Γ ) = kB ln
P(Γ )
P̃(Γ )

, (3.66)
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which is a trajectory-wise version of the local detailed balance condition (3.7) and is related
to the so-called detailed fluctuation theorem [36–40].

An important result is the integral fluctuation theorem [41], that in this context is an im-
mediate consequence of the rearrangement of eq. (3.66)

¬

e−
σ
kB

¶

=
∑

Γ

P(Γ )
P̃(Γ̃ )
P(Γ )

=
∑

Γ

P̃(Γ̃ ) =
∑

Γ̃

P̃(Γ̃ ) = 1 . (3.67)

The third equality is obtained recognizing that the sum over all paths can be enumerated
equivalently using the forward or the reversed trajectories.

The average of (3.66) gives the entropy production at the average level

〈σ〉= kB

∑

Γ

P(Γ ) ln
P(Γ )
P̃(Γ̃ )

≥ 0 . (3.68)

The inequality is a consequence of Jensen’s inequality, as 1=



e−σ/kB
�

≥ e〈σ〉/kB ≥ 1− 〈σ〉kB
.

Another important class of results concerning fluctuations is the one of thermodynamic
uncertainty relations (TUR). TURs are relations which bound the signal-to-noise ratio of a
current J (or another measure of the precision of a signal) in terms of the entropy production
needed to achieve it. The original TUR [42] states that

pr(J)≡
〈J〉2

Var(J)
≤
〈σ〉
2kB

, (3.69)

and therefore provides a bound on a dynamical characterization of a stochastic system (the
precision) in terms of a thermodynamic observable (the EPR), which can be exploited either
to optimize the former or to infer the latter. For a general perspective unifying different types
of uncertainty relations, see [43].

4 Deterministic chemical reaction networks

Francesco Avanzini, Shesha Gopal Marehalli Srinivas, Emanuele Penocchio and Massim-
iliano Esposito.9 We formulate a nonequilibrium thermodynamic theory for open chemical reac-
tion networks (CRNs) described by deterministic rate equations following the law of mass-action.
The conservation laws of CRNs are used to decompose the entropy production into a potential
change and two work contributions. One work contribution accounts for the time-dependent ma-
nipulation of the chemostatted species. The other accounts for the flows of matter maintained
through the CRN by nonconservative forces breaking the detailed balance condition.

4.1 Introduction

Out-of-equilibrium chemical processes are ubiquitous in nature. They constitute for instance
the underlying scaffold of information processing [44], oscillations [45], self-replication [46–
48], metabolism, and photosynthesis in biosystems [49]. They also play a central role in syn-
thetic chemistry [50], where artificial chemical processes are designed to perform sophisticated
tasks. Prototypical examples include self-assembly [51,52] and molecular machines [53,54].
These processes operate out of equilibrium: nonzero reaction currents are sustained by con-
tinuously harvesting free energy from environment (represented in terms of reservoirs of

9FA was the lecturer and wrote this chapter; SGMS was the angel; EP and ME contributed to the selection and
organization of the chapter content.
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chemical species called chemostats) [55]. Their energetics can be characterized on rigorous
grounds using a nonequilibrium thermodynamic theory for CRNs. Such a theory has been
developed in recent years for CRNs undergoing a stochastic [28, 56, 57] or a deterministic
dynamics [10, 29, 58–60]. This theory has been applied to study, for instance, the energetic
costs of sustaining coherent oscillations [61] and sustaining growth of copolymers [62–64]
and biomolecules [65]; the efficiency of central metabolism [66] in prokaryotes; the internal
information transfer in a model of chemically-driven self-assembly and an experimental light-
driven bimolecular motor [67]. It was also formulated for reaction diffusion systems, where
chemical reactions can be used to create patterns [68,69] and waves [70].

In these lecture notes, we focus on deterministic CRNs whose dynamics follows the law of
mass-action. In particular, we re-derive, in a self-contained way, the formulation of nonequilib-
rium thermodynamics for CRNs developed in Refs. [28,29,59]. The lecture notes are organized
as follows. We introduce the basic setup for the description of CRNs in Sec. 4.2 and discuss
their dynamics in Sec. 4.3. We then build nonequilibrium thermodynamics on top of the CRN
dynamics. We start in Sec. 4.4 where we introduce the notion of thermodynamic consistency:
closed CRNs must be detailed balanced, namely, they must relax towards an equilibrium state.
This allows us to derive a condition known in stochastic thermodynamics as local detailed
balance establishing a correspondence between dynamic (i.e., reaction fluxes) and thermo-
dynamic (i.e., chemical potentials) quantities. In Sec. 4.5, we use the local detailed balance
to obtain the nonequilibrium formulation of the first and second law of thermodynamics for
closed CRNs. In Sec. 4.6, we derive the first and second law of thermodynamics for open CRNs.
Crucially, we show how to use the conservation laws of CRNs (defined in Subs. 4.3.3) to rewrite
the second law in such a way as to split the free energy exchanged with the chemostats into
two work contributions. One contribution, named driving work, accounts for the free energy
exchanged with the chemostats via a time dependent manipulation of CRNs. The other con-
tribution, named nonconservative work, accounts for the nonconservative forces created via
the exchanges with the chemostats that break the detailed balance condition and can maintain
CRNs out of equilibrium. This decomposition of the second law is a major result as it identifies
the specific mechanism, in terms of nonconservative forces, that can maintain CRNs out of
equilibrium.

Disclaimer: These lecture notes represent a first (partial) summary of the recent develop-
ments in nonequilibrium thermodynamics of CRNs that Francesco Avanzini, Massimiliano Es-
posito and Emanuele Penocchio (authors are listed in alphabetic order) are planning to re-
view more extensively in another contribution. The course “Thermodynamics of Determinis-
tic Chemical Reaction Networks” of the school (Post)Modern Thermodynamics (5-9 Decem-
ber 2022, Luxembourg) was given by Francesco Avanzini and prepared together with Shesha
Gopal Marehalli Srinivas.

4.2 Basic setup

A CRN is defined as a set of chemical species {Zα}, identified by α ∈ S = {1, 2, . . . , ns}, that
are interconverted via chemical reactions, identified by the index ρ ∈R= {1, 2, . . . , nr}. Each
reaction ρ is assumed here to be reversible and represented by an equation like

∑

α∈S
ν+α,ρ Zα

ρ ∑

α∈S
ν−α,ρ Zα , (4.1)

where ν+α,ρ (resp. ν−α,ρ) is the stoichiometric coefficients of Zα in the forward (resp. backward)
transformation. The net stoichiometry is encoded in the (ns × nr) stoichiometric matrix S

whose columns are defined as
Sρ := ν−ρ − ν

+
ρ , (4.2)
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with ν±ρ := (. . . ,ν±α,ρ, . . . )Tα∈S .

Physical remark: We consider here systems, known as ideal dilute solutions, where the ns
species {Zα} are mixed together with a non-reacting, very abundant species Z0 called solvent.
The solvent maintains the temperature T and the volume V of the system constant.

Example: We now consider the following CRN,

F + E
1

EF ,

EF
2

EW,

EW
3

E + W,

S + EF
4

EFS ,

EFS
5

EW + P ,

(4.3)

representing a minimal metabolic process. Indeed, the interconversion of the substrate S (rep-
resenting for instance ADP) into the product P (representing for instance ATP) is catalyzed
by the enzyme E and powered by the interconversion of the fuel F (representing for instance
nutrients) into the waste W (representing for instance CO2). The species EF and EW are the
complexes enzyme-fuel and enzyme-waste, respectively. The species EFS is the complex ob-
tained by binding both the fuel and the substrate to the enzyme.

The stoichiometric matrix of the CRN (4.3) reads

S =























1 2 3 4 5

E −1 0 1 0 0
EF 1 −1 0 −1 0
EW 0 1 −1 0 1
EFS 0 0 0 1 −1
P 0 0 0 0 1
W 0 0 1 0 0
S 0 0 0 −1 0
F −1 0 0 0 0























, (4.4)

where, for instance, the first column specifies that 1 molecule of E and 1 molecule of F are
consumed every time the first reaction occurs (in the forward direction), while 1 molecule of
EF is produced.

Mathematical remark: The same stoichiometric matrix might correspond to different CRNs.
Consider for instance two CRNs composed of the three species S, P, and E. In one CRN, the
species undergo the chemical reaction

S P . (4.5)

In the other CRN, the species undergo the chemical reaction

S + E P + E . (4.6)

According to Eq. (4.2), both CRNs have the same stoichiometric matrix.
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Disclaimer: The CRN (4.3) has been chosen to illustrate the theory discussed in these lecture
notes and does not necessarily represent any realistic chemical process.

4.3 Dynamics

The evolution of deterministic CRNs with constant volume is specified by the (vector of the)
concentrations of chemical species: [Z] = (. . . , [Zα], . . . )α∈S .

Notation remark: Throughout these notes, we will omit for compactness of notation the
time dependence of any quantity (e.g., concentrations and thermodynamic fluxes, like heat,
entropy flow, and entropy production rate).

4.3.1 Rate equation

In open CRNs, the concentration vector follows the rate equation

d
dt
[Z] = SJ([Z]) + I , (4.7)

where J([Z]) is the reaction current vector and I is the exchange current vector.
Each entry Jρ of J quantifies the net current of reaction ρ. If Jρ > 0 (resp. Jρ < 0),

reaction ρ occurs in the forward (resp. backward) direction, namely, from left to right (resp.
from right to left) in Eq. (4.1). Each net current is given by the difference between the forward
and backward fluxes,

Jρ([Z]) = r+ρ ([Z])− r−ρ ([Z]) , (4.8)

which satisfy the law of mass-action, i.e., the fluxes are proportional to the concentrations of
the reactants to the power of their stoichiometric coefficients:

r±ρ ([Z]) = k±ρ[Z]
ν±ρ , (4.9)

with [Z]ν
±
ρ =

∏

α∈S[Zα]
ν±α,ρ and k±ρ being the so-called kinetic constants. This is physically

justified for ideal dilute solutions: interactions between chemical species are negligible and
the solvent is much more abundant, i.e., [Z0]≫

∑

α∈S[Zα]. Therefore, reacting species behave
as an ideal gas mixture reacting at rates that are proportional to their concentrations.

Each entry Iα of I quantifies the net current at which the species Zα is exchanged with the
environment. This can represent for instance i) exchanges with external particle reservoirs
known as chemostats, or ii) the net effect of other non-specified chemical reactions.

We can now split the set of chemical species {Zα}, and of the corresponding set of indexes
S, into two disjoint sets by using the rate equation (4.7). The nX species {Xα} (with α ∈ SX )
are not exchanged with the environment, i.e., Iα = 0 for the whole dynamics, and are thus
called internal. The nY species {Yα} (with α ∈ SY ) are exchanged with the environment, i.e.,
Iα ̸= 0 for some moments of the dynamics, and are thus called exchanged. By applying the
same splitting to the concentration vector

[Z] = ([X], [Y])T , (4.10)

and the stoichiometric matrix

S =

�

SX

SY

�

, (4.11)

the rate equation (4.7) can be rewritten as

d
dt
[X] = SX J([X], [Y]) , (4.12)

d
dt
[Y] = SY J([X], [Y]) + IY , (4.13)
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1

2

3

4

5

E
F

EF

EW

S

P

EFS

W

Figure 4.1: Pictorial illustration of the CRN (4.3) when the species F, S, W, and P are
exchanged with chemostats. Black (numbered) arrows represent chemical reactions,
while green arrows crossing the gray boundary represent the exchange processes
with the chemostats (represented by flasks). Here, all reactions are assumed to be
reversible even if they are represented with a hypergraph notation by single arrows.

where IY collects the non-null entries of I .

Remark: In these lecture notes, we consider CRNs coupled with chemostats (the SY species
are thus said to be chemostatted). This means that the concentrations [Y] are not dynamical
variables, but are controlled by the external chemostats. Equation (4.13) becomes a mere
definition of the currents IY ensuring that [Y] follow the chemostat-imposed protocol.

Example: The reaction rates of the CRN (4.3) (represented in Fig. 4.1) are given by

r+1 ([Z]) = k+1 [E][F] , (4.14)

r−1 ([Z]) = k−1 [EF] , (4.15)

r+2 ([Z]) = k+2 [EF] , (4.16)

r−2 ([Z]) = k−2 [EW] , (4.17)

r+3 ([Z]) = k+3 [EW] , (4.18)

r−3 ([Z]) = k−3 [E][W] , (4.19)

r+4 ([Z]) = k+4 [EF][S] , (4.20)

r−4 ([Z]) = k−4 [EFS] , (4.21)

r+5 ([Z]) = k+5 [EFS] , (4.22)

r−5 ([Z]) = k−5 [EW][P] . (4.23)

If we now assume that the species P, W, S, and F are exchanged (like in Fig. 4.1), the exchange
current vector reads

I =
�

E EF EW EFS P W S F

0 0 0 0 IP IW IS IF
�

. (4.24)
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4.3.2 Steady state

The steady state [Z]ss of the rate equation (4.7), defined as

SJ([Z]ss) + I = 0 , (4.25)

is said to be an equilibrium steady state if

J([Z]eq) = 0 , (4.26)

which implies that I = 0.

Remark: When CRNs have a well defined equilibrium state, they are said to be detailed
balanced (not to be confused with local detailed balance which will be discussed in Sec. 4.4).

4.3.3 Conservation laws

The nℓ ≤ ns (linearly independent) left-null eigenvectors of the stoichiometric matrix, identi-
fied by the index λ,

ℓλ ·S = 0 , (4.27)

are named conservation laws. Indeed, each scalar

Lλ = ℓλ · [Z] , (4.28)

is a conserved quantity of the rate equation (4.7) if CRNs were closed, i.e., I = 0 :

d
dt

Lλ = ℓλ ·
d
dt
[Z] = ℓλ ·SJ([Z]) = 0 . (4.29)

Physical remark: The conservation laws identify fragments of (or entire) molecules, named,
moieties, that remain intact in all reactions. The corresponding conserved quantities quantify
the concentration of these moieties.

Mathematical remark: The set of conservation laws {ℓλ} is not unique: a linear combination
of conservation laws is still a left-null eigenvector of the stoichiometric matrix. Different sets
identify different moieties whose physical interpretation might not be obvious.

Example: The stoichiometric matrix (4.4) of the CRN (4.3) admits the following three con-
servation laws

ℓE =























E 1
EF 1
EW 1
EFS 1
P 0
W 0
S 0
F 0























, ℓS =























E 0
EF 0
EW 0
EFS 1
P 1
W 0
S 1
F 0























, ℓF =























E 0
EF 1
EW 1
EFS 1
P 0
W 1
S 0
F 1























. (4.30)

The concentrations of the corresponding moieties, i.e., the enzyme, the substrate and the
fuel moieties, are given by LE = [E] + [EF] + [EW] + [EFS], LS = [EFS] + [P] + [S],
LF = [EF] + [EW] + [EFS] + [W] + [F]. The fragments corresponding to these moieties are
highlighted in Fig. 4.2 with different colors.
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Figure 4.2: Pictorial illustration of the CRN (4.3) where the different moieties iden-
tified by the conservation laws in Eq. (4.30) are highlighted with different colors:
orange for ℓE, purple for ℓS, and blue for ℓF.

4.4 Local detailed balance

The local detailed balance condition establishes a correspondence between the dynamics and
the thermodynamics, and is crucial to build a nonequilibrium thermodynamic theory on top
of a dynamical system. We introduce it here by comparing the dynamic and thermodynamic
equilibrium conditions. We then generalize it to nonequilibrium conditions.

Remark: The general idea of our derivation of the local detailed balance is the following:
i) Dynamic equilibrium relates [Z]eq to {k±ρ}; ii) Thermodynamic equilibrium relates [Z]eq to
the standard chemical potentials {µ◦α(T )}; iii) Local detailed balance relates {k±ρ} (dynamics)
to {µ◦α(T )} (thermodynamics); iv) Generalization to nonequilibrium.

4.4.1 Dynamic equilibrium

The steady state of closed CRNs must be an equilibrium steady state for thermodynamic con-
sistency: if we do not provide (free) energy to dissipative systems such as CRNs, they must
reach an equilibrium steady state.

By combining Eqs. (4.8), (4.9) and (4.26), we obtain

k+ρ
k−ρ
= [Z]

Sρ
eq , (4.31)

for every ρ ∈R or, equivalently,

RT log
k+ρ
k−ρ
= RT log

�

[Z]eq

�

· Sρ . (4.32)

Note that hereafter log v = (. . . , log vi , . . . )T for very vector v = (. . . , vi , . . . )T.
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4.4.2 Thermodynamic equilibrium

We consider here systems with temperature and pressure fixed by the environment they are ex-
posed to. Equilibrium thermodynamics then dictates that the equilibrium state is a global min-
imum of the Gibbs free energy (density) that, for ideal mixture of chemical species, reads [71]

G([Z]eq, [Z0]) =
∑

α∈S
µα([Z]eq, [Z0])[Zα]eq +µ0([Z]eq, [Z0])[Z0] , (4.33)

with

µα([Z]eq, [Z0]) = µ̂
◦
α(T ) + RT log

[Zα]eq
∑

β∈S[Zβ]eq + [Z0]
, (4.34)

µ0([Z]eq, [Z0]) = µ̂
◦
0(T ) + RT log

[Z0]
∑

β∈S[Zβ]eq + [Z0]
, (4.35)

being the chemical potential of Zα and of the solvent, respectively; µ̂◦α(T ) and µ̂◦0(T ) being the
corresponding temperature-dependent standard chemical potentials; and R and T being the
gas constant and the temperature, respectively.

For consistency with mass-action kinetics, we consider the dilute solution limit, i.e.,
[Z0]≫

∑

α∈S[Zα], which allows us to approximate

log
� [Zα]eq
∑

β∈S[Zβ]eq + [Z0]

�

[Zα]eq ≈ log
�[Zα]eq

[Z0]

�

[Zα]eq , (4.36)

log
�

[Z0]
∑

β∈S[Zβ]eq + [Z0]

�

[Z0]≈ −
∑

β∈S
[Zβ]eq , (4.37)

using a Taylor expansion.10 This implies that the chemical potential of Zα depends only on its
concentration

µα([Zα]eq)≈ µ◦α(T ) + RT log[Zα]eq , (4.39)

by rescaling the standard chemical potentials according to

µ◦α(T ) := µ̂◦α(T )− RT log[Z0] , (4.40)

since [Z0] is a constant quantity. Hence, for ideal dilute solutions, the free energy reads

G([Z]eq) =
∑

α∈S
(µα([Zα]eq)− RT )[Zα]eq + µ̂

◦
0(T )[Z0] . (4.41)

Mathematical remark: Note that i) the last term in Eq. (4.41), i.e., µ̂◦0(T )[Z0], represents a
constant shift of the Gibbs free energy and will be neglected hereafter, and ii)

µα([Zα]eq) =
∂ G([Z]eq)

∂ [Zα]eq
. (4.42)

Equilibrium thermodynamics dictates that [Z]eq is a global minimum of G. Thus,

lim
ϵ→0

G([Z]eq + ϵSρ)− G([Z]eq)

ϵ
= 0 , (4.43)

10By defining ϵ =
∑

β∈S[Zβ]eq, we use the Taylor expansion

log
�

[Z0]
ϵ + [Z0]

�

= ϵ
�

ϵ + [Z0]
[Z0]

(−[Z0])
(ϵ + [Z0])2

�

ϵ=0
+O(ϵ2) , (4.38)

truncated at the first order.
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for every ρ or equivalently,

∆ρG([Z]eq) := µ([Z]eq) · Sρ = 0 , (4.44)

where µ([Z]eq) = (. . . ,µα([Zα]eq), . . . )Tα∈S . Equation (4.44) can be rewritten as

−µ◦(T ) · Sρ = RT log
�

[Z]eq

�

· Sρ , (4.45)

with µ◦(T ) = (. . . ,µ◦α(T ), . . . )Tα∈S .

Mathematical remark: Equation (4.43) accounts for all possible changes of the concentra-
tions that are consistent with the conservation laws. An alternative derivation of Eq. (4.44)
uses Lagrange multipliers.11

4.4.3 Equilibrium local detailed balance

By combining Eqs. (4.32) and (4.45), we obtain the local detailed balance condition

RT log
k+ρ
k−ρ
= −µ◦(T ) · Sρ . (4.51)

Physical remark: Our derivation of the local detailed balance is only based on the assump-
tion of thermodynamic consistency, namely, the rate equation (4.7) for closed CRNs must admit
an equilibrium steady state [Z]eq which corresponds to the global minimum of the (equilib-
rium) Gibbs free energy (4.41).

Remark: Note the difference between detailed balanced CRNs discussed in Subs. 4.3.2,
namely, the existence of a well defined equilibrium steady state, and the local detailed bal-
ance condition derived here, namely, the correspondence between the kinetic constants and
the standard chemical potentials.

11Given the Lagrangian function

L([Z]eq, f ) = G([Z]eq)−
∑

λ

fλ Cλ([Z]eq) , (4.46)

where
Cλ([Z]eq) = ℓ

λ · [Z]eq − L
λ

, (4.47)

with
�

L
λ	

being the actual values of the conserved quantities and f = (. . . , fλ, . . . ) being the Lagrange multipliers,
the global minimum of G consistent with the conservation laws satisfies

∂L([Z]eq, f )

∂ fλ
= −Cλ([Z]eq) = 0 , (4.48)

∂L([Z]eq, f )

∂ [Zα]eq
= µα([Zα]eq)−

∑

λ

fλℓ
λ
α
= 0 , (4.49)

with ℓλ
α

being the α entry of ℓλ. The condition in Eq. (4.49) can be rewritten as

µ([Z]eq) =
∑

λ

fλℓ
λ , (4.50)

which implies Eq. (4.44) because of Eq. (4.27).
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4.4.4 Non-equilibrium local detailed balance

We now generalize the local detailed balance to nonequilibrium conditions. To do so, we
assume that all degrees of freedom other than concentrations are always equilibrated. The
temperature T is set by the solvent playing the role of a thermal reservoir, the pressure p is set
by the environment the system is exposed to, and diffusion processes equilibrate on a much
faster time scale than the chemical reactions thus maintaining the chemical species homoge-
neously distributed. This physically means that CRNs would be an equilibrated mixture in
absence of reactions for every concentration [Z]. The dynamics is merely interconverting the
mixture [Z](t) into another [Z](t + dt). In this way, thermodynamic state functions, namely,
the Gibbs free energy and the chemical potentials, can be specified by their equilibrium form
(in Eqs. (4.41) and (4.39), respectively) but expressed in terms of nonequilibrium concentra-
tions [Z]:

G([Z]) =
∑

α∈S
(µα([Zα])− RT )[Zα] , (4.52)

with
µα([Zα]) = µ

◦
α(T ) + RT log[Zα] . (4.53)

We analogously introduce
∆ρG([Z]) := µ([Z]) · Sρ ̸= 0 , (4.54)

which is in general different from zero in nonequilibirum conditions.
Thus, by summing −RT log[Z] · Sρ (with [Z] the nonequilibrium concentrations) on both

sides of Eq. (4.51), and using Eqs. (4.9) and (4.54), we can formulate the local detailed balance
in terms of a flux-force relation:

RT log
r+ρ ([Z])

r−ρ ([Z])
= −∆ρG([Z]) , (4.55)

where∆ρG plays the role of the thermodynamic force driving the reaction. Indeed, if∆ρG<0,
then r+ρ > r−ρ and reaction ρ proceeds in the forward direction Jρ > 0. On the other hand, if
∆ρG > 0, then r+ρ < r−ρ and reaction ρ proceeds in the backward direction Jρ < 0.

4.5 Thermodynamics of closed CRNs

We now formulate the first and the second law of thermodynamics for closed CRNs. We will
use the second law and the conservation laws to prove that the concentrations will eventually
reach equilibrium, i.e., limt→+∞[Z](t) = [Z]eq, for every initial condition [Z](0).

4.5.1 First law

We introduce the enthalpy H, quantifying the “internal” energy of CRNs,12 as

H([Z]) :=
∂ (G([Z])/T )
∂ 1/T

= h◦(T ) · [Z] , (4.57)

where h◦(T ) = (. . . , h◦α(T ), . . . )Tα∈S and

h◦α(T ) :=
∂ (µ◦α(T )/T )

(∂ 1/T )
=
∂ (µα([Zα])/T )
(∂ 1/T )

, (4.58)

12The enthalpy H is actually the Legendre transform of the internal energy U . The natural variables of U are
entropy S, volume V , and concentrations [Z], and enthalpy is defined as

H(S, p, [Z]) := [U(S, V, [Z]) + pV ]V=V (S,p,[Z]) , (4.56)

with V (S, p, [Z]) the function expressing the volume in terms of entropy S, pressure p, and concentrations [Z].
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is the standard molar enthalpy of Zα. By taking the time derivative of H([Z]) according to the
rate equation (4.7), we obtain the nonequilibrium formulation of the first law of thermody-
namics for closed CRNs:

d
dt

H([Z]) = h◦(T ) ·SJ([Z]) =: Q̇ . (4.59)

Since the heat exchange with the thermal reservoir is the only mechanism to exchange energy,
we recognize the heat flux Q̇ on the rightmost-hand side of Eq. (4.59).

4.5.2 Second law

We introduce the entropy S as

S([Z]) := −
∂ G([Z])
∂ T

=
∑

α∈S
(sα([Zα]) + R)[Zα] , (4.60)

with

sα([Zα]) := s◦α(T )− R log[Zα] , (4.61)

s◦α(T ) := −∂ µ◦α(T )/∂ T , (4.62)

being the molar entropy and the standard molar entropy of Zα, respectively. The time deriva-
tive of S according to the rate equation (4.7) reads

d
dt

S([Z]) =
∑

α∈S
sα([Zα])

d
dt
[Zα] (4.63a)

= s([Z]) ·SJ([Z]) (4.63b)

= T−1(h◦(T )−µ([Z])) ·SJ([Z]) , (4.63c)

with s([Z]) = (. . . , sα([Zα]), . . . )Tα∈S and s([Z]) = T−1(h◦(T )−µ([Z])).13 By recognizing the
(reversible) entropy flow

Ṡe := T−1h◦(T ) ·SJ([Z]) =
Q̇
T

, (4.65)

representing the (reversible) entropy changes in the environment, and the entropy production
rate

Σ̇ := −T−1µ([Z]) ·SJ([Z])≥ 0 , (4.66)

we obtain the nonequilibrium formulation of the second law of thermodynamics for closed
CRNs:

d
dt

S([Z]) = Ṡe + Σ̇ . (4.67)

Note that, by using Eq. (4.54), the entropy production rate can be written as

Σ̇= −T−1
∑

ρ∈R
∆ρG([Z])Jρ([Z])≥ 0 , (4.68)

13Indeed, h◦(T ) = ∂ (µα/T )/(∂ 1/T ) implies

h◦
α
(T ) =

1
T
∂ µα
∂ 1/T

+µα
∂ 1/T
∂ 1/T

(4.64a)

=
1
T
∂ µα
∂ T

∂ T
∂ 1/T

+µα
∂ 1/T
∂ 1/T

(4.64b)

=
1
T

sα(T
2) +µα , (4.64c)

proving that s([Z]) = T−1(h◦(T )−µ([Z])).
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which, by using the local detailed balance condition (4.55), can be rewritten in a manifestly
non-negative form

Σ̇= R
∑

ρ∈R
(r+ρ ([Z])− r−ρ ([Z])) log

r+ρ ([Z])

r−ρ ([Z])
︸ ︷︷ ︸

=−∆ρG([Z])Jρ([Z])/(RT )

≥ 0 . (4.69)

We so notice that each term −∆ρG([Z])Jρ([Z]) of the sum in Eq. (4.68) is greater than or
equal to zero: the thermodynamic forces and currents are always aligned, namely, −∆ρG > 0
(resp. −∆ρG < 0) if and only if Jρ > 0 (resp. Jρ < 0).

Remark: The entropy production rate vanishes only at equilibrium, namely, when
∆ρG([Z]eq) = 0 and Jρ([Z]eq) = 0 for every reaction ρ.

4.5.3 Thermodynamic potential

We now show that the Gibbs free energy in Eq. (4.52) is the proper thermodynamic potential of
closed CRNs, namely, it monotonically decreases during the dynamics and it is lower bounded
by its equilibrium value given in Eq. (4.41).

First, we examine the time derivative of G([Z]) and we obtain

d
dt

G([Z]) =
∑

α∈S
µα([Zα])

d
dt
[Zα] (4.70a)

= µ([Z]) ·SJ([Z]) , (4.70b)

and by using the definition of the entropy production rate in Eq. (4.66),

d
dt

G([Z]) = −T Σ̇≤ 0 , (4.71)

which physically means that the dynamics dissipates the Gibbs free energy.

Remark: Equation (4.71) is an alternative formulation of the second law (4.67) for closed
CRNs.

Second, we examine the difference G([Z]) − G([Z]eq) (with G([Z]) and G([Z]eq) given
in Eqs. (4.52) and (4.41), respectively). To do so, we start by inspecting Eq. (4.44). We
notice that the vector of the equilibrium chemical potentials belongs to the cokernel of the
stoichiometric matrix. Hence, it can be written as a linear combination of conservation laws
(defined in Eq. (4.27)):

µ([Z]eq) =
∑

λ

fλℓ
λ , (4.72)

with { fλ} some coefficients. Consequently,

µ([Z]eq) · [Z]eq =
∑

λ

fλ ℓ
λ · [Z]eq
︸ ︷︷ ︸

=Lλ

(4.73a)

=
∑

λ

fλ ℓ
λ · [Z]
︸ ︷︷ ︸

=Lλ

(4.73b)

= µ([Z]eq) · [Z] . (4.73c)
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This implies that

µ([Z]) · [Z]−µ([Z]eq) · [Z]eq = RT
∑

α∈S
[Zα] log

[Zα]
[Zα]eq

, (4.74)

and we can write the difference G([Z])− G([Z]eq) as a relative entropy (or Kullback-Leibler
divergence) for non-normalized distributions:

G([Z])− G([Z]eq) = RTD([Z]||[Z]eq)≥ 0 , (4.75)

with

D([Z]||[Z]eq) :=
∑

α∈S

�

[Zα] log
[Zα]
[Zα]eq

− ([Zα]− [Zα]eq)
�

≥ 0 . (4.76)

Note that D([Z]||[Z]eq) ≥ 0 because of the logarithmic inequality log x ≤ x − 1 (when
x = [Zα]/[Zα]eq).

Mathematical remark: Equations (4.71) and (4.75) prove that the Gibbs free energy plays
the role of a Lyapunov function for the closed system dynamics.

4.6 Thermodynamics of open CRNs

We now generalize the results obtained in Sec. 4.5 to open CRNs. Before doing that, we
first introduce the thermodynamic meaning of the exchange currents entering the rate equa-
tion (4.7).

4.6.1 Chemostats

In these lecture notes, we consider CRNs coupled to chemostats. This might be interpreted as
if each exchanged species Zα is involved in a chemical reaction (labeled ρex

α ) like

Yα
ρex
α Y ex

α , (4.77)

with the corresponding chemostats Y ex
α . These reactions are assumed to be always equili-

brated. This thermodynamically means that the chemical potential of each exchanged species
is controlled by the corresponding chemostats:

µα([Yα]) = µ
ex
α , (4.78)

for every α ∈ SY .

Remark: The chemical potentials of the exchanged species µY = (. . . ,µα, . . . )Tα∈SY
are thus

externally controlled parameters like their concentrations [Y].

4.6.2 First and second law

When the chemical species are exchanged with the environment, by using the rate equa-
tion (4.7), the first law (4.59) becomes

d
dt

H([Z]) = Q̇+
∑

α∈SY

h◦α(T )Iα . (4.79)
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Therefore, while the expression of the second law (4.67) remains the same, the entropy
flow (4.65) becomes

Ṡe =
Q̇
T
+
∑

α∈SY

sα([Zα])Iα . (4.80)

The second term on the right-hand side of Eq. (4.79) (resp. Eq. (4.80)) accounts for the molar
energy (resp. entropy) exchanged with the environment through the exchange of chemical
species.

The formulation of the second law in Eq. (4.71) becomes

d
dt

G([Z]) = −T Σ̇+
∑

α∈SY

µα([Zα])Iα , (4.81)

where
ẇchem :=

∑

α∈SY

µα([Zα])Iα , (4.82)

is the chemical work rate quantifying the free energy exchanged with the environment through
the exchange of chemical species. By providing free energy, the chemical work can balance
dissipation and maintain CRNs out of equilibrium.

Physical remark: These formulations of the first and second laws do not provide any precise
guideline to understand which mechanisms (if any) maintain CRNs out of equilibrium (besides
the exchange processes with the chemostats). To identify these mechanisms, we need to use
the conservation laws.

4.6.3 Broken conservation laws

In open CRNs, some of the quantities defined in Eq. (4.28) are not conserved anymore. The
corresponding conservation laws are said to be broken. The other conservation laws, which
still correspond to conserved quantities, are said to be unbroken. To systematically identify
broken and unbroken conservation laws, we proceed as follows.

First, we consider the nu ≤ nX (lineally independent) left-null eigenvectors of the
(sub)stoichiometric matrix SX , identified by the index λu:

ℓ
λu
X ·S

X = 0 , (4.83)

where the subscript X stresses that ℓλu
X has nX entries (corresponding to the internal species).

The vectors

ℓλu :=

�

ℓ
λu
X

0Y

�

, (4.84)

with 0Y the vector with nY null entries, are unbroken conservation laws. Indeed,

ℓλu ·S = ℓλu
X ·S

X + 0Y ·SY = 0 , (4.85)

because of Eq. (4.83), and the quantities

Lλu = ℓλu · [Z] , (4.86)

are conserved quantities in open CRNs:

d
dt

Lλu = ℓλu ·
d
dt
[Z] = ℓλu ·SJ([Z])

︸ ︷︷ ︸

=0

+0Y · IY
︸ ︷︷ ︸

=0

= 0 , (4.87)
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Figure 4.3: Pictorial illustration of the CRN (4.3) where the moieties corresponding
to the conservation laws ℓS and ℓF in Eq. (4.30) are exchanged with chemostats. Cru-
cially, the moiety ℓS (resp. ℓF) is exchanged with the purple (resp. blue) chemostats
exchanging S and P (resp. F and W).

where we used Eq. (4.7).
Second, we use the set {ℓλu} of unbroken conservation laws to express the set of conser-

vation laws {ℓλ} according to
{ℓλ}= {ℓλu} ∪ {ℓλb} , (4.88)

where {ℓλb} is the set of nb broken conservation laws (with nℓ = nu + nb). Indeed, each
vector ℓλb

Y = (. . . ,ℓλb
α , . . . )Tα∈SY

(collecting the entries of ℓλb corresponding to the exchanged

species) satisfies ℓλb
Y ̸= 0Y , otherwise ℓλb would be an unbroken conservation law. Hence, the

quantities
Lλb = ℓλb · [Z] , (4.89)

are in general not conserved (and their variation is solely due to the exchanges with the
chemostats):

d
dt

Lλb = ℓλb ·
d
dt
[Z] = ℓλb ·SJ([Z])

︸ ︷︷ ︸

=0

+ℓλb
Y · I

Y

︸ ︷︷ ︸

̸=0

̸= 0 . (4.90)

Example: When the species P, W, S, and F of the CRN (4.3) are exchanged, the conserva-
tion laws ℓS and ℓF in Eq. (4.30) are broken, while the conservation law ℓE in Eq. (4.30) is
unbroken. In Fig. 4.3, we show that the moieties corresponding to the conservation laws ℓS

and ℓF are exchanged with chemostats.

4.6.4 Force and potential exchanged species

In open CRNs the same moiety (the fragment of molecules identified by a conservation law)
can be exchanged with more than one chemostat (as shown in Fig. 4.3), which can be identified
by using the broken conservation laws.

We split the set of exchanged species {Yα}, and the corresponding set of indexes SY , into
two disjoint subsets: the set of nYp

potential species {Yα} with α ∈ SYp
, and the set of nYf

force
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species {Yα} with α ∈ SYf
. The former is defined as the smallest subset of exchanged species

such that all the vectors {ℓλb}— independently of the specific representation — satisfy

ℓ
λb
Yp
̸= 0Yp

, (4.91)

with ℓλb
Yp
= (. . . ,ℓλb

α , . . . )Tα∈SYp
(collecting the entries of ℓλb corresponding to the potential

species), and 0Yp
being the vector with nYp

null entries.

Mathematical remark: The vectors {ℓλb
Yp
} are linearly independent. Indeed, if they were

linearly dependent, there would a representation of {ℓλb} such that

ℓ
λb
Yp
= 0Yp

, (4.92)

for at least one λb. This, together with SYp
being the smallest subset such that Eq. (4.91) holds,

implies that the number of broken conservations is equal to the number of potential species,
i.e., nYp

= nb.

Mathematical remark: By applying the same splitting to the (nb × ns) matrix Lb, collecting
all the broken conservation laws as row vectors, we get

Lb =
�

Lb
X ,Lb

Yf
,Lb

Yp

�

, (4.93)

where Lb
Yp

is a (nb × nYp
) square and invertible matrix (since the vectors {ℓλb

Yp
} are linearly

independent).

Mathematical remark: By applying the same splitting to the stoichiometric matrix, we get

S =





SX

SYf

SYp



 . (4.94)

By removing all rows of the (sub)stoichiometric matrix SYp from S, the only linearly-
independent left null eigenvectors of the resulting matrix satisfy:14

�

ℓ
λu
X

0Yf

�

, (4.95)

with 0Yf
being the vector with nYf

null entries.

Physical remark: Every time a potential species is exchanged with a chemostat, a new con-
servation law is broken and a new moiety is exchanged with that chemostat. When a force
species is exchanged with a chemostat, no new conservation laws are broken and that chemo-
stat exchanges a moiety with the CRN that was already exchanged with another chemostat,
thus establishing a moiety-flux between two (or more) chemostats.

Remark: The splitting of the exchanged species in force and potential species is not unique.
Different choices have different physical interpretation.

14This can be proven by repeating the same reasoning we used to identify the unbroken conservation laws in
Subs. 4.6.3. Every time we remove a row of SYp from S, we break one conservation law because of Eq. (4.91) and
the dimension of the cokernel of resulting matrix thus decreases.
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Example: Possible sets of potential species of the CRN (4.3) when the species P, W, S, and
F are exchanged are {P,W} implying

ℓS
Yp
=

�

P 1
W 0

�

, and ℓF
Yp
=

�

P 0
W 1

�

, (4.96)

or {P, F} implying

ℓS
Yp
=

�

P 1
F 0

�

, and ℓF
Yp
=

�

P 0
F 1

�

, (4.97)

or {S, W} implying

ℓS
Yp
=

�

W 0
S 1

�

, and ℓF
Yp
=

�

W 1
S 0

�

, (4.98)

or {S, F} implying

ℓS
Yp
=

�

S 1
F 0

�

, and ℓF
Yp
=

�

S 0
F 1

�

. (4.99)

Let us consider the species {S, F} as potential species. This physically means that when the
species S (resp. F) is exchanged the conservation law ℓS (resp. ℓF) is broken. If afterwards,
also the species P (resp. W) is exchanged, no new conservation law is broken, but the moiety
corresponding to the conservation law ℓS (resp. ℓF) is now exchanged with two different
chemostats (see Fig. 4.3). Notice that the matrix Lb now reads

Lb =

�

E EF EW EFS P W S F

ℓS 0 0 0 1 1 0 1 0
ℓF 0 1 1 1 0 1 0 1

�

, (4.100)

where the vertical lines split Lb into Lb
X , Lb

Yf
, and Lb

Yp
.

4.6.5 Decomposition of the entropy production rate

We now decompose the entropy production into a potential change and two work contribu-
tions. One work contribution accounts for the flows of moieties maintained across the CRN
breaking the detailed balance condition. The other is due to time-dependent changes in the
externally controlled chemostated concentrations. This decomposition constitutes a new for-
mulation of the second law for open CRNs.

We start by rewriting the entropy production rate in Eq. (4.66) by explicitly accounting for
the different sets of species (i.e., internal, force, and potential species):

T Σ̇ := −
�

µX ·S
X +µYf

·SYf +µYp
·SYp

�

J ≥ 0 , (4.101)

where µi = (. . . ,µα, . . . )α∈i with i = {SX ,SYf
,SYp
}, and we do not explicitly write the [Z]

dependence of the chemical potentials and reaction currents for the sake of compactness.

Remark: Recall that the chemical potentials of the exchanged species, µY = (µYf
,µYp
)T, are

controlled by the chemostats.
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We then need to recognize that some of the moieties exchanged with the chemostats
are stored in the internal species, while some other moieties are just transferred between
chemostats via the CRN. To do so, we use the conservation laws. Given that

LbS = 0= Lb
XS

X +Lb
Yf
SYf +Lb

Yp
SYp , (4.102)

and using that Lb
Yp

can be inverted (as discussed in 4.6.4), we obtain

SYp = −
�

Lb
Yp

�−1 �
Lb

XS
X +Lb

Yf
SYf
�

, (4.103)

binding the variation of the number of molecules of the potential species to the other species.
By inserting Eq. (4.103) in Eq. (4.101), we get

T Σ̇= −
�

µX ·S
X +µYf

·SYf −µYp
·
�

Lb
Yp

�−1 �
Lb

XS
X +Lb

Yf
SYf
�
�

J . (4.104)

By adding and subtracting µYp
·
�

Lb
Yp

�−1
Lb

Yp
SYp = µYp

·SYp , the entropy production rate becomes

T Σ̇= −F ·SJ , (4.105)

where
F =

�

µ · I−µYp
·
�

Lb
Yp

�−1
Lb
�T

, (4.106)

and I is the identity matrix. Note the term µYp
·
�

Lb
Yp

�−1
Lb now appearing in Eq. (4.105) does

not contribute to the entropy production rate since LbS = 0, but it is crucial to derive the
proper thermodynamic potential of open CRNs as we show in the following.

To do so, we guess the following state function

Ψ([Z]) = F · [Z] , (4.107)

whose time derivative
d
dt
Ψ([Z]) = F · d

dt
[Z] +

d
dt

F · [Z] , (4.108)

according to the rate equation (4.7) reads

d
dt
Ψ([Z]) = F ·SJ +FY · IY + RT

∑

α∈S

d
dt
[Zα]−

d
dt
(µYp
) ·
�

Lb
Yp

�−1
Lb[Z] , (4.109)

with FY =
�

µY · I−µYp
· (Lb

Yp
)−1Lb

Y

�T
and Lb

Y = (L
b
Yf

,Lb
Yp
).

To proceed, i) we express −F ·SJ = T Σ̇ as a function of the other terms, ii) we recognize
that FY · IY = FYf

· IYf , and iii) we define G([Z]) := Ψ([Z])− RT
∑

α∈S[Zα]. We thus get

T Σ̇= −
d
dt

G([Z]) + ẇnc + ẇdriv ≥ 0 . (4.110)

Here, we introduced the new free energy G

G([Z]) = µ · [Z]− RT
∑

α∈S
[Zα]−µYp

·
�

Lb
Yp

�−1
Lb[Z] , (4.111)

which can be written using the Gibbs free energy as

G([Z]) = G([Z])−µYp
· [m] , (4.112)
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by using Eq. (4.52), and defining the concentration of the moieties as

[m] =
�

Lb
Yp

�−1
Lb[Z] . (4.113)

Equation (4.112) is reminiscent of the grand canonical free energy in equilibrium thermody-
namics: when passing from the canonical to the grand canonical ensemble, the grand canon-
ical free energy is obtained from the Gibbs free energy by eliminating the energetic contribu-
tion due to the matter exchange with the environment. Here, something similar happens: We
eliminate the energetic contribution due to the exchanged moieties, i.e., µYp

· [m]. This is the
reason why G([Z]) is also called a semi-grand Gibbs free energy. Note that G([Z]) is a state
function and therefore its time derivative vanishes at steady-state. Note also that if ẇnc = 0
and ẇdriv = 0, Eq (4.110) simplifies to

d
dt

G([Z]) = −T Σ̇(t)≤ 0 . (4.114)

Namely, the semigrand free energy is dissipated (decreasing monotonously in time) and CRNs
relax towards an equilibrium state since G([Z]) is lower bounded by its equilibrium value
G([Z]eq) (see 4.6.6).

The nonconservative work rate is given by

ẇnc = FYf
· IYf , (4.115)

and quantifies the energetic cost of maintaining fluxes of moieties between different
chemostats through the CRN. These fluxes result from the fundamental nonconservative forces

FYf
=
�

µYf
· I−µYp

·
�

Lb
Yp

�−1
Lb

Yf

�T
. (4.116)

Indeed, ẇnc always vanishes when all the chemostatted species break a conservation law, i.e.,
SY = SYp

. Only when there are some SYf
species (i.e., when at least one moiety is exchanged

with more than one chemostat), the forces (4.116) breaking the detailed balance condition
and keeping the system out of equilibrium can emerge. This is the reason why the {Yα} species
with α ∈ SYf

are named force species, while the {Yα} species with α ∈ SYp
are named potential

species. The forces (4.116) can still vanish where there are force species. This happens when

µYf
· I = µYp

·
�

Lb
Yp

�−1
Lb

Yf
. We stress that µYp

·
�

Lb
Yp

�−1
Lb

Yf
encodes the values of chemical

potential µYf
at the equilibrium to which open CRNs would relax if there were only potential

species.15 Hence, the fundamental nonconservative forces (4.116) result from the chemostats
maintaining the chemical potentials of the forces species to different values with respect to the
equilibrium ones.

15To prove that µYp
·
�

Lb
Yp

�−1
Lb

Yf
is the equilibrium value of the chemical potentials of the force species if only the

potential species were chemostatted, we use that the entries of the unbroken conservation laws corresponding to
the exchanged species vanish and thus

µ
eq
Yf
=
∑

λu

fλu
ℓ
λu
Yf

︸︷︷︸

=0

+
∑

λb

fλb
ℓ
λb
Yf
= f b ·L

b
Yf

, (4.117)

with f b := (. . . , fλb
, . . . )T. This together with Eq. (4.121) and the existence of

�

Lb
Yp

�−1
, namely, µYp

·
�

Lb
Yp

�−1
= f b · I

leads to
µ

eq
Yf
= µYp

·
�

Lb
Yp

�−1
Lb

Yf
, (4.118)

as stated in the main text.
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Remark: The nonconservative forces FYf
and corresponding currents IYf do not have to be

aligned. This allows for free energy transduction.
The driving work rate ẇdriv is specified as

ẇdriv = −
d
dt
µYp
· [m] , (4.119)

and results for the time dependent manipulation of the chemical potentials µYp
. It quantifies

the energetic cost of modifying the equilibrium to which open CRNs would relax in the absence
of nonconservative forces and vanishes in autonomous systems.

4.6.6 Thermodynamic potential

We conclude here by showing that G([Z]) is always lower bounded by its equilibrium value
G([Z]eq). To do so, we use a similar strategy to the one we used in Subs. (4.5.3).

First, we use that µ([Z]eq) is still a linear combination of conservation laws (given in
Eq. (4.72)) because of Eq. (4.44). However, only the unbroken conservation laws still define
conserved quantities. Thus,

µ([Z]eq) · [Z]eq =
∑

λu

fλu
ℓλu · [Z]eq
︸ ︷︷ ︸

=Lλu

+
∑

λb

fλb
ℓλb · [Z]eq (4.120a)

=
∑

λu

fλu
ℓλu · [Z]
︸ ︷︷ ︸

=Lλu

+
∑

λb

fλb
ℓλb · [Z]eq (4.120b)

= µ([Z]eq) · [Z] +
∑

λb

fλb
ℓλb · [Z]eq −

∑

λb

fλb
ℓλb · [Z] , (4.120c)

where we summed and subtracted
∑

λb
fλb
ℓλb · [Z].

Second, we use that the entries of the unbroken conservation laws corresponding to the
exchanged species vanish:

µYp
=
∑

λu

fλu
ℓ
λu
Yp

︸︷︷︸

=0

+
∑

λb

fλb
ℓ
λb
Yp
= f b ·L

b
Yp

, (4.121)

where f b := (. . . , fλb
, . . . )T. This implies that

µYp
· [m] = f b ·L

b
Yp
[m] (4.122)

= f b ·L
b
Yp

�

Lb
Yp

�−1
Lb[Z] (4.123)

= f b ·L
b[Z] (4.124)

=
∑

λb

fλb
ℓλb · [Z] , (4.125)

where we used the definition of the concentrations of the moieties given in Eq. (4.113), and
analogously

µYp
· [meq] =

∑

λb

fλb
ℓλb · [Z]eq . (4.126)

Third, we use Eqs. (4.120c), (4.125) and (4.126) in the difference G([Z])− G([Z]eq) and
we obtain

G([Z])− G([Z]eq) =D([Z]||[Z]eq)≥ 0 , (4.127)

with D([Z]||[Z]eq) defined in Eq. (4.76).
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Example: Autonomous and detailed balanced. Consider the CRN (4.3) when only the
species S and F are exchanged and their concentrations are maintained constants. Both species
S and F are potential species. The semigrand free energy (4.112) thus reads

G([Z]) = G([Z])−µF LF −µS LS , (4.128)

where µF and µS are the (constant) chemical potential of F and S, respectively. For this setup,
the second law is given in Eq. (4.114) since there are no force species and the concentrations
[S] and [F] are constant. This, together with G([Z]) being lower bounded by its equilibrium
value, implies that the CRN is detailed balanced and will eventually reach an equilibrium
state despite being open. Note that, by using the thermodynamic theory we derived, we can
predict that the CRN will reach an equilibrium state without solving the dynamics. The only
information we need is encoded in the stoichiometric matrix, i.e., in the topology of the CRN.

Example: Nonautonomous and detailed balanced. Consider the CRN (4.3) when only the
species S and F are exchanged and their concentrations are changed in time according to
unspecified protocols. The semigrand free energy (4.112) is still given in Eq. (4.128), since
there are no new potential species, but the second law now becomes

T Σ̇= −
d
dt

G([Z]) + ẇdriv , (4.129)

where

ẇdriv = −
�

d
dt
µF

�

LF −
�

d
dt
µS

�

LS . (4.130)

The CRN is still detailed balanced, but the time dependent manipulation of the concentrations
[F] and [S] provides free energy, in the form of the driving work (4.130), which changes the
equilibrium to which the CRN would relax and balances the dissipation so maintaining the
CRN out of equilibrium.

Example: Autonomous and nondetailed balanced. Consider the CRN (4.3) when the
species P, W, S and F are exchanged and their concentrations are maintained constant. Ex-
changing the species P and W does not break any additional conservation laws, but creates the
following nonconservative forces (obtained by specializing Eq. (4.116)):

FP = µP −µS , and FW = µW −µF . (4.131)

Hence, the semigrand free energy (4.112) is still given in Eq. (4.128), since there are no new
potential species, but the second law now becomes

T Σ̇= −
d
dt

G([Z]) + ẇnc , (4.132)

with
ẇnc = (µP −µS)IP + (µW −µF)IW . (4.133)

The CRN is not detailed balanced because of the nonconservative forces (4.131) and will reach
a nonequilbrium steady state. Note again that, by using the thermodynamic theory we derived,
we can predict that the CRN will reach a nonequilibrium steady state without solving the
dynamics.
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4.7 Conclusions

We derived here, in a self-contained way, a thermodynamic theory for deterministic open CRNs
in ideal dilute solutions. Crucially, we used the conservation laws to derive the formulation
of the second law in Eq. (4.110) which identifies the specific mechanisms (nonconservative
forces and driving) that can balance dissipation and maintain open CRNs out of equilibrium.

The same formulation of the second law (4.110) can be derived for deterministic non-
ideal CRNs [29], deterministic reaction-diffusion systems [68, 69], and stochastic CRNs in
ideal dilute solutions [28].

5 Stochastic chemical reaction networks

Matteo Polettini. I illustrate results about the stochastic dynamics and thermodyamics of mass-
action kinetics chemical reaction networks by simple examples and outputs of simulations. In
particular I focus on the role of deficiency for stationary fluctuations.

5.1 Introduction

This lecture is an attempt to provide an incremental bottom-up presentation of techniques,
results and nomenclature to treat the stochastic dynamics and thermodynamics of mass-action
kinetics (MAK) chemical reaction networks (CRNs). The topics addressed would be enough
for at least a full master course ranging from linear algebra to metabolic networks. In the
two-hours span that was gently offered by the organizers I decided to provide by examples
some basic intuitions, leaving generalizations and proofs to the willingness of the student and
to the literature.

5.2 Fishing for Poisson

Consider the chemical reaction
;⇋ X . (5.1)

Let X̂ (t) be the population (number of molecules present in the reactor) of species X at time t.16

Apart from species ; that has fixed population [;](t) = 1 (possibly because it is chemostatted
via osmosis or other mechanisms, see Lecture 4), this is a fluctuating quantity taking integer
values X ∈ N, due to what is sometimes called intrinsic or population noise (to distinguish it
from outside disturbances). We can represent the population space as

0 1 2 3 . . . (5.2)

MAK prescribes that the rate of injection of molecules is constant, while that of the ejection
of molecules is proportional to the population

r+(X ) = k+ ,

r−(X ) = k−X .
(5.3)

These are called reaction rates or velocities, while the k± are called rate constants.
Consider the probability pt(X ) = p(X̂ (t) ≡ X ) that at time t the reactor contains X

molecules and define the (average) population-space current from X − 1 to X as

jt(X , X − 1) = r+(X − 1)pt(X − 1)− r−(X )pt(X ) , (5.4)

16In this lecture, differing from Lecture 4, we use capital italic letters X for stochastic populations and small-case
italic letters x for deterministic concentrations in place of [X ].
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from random import uniform
from math import log

kp = 2 # rate constant forward
km = 1 # rate constant backward
x = 0 # initial population
t = 100000. # total time
tau = 0 # time elapsed

h1 , h2 = {}, {} # output histograms

while tau < t:

rp = kp # calculate rate forward with MAK
rm = km * x # calculate rate backward with MAK

r = rp + rm

y1 = uniform(0,1)
y2 = uniform(0,1)

s = log(1/y1)/r # sample time by inversion rule

h1[x] = h1.get(x, 0) + s # count time spent at state
h2[x] = h2.get(x,0) + 1 # count state occurrences

x == x - 1 if y2 < rp / r else x == x + 1 # sample new state
tau += s

Figure 5.1: Doob-Gillespie algorithm to generate the histograms of the total number
of occurrences of a population and of the total time spent at a state and compare to
theory. The output is shown in Fig. 5.2.

with jt(0,−1) = 0. The evolution of the probability is dictated by the Chemical Master Equa-
tion

d
d t

pt(X ) = jt(X , X − 1)− jt(X + 1, X ) , (5.5)

given some initial distribution p0.
One simple question we can ask is what is the distribution of the population in the sta-

tionary limit t → ∞. Such distribution must be invariant over time translations, thus it is
obtained by setting Eq. (5.5) to zero. We obtain

0= j∞(1,0) = j∞(2,1) = . . . , (5.6)

leading to the principle of detailed balance, which prescribes

k+p∞(X ) = k−(X + 1)p∞(X + 1) , (5.7)

yielding

p∞(X ) = α

�

k+
k−

�X

X !
, (5.8)

where α = p(0) is fixed by normalization
∑

X p∞(X ) = 1. Noting that x∞ ≡ x(∞) = k+/k−
is the unique fixed point limt→∞ x(t) of the corresponding deterministic rate equation (see
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Figure 5.2: The output of algorithm 5.1. Top histogram: Time spent at a state, nor-
malized; Bottom histogram: Number of times a state is visited, normalized; Bullets:
Values of the Poisson distribution.

Lecture 4)
d x(t)

d t
= k+ − k− x(t) , (5.9)

we find that α= e−x∞ . Therefore Eq. (5.8) is just the the Poisson distribution with parameter
x∞.

We can plot the stationary distribution and compare it to the average time spent at state
X via a Monte-Carlo Markov Chain / Doob-Gillespie algorithm (see Lecture 1). A simple im-
perative approach with basic Python is in Fig. 5.1 Its output Fig. 5.2 compares the total time
spent at states vs. the total number of times a state is visited against the true solution Eq. (5.8),
showing that only the former is correct (confusion between these two observables is a frequent
early mistake in this kind of coding).

The Doob-Gillespie algorithm produces the exact statistics for such kind of observables.
However, notice that the estimation of pt→∞ should be done on n independent samples at
large enough t. Here instead we are integrating along a single realization, hoping that sample
averages equal time averages (ergodic principle). This assumption is not trivial and it lends
itself to some errors that in principle should be evaluated or dealt with, in particular [72]:

- Relaxation error: We started counting the time spent at a state at t = 0, but in principle
we should wait long-enough to let the system relax, and then we should start counting
for long-enough. But how long is long?

- Autocorrelation error: The probability of being back to some state right after having been
there is larger than being at a more distant state. This means that by counting all of the
states visited we are favouring more probable ones (“the rich get richer”). To avoid this
we should put a long-enough time between one sample and the next. But again, how
long is long?

Additional: Equation (5.5) is the backward Kolmogorov (Fokker-Panck) equation. One in-
teresting question we can ask is: Is there an analog of Brownian motion (Langevin equation)
for chemical processes? That is, an equation directly expressed in terms of X̂ (t)?
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Notice that we can write

X̂ (t) = X̂0 + N̂+(t)− N̂−(t) , (5.10)

where X̂0 is sampled with probability p0 and N̂±(t) are respectively the number of times reac-
tion ± occurs.

Now let N̂(t) be a unit Poisson process with distribution p(N̂(t) ≡ N ) = e−t tN /N !.
Clearly the forward reaction is a Poisson process

N̂+(t) = N̂(k+ t) = N̂

�∫ t

0

k+ds

�

= N̂

�∫ t

0

k+[;](s)ds

�

, (5.11)

where we made some dull manipulations. The backward reaction is not a homogeneous Pois-
son process because its rate depends on the number of molecules present in the reactor. How-
ever, inspired by the latter expression we are tempted to write

N̂−(t) = N̂

�∫ t

0

k− X̂ (s)ds

�

. (5.12)

This given, a wrong argument is that, given that the mean of a Poissonian with parameter λ
is λ, then the mean of Eq. (5.10) is

〈X̂ (t)〉= 〈X̂0〉+ k+ t −
∫ t

0

k−〈X̂ (s)〉ds , (5.13)

where 〈 · 〉 is the average over samples. This equation in fact is just the integral solution of
Eq. (5.9), which on the other hand can be obtained by multiplying by X and summing over X
in the master equation Eq. (5.5).

This latter line of derivations is only true for unimolecular systems, but it can be made more
correct in terms of the mode in place of the mean in the large-scale limit, see e.g. Ref. [73] for
a thorough explanation of random-time-change Poisson processes and their large-scale limits,
that we will briefly introduce in Sec. 5.6, by means of a scaling parameter Ω. Physicists often
talk about “mean-field” behaviour by replacing

〈X 2
t 〉 → 〈X t〉2 , (5.14)

which does reproduce the deterministic dynamics. However, this is a strong and usually incor-
rect assumption. In fact, CRNs can display a very different behaviour among their stochastic
and their deterministic counterparts. For example in Ref. [74] it has been shown that a so-
called strongly endotactic CRN (whose deterministic dynamics falls into a closed domain) can
have stochastic escape routes to infinity (and therefore no stationary distribution), while the
deterministic dynamics stays confined in a compact set. This is a case where the mean and
mode of the process deviate wildly (although it requires irreversible reactions).

5.3 Fishing for Poisson-like

Now consider
;⇋ 2X , (5.15)

creating a complex C2 = 2X made of two interacting copies of species X out of the empty
complex C1 = ;. The population space is

0 1 2 3 4 . . . (5.16)
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There are two disconnected components Ceven = 2N and Codd = 2N + 1 (even and odd
integers), called stoichiometric compatibility classes. Correspondingly, the parity of X̂ (t) is
conserved, given an initial even/odd number of molecules. Notice that this (broken) symmetry
is not present in the corresponding deterministic rate equation d x(t)/d t = k+ − k−x(t)2 (in
Quantum Field Theory similar effects are called anomalies). The stationary distribution now
reads

p∞(X ) = α
x∞

X

X !

�

peven1Ceven
(X ) + podd1Codd

(X )
�

, (5.17)

where 1A (a) is the indicator function17 and peven/odd are the normalized probabilities that the
initial state is either even or odd, and α is again fixed by normalization yielding

α= [peven cosh x∞ + podd sinh x∞]
−1 . (5.18)

Notice that Eq. (5.17) looks Poissonian, but it is not because for a stochastic variable to be
Poissonian it has to have the same expression over all the integers. Here they are split in two,
and therefore we talk of Poisson-like or Poisson-form distribution.

5.4 Moieties and product-form

Now consider
X2 + X3⇋ 2X1 . (5.19)

Each single realization of the reaction is a random event due to the collision of two molecules,
e.g. of X2 and X3 forward, or of X1 with itself backwards. MAK prescribes

r+(X1, X2, X3) = k+X2X3 ,

r−(X1, X2, X3) = k−X1(X1 − 1) ,
(5.20)

where the “−1” is due to the fact that there is one less molecule to bounce into (this correction
is lost at the deterministic level).

The stoichiometric matrix

S=





+2
−1
−1



 (5.21)

has a two-dimensional left-null space (obviously). As a meaningful basis of null co-vectors such
that ℓ⊤S = 0 we prefer to choose ones that have small positive integer entries, for example
ℓ⊤mass = (1, 1,1) (total mass conservation) and ℓ⊤moie = (1,2, 0). The former corresponds to
mass conservation. Chemists call the latter a moiety, that is, a part of a molecule that has a
name because it is also part of other molecules, in this case the two “disks” in X2 and the one
“disk” in X1:

(mass is the ultimate moiety given that it is part of all molecules. Notice that we could have
also chosen ℓ⊤moie = (1, 0,2), in which case the moiety would have been the disk with a cavity).
In general finding right or left null vectors of a stoichiometric matrix of chemical meaning is

17Namely, 1 if a ∈A else 0. Quite conveniently, in the Doob-Gillespie algorithm shown in Fig. 5.1 the indicator
function has not to be implemented explicitly because negative populations are never reached, given that the
reaction 0→−1 always has zero velocity.
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not just a purely theoretical exercise, but it entails some understanding of the chemistry behind
the formalism. See Ref. [75] for some interesting recent advancements on the interpretation
of moieties.

The associated deterministic system reads

d
d t

x2(t) = k−x1(t)
2 − k+x2(t)x3(t) ,

λmass = x1(t) + x2(t) + x3(t) ,

λmoie = x1(t) + 2x2(t) ,

(5.22)

where λmass,λmoie are the deterministically conserved quantities. Given these values, the
above system has a unique fixed point x∞ = x (∞) = limt→∞ x (t). Notice that by the first
equation the ratio

k+
k−
=

x1(∞)2

x2(∞)x3(∞)
, (5.23)

does not dependent explicitly on the values of the conserved quantities. However, in general
each initial population will converge to a different fixed point parametrized by λmass,λmoie.

The stochastic population space is composed of compatibility classes analogous to the
even/odd classes in the previous example according to the values

Lmass = X1 + X2 + X3 ,

Lmoie = X1 + 2X2 .
(5.24)

Visually, for Lmass = 0 (red dot), Lmass = 1 (green dots), Lmass = 2 (blue dots):

For higher masses and moieties each compatibility class is at most a finite interval

(X 1, X 2, X 3) (X 1 + 2, X 2 − 1, X 3 − 1) · · · (X 1 + 2N , X 2 − N , X 3 − N) ,

ranging from either X 1 = 0, 1 for some N such that either X 2 = N or X 3 = N . On each such
subspace we can again use the principle of detailed balance

k−(X1 + 2)(X1 + 1)p∞(X1 + 2, X2 − 1, X3 − 1) = k+X2X3p∞(X1, X2, X3) , (5.25)

79

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.80


SciPost Phys. Lect. Notes 80 (2024)

to propagate the solution to any population compatible with (X 1, X 2, X 3). We find for example

p∞(X 1 + 4, X 2 − 2, X 3 − 2) =
k+
k−

(X 2 − 1)(X 3 − 1)

(X 1 + 4)(X 1 + 3)
p∞(X 1 + 2, X 2 − 1, X 3 − 1)

=
�

k+
k−

�2 (X 2 − 1)X 2(X 3 − 1)X 3

(X 1 + 4)(X 1 + 3)(X 1 + 2)(X 1 + 1)
p∞(X 1, X 2, X 3)

=

�

x1(∞)2

x2(∞)x3(∞)

�2 X 1!X 2!X 3!

(X 1 + 4)!(X 2 − 2)!(X 3 − 2)!
p∞(X 1, X 2, X 3) ,

(5.26)

where in the second passage we used Eq. (5.23) and played a trick with factorials. We find

p∞(X 1 + 4, X 2 − 2, X 3 − 2) = α
x1(∞)X 1+4

(X 1 + 4)!

x2(∞)X 2−2

(X 2 − 2)!

x3(∞)X 3−2

(X 3 − 2)!
, (5.27)

where we played yet another trick by multiplying and dividing by x1(∞)X 1 x2(∞)X 2 x3(∞)X 3

and defining

α=
X 1! X 2! X 3!

x1(∞)X 1 x2(∞)X 2 x3(∞)X 3
p∞(X 1, X 2, X 3) . (5.28)

Proceeding like above once again to the next population one would find

p∞(X 1 + 6, X 2 − 3, X 3 − 3) = α
x1(∞)X 1+6

(X 1 + 6)!

x2(∞)X 2−3

(X 2 − 3)!

x3(∞)X 3−3

(X 3 − 3)!
, (5.29)

and so on. This kind of distribution is called product-form Poisson-like. Notice, quite interest-
ingly, that while a solution of the related deterministic system enters the distribution, we could
express this latter just in terms of k+/k−, as exemplified by the first passage of the derivation
of Eq. (5.26). Thus the distribution does not depend on the deterministic conserved quantities
λmass,λmoie, and one can plug in any solution of the deterministic system. The computation
of α, containing all of the correlation between the species, is far from trivial.

5.5 One trivial cycle

Consider
;

1
⇋ X

;
2
⇋ X ,

(5.30)

where we assume that we can distinguish the two reactions. The population space is

0 1 2 3 . . . (5.31)

By lumping together the two reaction rates into an effective r±(X ) = r±1(X ) + r±2(X ) we
re-obtain the first example in Sec. 5.2 with reaction rate constants k± = k±1 + k±2, thus from
a kinetic point of view this example has nothing to offer and the stationary population is the
Poissonian with parameter (k+1 + k+2)/(k−1 + k−2).

Here, rather, we are interested in dynamical behaviour. Because we can distinguish two
different mechanisms, when the system has relaxed to the stationary distribution there will be
a net stationary circulation of currents
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0
}}

>> 1
}}

>> 2
}}

>> 3
}}

>>. . . (5.32)

In Lecture 2 the cycle affinities were defined as the log-product of the ratio of forward and
backward rates of a process along any cycle. Here we would have to consider all of the infinite
cycles, but we find that populations cancel out and therefore the affinity is the same for all
cycles

log
k+1X k−2(X + 1)
k+2(X + 1)k−1X

= log
k+1k−2

k+2k−1
=: A . (5.33)

For a chemical interpretation, we can think of ; to actually be species that are chemostatted,
e.g.

Y1 + Y2
1
⇋ X ,

Y3
2
⇋ X ,

(5.34)

where all [Y1], [Y2], [Y3] are assumed to be kept fixed in time (see Lecture 4). Notice that this
only amounts to a rewriting of the rate constants k+1 = k′+1[Y1][Y2] and k+2 = k′+2[Y3] on the
assumption that when the chemostatted species are held to 1 (or to some standard chemical
potential, on which we do not delve into), detailed balance holds k′+1/k

′
−1 = k′+2/k

′
−2. In this

case the affinity reads
A= log[Y1] + log[Y2]− log[Y3] , (5.35)

and it dictates the direction of transport of the chemostatted chemicals through the environ-
ment as a cycle is performed

Y1 + Y2→ Y3 , (5.36)

which is reminiscent of the school’s logo.

Figure 5.3: For k+1 = 1, k−1 = 2, k+2 = 3, k−2 = 4, initial population X̂ (0) = 0, num-
ber of samples 50000, for three values of the final time, histograms of the currents
are their Gaussian fit, and log-ratios of positive to negative currents’ probabilities.
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Figure 5.4: Top panel: Same rates as above, number of samples 5000000, final time
t = .4, the log-ratio of forward to backward probabilities for the initial population X̂0:
(blue) equal to 0 with certainty; (yellow) sampled with Poissonian with parameter
k+2/k−2; (green) sampled with Poissonian with parameter (k+2 + k+1)/(k−1 + k−2).
Bottom panel: Same as above, but with stopping time the total number of reactions
N̂+1 + N̂−1 = 8.

Now, defining the time-integrated current Ĵ(t) = N̂+(t) − N̂−(t) as the total number of
reactions +1 minus the total number of reactions −1 occuring up to time t, that is, the number
of all the transitions of the kind

0

+1
!!
1

+1
!!
2

+1
!!
3

+1

��. . . , (5.37)

minus that of transitions

0
}}
−1

1
}}
−1

2
}}
−1

3
}}
−1

. . . , (5.38)

one question we can ask is whether the following well-known fluctuation relation (see e.g.
[76]) is satisfied:

log
p(Ĵ(t)≡ J )

p(Ĵ(t)≡ −J )
?
=AJ . (5.39)

We plot the left-hand side quantity in the bottom panel of Fig. 5.3, for various values of
time. First we notice that at short times there is a systematic bias due to dependence on the
initial population. So we need to wait long enough to claim that a fluctuation relation is
satisfied. But even then, is this relation of statistical significance?18 Notice in fact that, from

18How can we claim to observe a nonequilibrium behaviour? For this to be, we would need to develop some
sound statistical test of the fluctuation relation not being explained by a null hypothesis representing the linear
regime.
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the first panel in Fig. 5.3, the distribution of the currents appears to be reasonably Gaussian,
as we expect by the onset of the Central Limit Theorem. Thus the linearity here appears to be
just a statistical artifact, and it is hard to claim a truly nonequilibrium phenomenon.

One way out of this conundrum may be to sample from an initial distribution such that
the fluctuation relation is satisfied at all times, if it exists. One might be tempted to speculate
that such initial distribution should be the stationary one. The top panel of Fig. 5.4 hints that
the initial distribution that yields the fluctuation relation at all times is the one obtained by
first letting the system relax to the equilibrium distribution of reaction 2 only, such that the
population space is

0

2

1

2

2

2

3

2

. . . , (5.40)

and then at time t = 0 turn on the other transitions and count the currents. The general proof
for generic graphs is in [77], but beyond this specific example this does not generally translate
to CRNs so well.

A second way out is to consider fluctuation relations at stopping times, as in Ref. [3].
For example, in the bottom panel of Fig. 5.4 we stop the process exactly after a fixed number
reactions N̂+1 + N̂−1 have occurred. It appears that convergence is faster, but that none of the
initial distributions is the correct one.

5.6 One less trivial cycle: Schlögl model

Take
;

1
⇋ X ,

2X
2
⇋ 3X ,

(5.41)

with asymmetric population space

0

1

1

1

2

1

2

3

1

2

. . . (5.42)

To compute the stationary distribution we can lump together reactions to obtain the effec-
tive rates

r+(X ) = k+1Ω+ k+2
X (X − 1)
Ω

, for X ≥ 1 ,

r−(X ) = k−1X + k−2
X (X − 1)(X − 2)

Ω2
, for X ≥ 2 ,

(5.43)

where we introduced a scaling parameter Ω to approach the deterministic limit (the reasoning
is that by rescaling X = Ωx we can reproduce a deterministic equation such as Eq. (5.9),
therefore rate constants need to scale consistently, see also Lecture 8). Notice that these latter
lumped reaction rates are not MAK.

State X = 2 is pivotal so we can compute the stationary distribution in the same way as
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Figure 5.5: The stationary distribution for various values of the volume, for
k+1 = 0.5, k−1 = 3, k+2 = 4.6, k−2 = 1.

above by propagating from α= p∞(2):

p∞(0) = α
�

k−1

k+1Ω

�2

, (5.44)

p∞(1) = α
k−1

k+1Ω
, (5.45)

p∞(X ) = α
∏

X>2

k+1Ω+ k+2X (X − 1)/Ω
k−1X + k−2X (X − 1)(X − 2)/Ω2

, for X > 2 . (5.46)

This distribution is definitely not Poisson-like (see plots in Fig. 5.5). In fact, this is a well-
studied toy model (see e.g. [76,78,79]) due to Schlögl to study bistability and critical points.
The Schlögl model is a special case of a the broader class of networks that have non-zero
deficiency, a concept that we will explain below in greater detail. For now, just be aware that
in this case the deficiency is δ = 1 because the system obviously has a cycle, but the network
of complexes depicted in Eq. (5.41) has no “visible” cycle. Eventually we can make the cycle
visible by turning from a representation in terms of a graph to one in terms of a hypergraph
(aka Petri net):

Here the bullet is species X, the edge coming into X from the blue is reaction 1 and the other
hyperedge with three tails and two tips corresponds to reaction 2. Notice that in this example
there are an equal number of incoming arrows as outcoming arrows from X (the bullet), thus
indeed the two reactions form an (hyper-)cycle.
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Figure 5.6: The mean (blue more regular curve) and most probable (yellow more
zig-zagged curve) entropy production rate for the simple model (on the left) with
rescaled rates k+ → k+Ω, k− → k− and the Schlögl model (on the right), k+1 = .5,
k−1 = 3, k+2 = 1 as a function of k−2, for four different values of the volume
Ω = 4,42, 43, 44 (top to bottom), X̂ (0) = 0, final time t = 10.0 and n = 10 sam-
ples.

Let us now turn to the time-integrated current’s statistics. I tried hard to come up with a
plot of a figure analogous to Fig. 5.3 in the critical range of parameters. Importantly, the dis-
tributions I obtain are not bimodal, as one might have expected. Rather, they have a very fat
tail. This is well-known and explained by the methods of large deviations in Lecture 6. How-
ever, it is very difficult to obtain negative currents and thus a significant fit for the fluctuation
relation. Alas, once again we cannot display the fluctuation relation by numerical simulations,
for different reasons than the ones pointed out in the previous example.

Instead, in Fig. 5.6 we compare the most probable value of the entropy production rate
AĴ(t)/t and its mean for the simple model studied above (on the left), and for the Schlögl
model (on the right), for three different values of the volume and several values of rate k+2. We
observe that for the simple model basically there is not discrepancy between the two. This is
due to the fact that for systems with zero deficiency noise does not systematically contribute to
dissipation [80], and in fact all of the mean stationary currents coincide with their deterministic
counterparts. Instead, in the Schlögl model we see a huge discrepancy between the mean and
mode behaviour (in particular there appear to be two more likely values), that only vanishes
away in the large volume limit.
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5.7 Zero deficiency

The CRN
X2 + X3

1
⇋ 2X1 ,

2X1
2
⇋ X2 ,

X2
3
⇋ X2 + X3 ,

(5.47)

looks significantly more complicated than the ones above, but is it really? The complexes are
(C1, C2, C3) = (X2 + X3, 2X1, X2) and we can represent the network as the graph

C2

C3 C1

(5.48)

Both the parity of X1 and the moieity X1+2X2 are conserved. Each stoichiometric compatibility
class C looks like

...
...

...

• • • . . .

• oo −3 • +3 //

+1

__

−2

OO

• . . .

• •
��
+2

•
��

−1

. . .

(5.49)

Notice that this space is very symmetrical, and that it is basically an infinite copy-paste of the
above network of complexes 5.48. This is not always the case, as already observed in the
Schlg̈l model.

The stoichiometric matrix reads

S=





1 2 3

X1 +2 −2 0
X2 −1 +1 0
X3 −1 0 +1



= KD , (5.50)

where

D=





1 2 3

C1 −1 0 +1
C2 +1 −1 0
C3 0 +1 −1



 , (5.51)

is the incidence matrix of the complete graph whose vertices are the complexes and

K=





C1 C2 C3

X1 0 1 1
X2 2 0 0
X3 0 1 0



 , (5.52)

86

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.80


SciPost Phys. Lect. Notes 80 (2024)

is sometimes referred to as Kirchhoff matrix, telling which species belong to which complexes.
The quantity

δ = dim kerS− dim kerD , (5.53)

is the deficiency briefly mentioned above, where for a graph dim kerS is the number of inde-
pendent cycles of the graph (see Lecture 2). Then, roughly, the deficiency is the number of
independent stoichiometric cycles that cannot be visualized as cycles in the graph of complexes
(but can eventually be visualized as cycles in the hypergraph).

In this case the deficiency turns out to be zero. Then several important results apply. In
particular [81], the corresponding deterministic system has a unique fixed point x (∞) subject
to the deterministic conservation law ℓ = x1(∞) + 2x2(∞) found by solving the continuity
equations

ι1
︷ ︸︸ ︷

k+1 x2(∞)x3(∞)− k−1 x1(∞)2 =

ι2
︷ ︸︸ ︷

k+3 x2(∞)− k−3 x2(∞)x3(∞)

=

ι3
︷ ︸︸ ︷

k+2 x1(∞)2 − k−2 x2(∞) ,

(5.54)

where the overbraces define the stationary deterministic currents. Notice that once again there
is no deterministic analogue of the conservation of parity. A proof that such fixed points are
globally attractive is under review since seven years [82].

The stationary distribution of the master equation is found by solving the continuity equa-
tion at each node of the population network

∑

ρ∈R
j∞(ρ, X1, X2, X3) = 0 , (5.55)

where ρ labels reactions and R = {±1,±2,±3}. Let us write this explicitly:

0=+ k+1X2X3p∞(X1, X2, X3)− k−1(X1 + 2)(X1 + 1)p∞(X1 + 2, X2 − 1, X3 − 1)

+ k−1X1(X1 − 1)p∞(X1, X2, X3)− k+1(X2 + 1)(X3 + 1)p∞(X1 − 2, X2 + 1, X3 + 1)

+ k+2X1(X1 − 1)p∞(X1, X2, X3)− k−2(X2 + 1)p∞(X1 − 2, X2 + 1, X3)

+ etc. (5.56)

Clearly, solving this by hand is not feasible, but the important ACK theorem [83] stipulates that,
since this system has zero deficiency, its stationary distribution is a product-form Poisson-like
distribution with density

α
x1(∞)X1

X1!
x2(∞)X2

X2!
x3(∞)X3

X3!
, (5.57)

on any stoichiometric compatibility class. Let us check that this works by plugging into the
above Eq. (5.56). After some tedious work one obtains:

0=
�

k+1 x2(∞)x3(∞)− k−1 x1(∞)2
� x1(∞)X1 x2(∞)X2−1 x3(∞)(X3−1)

X1!(X2 − 1)!(X3 − 1)!

+

−ι1
︷ ︸︸ ︷

�

k−1 x1(∞)2 − k+1 x2(∞)x3(∞)
� x1(∞)X1−2 x2(∞)X2 x3(∞)X3

(X1 − 2)!X2!X3!

+

ι2
︷ ︸︸ ︷

�

k+2 x1(∞)2 − k−2 x2(∞)
� x1(∞)X1−2 x2(∞)X2 x3(∞)X3

(X1 − 2)!X2!X3!

+ etc. , (5.58)
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where we recognized the deterministic stationary currents defined in Eq. (5.54). But then
notice that since ι1 = ι2 = ι3 and the prefactor is the same, the second and third terms cancel
out. The same can be proven for all the other terms, which cancel out cyclically.

Notice that, as anticipated, the stationary distribution does not depend on the deterministic
conserved quantities, and that we did not need to specify the stoichiometric compatibility
class (that would be necessary to compute the normalization). For networks with non-zero
deficiency, if one tries to plug in the multi-Poisson-like distribution in the generator of the
Chemical Master Equation one obtains that the prefactors do not match as nicely, and terms
do not cancel out. The above procedure is, in fact, the blueprint of the original proof of the
ACK theorem.

5.8 Deficiency and response

First we start with the simple linear network

X1
1
⇋ X2 ,

X2
2
⇋ X3 ,

X3
3
⇋ X1

(5.59)

(clockwise orientation for rate constants k+, counterclockwise for k−). The unique deter-
ministic fixed points x (∞) such that 1 · x (∞) = ℓmass are found by applying the Markov
Chain matrix-tree theorem (see Lecture 1). Having deficiency δ = 0 the stationary distribu-
tion is product-form Poisson-like with stoichiometric subspaces labelled by 1 · X = Lmass. As
mentioned above, there is no relation between the choice of ℓmass and Lmass. The system is
nonequilibrium with cycle affinity

A= log
k+1k+2k+3

k−1k−2k−3
. (5.60)

We assume the above reactions to be hidden from the observer. We want to study how
they affect the behaviour of an additional observable reaction

X1 + 2X2
4
⇋ 3X3 . (5.61)

Overall, the system has stoichiometric matrix

S=





−1 0 +1 −1
+1 −1 0 −2
0 +1 −1 +3



 . (5.62)

The observable reaction respects the conservation law, and thus by a similar reasoning as in
§ 5.2 overall the system has two chemical cycles (right-null vectors). The graph in the space
of complexes is

C1
1 C2

C3

3
2 C4

4
C5 (5.63)

with incidence matrix

D=











−1 0 +1 0
+1 −1 0 0
0 +1 −1 0
0 0 0 −1
0 0 0 +1











. (5.64)
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The hypergraph instead is

and there are two independent linear combinations of hyperedges such that an equal number
of arrows go into and out of every node, e.g.

corresponding to the null eigenvectors of the stoichiometric matrix







+1
+1
+1
0






,







0
−2
+1
+1






. (5.65)

Notice that, differing from the first, the second is not a null vector of the incidence matrix, while
it is of the stoichiometric matrix. Therefore the deficiency is δ = 1. While graph cycles admit a
simple physical interpretation in terms of stuff that is conserved throughout, hypercycles do not
allow such simple visuals. An attempt to construct a dictionary and geometric interpretation
is in Ref. [19].

Now let a = log k+4/k−4 be a parameter regulating the intensity of the observable reaction,
let Ĵ(t) be the its time-integrated current, and let

j(a) = lim
t→∞

〈Ĵ(t)〉
t

, (5.66)

be the stationary mean current (notice that in general this is different from the deterministic
current ι because the system has nonzero deficiency). We are interested in the relationship
between the integrated current’s scaled variance (as a function of a)

κ(a) := lim
t→∞

〈Ĵ(t)2〉 − 〈Ĵ(t)〉2

t
, (5.67)

and the current’s response to a perturbation of a

ρ(a) :=
∂ j(a)
∂ a

. (5.68)

In the first panel of Fig. 5.7 we plot the mean current j(a) and in the second the response-
to-twice-variance κ(a)/2ρ(a) for several choices of rate constants and Lmass = 6. Different
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data series correspond to different values of a. Different data points along a series correspond
to different values of the affinity A. The picture suggests that for the value a = a∗ such that
the mean current is j(a∗) = 0 the following fluctuation-dissipation relation is satisfied

κ(a∗) = 2ρ(a∗) . (5.69)

This latter is a milestone of close-to-equilibrium statistical mechanics. However, here it would
be displayed far from equilibrium (A ̸= 0) in situations characterized by vanishing observable
currents – called stalling instead of equilibrium – whose observable currents vanish, but that
have non-observable flows.

Additional: The fluctuation-dissipation relation above can be easily derived if for some ap-
propriate initial distribution the following integral fluctuation relation holds:

1=
¬

e(a
∗−a)Ĵ

¶

(a) , (5.70)

for all values of a, in which case the exponent is a candidate for a physically meaningful
measurement of (partial) entropy production. Notice that in general the average itself depends

Figure 5.7: Top panel: The average current for trajectories stopping at time
t = 50, 10000 samples, values of the hidden rates k+1 = k+2 = k+3 = expA/6
and k−1 = k−2 = k−3 = exp−A/6 and of the observable rates k+4 = exp a/2,
k−4 = exp−a/2 as a function of the affinity A, for different values of a. Bottom
panel: Under the same conditions, ratio of the response over twice the variance of
the current. For this subset of rates the stalling value is a∗ = 0, which follows from
the following argument. First notice that the stationary distribution of the hidden
network is independent of the k’s. Hence the value of the rate constants k±4 for
which the observable current vanishes is independent of the other rate constants. So
we can choose hidden symmetric rates k+1 = k−1 etc. such that A = 0 for which
stalling is equilibrium, and then detailed balance prescribes k+4 = k−4.
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on a. In fact, by taking the first derivative with respect to a and evaluating at a = a∗ we find

0=
d

da

¬

e(a
∗−a)Ĵ

¶

(a)

�

�

�

�

a=a∗

=
�

∂

∂ a

¬

e(a
∗−a)Ĵ

¶

(a)−
¬

Ĵ e(a
∗−a)Ĵ

¶

(a)
�

�

�

�

�

a=a∗

=
�

∂

∂ a
1−

¬

Ĵ e(a
∗−a)Ĵ

¶

(a)
�

�

�

�

�

a=a∗

= −〈Ĵ〉(a∗) , (5.71)

where in the second passage we used the integral fluctuation relation above. This confirms
that the average current at a = a∗ stalls. By taking the second total derivative with respect to
a we find

0=
d2

da2

¬

e(a
∗−a)Ĵ

¶

(a)
�

�

�

a=a∗

=
d

da

�

∂

∂ a

¬

e(a
∗−a)Ĵ

¶

(a)−
¬

Ĵ e(a
∗−a)Ĵ

¶

(a)
�

�

�

�

�

a=a∗

=

�

∂ 2

∂ a2

¬

e(a
∗−a)Ĵ

¶

(a∗)− 2
∂

∂ a

¬

Ĵ e(a
∗−a)Ĵ

¶

(a) +
¬

Ĵ2e(a
∗−a)Ĵ

¶

(a)

��

�

�

�

a=a∗

= −2
∂

∂ a
〈Ĵ〉(a∗) + 〈Ĵ2〉(a∗) , (5.72)

which is, upon taking the long-time limit, Eq. (5.69).

Figure 5.8: For initial population (2, 2,2), time t = 50, internal rates
k+1 = k+2 = k+3 = 2, k−1 = k−2 = k−3 = 1 and observable rates k+4 = exp a/2,
k−4 = exp−a/2, the integral fluctuation relation estimator as a function of the
stalling parameter a, and for several values of the total number of samples.
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So, why didn’t we just show computationally the validity of the integral fluctuation relation,
instead of considering first-order response? In Fig. 5.8 we show that an estimator of the right-
hand side of Eq. (5.70) becomes extremely noisy outside of the linear regime. Adding samples
tends to linearize the expression around the stalling value a∗ = 0, but this is a particularly
slow process (in terms of samples). In particular, there is a systematic bias towards small
values further away from stalling due to the fact that most probably the current is directed
in the direction of the effective affinity, making the exponential very small. However, very
rare events of a large current opposite to the effective affinity can occur, producing the spikes
above the expected value of 1. This clash between most typical behaviour and fat tails makes
convergence very problematic (see e.g. [84]).

5.9 Considerations

While preparing this lecture a couple of interesting questions arose that may be worth inves-
tigating in the future.

In Sec. 5.5 it was shown that the fluctuation relation can be recovered at all times if an
appropriate initial probability distribution is prepared: The question remains open in what
sense and under which conditions this distribution has physical sense (that is, it is operationally
realizable) or is just a mathematical artifact. There, there is only one current in the system. For
more currents, as in Sec. 5.8, there is preliminary work in progress by the Author, extending
the formalism of Ref. [85], indicating that in certain circumstances the integral fluctuation
relation can be recovered.

Here and there it was suggested that properties of the CRN were linked to some sort of
symmetry of the population space. The language of symmetries being that of groups (e.g. the
population space of ; ⇋ 2X must be related to Z2, the cyclic group of order two) I wonder
whether there could be a systematic characterization of deficiency in terms of group theory.

It is informally known that the experimental observability of the (integral) fluctuation re-
lation is problematic, in particular as it comes to deciding whether a system is far from equilib-
rium. There exist algorithms that fix the problem computationally (e.g. by such techniques as
cloning, adaptive sampling, etc.), but in my view there are foundational issues when it comes
to experiments with very little sample size. Statistics (delineation of a null hypothesis, p-value
estimation, power study etc.) could help in the choice and design. Here it was suggested that
response out of stalling states may be the proper ground for making statistically significant
claims. Another option is to resort to stopping times different than the external clock time t.

6 Dynamical large deviations: At long times

William D. Piñeros and Vivien Lecomte.19 Rare events represent anomalous realizations in
the dynamics of stochastic systems. Due to their potentially significant impact, investigating and
understanding rare events is crucial across various disciplines, including physics, living systems
and climatology. This lecture serves as an introduction to the core principles of large deviation
theory (LDT), offering an easily comprehensible outline of its formal structure and its applications.
We further motivate its use through the specific case of diffusive systems in the large-size and long-
time limits where we explore current fluctuations. We also introduce and explain the use of a
population dynamics algorithm via a discrete, Markovian picture, and show how it allows us to
explicitly evaluate relevant related LDT functions (so-called rate functions).

19VL was the lecturer; WP wrote the chapter.
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6.1 Introduction: Why large deviations?

Rare events are by definition anomalous situations that fall outside typical behavior. These
events can encompass anything from the whimsical like a winning streak in a game of dice, to
random events leading to irreversible changes like the sudden precipitation of crystals from a
nucleated supercooled liquid, or even the triggering of an avalanche from the sliding of a snow
layer and so on. Such events motivate us to find and employ some systematic and practical
framework for estimating their probability of occurrence. In terms of probability distributions,
the focus lies not only on determining the most probable state, which typically centers around
the mean, but also on examining its behavior up to its tails. The question consists in assessing
the likelihood of a stochastic process fluctuating from its usual state to a particular rare value.

The theory of large deviations (LDT) answers precisely this question and provides us with
a framework to systematically estimate the probability of observing a particular rare event
relative to its most likely value. In particular, LDT can provide an asymptotic estimation of such
probabilities in the limit of very large observation windows. For instance, consider a coin toss
game where we count the number of heads after n coin tosses. LDT then allows us to estimate
the likelihood of achieving any (possibly large) number of heads, in the asymptotics of large
n coin tosses. Certainly, in this particular example, one can explicitly calculate probabilities
for all values of n (as we will see). The strength of LDT, however, lies in scenarios where such
explicit computations are generally unfeasible but become viable in the limit large number of
occurrences.

LDT has expanded its range of applications beyond its original mathematical framework,
serving as a relevant tool to characterize rare events across various fields. For example, in
statistical physics, LDT allows one to investigate dynamical phase transitions (DPTs), which
occur between phases that are characterized by different values of dynamical observables (such
as flows or activities). Consider for instance a lattice one-dimensional system of particles
with the ability to move either left or right (provided their target site is empty): Values of
particle current significantly lower than the average are characterized by a “jammed” phase
with the formation of a cluster of particles. Similar DPTs have been described through the
application of LDT to the distribution of entropy production in systems such as active Brownian
particles, with a phase transition marked by a collective particle alignment [86]. Furthermore,
LDT may aid in uncovering DPTs in other systems, such as chemical reaction networks or
conformational changes in energy-driven biomolecules, by identifying rare dynamical regimes
of their dynamics [225]. At larger scales, in the area of climatology and geophysical modeling,
LDT has gained prominence in evaluating climate anomalies, including sustained, long-term
heat waves across spatially extended regions (see Fig. 6.1 and Ref. [87]).

These lecture notes are intended as an extremely simple introduction to the notion of large-
deviation scaling. The interested reader may continue with textbook references on the subject,
for instance Refs. [88–94].

6.2 Basics and formalism

Having introduced some of the motivation behind LDT we now present its formal settings.
Consider a stochastic process and a time-additive observable A defined on some observation
window duration t as:

A=

∫ t

0

d t ′ α(t ′) , (6.1)

where α(t ′) depends on an underlying stochastic dynamics at time t ′. Examples of such quan-
tities can be obtained from any noisy phenomena such as a temperature series in a climate
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Figure 6.1: a. Temperature deviation in the northern hemisphere over a 90 days win-
dow. Large deviations in temperature were obtained from an LDT algorithm biased
towards achieving a heat wave (rare event). Figure from Ref. [87]. b. A one di-
mensional lattice hopping model where particles tend to jump right (figure adapted
Ref. [95]). Conditioning the system to present a low time-integrated particle cur-
rents, induces the emergence of density fronts (red arrows).

model over some period of observation, and arise naturally in physical systems when calculat-
ing quantities like work (integrated power) and other forms of integrated currents (e. g. the
entropy production in a non-equilibrium system).

Of course, given the stochastic nature of the system, values of A are generally not fixed but
fluctuate around a steady value that represents its more likely outcome. One may therefore
want to characterize the probability distribution P(A, t) of A at time t that describes the rare
events of interest. The LDT then tells that, in the limit of large t, P(A, t) scales as

P(A= at, t)≍ e−t I(a) , (6.2)

where ≍ is shorthand to denote a the logarithmic equivalent. In other words:

lim
t→∞

1
t

log P(A= at, t) = −I(a) , (6.3)

and I(a) is a so-called rate function. If the rate function I(a) reaches its minimum in ā, then ā
is the typical value of A/t. As its name implies, it quantifies the rate at which the probability of
observing a value A deviates (exponentially rarely) from that of its typical value ā t. Fig. 6.2a
provides a generic example for the behavior of such rate functions.

To better illustrate these concepts and help highlight the origin of the scaling form of
Eq. (6.2) for the rate function we now turn to two basic examples.

6.2.1 A coin tossing game

Consider a fair coin toss game where a player wins a prize based on the number F of heads
obtained after N trials. Thus F in this case is the additive observable of interest and N is the
duration of our window of observation. This means that we are interested in the quantity

F =
N
∑

i=1

δH,x i
, (6.4)

where δ is the Kronecker delta and x i ∈ {T, H} indicates the value tails or heads respectively
for the random value x i of the process at instance i.
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Figure 6.2: a. A schematic rate function I(a) illustrating the typical event (blue
dashed line) and a rare event of an observable a (orange dashed line). The magnitude
of I(a) (circle markers) dictates the likelihood, via P ≈−t I(a), of observing a rare
event relative to the typical. Hence larger magnitudes indicate lower probability. b.
Rate function in Eq. (6.8) for the binomial example. The most typical value falls on
f = 0.5 where I( f ) = 0 c. Rate function for the Gaussian process example which
yields a simple parabola.

Since the coin is fair, the average of F is N/2; its second cumulant is also proportional to
N . This implies that small deviations of F from its average scale as

p
N . In fact, the central

limit theorem states that the distribution of (F − N/2)/
p

N is Gaussian; in other words:

lim
N→∞

P
�

F = N
2 +
p

N δF̂
�

=
1

p
2πσ2

e−
1
2
δF̂2

σ2 , (6.5)

for some variance σ > 0 independent of N .
The large-deviation approach focuses on deviations of F that are far more rare than those

normal deviations. Namely, we are interested in the probability P(F/N = f ) that the time av-
erage F/N achieves some value f . In our coin toss problem, this can be solved by representing
the number of heads as per a binomial distribution. Explicitly

P(F/N = f ) =
1

2N

N !
( f N)![(1− f )N]!

. (6.6)

In the large-N limit, taking the log on both sides of Eq. (6.6) and apply Stirling’s expansion
ln N != N ln N − N +O(ln N), one finds

ln P(F/N = f )≈ −N ln 2− N f ln f − N(1− f ) ln(1− f ) , (6.7)

P(F/N = f )≈ e−N I( f ) ,

where we identified the rate function of this process as I( f )≡ ln 2+ f ln f +(1− f ) ln(1− f ).
This scaling is an example of the LDT scaling of Eq. (6.2). It is represented in Fig. 6.2b. As
expected, the most likely fraction of heads is f̄ = 1/2, which is the point where I( f ) is zero
and reaches its minimum. Importantly, the rate function I( f ) describes fluctuations of F/N
that go beyond the Gaussian fluctuations around its average value.
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6.2.2 Gaussian sums

Consider now a sum A of N independent and identically distributed (i.i.d.) Gaussian random
variables α with individual mean values µ and standard deviations σ:

A=
N
∑

i=1

αi , (6.8)

where αi represents the individual realization of the random variable. As before, N is the
duration of the window of observation and A the additive observable. We are interested in
finding values of a = A/N which represent possibly atypical values of A away from its most
likely value Nµ. Using that the sum of N Gaussian i.i.d. variables yields another Gaussian
variable with effective mean µ′ = Nµ and square standard deviation σ′2 = Nσ2, one has

P(A/N = a) =

√

√ N
2πσ2

e−
N(a−µ)2

2σ2 , (6.9)

1
N

ln P(A/N = a) = −
(a−µ)2

2σ2
−

1
2N

ln (2πσ2) +
1

2N
ln N ,

and taking the large-N limit one finds

lim
N→∞

1
N

ln P(A/N = a) = −
(a−µ)2

2σ2
(6.10)

= −I(a) .

Note that terms sublinear on N drop out and we end up with the rate function I(a) which in
this case is just quadratic. In other words we have shown that P(A/N = a) presents again the

LDT scaling≍ e−N I(a) = e−N
(a−µ)2

2σ2 . The most likely value ā = µ is the location of the minimum
of the rate function.

In this specific example, the central-limit theorem and the LDT yield the same Gaussian
expression for the large-N behavior of the distribution of A, but this is in general not the case,
as we have seen in the coin toss example above.

6.3 Application: Large deviations in diffusive systems

We now move on to examples of physical relevance to model stochastic phenomena, and con-
sider as a paradigmatic application the case of diffusive dynamics. Chiefly, we are concerned
with a physical system – discrete, particle based, or continuum – coupled to a thermal bath,
and/or whose internal micro-dynamics gives rise to an inherent noise that drives fluctuations
in the observables of the system. For instance, in the classic example of a 1D overdamped
Brownian particle coupled to a thermal bath, one may model the dynamics of its position X as

Ẋ = µF +
p

2Dξ , (6.11)

where F represents a deterministic forcing in the system (possibly depending on X ), and ξ is
a Gaussian white noise with zero mean and correlation 〈ξ(t)ξ(t ′)〉= δ(t ′− t). This noise rep-
resents for instance fluctuations coming from a thermal bath. The probability density ρ(x , t)
of its configurational density is governed by the Fokker–Planck equation

∂tρ =− ∂x (µFρ − D∂xρ) (6.12)

=− ∂x j ,
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where we identified the probability current j ≡ µFρ−D∂xρ. One is then typically interested in
quantifying the fluctuations of time-additive observables A such as the work or the total entropy
production. They depend on the level of non-equilibrium drive in the system, measured by
j. This implies that knowledge of the fluctuations of j informs us on the fluctuations of such
time-additive observables, and therefore gives access to the associated distributions of P(A, t).
Identifying the distribution of j, via the dynamics of ρ, is therefore of great interest, but also
necessitates the solution of the associated Fokker–Planck equation, which may be typically
unfeasible in large and interacting systems.

We can alternatively attempt to coarse-grain over small details and consider a macroscopic
picture in a steady-state where dynamics is determined by a very large number of particles
evolving in time over diffusive time scales. This procedure allows one to transform a discrete
(or particle) representation into a continuum limit, for large systems. Their dynamics may
be externally driven or coupled to thermodynamic gradients and can describe in or out of
equilibrium regimes. The usefulness of this approach, called Macroscopic Fluctuation Theory
(MFT, see Ref. [96] for a review), is then that it provides us with a more general description
of the non-equilibrium dynamics through the joint fluctuations of the densities and currents
in the system. These latter may in part be captured by a joint-probability distribution function
P(ρ, j) and therefore neatly encapsulate all relevant information about rare events.

Concretely, consider as an example a one-dimensional system coupled to two distinct ther-
mal reservoirs and without external driving. This may represent some substance, (material,
particles) confined in one dimension but subject to a thermal gradient which generates a den-
sity current. As before, we are interested in characterizing the system activity and its fluctu-
ations through a current observable Q integrated over a given time interval. In particular we
are interested in estimating P(Q, t) which, in the large-size limit N ≫ 1 and long-time limit
t →∞ LDT allows one to estimate as P(Q, t) ≍ e−tN I(Q), where I(Q) is the rate function as-
sociated with fluctuations in Q. As we will see, it is possible to estimate I(Q) from knowledge
of the fluctuations in ρ and j which represent the underlying dynamics.

We first define the time-integrated current as

Q =

∫ t

0

d t ′
∫ 1

0

d x j(x , t ′) , (6.13)

where j represents the local current in the system as given by the following dynamics

∂tρ = −∂x j , (6.14)

j = −D∂xρ +
p

2ση . (6.15)

Here η is a white noise term i.e. 〈η(x , t)η(x ′, t ′)〉= 1
N δ(x− x ′)δ(t− t ′) and σ is its associated

diffusion coefficient. Following the MFT, this noise term is considered to capture the underlying
microscopic dynamics in this large time and particle limit. Furthermore, the Gaussian form of
the noise allows one to immediately estimate the probability of observing a given trajectory of
noise η as

P(η) = e−
N
2
∫ t

0 d t ′
∫ 1

0 d x η(x ,t ′)2 . (6.16)

Then, rearranging from Eq. (6.15) we see that we can rewrite η = j+D∂xρp
2σ

and thus obtain a
relation for the joint probability distribution of ρ and j as

P(ρ, j) = e−
N
2

∫ t
0 d t ′

∫ 1
0 d x ( j+D∂xρ)2

σ (6.17)

= e−tN I(ρ, j) ,
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where we identify I ≡ 1
t

∫ t
0 d t ′

∫ 1
0 d x ( j+D∂xρ)2

σ as a joint rate function of ρ and j given the
large limit assumptions in N and t, and where j and ρ are constrained to verify the continuity
equation ∂tρ + ∂x j = 0.

Next, we wish to estimate the likelihood of observing a given fluctuation of Q through
knowledge of I(Q). Here, one expects that knowing the joint rate function of ρ and j, and
through the dependence of Q on these variables, that we will be able to estimate fluctuations
on Q as well. Indeed, LDT allows one to map, or transform from a rate function I(a) to
another I(b) in a mathematical procedure known as a contraction if there exists a function, or
constraint that relates a to b. Briefly, if b = f (a)where f is some function, then the contraction
is defined as

I(b) = min
a: b= f (a)

I(a) , (6.18)

where by an abuse of notation we denote by the same symbol the rate functions of the random
variables a and b. This result follows from a so-called saddle point analysis which states that for
integrals of the form

∫

d x e−r I(x) ≍ e−r min I(x) as r →∞. Thus, for an exponentially weighted
probability distribution, one seeks to pick the most likely event fulfilling some constraint which
amounts to finding values that minimize the argument. Its namesake follows in the case where
the linking function is many-to-one so that it leads to a net reduction, or contraction in the
number of variables. More rigorous derivations of these results go beyond the scope of this
lecture but are available from reviews in the literature.

Using this procedure we then finally obtain our desired estimates of P(Q, t) via I(Q).
Namely (denoting for short

∫

d t ′
∫

d x =
∫ t

0 d t ′
∫ 1

0 d x),

I(Q) = min
j:Q=

∫

d t ′
∫

d x j
min

ρ:∂tρ+∂x j=0
I(ρ, j) (6.19)

= min
j:Q=

∫

d t ′
∫

d x j
min

ρ:∂tρ+∂x j=0

∫ t

0

d t ′
∫ 1

0

d x
( j + D∂xρ)2

2σ
,

where the double minimization arises due to the bivariance of I(ρ, j) with respect to the den-
sities and currents, and the additional expressions underneath represent constraints as per
Eq. (6.13) and Eq. (6.14). Thus, fluctuations in Q are driven by the most likely fluctuations in
ρ and j that coincide in achieving the given value of Q.

We can therefore appreciate how the use of LDT allows us to forego sampling through
all possible realizations of a dynamics in a system, and instead provides a direct means to
characterize observable fluctuations of a quantity of interest via knowledge of its corresponding
rate functions. Our original goal of estimating the likelihood of rare events is then reduced to
finding rate functions which we now address next.

6.4 Biased dynamics: Making rare dynamics typical

Rare events are, by definition, rare and hence not necessarily observable within some feasible
window of time in numerical approaches. Instead we may condition, or choose relevant tra-
jectories, such that a particular value of an observable A/t = a is obtained upon averaging.
This is equivalent to working in a conditioned probability distribution of the form

P(x; A/t = a) =

∫

D(X ) p(X = x)δ
�1

t A(X )− a
�

, (6.20)

where D(X ) represents the path integral over all realizations of trajectories X . Such condi-
tioned probabilities might seem familiar as they are the dynamical analogy to a microcanonical
ensemble in equilibrium statistical systems, where an arbitrary A, rather than energy, now plays
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the constraining variable. Naturally, just as in the microcanonical ensemble, such conditioned
ensemble can also be used to obtain other observables O of interest under the condition that
A/t = a. Thus one may obtain averages of O as

Ō(a) =
∫

D(x)P(x; A/t = a)O(x)
∫

D(x)P(x; A/t = a)
(6.21)

=
〈O δ(1

t A(X )− a)〉

〈δ(1
t A(X )− a)〉

,

where D(x) denotes a path integral over all conditioned paths. Here, Ō(a) represents the
average of observable O over trajectories conditioned to A/t = a.

However, much like the microcanonical ensemble, rather than working with ensembles
conditioned on A/t = a, it is often easier and more practical to instead have a modified en-
semble where trajectory probabilities are biased by a weight eλA where λ is a fixed parameter.
In fact, if O does not behave exponentially in time, it is possible to show that such procedure
respects expectation values so that this ‘microcanonical’ average Ō may now be re-expressed
as

Ō(a) = 〈O(X )e
λA(X )〉

〈eλA(X )〉
, (6.22)

for a well-chosen λ, conjugated to a. Thus we can reinterpret this biased ensemble as a ‘canon-
ical’ dynamical ensemble where the sum in the denominator may be interpreted as analogous
to a dynamical partition function, and λ plays the role of a conjugate variable to A akin to the
conjugate relation of temperature and energy in thermodynamics. In fact, the dynamical parti-
tion function 〈eλA(X )〉 implicitly encodes for all relevant statistical measurements of the system
by recognizing it is also the moment generating function (MGF) of the original probability
density P(X ). That is, by noting that

〈eλA〉=
∫

D(X )P(X )eλA , (6.23)

it follows that,

∂ m

∂ λm

∫

D(X )P(X )eλA

�

�

�

�

λ=0
=

∫

D(X )AmP(X )eλA

�

�

�

�

λ=0
= 〈Am〉 , (6.24)

so that the average, variances and higher order statistical measures of the biased ensemble are
indeed readily accessible from the derivatives of the MGF in λ = 0. Furthermore, if we now
consider the log of Eq. (6.23), known as the cumulant generating function (CGF), we may
then obtain mean-centered moments 〈(A−〈A〉)2〉 of the distribution, which therefore provides
more relevant information of the deviations of a quantity from its average value.

In fact, it turns out that knowledge of the CGF allows us to compute the rate function I(a)
directly in the long-time limit as follows. In particular, it can be shown that

lim
t→∞

1
t

ln〈eλA〉=ψ(λ) , (6.25)

where ψ(λ) is known as the scaled cumulant generating function (SCGF). Then, following a
result in LDT known as the Gärtner–Ellis theorem, we can now obtain the rate function as

I(a) =max
λ
λa−ψ(λ) . (6.26)

99

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.80


SciPost Phys. Lect. Notes 80 (2024)

Notice that this extremalization principle gives precisely the value λ conjugated to a that was
needed in Eq. (6.22). We can understand this result briefly by supposing that P(A/t=a)≍e−t I(a)

and evaluating the MGF as

〈eλA〉=
∫

da P(A= at)eλat (6.27)

=

∫

da et(λa−I(a))

≍ et maxλ(λa−I(a)) ,

where the last line follows from the saddle-point evaluation for t → ∞. The result in
Eq. (6.25) then follows from taking the log on both sides of Eq. (6.27) and letting t →∞.
Thus the likelihood of fluctuations of A can be obtained from the limiting calculation of ψ(λ)
alone.

In practice, different analytical and numerical methods are available in obtaining ψ for
actual systems. However, the general challenge lies in obtaining accurate averages of the
observables for increasing values of the bias λ. In what follows we will motivate a numerical
approach to calculateψ in Markovian systems as inspired in a population dynamics algorithm.

6.4.1 Population dynamics algorithm: A Markov jump process motivation

Consider a Markov process defined by a finite number of configurations {x} and whose dy-
namics are determined by transition rates r(x |x ′) to go from state x ′ to x . For example, in
a discrete graph system these configurations could correspond to the number of nodes and
the transition rate the probability of jumping from one node to another. The dynamics of the
probability distribution of states p(x , t) is then given by the master equation

∂t p(x , t) =
∑

x ′ ̸=x

�

r(x |x ′)p(x ′, t)− r(x ′|x)p(x , t)
�

, (6.28)

and which we can interpret as the difference between a gain term, from states x ′ going to x ,
and a loss term from states leaving x .

Now consider an additive observable A which can be written over a time history of K jumps
as

A=
∑

0≤k≤K−1

αxk xk+1
, (6.29)

where αxk xk+1
are individual contributions along the history path of successively visited states

{xk}0≤k≤K . The quantity αx x ′ represents the amount by which A is increased during a jump
from state x to state x ′. For instance, in a 1D particle system, taking α = ±1 depending on
whether a particle jumps towards right/left will yield for A a time-integrated current. Our goal
is to compute the likelihood of observing fluctuations of this observable through knowledge of
its corresponding SCGF ψ(λ).

We may achieve this by first considering a joint probability distribution p(x , A, t) of the
observable and the states as

∂t p(x , A, t) =
∑

x ′ ̸=x

�

r(x |x ′)p(x ′, A−αx ′x , t)− r(x ′|x)p(x , A, t)
�

, (6.30)

where the −αx ′x term accounts for the fact that we are coming from the previous value of A
at the x ′ state. Next we are interested in biasing dynamics with respect to specific values A
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which, as discussed in the previous section, can be achieved by exponentially weighing the cor-
responding probability distribution p(x , A, t). This then corresponds to the biased ‘canonical’
ensemble expressed as

p̂(x ,λ, t) =
∑

A

eλAp(x , A, t) , (6.31)

where λ is the conjugate variable with A and determines the ‘strength’ of the biasing. We can
then multiply by the corresponding weights eλA in the Eq. (6.30), sum over all A and find the
desired biased, joint dynamics

∂t p̂(x ,λ, t) =
∑

x ′ ̸=x

�

e−λαx′ ,x r(x |x ′)p̂(x ′,λ, t)− r(x ′|x)p̂(x ,λ, t)
�

. (6.32)

Finally using the result in Eq. (6.25) we recognize that
∑

x

p̂(x ,λ, t) = 〈eλA〉 ≍
t→∞

etψ(λ) , (6.33)

so that our task involves evaluating the biased dynamics of Eq. (6.32) and obtaining the ex-
pectation values with respect to p(x ,λ, t) and hence ψ(λ). Note further that the exponential
modification of the rates means the probability is no longer conserved in Eq. (6.32) and instead
we are now dealing with an open system.

Analytically, such calculation is equivalent to solving a maximum eigenvalue problem of
the form Rλ|p̂〉= etψ(λ)|p̂〉, where |p̂〉 represents the eigenvector and Rλ an evolution operator
with matrix entries Rx ,y = eλαy x r(x |y)−δx ,y r(x) (with r(x) =

∑

y r(y|x) is the escape rate).
However, for more general cases where closed solutions are not tractable, we can instead
consider a numerical approach that, as we will now demonstrate, amounts to a population
dynamics algorithm with respect to λ and x .

First let us then re-write Eq. (6.32) as

∂t p̂(x ,λ, t) =
∑

x ′ ̸=x

rλ(x |x ′)p̂(x ′,λ, t)− rλ(x) p̂(x ,λ, t) +δrλ(x) p̂(x ,λ, t) , (6.34)

where

rλ(x
′|x) = eλαx x′ r(x ′|x) , (6.35)

rλ(x) =
∑

x ′ ̸=x

rλ(x
′|x) , (6.36)

δrλ(x) = rλ(x)− r(x) , (6.37)

and are, respectively, the biased transition rates from x ′ to x , the net biased escape rate from
x , and the difference between the original and modified escape rates in the biased ensemble.
Importantly, we can recognize the first terms in Eq. (6.34) as corresponding to a conserved
dynamics of rates rλ, plus an additional term δrλ representing gain or loss in the probability
depending on sign.

Furthermore, the Feynman–Kac formula states that Eq. (6.34) implies

〈eλA〉= 〈e
∫ t

0 d t ′ δrλ(x(t ′))〉λ , (6.38)

where the subscript in λ indicates the biased ensemble (i.e. of transition rates rλ), so that
calculation ofψ(t), from its long time limit relation in Eq. (6.33), may be now be reinterpreted
as a history average over δrλ. Given that this term is precisely the injection/loss of probability
in the dynamics, we can interpret this procedure as a population dynamics algorithm where
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: deletion : multiplication

Figure 6.3: Schematic of a population dynamics evolution with a biased selection rule
for a system with Nc = 4. Clones displaying larger biases towards a desired event
are multiplied, while those with average or below performance are deleted. The
reproduction success i.e. population deletion/multiplication is controlled by the bias
parameter λ. Surviving trajectories (highlighted here in red) are those representative
of the biased ensemble.

population members, all evolving in parallel in the biased dynamics, play the role of probability
outcomes to be removed (probability loss) or replicated (probability gain) as they evolve in
time.

The idea to represent probability loss or gain comes from similar quantum-mechanical
problems (finding the ground-state energy of an operator using diffusion Monte-Carlo meth-
ods [97]) and was applied to varied problems in statistical mechanics [98] and mathemat-
ics [99]. Its application to compute SCGFs was put forward in [95,100].

Concretely, we can now formulate a population dynamics algorithm as follows. First, define

Y ≡ e
∫ t

0 d t ′ δrλ(x(t ′)) and discretize the integral in Eq. (6.38) as Y =
∏t

tk=0 Y (xk)∆t ′ where

Y (xk)∆t ′ ≡ eδt ′(rλ(xk)−r(xk)), and xk represent configurations at a given time tk. Then, starting
from a very large population of N0 clones all evolving in parallel under the biased dynamics:

• Compute Y (xk)∆t during an interval ∆t

• Clone ni(xk) is pruned or replicated with rate Y (xk)∆t . For instance, given a random
variable ε uniformly distributed on [0, 1], make y = ⌊Y (xk)∆t ′ + ε⌋ copies of the clone.
This then alters the population by a factor Ft =

N+y−1
N

• Evolve new modified population for the next interval ∆t and repeat process up to t.

A schematic of this population dynamics with selection is illustrated in Fig. 6.3. The SCGF
is then evaluated from the change in population as

ψ(λ) = lim
t→∞

1
t ln〈Y 〉λ (6.39)

= lim
t→∞

1
t ln

∏

t

Ft .

Therefore,ψ(λ) can ultimately be interpreted as the exponential rate of growth or decrease in
a population. However, in practice such cloning procedure may lead to diverging or vanishing
populations which could be undesirable from a numerical point of view. Instead, one may also
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choose to maintain a constant population throughout the evolution of the system by different
selection rules that prune/copy clones from a statistically weighted chance with respect to the
entire population. Specific examples of these rules, as well as other choice of cloning regimes,
are for instance described in the review [101].

Altogether, through this cloning algorithm we are therefore able to sample for biased values
of an observable A for any Markovian system of choice. Such procedure is formally exact in
the limit of large number of clones, and simulation times, and has been used successfully to
probe for phase transitions in both discrete and particle based systems. However, achieving
large parameter limits can be challenging in practice, and finite-size and finite-time scaling
analysis can be helpful. Detailed description goes beyond the scope of these lectures but are
available in cited literature [102,103].

7 Dynamical large deviations: At large size

Alexandre Lazarescu. In this chapter, we focus on large deviations at large size and finite time.
Using examples of population models, and particularly chemical networks, we will see how far we
can push the large deviations principle to obtain information on not only time averages, but also
precise time evolutions of large systems, using path integrals.

7.1 Dynamical large deviations: Formalism

In the previous chapter, we saw how the large deviations principle can be applied to describe
fluctuations of time-averaged observables in a Markovian process, when time becomes large.
In this section, we focus on a different scaling: We do not put any restrictions on time, but
we assume the system to be very large. This large-size limit is the same as the one we take in
equilibrium statistical mechanics in order to reach the thermodynamic limit; here, we merely
consider the distributions to be time-dependent.

If we focus on interacting particle models, there are essentially two ways to reach that limit:
either look at particles on a fixed network, and increase the number of particles until there is a
macroscopic number of particles on each site, or consider particles on a lattice or in continuous
space, and rescale space until the density of particles at every point is finite. The first class
of systems is generally called population models, and includes chemical networks and certain
ecological models, and the second is often referred to as diffusion models (see Section 6.3), even
if the resulting dynamics is sometimes ballistic. In this lecture, we will focus on populations,
but we will provide a few formulas relating to diffusions when appropriate. In short, we will
explain where formula (6.17) comes from, and what we can do with it.

Our approach will be the following: We first set up a few explicit population models where
we can take a large size limit; we then present the fundamental building bloc of dynamical
large deviations: The instantaneous displacement distribution, and its generating function;
we use said building blocks to construct path integrals; from those path integrals, we derive
equations of motion, both in a Lagrangian and a Hamiltonian formalism; we make a brief
aside to present the similarities and differences between those formalisms within statistical
mechanics, quantum mechanics, and classical mechanics; and, finally, we describe the long
time behaviour of those path integrals.

The majority of objects and relations that we will present in this lecture are quite general:
They will involve generic Markov processes, with some static observables (densities) and some
dynamical observables (currents), and a relation between the two (continuity equation). This
abstraction makes our framework quite powerful, but also rather formal. It is then useful to
first consider a few concrete cases, where explicit calculations can be made, and pictures can
be drawn.
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7.1.1 Population models

As is customary, we start with independent particles. Consider N independent random walk-
ers governed by a process R (as defined in Section 1.2). They live on a fixed finite network
with sites x , and at every time t we denote the occupancies of every site as nx(t), and the
corresponding densities as ρx ≡ nx/N .

The jump process R is Markovian and performs transitions between sites (x → y) with
rates ry x , which can be translated into transitions between occupancies, where occupancy
vectors transform as {nz} → {nz −δz,x +δz,y} with rate

R(N)y x = nx ry x = Nρx ry x ≡ Nw y x(ρ) . (7.1)

We can count the number of jumps between each pair of neighbours at any time (which
we will denote with a generic # symbol for "number"), over a short period, i.e. between times
t and t +δt. This yields a current observable

λy x ≡
#[x → y]t+δt

t

Nδt
, (7.2)

which is a random variable taking a time-dependent value for each realisation. Note that the
typical value of this random variable is related to the semi-currents defined in Section 1.4, in
the case of independent particles (there is simply a factor N between them).

This current observable completely determines the evolution of the density observable: The
change in density at any site is the difference between all incoming and outgoing currents. This
can be formally written using a graph divergence ∇ (which is the opposite of the incidence
matrix D defined in Section 2.2) such that we have the usual continuity equation ρ̇ = −∇ ·λ.
This matrix can be written as

∇z,(y,x) = δz,x −δz,y , (7.3)

and acts on edges (y, x) to produce a vector on sites z.
We can make things slightly more complex by changing the type of transitions that are

allowed in terms of occupancies, by removing or adding various numbers of particles from
any number of sites. If we rename sites as species, what we get is a chemical network.

Consider thus a chemical system of volume V with species x . We collect the number of
particles of each species at time t into a composition vector nx(t), and we define the corre-
sponding concentrations as ρx = nx/V . In order to transform groups of particles into other
groups of particles (i.e. to perform chemical reactions), it is useful to first determine which
groups can appear: We define complexes γ with stoichiometry νγx (the number of particles of
species x which appear in complex γ). Note that those stoichiometric coefficients are some-
times indexed by the label and direction of a reaction instead (as in Section 4.2).

Given this, we can cast reactions as being transformations between complexes (γ → γ′),
with the corresponding change of occupancy {nz} → {nz − ν

γ
z + ν

γ′

z }. We call γ the reactants,
and γ′ the products, as is customary. Note that we treat forward and backward reactions as
different transformations, because we don’t assume micro-reversibility. The simplest transition
rates we can then consider are called mass action rates, which contain a reaction constant K
which we scale as k times a suitable power of V , and a combinatorial factor counting the
number of ways to choose the reactants:

R(N)
γ′γ
=

�

∏

x

nx !

[nx − ν
γ
x]!

�

Kγ′γ = Vρν
γ

kγ′γ ≡ V wγ′γ(ρ) . (7.4)

Note the similarity in structure with the previous simpler case (7.1), which was also made
of a combinatorial factor nx multiplied by a constant term tied to the type of transition ry x .
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This case can be recovered if all reactions involve only one reactant and one product, like for
enzyme conformation changes, for instance.

As for independent particles, we can define a (chemical) current observable by counting
the number of times a transformation is made between two instants:

λγ′γ ≡
#[γ→ γ′]t+δt

t

Vδt
. (7.5)

And just as before, this current observable completely determines the evolution of the
concentration of each species in the system: The change in concentration is the difference
between the number of particles created and the number of particles destroyed, where each
number can be determined by the number of occurrences of each reaction, multiplied by the
stoichiometric coefficient of the species in that reaction. This can be written in terms of a
continuity equation ρ̇ = −∇ · λ which involves a chemical divergence ∇ which is essentially
twice the stoichiometric matrix 4.4:

∇z,(γ′,γ) = ν
γ
z − ν

γ′

z . (7.6)

This structure can be generalised, and will be the basis of our abstract analysis: We will
always require our systems to have a well-defined volume V , states ρ, currents λ, state-
dependent rates R(ρ)∼ V w(ρ), and a divergence operator∇ such that the continuity equation
ρ̇ = −∇ · λ translates currents into changes of state. The appropriate state and current ob-
servables are often obvious from the definition of the model. If the currents do not completely
determine ρ̇, it often means that some parts of the process were forgotten (either from miss-
ing transitions or an inappropriate bunching of transitions). A suitable set of currents will be
called fundamental currents, and we should note that it is not unique: A transition can always
be duplicated and its rate split in halves, without changing the process.

Note that, due to common usage, we will use the same symbol ∇ for gradients, acting on
state vectors and producing edge vectors. Also due to usage, the gradient will be defined as
minus the transpose of the divergence, i.e. for instance

∇(y,x),z = −δz,x +δz,y . (7.7)

The distinction between the two symbols will be made through the fact that products in edge-
space are denoted by a dot, as in ∇ ·λ, whereas products in state-space are not, such as ∇ρ.

Example: Let us conclude this part with a concrete example: The replicator, involving a
single species A with occupancy n and three reactions

A→ 2A , with rate an , such that w21(ρ) = aρ , (7.8)

2A→ A , with rate bn(n− 1)/V , such that w12(ρ) = bρ2 , (7.9)

A→∅ , with rate cn , such that w01(ρ) = cρ . (7.10)

We can define three complexes γ1 = A, γ2 = 2A, γ0 = ∅, with stoichiometries ν(1) = 1,
ν(2) = 2, ν(0) = 0.

In this case, the divergence is a one-line matrix ∇ = [1 − 2,2 − 1, 1 − 0] = [−1,1, 1] in
basis {A→ 2A, 2A→ A, A→∅}.

This example will reappear regularly as illustration in the rest of the lecture.
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7.1.2 Displacement distribution at large volume

Having defined the necessary mathematical objects, we can now look at the dynamics of our
process. We know the rates of every possible transition, each associated to a current observ-
able. Looking at the joint statistics of all currents λ(t) starting from a given state ρ(t) is in
general complicated: The probabilities of that collection of jumps depends on the order in
which they are performed (the individual processes of the transition matrix do not commute).
However, if the size V is large and all occupancies nx scale with V , a small displacement δρ
will not affect the rates much: The processes become effectively independent. This is the most
crucial approximation we make, and it relies on a specific scaling of the dynamics: Typical oc-
cupancies must scale as V , and the number of occurrences of each transition during δt starting
from a typical state must scale as Vδt, so that the continuity equation ρ̇ = −∇ ·λ is finite.

We are still considering population models with Markovian dynamics (hence with Poisson-
distributed waiting times, called Poisson clocks, for each transition), and we want to describe
the statistics of whole trajectories of the system. Since a trajectory is a sequence of small steps,
a good starting point is to look at the distribution of those steps, i.e. the distribution of the
rate of displacement of ρ, from any starting point, at any time, over a small time step δt. We
have

Pδt

�

ρ̇|ρ
�

= P
�

ρ(t +δt) = ρ +δtρ̇
�

� ρ(t) = ρ
�

, (7.11)

with
Pδt

�

ρ̇|ρ
�

=
∑

λ:ρ̇=−∇·λ

Pδt

�

λ|ρ
�

, (7.12)

i.e. the probability of a displacement in ρ is the sum of probabilities of all currents that
produce that specific displacement. Those are, in principle, joint probabilities of currents,
which are complicated. However, given the scaling discussed above, and given the set of
possible transitions (x → y), we have in fact a quasi-independence

Pδt

�

λ|ρ
�

≈
∏

x ,y

Pδt

�

λy x |ρ
�

. (7.13)

For each transition x → y , observing a flux λy x means that the Poisson clock of that
transition, with rate V w y x(ρ), must ring δtVλy x times during a time δt, with probability

Pδt

�

λy x |ρ
�

=

�

δtV w y x(ρ)
�δtVλy x

[δtVλy x]!
e−δtV w y x (ρ) . (7.14)

In the limit V →∞, δt → 0, Vδt →∞, i.e. large volume, short time, large number of
jumps, we can perform a Stirling approximation:

Pδt

�

λy x |ρ
�

≍ e−δtV L y x (λy x ;ρ) , with L y x(λy x ;ρ) = λy x ln

�

λy x

w y x(ρ)

�

−λy x +w y x(ρ) .

(7.15)
At this stage, we have entered large deviations territory: The function L y x is a rate function
for one of the currents, conditioned on the state from which it is produced. From here on,
we will combine LDFs to construct other LDFs and SCGFs, and mainly play around inside the
exponentials. Most of the calculations and formulas will be made on those objects, which are
all logarithms of probabilities, and translated back into probabilities only at the end.

Multiplying the probabilities for each transition, we get the joint LDF for all the currents,
which we call detailed Lagrangian for reasons which will become clear later:

Pδt

�

λ|ρ
�

≍ e−Nδt L(λ;ρ) , with L(λ;ρ) =
∑

x ,y

λy x ln

�

λy x

w y x(ρ)

�

−λy x +w y x(ρ) . (7.16)
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Since a displacement is a contraction of currents (i.e. a linear combination), we can use the
contraction principle to obtain the LDF of ρ̇, which we call the standard Lagrangian

Pδt

�

ρ̇|ρ
�

≍ e−NδtL(ρ̇;ρ) , with L(ρ̇;ρ) = inf
λ:ρ̇=−∇·λ

�

L(λ;ρ)
�

. (7.17)

In most cases, we are not able to perform the minimisation explicitly, so that this object remains
implicitly defined, unlike the detailed Lagrangian which is explicit.

Example: For the replicator, we have three currents λ21, λ12, λ01, related respectively to the
transitions with rate constants a, b and c, and we can compute

L(λ;ρ) = λ21 ln
�

λ21

aρ

�

+λ12 ln
�

λ12

bρ2

�

+λ01 ln
�

λ01

cρ

�

−λ21−λ12−λ01+aρ+bρ2+cρ . (7.18)

The way those currents contribute to the change in concentration, encoded in the divergence
operator defined above, is ρ̇ = λ21 − λ12 − λ01. In this simple one-dimensional case, the
minimisation of L on the currents conditioned on a fixed value of ρ̇ can be performed explicitly,
by substituting λ21 by ρ̇ + λ12 + λ01 and looking for the values of λ12 and λ01 where L is
minimal. We leave it to the overzealous reader to check that the result is

L(ρ̇;ρ) = ρ̇ ln

�

ρ̇ +
p

ρ̇2 + 4aρ(bρ2 + cρ)
2aρ

�

−
ρ̇2 − (2aρ −

p

ρ̇2 + 4aρ(bρ2 + cρ))2

4
.

(7.19)
The same result can be obtained much more easily using Hamiltonians rather than La-
grangians, which we explain next.

We can alternatively do computations at the level of SCGFs, via the generating function
over all possible numbers of jumps k = δtVλy x for a given transition (x → y), with a conjugate
variable f y x :

Gy x( f y x) =
∑

k

ek f y x Pδt

�

k/δtV |ρ
�

=
∑

k

ek f y x

�

δtV w y x(ρ)
�k

k!
e−δtV w y x (ρ) = eδtV w y x (ρ)(e

f y x−1) .

(7.20)
We can express it in terms of a SCGF:

Gy x( f y x)≍ eδtV H y x ( f y x ;ρ) , with H y x( f y x ;ρ) = w y x(ρ)(e
f y x − 1) . (7.21)

Multiplying all the independent generating functions, we get the joint SCGF, which we call
detailed Hamiltonian:

G( f )≍ eδt y xH( f ;ρ) , with H( f ;ρ) =
∑

x ,y

w y x(ρ)(e
f y x − 1) . (7.22)

Contracting at the level of the SCGF means specifying the variable to a more restricted
value, which is much easier to perform than a minimisation: For instance, it might involve
specifying a vector of independent variables to a value depending on only one parameter,
rather than finding the optimal value of L under a single linear constraint involving all vari-
ables. In the present case, contracting from currents λ to displacements ρ̇ = −∇·λ translates
to specifying the dynamical variable f to the gradient of a state variable u, i.e. f = ∇u. We
obtain the SCGF of displacements, which we call the standard Hamiltonian:

G̃(u)≍ eδtVH(u;ρ) , with H(u;ρ) = H(∇u;ρ) , (7.23)

where u is the variable conjugate to the displacement rate ρ̇, as can be determined by writing
the consistent Legendre scalar product

uρ̇ = −u(∇ ·λ) = (∇u) ·λ= f ·λ . (7.24)
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Example: For the replicator, we have

H( f ;ρ) = aρ(e f21 − 1) + bρ2(e f12 − 1) + cρ(e f01 − 1) . (7.25)

We specify the entries of f as




f21
f12
f01



=∇u=





u
−u
−u



 , (7.26)

where we remember that the gradient is minus the transpose of the divergence. Injecting this
into H yields the standard Hamiltonian

H(u;ρ) = aρ(eu− 1) + bρ2(e−u− 1) + cρ(e−u− 1) =
�

aρ − (bρ2 + cρ)e−u
�

(eu− 1) , (7.27)

whose Legendre transform can be taken relatively easily, to obtain the result found above in
(7.19).

7.1.3 A few common functions you may encounter

This section is a short list of Lagrangians and Hamiltonians of common classes of models, for
reference. They are all written at the most detailed level, where everything is explicit.

1) Independent walkers on a network. Sites x , densities ρx , transition rates ry x , currents λy x .
The detailed Lagrangian and Hamiltonian are:

L(λ;ρ) =
∑

x ,y

λy x ln

�

λy x

ry xρx

�

−λy x + ry xρx , H( f ;ρ) =
∑

x ,y

ry xρx(e
f y x − 1) . (7.28)

Note that, due to the independence of the particles, the Hamiltonian is linear in ρ. We some-
times refer to such cases as linear processes.

2) A chemical network. Species x , complexes γ, concentrations ρx , reaction constants kγ′γ,
currents λγ′γ, stoichiometries νγx . The detailed Lagrangian and Hamiltonian are:

L(λ;ρ) =
∑

γ,γ′
λγ′γ ln

�

λγ′γ

ρνγkγ′γ

�

−λγ′γ +ρν
γ

kγ′γ , H( f ;ρ) =
∑

γ,γ′
ρν

γ

kγ′γ(e
fγ′γ − 1) . (7.29)

The Hamiltonian is no longer linear, unless the stoichiometries are such that the particles are
independent. The structure is however very much the same as above, because in both cases
the distribution of individual currents is Poissonian.

3) Independent diffusions. Particles in continuous space Rd , with positions x , local density
ρ(x), drift field V , diffusion matrix D, local currents j(x). The detailed Lagrangian and Hamil-
tonian are:

L( j;ρ) =

∫∫

( j − Vρ + D∇ρ) ·
D−1

4ρ
( j − Vρ + D∇ρ)dxdy ,

H( f ;ρ) =

∫∫

f · (D f ρ + Vρ − D∇ρ)dxdy . (7.30)

Note that, once again, the Hamiltonian is linear in ρ.

4) Interacting diffusions, such as the famous WASEP. Same parameters as above, but with
an extra function: The mobility σ(ρ), which is no longer proportional to ρ. The detailed
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Lagrangian and Hamiltonian are:

L( j;ρ) =

∫∫

( j − Vσ(ρ) + D∇ρ) ·
D−1

4σ(ρ)
( j − Vσ(ρ) + D∇ρ)dxdy ,

H( f ;ρ) =

∫∫

f · (D f σ(ρ) + Vσ(ρ)− D∇ρ)dxdy . (7.31)

The Hamiltonian is no longer linear, unless the mobility σ(ρ) is proportional to ρ, i.e. unless
the particles are independent. The structure is however the same as above, with L being
quadratic in j and H being quadratic in f , because in both cases the distribution of individual
currents is Gaussian.

5) The Gaussian approximation of a chemical network, related to the Chemical Langevin Equa-
tion (CLE). Same parameters as the second example, but here the currents are bidirectional
and written as jγ′γ. The detailed Lagrangian and Hamiltonian are:

L( j;ρ)∼
∑

γ,γ′

�

jγ′γ −
�

ρν
γ
kγ′γ −ρν

γ′
kγγ′

��2

2
�

ρνγkγ′γ +ρν
γ′ kγγ′

� ,

H( f ;ρ)∼
∑

γ,γ′
fγ′γ

�

fγ′γ
2

�

ρν
γ

kγ′γ +ρ
νγ
′

kγγ′
�

+
�

ρν
γ

kγ′γ −ρν
γ′

kγγ′
�

�

. (7.32)

Those functions are simply the second order approximation of the functions above, around
typicality (λγ′γ = ρν

γ
kγ′γ and f = 0). This translates the fact that this is a Gaussian approx-

imation. This approximation is quite bad for any observable which cares about rare events,
such as entropy production, or any marker of irreversibility.

7.1.4 Path integrals

Having described the little steps, we can combine them to get whole paths. For a finite time
step δt, the probability of a path is a simple product

Pt[{ρk}] =
K
∏

k=1

Pδt(ρ̇k|ρk) . (7.33)

Keeping only the initial and final conditions fixed, we can write a finite transition probability
in terms of these paths, and also express the path probabilities in terms of currents rather than
displacements, by introducing the continuity equation as a constraint. We get

Pt(ρK |ρ0) =
∑

{ρk}

Pt[{ρk}] =
∑

{ρk}

K−1
∏

k=0

Pδt(ρk+1|ρk)

=
∑

{λk}

K−1
∏

k=0

Pδt(λk|ρk)δ (ρk+1 −ρk −∇ ·λδt) . (7.34)

A δt → 0 limit will turn this expression into a path integral, where the dynamical variable
is either the displacement rate ρ̇, or the currents λ, with an extra continuity constraint. This
constraint, as well as the initial and final condition, can be implemented by delta functions.

Pt

�

ρt |ρ0

�

≍
∫

e−V
∫ t

0 L(ρ̇;ρ)dτδ
�

ρ(t)−ρt

�

δ
�

ρ(0)−ρ0

�

d[ρ(τ)]

≍
∫

e−V
∫ t

0 L(λ;ρ)dτδ[ρ̇ +∇ ·λ]δ
�

ρ(t)−ρt

�

δ
�

ρ(0)−ρ0

�

d[λ(τ)] . (7.35)
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More generally, we can write the expectation of an observable Ot at time t starting from a
distribution P0, which we both write at the large deviations scale in terms of two rate functions
U and θ

P0(ρ)≍ e−V U(ρ) , and Ot(ρ)≍ e−Vθ (ρ) . (7.36)

We get the following path integral as our generic object of study (many objects of interest can
be written in that form):

〈Ot〉P0
≍
∫

e−V(
∫

L(ρ̇(τ);ρ(τ))dτ+U(ρ0)+θ (ρt )) d[ρ(τ)]

≍
∫

e−V(
∫

L(λ(τ);ρ(τ))dτ+U(ρ0)+θ (ρt )) δ[ρ̇ +∇ ·λ] d[λ(τ)] . (7.37)

As stated earlier, we will mostly work inside the exponentials. The arguments of those two
last exponentials are called actions (respectively the standard action and the detailed action),
and they have a lot of structure, which we will look into next.

7.2 Properties of the action

Looking at the expressions above, we must remember that V is large, so that the path with least
action exponentially dominates the path integral. We will describe this dominating path with
the usual tools of analytical mechanics, and we will see why we called our LDFs Lagrangians
and our SCGFs Hamiltonians.

7.2.1 Equations of motion

The least action path can be characterised through a functional differentiation. For the stan-
dard action

S[ρ̇(τ),ρ0] =

∫ t

τ=0

L(ρ̇(τ);ρ(τ))dτ+ U(ρ0) + θ (ρt) , (7.38)

the differentiation of the action with respect to ρ(τ) at every time τ, with an infinitesimal
displacement δρ(τ), gives:

∫ t

τ=0

�

∂ρL δρ(τ) + ∂ρ̇L δρ̇(τ)
�

dτ+ ∂ρU(ρ0)δρ0 + ∂ρθ (ρt)δρt = 0 . (7.39)

It is preferable to get rid of the term δρ̇(τ), which we can do through an integration by parts,
which yields

∫ t

τ=0

�

∂ρL−
d
dt
∂ρ̇L

�

δρ(τ) dτ+∂ρ̇L δρ(t)−∂ρ̇L δρ(0)+∂ρU(ρ0)δρ0+∂ρθ (ρt)δρt = 0 .

(7.40)
Since the expression on the left-hand side needs to vanish regardless of the choice of dis-
placement, the coefficients of δρ(τ)must vanish separately at every time. Cancelling the first
integrated term will yield the standard Euler-Lagrange equation, which justifies our calling L
a standard Lagrangian:

∂ρL−
d
dt
∂ρ̇L= 0 . (7.41)

Canceling the boundary terms fix the boundary conditions:

∂ρ̇L(ρ̇0;ρ0) = ∂ρU(ρ0) , and ∂ρ̇L(ρ̇t ;ρt) = −∂ρθ (ρt) . (7.42)
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Note that, in the case where the initial or final condition is fixed to a single state ρ̃, the cor-
responding equation becomes irrelevant and the boundary condition should be replaced by
ρ0 = ρ̃ or ρt = ρ̃.

For the detailed action, the continuity constraint is enforced through a Lagrange multiplier
µ (e.g. from a Fourier transform of the delta function):

Sλ,µ[ρ̇(τ),ρ0] =

∫ t

τ=0

L(λ(τ);ρ(τ))dτ+ U(ρ0) + θ (ρt) +

∫ t

τ=0

µ(τ)(ρ̇(τ) +∇ ·λ(τ))dτ .

(7.43)
The minimisation of the integral terms with respect to the three independent variables ρ, λ
and µ yields three independent parts:

δ [L +µ(ρ̇ +∇ ·λ)] =
�

∂ρ L δρ +µ δρ̇
�

+[∂λL ·δλ+µ∇ ·δλ]+[ρ̇ +∇ ·λ]δµ= 0 . (7.44)

Each part has to vanish separately, yielding three equations. As above, we can handle the first
∂ρ L δρ+µ δρ̇ = 0 through an integration by parts on time, whose boundary terms will end up
in the boundary conditions. The second ∂λL ·δλ+µ∇·δλ= 0 can be handled by transferring
∇ to the left, as a gradient, i.e. applying µ∇ · δλ = (−∇µ) · δλ. These two manipulations
yield two equations, in addition to the continuity equation from the third term ρ̇ +∇ ·λ= 0:

∂ρ L = µ̇ , and ∂λL =∇µ . (7.45)

The second equation allows us to get rid of µ in any equation, at the cost of applying −∇ to
the rest of the equation. For instance, combining the two equations above yields the detailed
Euler-Lagrange equation

∇∂ρ L +
d
dt
∂λL = 0 . (7.46)

Moreover, the boundary terms from the partial integration of µ δρ̇, combined with the differ-
entials of U0 and θt , give the boundary conditions

µ(0) = ∂ρU(ρ0) , and µ(t) = −∂ρθ (ρt) , (7.47)

so that
∂λL(λ0;ρ0) =∇∂ρU(ρ0) , and ∂λL(λt ;ρt) = −∇∂ρθ (ρt) . (7.48)

Note that, being LDFs, both Lagrangians vanish with zero derivative at their most probable
values:

L(ρ̇⋆(ρ);ρ) = L(λ⋆(ρ);ρ) = 0 , or ∂ρ̇L(ρ̇⋆;ρ) = ∂λL(λ⋆;ρ) = 0 . (7.49)

Example: No example here, calculations are too messy. Everything is nicer with Hamiltoni-
ans.

The Hamiltonians are the SCGFs of the Lagrangians, i.e. their Legendre transforms: In the
detailed case,

H( f ;ρ) = sup
λ

�

f ·λ− L(λ;ρ)
�

, and L(λ;ρ) = sup
f

�

f ·λ−H( f ;ρ)
�

, (7.50)

so that, if L is differentiable and convex with respect to λ,

H( f ;ρ) + L(λ;ρ) = f ·λ , with f = ∂λL , or λ= ∂ f H , (7.51)
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and in the standard case,

H(u;ρ) = sup
u

�

uρ̇ −L(ρ̇;ρ)
�

, and L(ρ̇;ρ) = sup
ρ̇

�

uρ̇ −H(u;ρ)
�

, (7.52)

so that, if L is differentiable and convex with respect to ρ̇,

H(u;ρ) +L(ρ̇;ρ) = uρ̇ , with u= ∂ρ̇L , or ρ̇ = ∂uH . (7.53)

This automatically justifies their name, but let us still check that they verify nice equations.
The equations for optimal paths in terms of Hamiltonians can be found thus: First, from

the Legendre transform, we have the force-flux relations

λ= ∂ f H , or ρ̇ = ∂uH . (7.54)

Second, we rewrite the Euler-Lagrange equation in terms of the Hamiltonian. For this, we first
need to differentiate the Legendre relation with respect to ρ to get

∂ρH+ ∂ρL+ ∂ρρ̇ ∂ρ̇L= u ∂ρρ̇ = ∂ρ̇L ∂ρρ̇ , (7.55)

so that we immediately get the Hamilton equations (where we recall the force-flux relation as
one of the two equations):

u̇= −∂ρH , with ρ̇ = ∂uH , (7.56)

and in the same way

ḟ =∇∂ρH , with ρ̇ = −∇ · ∂ f H . (7.57)

The boundary conditions simply translate to

u(0) = ∂ρU(ρ0) , and u(t) = −∂ρθ (ρt) , (7.58)

and
f (0) =∇∂ρU(ρ0) , and f (t) = −∇∂ρθ (ρt) . (7.59)

Both Hamiltonians have a few useful properties:

• H and H are conserved by the dynamics.

• H(0;ρ) = 0 and H(0;ρ) = 0.

• H is convex in u and H is convex in f .

Example: For the replicator, we get

u̇= −a(eu − 1)− 2bρ(e−u − 1)− c(e−u − 1) , (7.60)

with ρ̇ = aρeu − bρ2e−u − cρe−u,

[ ḟ21, ḟ12, ḟ01] =
�

a(e f21 − 1) + 2bρ(e f12 − 1) + c(e f01 − 1)
�

[−1, 1,1] , (7.61)

with ρ̇ = aρe f21 − bρ2e f12 − cρe f01 .
One last thing we can do to be complete in our parallel with analytical mechanics is to

examine the evolution of the static LDF at time t, i.e. the function gt(ρt)which is the logarithm
of the probability of states at a fixed time t, starting, for instance, from an initial condition ρ0
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at t = 0. This LDF is precisely the action of the optimal path between (ρ0, t = 0) and (ρt , t),
i.e.

gt(ρt) =

∫ t

0,ρ0

L(ρ̇⋆;ρ⋆)dτ=
∫ t

0,ρ0

L(λ⋆;ρ⋆)dτ≡ S⋆t (ρt ,ρ0) . (7.62)

Differentiating with respect to time t, and being careful to propagate the action over the in-
finitesimal time difference, we get the expected Hamilton-Jacobi equation

∂t gt(ρ) = −H(∂ρ gt(ρ);ρ) . (7.63)

Note: Varying the initial time instead yields a second Hamilton-Jacobi equation, with opposite
signs. The computations are left as an exercise for the enthusiastic reader.

7.2.2 What it means

At this point, it is worth taking a step back from the mathematics to look at the physics of
the systems we typically want to describe. For a system of particles diffusing in a fluid, the
randomness in the current of particles has a very specific source: The collisions between the
particles and the fluid molecules. At every point in time, these collisions exert a net force per
unit time on the particles, which is random, and whose distribution is related to the momentum
distribution of the fluid molecules (as characterised by their temperature) but is independent
of the properties of the particles. Those properties only come into play when the random force
produced by the fluid is translated into a random current of particles, depending in particular
on their mobility (i.e. the ease with which they move in a medium).

The point here is the following: The dynamical variable f of the detailed Hamiltonian can
be interpreted as the random force produced by the medium. The relation between that force
and the resulting current, called the force-flux relation, is simply

λ= ∂ f H( f ;ρ) , (7.64)

up to a possible shift of the reference f = 0. In particular, when there are fixed external
forces acting on the particles as well, they will appear additively with f in this relation. This
is particularly clear for systems with detailed balance, where the force deriving from the free
energy of a system turns up as a special value of f . In more general settings, this can instead
be taken as the definition of a force, being the quantity conjugate to currents through Legendre
transforms.

Finally, the variable u of the standard Hamiltonian can be interpreted as (minus) a random
potential, in situations where all random forces derive from potentials.

7.3 Long time phenomenology

The framework we have presented is quite versatile: All kinds of observables can be analysed,
or at least expressed in terms of solutions to known equations. It is however often complicated
to get explicit results. One thing that usually makes things simpler is to look at long times,
where systems converge to characteristic behaviours that are more clearly interpretable. For
simplicity, we focus solely on the transition probability from ρ0 to ρt , as an example to get an
intuition on what features of the model are relevant for its long time behaviour.
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ρ0
ρt

ρt

Figure 7.1: Left: Sketch of Hamiltonian trajectories close to a fixed point, for increas-
ing times (blue to green to red). Right: Evolution of ρ(t) for the same trajectories.

7.3.1 Hamiltonian flow

Let us first recall the optimal value of the action over a finite time t, which tells us which path
is the most likely, and what its probability is. It is useful to write it in terms of the Hamiltonian:

S⋆t (ρt ,ρ0)≡ lim
V→∞

−
1
V

ln
�

Pt(ρt |ρ0)
�

= inf
ρ

�∫ t;ρt

0;ρ0

L(ρ̇;ρ)dτ

�

=

∫ t;ρt

0;ρ0

L(ρ̇⋆;ρ⋆)dτ

= −tH⋆ +
∫ t;ρt

0;ρ0

u⋆ ρ̇⋆ dτ , (7.65)

where the asterisks indicate optimal values. The path we need to plug into the integral is a
solution to the Hamilton equations with the correct duration t.

General calculations are difficult in this case, but a simple example can teach us a lot.

Example: Let us look once again at the replicator. Since this is a 1D model, the solutions
to the Hamilton equations are simply the level lines of the Hamiltonian, with appropriate
boundary conditions:

H(u;ρ) =
�

aρ − (bρ2 + cρ)e−u
�

(eu − 1) = cst. (7.66)

We can easily study those trajectories by drawing the phase portrait of this Hamiltonian. The
boundary conditions will correspond to vertical lines ρ =constant, and we still need to select
the trajectory (or trajectories) which join those two lines in the prescribed duration t. All of
this is represented on the figure below, for three different durations, along with the shape of
the trajectory ρ(t) as a function of time.

7.3.2 Convergence of trajectories

The duration of each trajectory does not only depend on its length in phase-space: For tra-
jectories of the same length, those that are nearer a fixed point will have lower velocities and
thus take a longer time to perform. A trajectory with given boundary conditions but a very
long duration will therefore spend an extensive time in the vicinity of the fixed point, with
finite boundary layers connecting it to the initial and final condition. This means that, despite
the Hamiltonian nature of the dynamics, the trajectories converge to the critical point thanks
to the confining boundary conditions, making that fixed point an attractor. The right plot of
7.1 represents ρ(t) for several trajectories with the same boundary conditions but different
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durations, and the grey one represents the infinite time limit (where the middle flat section can
be extended to arbitrarily long times). Each plot exhibits a plateau at a value of ρ converging
to ρ⋆, and a boundary layer on each side, which are constrained between ρ0 and ρt .

Although this is just a fairly trivial example with a single scalar state variable, it is some-
what representative of typical stochastic processes, due to a few generic properties of their
Hamiltonians, or certain reasonable assumptions. Here is an overview of some relevant con-
siderations:

• The manifold u = 0 is stable under the dynamics, and contains the deterministic evolu-
tion of the system, including all the attractors of that evolution. This restricted dynamics
ρ̇ = ∂uH(0;ρ) is not Hamiltonian on its own, and is allowed to converge even though
the appropriate boundary conditions are just ρ(0) = ρ0.

• For the large deviations principle to hold, we need to ensure that the trajectories we
consider stay away from the boundaries of phase-space (e.g. from n= 0 in the example
above, since we need n to be of order V ). A reasonable assumption to guarantee that is to
consider only systems that are globally stable, meaning that their deterministic dynamics
are such that they always go back towards a given compact region of phase-space. In
one dimension, this means that ρ̇ must be positive for ρ small enough, and negative
for ρ large enough. In general, this implies that all heteroclines (i.e. trajectories going
from one attractor to another) outside that region are stable manifolds, so the system
cannot diverge towards infinity in any direction, and the Poincaré-Bendixon theorem
then guarantees that said region contains at least one stable attractor. With density-
type boundary conditions for the Hamilton equations, this guarantees convergence in
the long time limit.

• In many simple and physically motivated models, all attractors belong to the u= 0 man-
ifold. This means that the value of H⋆ in the principal function (7.65) will necessarily
be 0. There can also be closed trajectories with H ̸= 0, which are not attractors of the
deterministic dynamics, but all known examples are such that H < 0 so that they are
not selected by the infimum.

• Those attractors are typically connected in two ways: Through the u = 0 manifold,
which contains the deterministic trajectories between them, and through another man-
ifold u⋆(ρ) such that H(u⋆(ρ);ρ) = 0, which contains less probable trajectories called
instantons, of which we give an example below.

To summarise, the long-time behaviour of the Hamilton equations for stochastic processes
is mostly characterised by the attractors of the deterministic dynamics along with their stable
and unstable manifolds, which all verify H = 0. In practice, the only type of attractor that is
manageable with current methods is fixed points (and some simple limit cycles).

7.3.3 Computations of the extinction time in the replicator

To illustrate those last few points, let us answer a specific long time question: What is the
probability for the replicator to go extinct in the long run, i.e. to reach density ρ = 0. To make
things easier, we can take c very small : This parameter was here to avoid having an absorbing
state, but here we don’t mind.

The special manifolds of H verify

H(u;ρ) = 0 ⇒ u= 0 , or u= ln

�

bρ2 + cρ
aρ

�

∼ ln
�

bρ
a

�

. (7.67)
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The probability rate to reach ρ = 0 along the escape trajectory, starting from the steady
state ρ = a/b, is then given in terms of the corresponding action

S =

∫

u(ρ)ρ̇dτ=

∫ 0

a/b
u(ρ)dρ =

a
b

, (7.68)

so that
Pt(ρt = 0|ρ0 = a/b)≍ e−Va/b , (7.69)

so that the extinction timescale is its inverse, τ= eVa/b, and is exponentially large in V .
We can also compare this result to what we would get in the Chemical Langevin Equation

approximation, to see how good of an approximation it is. The approximate Hamiltonian is

H(u;ρ)∼ u
�

aρ − bρ2 − cρ +
u
2

�

aρ + bρ2 + cρ
�

�

, (7.70)

so that

H(u;ρ) = 0 ⇒ u= 0 , or u= 2
bρ + c − a
bρ + c + a

∼ 2
bρ − a
bρ + a

. (7.71)

The probability rate to reach ρ = 0 along the escape trajectory, starting from the steady
state ρ = a/b, is given in terms of the corresponding action

S =

∫ 0

a/b
u(ρ)dρ =

a
b
(ln(4)− 1)≈ 0.386

a
b

, (7.72)

so that
Pt(ρt = 0|ρ0 = a/b)≍ (4/e)−Va/b , (7.73)

so that the extinction timescale is its inverse, τ= (4/e)Va/b. This is exponentially longer than
the real value.

7.4 Path integral formalisms in physics: A comparison

To conclude, let us compare the path integral formalism we have described here with its equiv-
alents within classical and quantum mechanics. There are many similarities in structure, but
the specificities of each version make all the difference.

Let us first recap the relevant characteristics of the formalism in statistical mechanics,
which is built starting from the Lagrangian:

• The Lagrangian is the logarithm of a classical probability distribution: It is positive and
vanishes in the most likely state. The Lagrangian is physical, whereas the Hamiltonian
is effective (it has no physical interpretation, as it is merely a generating function).

• The Hamiltonian vanishes along the most likely trajectory, and is constant along other lo-
cal extrema, but other trajectories that do not verify the Hamilton equations are possible
due to statistical fluctuations.

• The dynamical variable of the Hamiltonian is a random force or a potential.

• The boundary conditions of the Hamilton equations are mixed, allowing for convergence
even with conservative dynamics.

In contrast, the formalism for quantum mechanics is built starting from the Hamiltonian:

• The Hamiltonian is the logarithm of a quantum probability distribution: It is positive
and vanishes in the most likely state. It is physically interpretable as an energy, whereas
the Lagrangian is effective.
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• The Lagrangian vanishes along the typical trajectory, but other trajectories that do not
verify the Euler-Lagrange equations are possible due to quantum fluctuations.

• The dynamical variable of the Hamiltonian is a physical momentum.

• The boundary conditions of the Hamilton equations are full initial conditions: Trajecto-
ries cannot converge in time due to unitary dynamics.

In analytical mechanics, the starting point is the conservation in time of the total energy
of a system:

• The Hamiltonian is an energy, and is usually positive. Its conservation in time leads
to the Hamilton equation. Only the trajectories that verify the Hamilton equations are
physical.

• The Lagrangian is effective, and is merely a convenient object with which to write the
equations of motion of the system. Only the trajectories verifying the Euler-Lagrange
equations are physical, as there are no fluctuations.

• The dynamical variable of the Hamiltonian is a physical momentum.

• The boundary conditions of the Hamilton equations are full initial conditions: Trajecto-
ries cannot converge in time due to conservative dynamics.

For more details on large deviation theory and its applications in physics, along with illus-
trations, exercices, and moderate ranting about the definitional nightmare that is thermody-
namics, the reader may refer to Large deviations in statistical mechanics: From free energies to
path integrals, a set of lecture notes by myself (Alexandre Lazarescu), which will appear on
arXiv some day.

8 Metastability in and out of equilibrium

Gianmaria Falasco and Massimo Bilancioni.20 Metastability indicates the existence of long-
lived, yet quasi-stationary states, possibly maintained by continuous energy dissipation. Examples
are the logic state of an electronic circuit and the homeostatic state of a biochemical reaction
network. We review the definition of metastability based on the spectral theory of the generator
of a Markov process. We present two prototypical examples representing jump processes in the
large-size limit and diffusive dynamics in the small-temperature limit. For the latter, we introduce
the WKB expansion of the Fokker-Planck equation, the quasi-potential and its relation with the
life-time of metastable states. For detailed balance dynamics, we retrieve the Arrhenius law from
the standpoint of large deviations theory. For dynamics subjected to nonconservative forces, we
show the relation between the life-time of metastable states and dissipation.

8.1 Introduction

8.1.1 Intuitive idea

The existence of various dynamical regimes, widely separated by distinct timescales is called
metastability [104]. In the simplest case, metastability manifests itself when a process seems
stationary for a very long time before jumping to a new seemingly stationary state. Such states
are local minima of the free energy for nondissipative systems [105], i.e. whose dynamics are

20GF was the lecturer and wrote this chapter; MB was the angel.
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detailed balanced. What are they, when detailed balance is not satisfied? How to characterize
metastability in terms that are intrinsically dynamic and make no a priori reference to geomet-
ric concepts such as free energy landscapes? These questions are crucial far from equilibrium
where the free energy and the stationary probability are no longer related to each other in a
simple way.

8.1.2 Examples

To set the stage we list some notable examples of metastability the reader might be familiar
with. Detailed balanced systems include:

• the Ising model (in contact with a single thermal bath) below its critical temperature.
Upwards and downwards magnetizations are the two metastable states.

• Carbon under standard conditions in the diamond state. It will eventually relax to a
lower free energy, i.e graphite.

• A supercooled liquid, i.e. a liquid cooled fast below the melting point in the absence of
crystal nucleators, e.g. impurities. It will eventually solidify [106].

Metastable dynamics that are not detailed balanced comprise

• Climate. It has (at least) two metastable states, warm and snowball—paleoclimatology
identified 2 full glaciations and tens of ice-ages. Transitions are induced by (weather)
noise and (astronomical) time-periodic factors [107].

• Chemical reaction networks: Gene regulatory networks have multiple phenotypic (or
epigenetic) states which are metastable—each state is characterized by the activation of
different gene patterns, resulting in different protein concentrations. Intrinsic (i.e. finite
copy numbers) and extrinsic (i.e. variability) noise cause transitions [108].

• Electronic circuits: In a bit-storage element (CMOS inverters) 0 and 1 states are
metastable. Thermal noise induces transitions, resulting in computation errors [109].

8.2 Metastability for Markov processes

The phenomenon is understood within the spectral theory of the Markovian generator [110–
113], which is summarized as follows. The dynamical equation for the probability density
vector |Pt〉 at time t is

∂t |Pt〉= R |Pt〉 , (8.1)

where the operator R is the generator of the stochastic process. Think of R as the irreducible
rate matrix21 for a Markov jump process on a finite state space of dimension N . States can be
labelled by n such that 〈n|Pt〉= P(n, t). The scalar product is standard matrix multiplication.

8.2.1 Spectral decomposition

The time evolution of the probability distribution can be expanded in the right eigenvectors
�

�ψ(r)α
�

of the operator R, with eigenfunctions ψ(r)α (n) =



n
�

�ψ(r)α
�

, defined by the equations

R
�

�ψ(r)α
�

= λα
�

�ψ(r)α
�

,



ψ(l)α

�

�R= λα



ψ(l)α

�

� . (8.2)

21The graph is connected, all states can be reached and so the dynamics is ergodic.
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Figure 8.1: Sketch of the spectrum of R (inverse of the eigenvalues) for a system
displaying metastability.

Therefore, we can write
|Pt〉=

∑

α

bα
�

�ψ(r)α
�

eλα t , (8.3)

where bα =



ψ(l)α

�

�P0

�

is the overlap of the initial condition with the left eigenvector



ψ(l)α

�

�.
Since R is not Hermitian in general,22 left and right eigenvectors are different but still form an
orthonormal basis

¬

ψ(l)α

�

�

�ψ
(r)
α′

¶

= δαα′ , I=
∑

α

�

�ψ(r)α
� 


ψ(l)α

�

� , (8.4)

and the eigenvalues λα are not necessarily real. However, since R is an irreducible stochastic
matrix,23 by the Perron-Frobenius theorem24 its eigenvalue λ0 = 0 with largest real part

• is nondegenerate,

• is associated to the left eigenfunction
¬

ψ
(l)
0

�

�

�= 〈−|, i.e.

0= 〈−|R , (8.5)

with 〈−|n〉 constant,

• and to a right eigenfunction with positive components, which is the stationary probability

distribution, i.e.
�

�

�ψ
(r)
0

¶

= |P∞〉.

Hence, R has N nonpositive eigenvalues λα which can be ordered by their real part
Re(λα)≥ Re(λα+1).

8.2.2 Dynamical identification of metastable states

We say that the generator depends on a parameter εwhich we can imagine as the temperature,
the inverse size of the system, etc.. Metastability appears if there exist eigenvalues λ1, . . . ,λM
whose real part goes to 0 = λ0 as ε→ 0, while all others λα with α > M stay finite. We can
then identify two well separated timescales:

◦ tesc =min(λ−1
1 , . . . ,λ−1

M ) is the shortest escape time out of metastable states,

◦ trel =max(λ−1
M+1, . . . ,λ−1

N ) the longest time to relax within a metastable state.

22This means that in general it cannot even be diagonalized, it can only be put in a Jordan normal form. This hap-
pens if, for some values of the system’s parameters (called exceptional points), there are degenerate eigenvalues.
We assume that the smaller eigenvalues are not degenerate.

23Actually, eR is a stochastic matrix, since it has only positive entries and 〈−| eR = 〈−| because of probability
normalization.

24Or its infinite-dimensional generalization, the Krein-Rutman theorem.
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The gap in the spectrum, whose inverse is related to tesc− trel , corresponds to a diverging time
scale separating the (fast relaxation) dynamics within metastable states from the slow (jump
dynamics) between them.

This intuitive picture can be made precise. It can be shown [110] that on the intermediate
timescale trel ≪ t ≪ tesc one can find

• a basis of M + 1 right eigenvectors |ρi〉 which are positive normalized, stationary, i.e
R |ρi〉 ≃ 0, nonzero only on non-overlapping regions of the phase space;

• a basis of M +1 left eigenvectors 〈qi| such that 〈qi|R≃ 0 and satisfying the ortogonality
condition




qi

�

�ρ j

�

≃ δi j .

Basically, ρi(n) are the probability distributions of the metastable states and qi(n) are nonzero
only on their basin of attraction (decaying rapidly to zero outside). Moreover, qi(n) gives the
probability of reaching the metastable state i starting from n on the intermediate timescale.
It can be used to define the transition state out of the metastable state i, which is located
at qi(n) = 1/2. They are called commitor functions [114]. Note that they both are linear
combinations of the eigenvectors




ψ(l)α

�

� and
�

�ψ(r)α
�

, which allow us to write the evolution
operator as a etR ≃

∑

i |ρi〉 〈qi| on the intermediate timescale.25

Ultimately, if ε→ 0 at finite t, the system probability can only converge to those ρi that
are selected by the initial condition, i.e. with 〈qi|P0〉 ≠ 0. Therefore, the long-time limit and
the small-ε limit do not commute, because if t →∞ at any finite ε the probability distribution

converges surely to the unique
�

�

�ψ
(r)
0

¶

. Historically, this fact is known as Keizer’s paradox [79,

115].

8.2.3 Example: The Schlögl model

We consider the Schlögl model [79, 116], introduced to describe first order phase transitions
far from equilibrium. It describes the stochastic dynamics of the copy number n of a chemical
species X, subject to the chemical reactions

2 X+A
k+1−−*)−−
k−1

3 X , B
k+2−−*)−−
k−2

X , (8.6)

taking place in a well-mixed container of volume V . We assume that their kinetics follow
the mass-action law, valid for dilute ideal mixtures. The species A and B are kept at constant
concentration by chemical reservoirs. If V is large in comparison to the molecular scale, its
inverse can be taken to be the small parameter ε= 1/V . Therefore, in the macroscopic limit we
introduce the intensive variable x = n/V = nε corresponding to the concentration of species
X, and the scaled (by V ) transition rates

r1(x) = k+1ax2 , r−1(x) = k−1 x3 , r2(x) = k+2 b , r−2(x) = k−2 x . (8.7)

By expanding the chemical master equation, multiplying by x and integrating, one arrives at
the rate equation of chemistry

ẋ = r1(x)− r−1(x) + r2(x)− r−2(x) , (8.8)

in the limit ε→ 0 in which the probability peaks around the most likely value 〈x〉.
In figure 8.2 we show for the inverse of the volume ε = 1/30 ≃ 3.3× 10−2 the first two

right and left eigenfunctions obtained numerically with Mathematica. Clearly, from their linear
combination we can obtain the (positive, normalized) metastable states and the committors (1
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Figure 8.2: For ε−1 = 30, first two right and left eigenvectors (in (a) and (b), re-
spectively), and their linear combination giving the metastable states (c) and the
committors (d). Vertical grey lines in the panels indicate the stable (lower left)
and unstable (lower right) fixed points of the deterministic dynamics (8.8), corre-
sponding to ε = 0. The horizontal grey line in (d) is at qi = 1/2 and singles out
the transition state. Numerical evaluation is obtained by approximating R with a
150 × 150 matrix (finite size effects are also visible at nε ≃ 5). Parameters are
k1a = 4.1, k−1 = 1, k2 b = 1, k−2 = 4.

on the respective attractor). Partial overlapping of the metastable states and the discrepancies
with the ε= 0 predictions are due to the finite value of ε.

In figure 8.3 we show the absolute value of the difference between consecutive leading
eigenvalues. Even at the moderately small value ε = 1/30 it is apparent that λ1 → 0 while
the other eigenvalues stay finite.

8.2.4 Detailed balance vs. nondetailed balance dynamics

The first important point is that a system with a convex energy function U can develop
metastable states when it is subjected to nonpotential forces. Such states will require con-
tinuous energy dissipation to exist (see examples above). A second point is that in the absence
of detailed balance R is not Hermitian, so the eigenvalue λα can have a nonzero imaginary part.
Thus, a metastable state can be periodic, e.g. a stable limit cycle is reached as ε→ 0 [117,118].
Nevertheless, we do not explicitly consider such periodic metastable states hereafter, or more
general quasi-periodic and chaotic ones. In general, R is symmetrizable only if detailed bal-
ance holds. In this case the leading right eigenfunction is the equilibrium Gibbs distribution,
e.g. ψ(r)0 (n)∝ e−βU(n) in the canonical ensemble at inverse temperature β , such that a change
of basis defines the symmetric operator Rs ym = eβU/2Re−βU/2 = R†

s ym.

25Everywhere in this subsection the symbol ≃ means that we ignore terms of order etλα with α > M .
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Figure 8.3: For ε = 1/30, absolute value of the difference between the first 5 con-
secutive eigenvalues. System’s parameter as before.

8.3 Overdamped Langevin dynamics: Low temperature limit

The general framework for the description of metastability can be applied to systems with a
continuous state space [119], which we analyze more explicitly in the following by using large
deviations theory [93]. We consider the Langevin equation for x ∈Rd ,

ẋ = F(x) +
p

2εξ , (8.9)

with (weak) noise, Gaussian with zero mean and correlation matrix 〈ξ(t)ξ(0)〉= D(x)δ(t).26

The drift field has stable and unstable zeros, denoted x∗i and xν, respectively. Namely,
F(x∗i ) = 0= F(xν) and with (assume nonsingular) Jacobian matrix ∇F(x) having only nega-
tive eigenvalues in x∗i (resp. at least a positive eigenvalue in xν). Namely, x∗i are stabled fixed
points of (8.9), while xν are saddle points.

We specify the drift field as a conservative part coming from an underlying free energy
landscape U(x) and a nonequilibrium forcing part f (Fig. 8.4):

F(x) = −D(x) · ∇U(x) + f (x) . (8.10)

We take an autonomous dynamics leading to a stationary probability density P∞ and current
J∞, i.e. the stationary solution of the Fokker-Planck

∂t P(x , t) = −∇ · J(x , t) = −∇ · [F(x)P(x , t)− D(x)ε∇P(x , t)] . (8.11)

Detailed balance dynamics corresponds to f = 0, in which case x∗i are the local minima of
the energy U and xν its saddles. This setup can describe, for example, interacting colloidal
particles under a shear flow at low temperature.27

8.3.1 Deterministic limit and typical fluctuations

For ε = 0 the dynamics are deterministic, namely, P(x , t) = δ(x − x(t)) where x(t) is the
solution of

ẋ(t) = F(x(t)) . (8.12)
26All choices of stochastic calculus are equivalent to leading order in ε. We will use Ito later on when we do

calculations at leading order.
27in the sense that kB T is small in comparison to the typical interaction energy and forcing.
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Figure 8.4: Example of a drift field composed by an underlying double well free
energy potential U(x) and a superimposed nonequilibrium forcing f (x). The arrows
represent schematically the drift’s direction and intensity.

Equation (8.12) describes the relaxation to the stable fixed point x∗i , where i is selected by
the initial condition x(0) = x0. The dynamics are therefore nonergodic, with the state space
partitioned into the various i = 0, . . . , M basins of attactions.

To describe the low-ε regime, it is therefore natural to use the WKB ansatz

P(x , t) =Wε(x , t)e−
1
ε I(x ,t) , (8.13)

with Wε(x , t) subexponential in ε. In the language of large deviations theory,

I(x , t) = − lim
ε→0

ε ln P(x , t) , (8.14)

is called rate function and concentration of probability happens at speed 1/ε. The logarithmic
equality (8.14) is usually written P(x , t)≍ e−

1
ε I(x ,t). Plugging (8.13) into (8.11) we obtain at

the leading order

−∂t I(x , t) = H(x ,∇I(x , t)) , (8.15)

with Hamiltonian

H(x ,π) = F(x) ·π+π · D(x) ·π . (8.16)

Note that the Hamiltonian is the cumulant generating function of a Gaussian noise with mean
F(x) and covariance matrix D(x). Equation (8.15) is a Hamilton-Jacobi equation for the action
function I(x , t) and conjugate momentum π=∇I . We can recast the problem in terms of the
equivalent Hamiltonian equations

ẋ = F(x) + 2D(x) ·π , π̇= −∇F(x) ·π+π · ∇D(x) ·π . (8.17)

These equations describe the most likely trajectories followed by the system as ε→ 0. They
also follow from the minimization of the action functional28

A[{x(t),π(t)}τ0] =
∫ τ

0

d t(π(t) · ẋ(t)−H(x(t),π(t))) . (8.18)

28The boundary conditions are determined by the initial distribution P(x , 0) and possibly from a constrain at the
time of interest τ.
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From lecture 6 we know that such action determines the leading order probability of paths
{x(t)}τ0 as29

Prob[{x(t)}τ0 |x0]≍
∫

Dπe−
1
εA[{x(t),π(t)}

τ
0 ] . (8.19)

The stationary rate function I∞(x) = − limε→0 ε ln P∞(x) is obtained by solving

0= H(x ,∇I∞(x)) , (8.20)

which means that we look for solution of (8.17) on the submanifold H = 0. If f ̸= 0, I∞
generally has nondifferentiable points, so that (8.20) should be solved within each basin of
attraction, giving a local rate function [123].

8.3.2 Instantons and escape rates

From the probability current introduced in (8.11), we can also derive another decomposition
of the drift field

F(x) = −D(x)∇I∞(x) + v(x) , (8.21)

that does not make reference to the underlying microscopic details (energy and forcing), but
rather uses dynamically emergent quantities, i.e the stationary rate function and the probabil-
ity velocity

v(x) = lim
ε→0

J∞(x)
P∞(x)

, v · ∇I∞ = 0 . (8.22)

The last property follows immediately from the substitution of (8.21) into (8.20). Note that
v(x) is zero for detailed balance dynamics (since J∞ is zero). Therefore, we check that

I∞ = U , if f = 0 , (8.23)

namely, the equilibrium canonical (Gibbs) distribution is the stationary probability distribution
for detailed balance dynamics. It is an important fact that with detailed balance the subexpo-
nential prefactor W is independent of the state x . It is a mere normalization constant, as can
be checked by direct substitution into (8.11). This remains true for f ̸= 0 for ∇ · f = 0. In
this case, the stationary probability remains Gibbsian even if J∞ ̸= 0. This kind of nondetailed
balance dynamics is known to accelerate relaxation, i.e. the absolute value of the first nonzero
eigenvalue |λ1| increases in the presence of a divergenceless f ̸= 0 [124,125].

This decomposition is useful to analyze the two main sets of solutions of (8.17), deter-
mined by the boundary conditions. We see that π = 0 is a solution giving the noiseless dy-
namics (8.12) which we have already seen as a relaxation to the stable fixed point x∗i . Typical
fluctuations (called optimal trajectories or instantons) are characterized by π ̸= 0. One par-
ticular family of such trajectories is that happening on the manifold of Hamiltonian H = 0:
From (8.20) we see that they correspond to π(t) =∇I∞(x(t)). Plugging that into the first of
(8.17) we obtain

ẋ = F(x) + 2D(x) · ∇I∞(x) = D(x) · ∇I∞(x) + v(x) . (8.24)

These dynamics take place in a ‘reversed’ rate function but with the same currents. They are
trajectory, called instantons, that start arbitrarily close to the stable fixed point x∗i and reach xν
in an arbitrarily long time.30 Notably, if f = 0 we find that deterministic dynamics and typical

29This can be derived in a number of more or less rigorous ways. For example, starting from the Langevin
equation and the Gaussian path probability of the noise {ξ(t)}τt=0 as in the MSRDJ formalism [120–122], or à la
Feynman by time-slicing a formal solution of the Fokker-Planck equation [18].

30This is because both ∇I∞(x) and v(x) tend to zero close to the zeros of F (I∞ by definition, and v as a
consequence of (8.21)).
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trajectories are one the time-reversed of the other, which is the content of detailed balance
dynamics specialized to this set of trajectories.

If we use (8.20) in (8.19), and the insight that such instanton takes infinite time to escape
a fixed point, we obtain the long-time transition probability

lim
t→∞

Prob(x∗i → x)≍ e
− 1
ε

∫ x(∞)=x
x(0)=x∗i

d t ẋ(t)·∇I∞(x(t)) = e−
1
ε [I∞(x)−I∞(x∗i )] . (8.25)

Note that the trajectory could be continued from xν to the other stable fixed point x∗j ̸=i without

changing the result: The action along any relaxation trajectory is zero.31

It can be proved [126] that for ε→ 0 the escape time from a basin of attraction through
the saddle xν is exponentially distributed with rate [127]

kν ≍ lim
t→∞

Prob(x∗i → xν)≍ e−
1
ε [I∞(xν)−I∞(x∗i )] . (8.26)

As a consequence, the mean first passage time to reach the unstable fixed point xν from the
basin of attraction of x∗i equals the inverse of the escape rate (8.26). This boils down to the
Arrhenius law when f = 0; from eq. (8.23), it is

keq
ν ≍ e−

1
ε [U(xν)−U(x

∗
i )] . (8.27)

8.3.3 Thermodynamic bounds on the rate function and the escape rates

For f arbitrary, we make use of the following relations

• The decomposition of the scaled entropy flow rate (in the reservoir) into the adiabatic
and nonadiabatic component 3: σ̇ = σ̇ad + σ̇na [128, 129]. The entropy flow rate can
be obtained by the log ratio of probabilities for the forward and backward trajectories
conditioned to start on a given state, together with the drift field decomposition (8.21),

σ = ε ln
Prob[{x(t)}τ0 |x0]

Prob[{ x̃(t)}τ0 |xτ]
=

∫ τ

0

d t ẋ · D−1 · F =
∫ τ

0

d t ẋ · D−1 · (−D · ∇I∞ + v) .

(8.28)

• The positivity of adiabatic entropy production rate along relaxation and instanton:

σ̇ad = ẋ · D−1 · v = (±D∇I∞ + v) · D−1 · v = v · D−1 · v ≥ 0 . (8.29)

• The fact that the nonadiabatic entropy flow rate equals σ̇na = − ẋ ·∇I∞ = −
d
d t I∞(x(t))

along any trajectory.

Integrating the entropy production rate along the relaxation (σν→i) and the instanton (σi→ν)
and using the relation (8.26) between the rate function difference and the transition rate, we
obtain

−σν→i ≤ lim
ε→0

ε lnκν ≤ σi→ν . (8.30)

With detailed balance, σν→i = −σi→ν = U(xν)−U(x∗i ) because relaxation and instanton are
the time-reversed of each other [130].

31We could also start from any other point in the basin of attraction of x∗i without changing the result: For very
long times we would first relax to x∗i (with a zero-action relaxation trajectory) and the follow the instanton.
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Figure 8.5: Sketch of the typical dynamics on the three different timescales: Short-
time relaxation towards a local minimum of the stationary rate function, small (Gaus-
sian) fluctuations around a stable fixed point, long-time transition to another attrac-
tor with rate kν.

Moreover, the above equality holds even at first order in f → 0, that is, around detailed
balance [25]. Indeed, setting I∞ = U + g (with O(g) = O( f )) in (8.20) and using the decom-
position of the drift field we can obtain, neglecting terms O( f ) and higher

−∇U · D · ∇g = f · ∇U . (8.31)

Here, the left-hand side is the time derivative of the correction g along a relaxation trajectory
with f = 0 and the right-hand side is minus the entropy flow rate along the same trajectory.
Therefore, integrating over an infinite time from x(0) = xν to x(∞) = x∗i we see that the
correction g to the energy is given by σν→i = −σi→ν, and (8.30) holds as an equality in view
of (8.26).

8.4 Jump processes in occupation-number space: Macroscopic limit

The large deviations formalism can be applied to processes described by master equations that
admit a deterministic limit. For example, in a state space coordinatized by the occupation
number n (individuals of a species in population dynamics, molecule number in chemical
reactions, charge number in electronic circuits, photon number per frequency in scattering)
there might exists a scale parameter (typically an inverse system size) ε such that nε = x
defines a finite continuous variable as ε → 0. If the transition matrix R scales like 1/ε, we
incur in a weak-noise limit similar to the one presented before. The Schlögl model given
before is a particular example of this class of systems.

Here, we highlight only the main differences with respect to overdamped diffusion. From
the WKB ansatz inserted into the Master equation we arrive at (8.15) with the Hamiltonian
that is now the cumulant generating function of Poisson noise32

H(x ,π) =
∑

ρ

rρ(x)(e
∆ρ ·π − 1) , (8.32)

32Recall that a Markov jump process is characterized by a (conditional) exponential waiting time distribution,
or equivalently, a (conditional) Poisson distribution of number of jumps per site.
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where rρ(x) is the macroscopic (i.e. scaled by 1/ε) transition rate from state x and ∆ρ is the
jump size of transition ρ.

• The resulting Hamiltonian equations are [131]

ẋ =
∑

ρ

∆ρ rρ(x)e
∆ρ ·π ,

π̇= −
∑

ρ

∇rρ(x)
�

e∆ρ ·π − 1
�

.
(8.33)

Only close to a stable fixed point (or time depedent-attractor) these equations can be
linearized in π and x − x∗i to obtain (the linear version of) (8.17). Clearly, this approx-
imation is valid only for times t ≪ tesc ≍ k−1

ν and correspond to van Kampen’s system
size expansion [132].

• The deterministic dynamics has a nonlinear gradient part plus the ‘orthogonal’ probabil-
ity velocity

ẋ = −A(x) · ∇I∞ + v , (8.34)

with A(x) =
∫ 1

0 dθ (1− θ )∂ 2
πH(c,π)|π=θ∇I∞ a nonnegative diffusion matrix depending

on the rate function itself.

• The instanton is related to the relaxation by considering the adjoint dynamics which acts
on single transition rates as rρ(x) 7→ r−ρ(x)e

−∆ρ ·∇I∞(x). This in general does not boil
down to flipping the sign of the rate function and leaving v untouched.

• The bounds (8.30) remain valid.

8.5 Markov jump process on the space of attractors

On very long times of the order t ≥ tesc we can describe the dynamics as a jump process from
one attractor to the other with transition rates kν and p(i)(t) the probability of being within the
attractor i (Fig. 8.6). Here ν labels all the transitions in both directions, counted as positive
and negative, respectively. Because of the previous result (8.27), local detailed balance on the
rates kν holds trivially when f = 0 but also when f is small, in the form [25]

kν
k−ν
= e−[U(o(−ν))−U(o(ν))+σo(ν)→o(−ν)] . (8.35)

where o(±ν) is the origin of the transition trough ±ν and σx∗i→x∗j
is the entropy flow the most

probable path between x∗i and x∗j . As mentioned above, solutions of (8.20) only give the

rate function within each basin of attraction I (i)∞(x), which is determined up to a constant αi .
Intuitively, this is because to obtain I (i) we first took the limit ε→ 0, before t →∞, thus the
system is stuck within a basin of attraction. Such constants have to be fixed relative to each
other. They give the relative weight of each attractor, i.e. pi , obtained by solving the master
equation over the space of attractors [123,127]. The rate function is finally obtained by taking
at each x the maximum I (i)∞(x) +αi over i.

8.5.1 Example: The Schlögl model (cont.)

The system is bistable, so we can write the long time Markov jump dynamics in terms of a 2X2
stochastic matrix

�

−k1 k−1
k1 −k−1

�

, (8.36)
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Figure 8.6: On very long times the dynamics can be coarse-grained into a discrete
jump process from one attractor to the other.

whose eigenvalues are 0 and −(k1+k−1). One can check [79] that they correspond to the first
two eigenvalues of the generator of the Schlögl model.

8.6 Conclusions

We conclude by listing the differences that emerged above between detailed balance and non-
detailed balance dynamics.

• Geometric vs dynamic view: in detailed balance systems, it is possible to understand
metastability in terms of the underlying free energy landscape. This geometrical per-
spective is lost in nondetailed balance systems where metastability may be entirely due
to nonconservative forces. In this case its understanding is based on the dynamics: One
looks at the behavior of the smallest system’s eigenvalues.

• Generator R: In the detailed balance case, the generator of the stochastic process is
symmetrizable. This means that all of its eigenvalues are real. In the nondetailed balance
case, this is no longer true and one may have complex eigenvalues leading to relaxation
with oscillations, limit cycles or more complex time-dependent attractors.

• Rate function: I∞(x) = U(x) for detailed balance dynamics. When nonconservative
forces are introduced, the relation is modified. Close to detailed balance, the correc-
tion to U is given by the entropy dissipated by the nonconservative force on the typical
trajectory.

• Instanton: The instanton is the time-reverse of the relaxation for detailed balance sys-
tems and their associated entropy productions are equal and opposite σν→i = −σi→ν.
When nonconservative forces are present, the instanton and the relaxation may follow
different trajectories, and an inequality holds for the entropy productions−σν→i ≤ σi→ν
(at first order in f → 0 it becomes the above equality).

• Coarse-grained dynamics: On longer time-scales, t ≥ tesc , the dynamics resembles a
jump process among mesostates. For detailed balance systems a local detailed balance
condition emerges on the mesoscopic rates. The dissipation is entirely due to jumps
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among attractors, whereas in the nondetailed balance case, there is a contribution to
the dissipation coming from the microscopic currents inside each basin of attraction.

9 Martingale approach for first-passage problems

Izaak Neri and Adarsh Raghu.33 We explore nonequilibrium thermodynamics for first-passage
processes with martingale theory. We use the gambler’s ruin problem as a unifying theme.

9.1 Introduction

First-passage problems describe processes that have a finite, random termination time. Ex-
amples are escape problems — such as, a particle that escapes from a bounded domain or a
system that escapes from a metastable state (i.e., Kramers’ escape problem) — and diffusion
controlled reactions. For processes in equilibrium, the time it takes for a particle to escape a
bounded domain decreases exponentially as a function of the energy barrier that separates it
from the outside world, as described by the van’t Hoff-Arrhenius law [2,133,134].

The focus of these notes is on first-passage problems in nonequilibrium scenarios, where
the underlying stochastic process does not adhere to detailed balance; see Fig. 9.1 for illustra-
tions of two examples of escape problems in nonequilibrium, statistical physics. In nonequilib-
rium scenarios, we are often interested in the escape problem of a macroscopic current out of a
bounded interval. An instance of such a scenario is observed in molecular motors, like kinesin-
1, which convert free energy into heat and mechanical work while attached to a biofilament.
Due to the polarity of biofilaments, the exerted force on the filament is biased towards one of
its ends. Notably, as the filament has a finite length, the motor’s work required to transport a
cargo to one of the filament’s ends is evaluated at a random time.

As thermodynamicists, our primary goal is to establish thermodynamic connections be-
tween quantities that characterize first-passage processes, such as splitting probabilities and
mean first-passage times, and thermodynamic quantities, such as the entropy production rate.
Our focus is on obtaining universal relations that are applicable to a wide range of stochastic
processes far from thermal equilibrium, similar to the van’t Hoff-Arrhenius law that holds for
equilibrium processes [134].

To analyze stochastic processes that are far from thermal equilibrium, we employ stochas-
tic thermodynamics [34,135,136]. However, instead of analyzing stochastic thermodynamics
over ensembles of trajectories that terminate at a fixed time, we investigate ensembles of tra-
jectories that terminate at a trajectory-dependent termination time (i.e., a random termination
time). Recent works [137–139] have demonstrated that martingale theory significantly aids
in studying thermodynamics at random termination times leading to the discovery of several
universal relations in nonequilibrium thermodynamics; see also the earlier work Ref. [140] on
the use of martingale in stochastic thermodynamics.

In particular, we review two results in this context. Firstly, we review the second law of
thermodynamics at stopping times [139, 141, 142] that extends the classical second law of
thermodynamics, which is valid for processes terminating at a fixed time, to processes that
terminate at a random time. Secondly, we review a recently discovered relation that connects
the splitting probability of a current with its mean first-passage time and the rate of dissipation
in a nonequilibrium process [143–146]. This relation can be interpreted as a trade-off between
uncertainty (expressed as the ruin probability p−), speed (quantified by the mean first passage
time 〈T̂ 〉), and thermodynamic cost (quantified by the rate of dissipation σ). We explain these

33IN was the lecturer and AR was the angel. Both authors wrote the chapter.
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results by making an analogy with the gambler’s ruin problem, as studied originally by Blaise
Pascal, and then extending this problem to thermodynamic setups.

The organization of the Lecture Notes is as follows: Section 9.2 provides a review of the
gambler’s ruin problem, which serves as a basic illustration of a first-passage problem with two
boundaries. In this section, we solve the gambler’s ruin problem through the classical approach
that relies on difference equations. Section 9.3 revises some essentials from martingale theory,
and in Sec. 9.4, we utilise martingales to solve the gambler’s ruin problem. In Sec. 9.5, we
introduce various thermodynamic versions of the gambler’s ruin problem and explain how to
utilise martingale theory to solve some of them. These lecture notes conclude with a discussion
of some of the questions that arose during the lectures at the workshop.

9.2 Gambler’s ruin problem

The gambler’s ruin problem was developed in 1656 by Blaise Pascal [147] and is often used in
textbooks to introduce the first-passage problem and the mathematical tools that come with
it, see e.g. Chapter XIV of Feller’s introductory textbook book on probability theory [148].
Furthermore, from a physics perspective it can be seen as an elementary example of a first-
passage problem in a nonequilibrium process.

First, we briefly discuss the history of this problem, which is interesting in itself, as it is
part of the Scientific Revolution that took place in the 17th century. Second, we frame the
problem and provide its standard solution using difference equations.

9.2.1 A brief history of the problem

Although probability theory is commonly used in our everyday reasoning, its mathematical
foundations were established relatively late. Nevertheless, during the 17th century’s Scien-
tific Revolution the development of probability theory was bound to happen due to various
circumstances.

In this period there was a surge of interest in gambling amongst the wealthy and noble
classes in Europe leading to the establishment of gambling houses, such as, the Ridotto in
Venice (1638). Several puzzles in probability theory had appeared in the literature and were
discussed by prominent thinkers of the time, notably, the problem of points that was known
from Luca Paccioli’s work “Summa de Arithmetica, Geometria, Proportioni et Proportionalità"
(Summary of Arithmetic, Geometry, Proportion and Proportionality), published in 1494. Blaise
Pascal got interested in probability problems through his interactions with Antoine Gombaud,
who was a French writer (also known as Chevalier de Méré), but also an amateur mathe-
matician and a gambler. Against this backdrop, Pascal developed the gambler’s ruin problem,
two years after his famous correspondence with Pierre de Fermat on the problem of points in
1654 [149].

The first in print version of the gambler’s ruin problem appeared soon after in Cristiaan
Huygens’ 1660 paper on probability entitled “Van Rekeningh in Spelen van Geluck" (On cal-
culations for games on chance) [150], and a year later it was translated by his mathematics
teacher Schooten into Latin as “De Ratiociniis in Ludo Aleae", and was published in Schooten’s
“Exercitationum Mathematicarum"; note that Huygens visited Paris for the first time in 1655 —
a few months after he identified the rings of Saturn and discovered Saturn’s moon Titan, —
where he met with French scholars and became aware of their interest in probability theory.
At the end of Huygens’ paper he presents five problems to the reader, the last of which became
better known as the gambler’s ruin problem. Huygens’ formulation goes as follows:

“A and B have both 12 coins and play a game of chance with three dice under these conditions:
If a throw shows 11 pips, then A must give a coin to B; however, if a throw shows 14 pips, then B
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�µ

Figure 9.1: Examples of (nonequilibrium) processes with a finite, random termina-
tion time. Gambler’s ruin problem [Left Panel]: A particle represents the wealth of
gambler A and moves on a finite segment until it reaches either the “−"-end (indicat-
ing that gambler A has lost their stake) or the “+"-end (indicating that gambler B has
lost their stake). The ratio of the odds of the two gamblers is denoted by ω+/ω−.
Molecular motor bound to a filament [Right Panel]: A two-headed molecular motor,
such as kinesin-1, attaches to a filament, after which it converts the free energy ∆µ,
obtained from the hydrolysis of adenosine triphosphate (ATP) into adenosine diphos-
phate (ADP) and an inorganic phosphate (P), into mechanical work ( fmech) and heat,
yielding a stochastic motion biased towards the filament’s plus end (+). When the
motor reaches one of its end points, then it detaches from the filament, and its enzy-
matic activity stops.

must give a coin to A; the game is won by the player that has first all the coins.". Huygens also
reveals the solution:“The odds of A with respect to B are 244140625 to 282429536481."

Huygens’ publication generated significant interest in probability theory, notably from Ja-
cob Bernoulli. In 1713, eight years after Bernoulli’s death, his famous work “Ars Conjectandi"
was published. In this book, he reformulates the gamblers’ ruin problem in a way that closely
ressembles its modern version, viz., gambler A has m coins, gambler B has n coins, and the
odds of A winning to B or a to b. Jacob Bernoulli shows that the chance for A to win the game,
and thus B to lose the game, is [151]

pA
+ = pB

− =
an(am − bm)
am+n − bm+n

. (9.1)

Equation (9.1) implies that for b > a and large values of m, the ruin probability pB
− decays

exponentially as a function of n, i.e.,

pB
− = exp

�

n ln
a
b

��

1+O
�

exp
�

m ln
a
b

���

, (9.2)

where O represents the big O notation. Formulas similar to Eqs. (9.1) and (9.2) reoccur in the
present Lecture Notes.

9.2.2 Problem statement and solution

For either gambler A or B, the gambler’s ruin problem can be seen as a first-passage problem
in which a particle hops on a segment until it reaches one of two endpoints, after which the
process terminates, as depicted in the left Panel of Fig. 9.1. If the position of the random
walker, denoted by X̂n ∈ [ℓ] = {0, 1, . . . ,ℓ} with n ∈ N a discrete time index, represents the
stakes of gambler A, then the absorbing boundary at the origin corresponds to the event where
gambler A loses all of its stakes, while the other endpoint represents the event where gambler
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B loses all their stakes in the game. Note that the main quantities of interest, such as the profit
of gambler A, are ensemble averages of X̂ evaluated at the random termination time T̂ .

Let us formalise the above. Consider a Markov process X̂n ∈ [ℓ] governed by the transition
matrix

P(X̂n = x |X̂n−1 = y) =ω+δx ,y−1 +ω−δx ,y+1 , (9.3)

for y ∈ [ℓ] \ {0,ℓ}, with
ω+ = 1−ω− , (9.4)

with absorbing boundary conditions

P(X̂n = x |X̂n−1 = 0) = δx ,0 , and P(X̂n = x |X̂n−1 = ℓ) = δx ,ℓ , (9.5)

and with initial state X̂0 = x0 ∈ [ℓ]. When the particle reaches the boundaries x = 0 or x = ℓ,
then the process terminates, in the sense that the particle stops moving, and hence we have a
process of finite, random termination time given by

T̂ =min
�

n ∈ N∪ {0} : X̂n = ℓ or X̂n = 0
	

. (9.6)

Hence, each realisation X̂ T̂
0 =

�

X̂0, X̂1, . . . , X̂ T̂

	

has a different duration T̂ and X̂ T̂ ∈ {0,ℓ}.
Classically, the gambler’s ruin problem is solved with difference equations [148]. In what

follows, we illustrate the solution for ω+ ̸= 1/2, and we refer to Ref. [148] for more details,
including the derivation for ω+ = 1/2. Specifically, we determine the main observables of
interest, viz., the probability of ruin p−x , the average profit 〈X̂ T̂ 〉, the average termination time
〈T̂ 〉, and the generating functions of the termination time T̂ at the negative boundary, g−x , and
at the positive boundary, g+x .

Probability of ruin. The probability of ruin,

p−x := P
�

X̂ T̂ = 0|X̂0 = x
�

, (9.7)

solves the difference equation

p−x =ω+p−x+1 +ω−p−x−1 , (9.8)

with boundary conditions p−
ℓ
= 0 and p−0 = 1. The solution to these equations are unique, as

follows from the Maximum Principle for harmonic functions, see Ref. [152] or Theorem 2.1
in [153].

First we consider the Eq. (9.8) without boundary conditions. In this case, p−x should be
seen as a function of x rather than the splitting probability in the gambler’s ruin problem. For
functions of the form p−x = α

x , where α ∈R+, we obtain from Eq. (9.8) that α=ω+α2 +ω−.
Forω+ ̸= 1/2, this quadratic equation contains two solutions, namely, α= 1 and α=ω−/ω+.
Using the linearity of the difference Eq. (9.8), we obtain

p−x = c1 + c2

�

ω−
ω+

�x

, (9.9)

where c1 and c2 are arbitrary constants fixed by the boundary conditions. Second, we impose
the boundary conditions on p−x to obtain the splitting probability

p−x =
(ω−/ω+)

ℓ − (ω−/ω+)
x

(ω−/ω+)
ℓ − 1

, (9.10)

for the gambler’s ruin problem. We have plotted p−x as a function of x/ℓ in the top Panel of
Fig. 9.2. Notice that Eq. (9.10) is equivalent to Bernoulli’s formula Eq. (9.1) when identifying
n= x , m= ℓ− x , b =ω+, and a =ω−.
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Figure 9.2: Top: Ruin probability p−x as a function of x/ℓ for parameters ℓ = 10,
ω− = 0.55. Bottom: The expected profit 〈X̂ T̂ |X̂0 = x〉 in the gambler’s ruin problem
for the same parameters ℓ= 10, ω− = 0.55.

Profit at the termination time. The average profit 〈X̂ T̂ 〉 − 〈X̂0〉 at the termination time is
given by

〈X̂ T̂ 〉 − 〈X̂0〉= p+x (ℓ− x)− x p−x =
ℓ− x − (ω−/ω+)x(ℓ− x(ω−/ω+)ℓ−x)

1− (ω−/ω+)ℓ
. (9.11)

In the bottom panel of Fig. 9.2, we plot 〈X̂ T̂ 〉 as a function of x/ℓ. Note that the profit is
nonnegative for ω+ ≥ω−, a fact that we demonstrate in Sec. 9.4 with martingale theory.

Mean first-passage time. The mean duration of the process,

t x := 〈T̂ |X̂0 = x〉 , (9.12)

solves
t x =ω+ t x+1 +ω− t x−1 + 1 , (9.13)

with boundary conditions t0 = 0 and tℓ = 0. Solving these difference equations for ω+ ̸= 1/2
towards t x , we obtain [148]

t x = −
x

ω+ −ω−
+

ℓ

ω+ −ω−

1− (ω−/ω+)x

1− (ω−/ω+)ℓ
. (9.14)

Generating function. The fluctuations of the termination time at the negative boundary are
determined by the generating function

g−x (s) :=
∞
∑

n=0

P(T̂ = n, X̂ T̂ = 0|X̂0 = x)sn , (9.15)

which solves the difference equation

g−x (s) =ω+sg−x+1(s) +ω−sg−x−1(s) , (9.16)
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with boundary conditions g−0 (s) = 1 and g−
ℓ
(s) = 0. Solving towards gx(s), we obtain for

ω+ ̸= 1/2 [148]

g−x (s) =
�

ω−
ω+

�x λℓ−x
+ (s)−λℓ−x

− (s)

λℓ+(s)−λ
ℓ
−(s)

, (9.17)

where

λ±(s) :=
1±

p

1− 4ω−ω+s2

2ω+s
. (9.18)

Analogously, for

g+x (s) :=
∞
∑

n=0

P(T̂ = n, X̂ T̂ = ℓ|X̂0 = x)sn , (9.19)

we find

g+x (s) =
λx
+(s)−λ

x
−(s)

λℓ+(s)−λ
ℓ
−(s)

. (9.20)

Note that setting s = 0, we recover g+x (0) = p+x and g−x (0) = p−x .

9.3 Martingales: Definition, represenations, and properties

As noted by Jean-André Ville in his PhD thesis [154], martingales provide an alternative frame-
work to solve the gambler’s ruin problem. We provide here a brief overview of martingale
theory, and in the next section we discuss how to use martingales to solve the gambler’s ruin
problem.

9.3.1 Definition

Let X̂m ∈ X be a stochastic process taking values in a finite set X , and let m ∈ N be a discrete
time index. We denote a sequence of (random) variables by

X̂ n
0 := (X̂0, X̂1, . . . , X̂n) . (9.21)

Let P be the probability measure describing the statistics of X , and we denote its path proba-
bility by

p(xn
0) := P(X̂ n

0 = xn
0) . (9.22)

For simplicity, we assume in these lecture notes that both the phase space X and time n are
discrete, but all the concepts can be extended into a continuous setting, see Ref. [142].

A martingale M̂n

�

X̂ n
0

�

, relative to X̂ and P, is a real-valued process defined on X̂ n
0 for which

it holds that [155]
〈|M̂m|〉<∞ , (9.23)

and
〈M̂n|X̂ m

0 〉= M̂m , (9.24)

for all m ∈ [n] := {0,1, . . . , n}. Here the averages 〈·〉 are taken with respect to the probability
measure P. Using the definition of conditional probabilities, we get

〈M̂n|X̂ m
0 〉=

∑

xn
m+1∈X m−n

p(xn
0)

p(xm
0 )

Mn(x
n
0) . (9.25)

We require the first condition, Eq. (9.23), as it guarantees that the conditional expectation
〈M̂n|X̂ m

0 〉 exists, see e.g., Theorem 10.1.1 in [156]. The second condition (9.24) is the defining
property of the martingale. If we replace the condition (9.24) by the inequality

〈M̂n|X̂ m
0 〉 ≥ M̂m , (9.26)
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then we speak of a submartingale process.
We give a brief historical overview on martingales. The martingale condition Eq. (9.24),

appears in Paul Lévy’s book [157] published in 1937 on the sums of random variables as a
technical condition required to extend the classical central limit theorem to sums of dependent
random variables. However, Paul Lévy does not define martingales and does not study their
properties. It is, around the same time, Jean-André Ville who introduces stochastic proceses
satisfying the condition Eq. (9.24) in his PhD thesis [154], and he coined them martingales. In
chapter V of his thesis, Ville proves several properties of martingales and uses them to study,
amongst others, the gambler’s ruin problem. Developments of martingale theory accelerated
after the second world war, mainly after the publication of Joseph Doob’s book on stochastic
processes [158]; Doob, aware of Jean-Ville’s work, borrows its name. Several important results
in martingale theory are named after Doob, such as, Doob’s regularity theorem [159], which
plays an important role in defining stochastic processes on spaces of right-continuous trajec-
tories, the martingale convergence theorems [158], and Doob’s stopping theorems [158], on
which we will rely in this short review.

Nowadays, martingales are models for stocks prices under the efficient market hypothe-
sis [160], and in physics martingales describe important functionals in nonequilibrium, ther-
modynamics, such as, the exponentiated negative entropy production [137,139–141] and the
exponential of the housekeeping heat [161].

9.3.2 Martingale representations

We discuss two important examples of processes that are martinagles.

• Nonnegative martingales: Let M̂n be a nonnegative martingale relative to X̂ and P, and
additionally we assume that 〈M̂0〉 = 1. Then M̂n is the ratio of two path probabilities.
Indeed, if we define

Q(X̂ n
0 = xn

0) := M̂n(x
n
0)P(X̂

n
0 = xn

0) , (9.27)

then Q(X̂ n
0 = xn

0)≥ 0 and
∑

xn
0∈X n

Q(X̂ n
0 = xn

0) = 〈M̂n〉= 1 . (9.28)

The converse is also true. If q(xn
0) :=Q(X̂ n

0 = xn
0) is a path probability that is absolutely

continuous with respect to p(xn
0) := P(X̂ n

0 = xn
0), i.e., p(xn

0) = 0⇒ q(xn
0) = 0, then

M̂n := q(X̂ n
0 )/p(X̂ n

0 ) , (9.29)

exists and is a martingale. Indeed, 〈|M̂n|〉 = 〈M̂n〉 = 1, and for all 0 ≤ m ≤ n it holds
that

〈M̂n|X̂0, X̂1, . . . , X̂m〉=
∑

xn
m+1∈X m−n

P(X̂ n
m+1 = xn

m+1|X̂
m
0 )

q
�

X̂ m
0 , xn

m+1

�

p(X̂ m
0 , xn

m+1)

=
∑

xn
m+1∈X m−n

p(X̂ m
0 , xm

m+1)

p(X m
0 )

q
�

X̂ m
0 , xn

m+1

�

p(X̂ m
0 , xn

m+1)

=
q(X̂ m

0 )

p(X̂ m
0 )
= M̂m , (9.30)
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where we have used p(X̂ m
0 , xn

m+1) to denote the path probability of the sequence
(X̂0, X̂1, ..., X̂m, xm+1, ..., xn). Notice that in the last line we have used the marginalisation
properties

∑

xn
m+1∈X m−n

q(X̂ m
0 , xm

m+1) = q(X̂ m
0 ) , (9.31)

of path probabilities.

• Harmonic functions: Let X̂ ∈ X be a Markov process with transition matrix

Rx y := P
�

X̂n+1 = x |X̂n = y
�

, (9.32)

and let h(x) be a left eigenvector of R associated with the unit eigenvalue, i.e.,

h(y) =
∑

x∈X
h(x)Rx y . (9.33)

It then holds that
ĥ(X̂n) := h(X̂n) , (9.34)

is martingale. Indeed,

〈ĥ(X̂n)|X̂n−1〉=
∑

x∈X
h(x)Rx X̂n−1

= ĥ(X̂n−1) . (9.35)

Analogously,

〈ĥ(X̂n)|X̂n−2〉=
∑

x1,x2∈X
h(x2)Rx2 x1

Rx1,X̂n−1
= ĥ(X̂n−2) , (9.36)

and so forth.

The functions h are also called harmonic functions. Note that these should not be con-
fused with the right eigenvectors

p∞(x) =
∑

y∈X
Rx yp∞(y) , (9.37)

which represent stationary distributions. For ergodic processes, there exists exactly one
stationary distribution, and correspondingly, also exactly one harmonic function, viz.,
h(x) = c for all x ∈ X , where c is an arbitrary constant independent of x . Hence,
nontrivial harmonic functions exist only in nonergodic processes.

A possibility to make the process nonergodic is to introduce absorbing states. Specifically,
if we set

h(x) = 1 , if x ∈ X+ , (9.38)

and
h(x) = 0 , if x ∈ X− , (9.39)

then h(x) is the probability to reachX+ before reachingX− when the initial state X0 = x .
Hence, splitting probabilities are examples of harmonic functions, and the difference
Eq. (9.8) in Sec. 9.2.2 is equivalent to the Eq. (9.35).
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9.3.3 Doob’s optional stopping theorem

We end the first part of this lectures with Doob’s optional stopping theorem, which is the main
theorem we will be using.

Doob’s optional stopping theorem states the following, see Theorem 4.1.1. in Ref. [162].

Theorem 1. Let M̂n be a martingale with respect to X̂ and P, and let T̂ be a stopping time with
respect to X̂ and P. If one of the the following two conditions holds, viz.,

• T̂ ≤ n for some n,

• or, T̂ <∞ and there exists some c ∈R+ such that |M̂n| ≤ c for all n≤ T̂ ,

then
〈M̂T̂ 〉= 〈M̂0〉 . (9.40)

If the abovementioned conditions do not apply, then Doob’s optional stopping theorem is
in general not valid. For example, for an unbiased random walk Xn with ω+ = ω− = 1/2,
which is a martingale, and for T̂ =min

�

n≥ 0 : X̂n = x+
	

, it holds that 〈X̂ T̂ 〉= x+ ̸= 〈X̂0〉, and
thus Doob’s optional stopping theorem does not apply. One way to bound M̂n for n ≤ T̂ is by
defining T̂ as the escape time from a bounded set.

For submartingales Mn, it holds analogously that 〈M̂T̂ 〉 ≥ 〈M̂0〉.

9.4 Martingale solution to the gambler’s ruin problem

We now solve the gambler’s ruin problem with martingales.

9.4.1 The average profit

To illustrate the use of martingale theory, let us first consider the average profit 〈X̂ T̂ 〉, which is
nonnegative as we have seen from explicitly deriving the formula Eq. (9.11). Using martingale
theory, this result is seen as a direct consequence of the submartingale property of X̂n. Indeed,
since for ω+ ≥ω−,

〈X̂n|X̂ m
0 〉 ≥ X̂m , (9.41)

the process X̂n is a submartingale, and hence Doob’s optional stopping theorem for submartin-
gales applies, yielding

〈X̂ T̂ 〉 ≥ 〈X̂0〉 . (9.42)

Thus, the profit X̂ T̂ − X̂0 is on average nonnegative. Notably, this result holds for any stopping
strategy T̂ as long as X̂n is bounded for all times n < T̂ (i.e., the total amount of money is
finite). Conversely, when ω− ≤ω+, then

〈X̂ T̂ 〉 ≤ 〈X̂0〉 , (9.43)

and the gambler is losing money, no matter which betting strategy, determined by T̂ , is used.

9.4.2 Family of martingale processes

To obtain the splitting probabilities and the generating function of T̂ , we introduce a family of
martingales.

First, we define the process X̂n as in Sec. 9.2.2 with the transition matrix Eq. (9.3) but
without absorbing boundary conditions, i.e., X̂ ∈ Z. The process

Ẑn := exp
�

zX̂n + nf (z)
�

, (9.44)
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with
f (z) := − ln[ω+ exp(z) +ω− exp(−z)] , (9.45)

is then a martingale with respect to X̂ and P for all values z ∈R.
Indeed, condition (9.24) follows from

〈Ẑn|X̂0, X̂1, . . . , X̂m〉=
∑

x∈Z
exp(zx + nf (z))P(X̂n = x |X̂ m

0 )

=
n−m
∑

n+=0

exp
�

z(X̂m + n+ − (n−m− n+)) + nf (z)
�

�

n−m
n+

�

ω
n+
+ ω

n−m−n+
−

= exp
�

zX̂m +mf (z)
�

exp{((n−m) f (z))}
n−m
∑

n+=0

�

n−m
n+

�

(ezω+)
n+
�

e−zω−
�n−m−n+

= Ẑm

�

ω+ez +ω−e−z

exp(− f (z))

�n−m

= Ẑm , (9.46)

where n+ represents the number of forward steps taken by X̂ when moving from X̂m to-
wards X̂n.

9.4.3 Splitting probabilities

We use the martingales Ẑn to determine the splitting probabilities in the gambler’s ruin prob-
lem. Using Doob’s optional stopping theorem (Theorem 1) for Ẑn and the stopping time
T̂ =min

�

n≥ 0 : X̂n /∈ (0,ℓ)
	

, we get

p+x 〈exp
�

zℓ+ T̂ f (z)
�

|X̂ T̂ = ℓ〉+ p−x 〈exp
�

T̂ f (z)
�

|X̂ T̂ = 0〉= exp(zx0) . (9.47)

Setting

z = ln
�

1− q
q

�

, (9.48)

the nontrivial root of f (z) (i.e., f (z) = 0 and z ̸= 0), Eq. (9.47) can be solved together with

p+x + p−x = 1 , (9.49)

yielding Eq. (9.10) for the gambler’s ruin probability.

9.4.4 Generating functions

To obtain the generating functions g+x (s) and g−x (s), we consider Eq. (9.47) at the two roots
z = z±(s) that solve the equation

f (z±) = ln(s) . (9.50)

This yields the two equations

exp(z±ℓ)g
+
x (s) + g−x (s) = exp(z±x) , (9.51)

where g±x are the generating functions of T̂ defined in Sec. 9.2.2. Solving Eq. (9.50) towards
z± gives

z± = lnλ±(s) , (9.52)

where λ±(s) are as defined in Eq. (9.18). Solving the Eqs. (9.51) towards g±x yields Eqs. (9.17)
and (9.20).
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9.5 Thermodynamic versions of the gambler’s ruin problem

We define thermodynamic versions of the gambler’s ruin problem that characterise fluctua-
tions in nonequilibrium processes. Specifically, we consider first-passage problems of currents
Ĵn in Markov processes X̂n. The currents Ĵn are in general nonMarkovian processes, as cur-
rents are functionals defined on the trajectories X̂ n

0 , and this complicates the analysis of the
corresponding first-passage problem. Nevertheless, using martingale theory we will be able to
solve several first-passage problems of currents in nonequilibrium processes X .

9.5.1 General setup

Let X̂n ∈ X , with n ∈ N and X a discrete set, be a stochastic process whose statistics de-
scribed by P are Markovian with transition matrix R, see Eq. (9.32). We assume that X̂ is
irreducible and that there exists a unique stationary, probability mass function p∞(x) that
solves Eq. (9.37) for all x ∈ X . In other words, the process is ergodic, see Theorem 4.1 in
Ref. [153]. In addition, we assume that Rx y > 0 whenever that Ry x > 0 so that the time-
reversed Markov process exists.

An empirical integrated current Ĵ is a stochastic process of the form

Ĵn :=
∑

x ,y∈E
cx y Ĵn(y|x) , (9.53)

where the empirical edge current

Ĵn(y|x) := N̂n(y|x)− N̂n(x |y) , (9.54)

is the difference between the number of jumps N̂n(y|x) in X̂ n
0 from x to y and the number of

jumps N̂n(x |y) from y to x in the same trajectory, cx y ∈ R are constant coefficients, and E
is the set of pairs (x , y) for which Rx y ̸= 0. In a stationary process, we denote the average
current by

j(y|x) = Ry xp∞(x)−Rx yp∞(y) . (9.55)

The gambler’s ruin problem in Ĵ reads

T̂J :=min
�

n≥ 0 : Ĵn /∈ (−J−, J+)
	

, (9.56)

where the thresholds J−, J+ ≥ 0, and we assume, without loss of generality, that 〈Ĵn〉> 0. The
probability of ruin is then defined by

p−J := P
�

ĴT̂J
≤ −J−

�

. (9.57)

The thermodynamic cost of a process can be quantified in terms of the stochastic entropy
production [34,135,136]

Ŝn := Ŝsys(X̂n)− Ŝsys(X̂0) + Ŝenv
n , (9.58)

with
Ŝsys(X̂n) = − lnp∞(X̂n) , (9.59)

the Shannon entropy capturing the information theoretic content of the state X̂n, and

Ŝenv
n :=

1
2

∑

(x ,y)∈E

ln
Rx y

Ry x
Ĵn(y|x) , (9.60)

139

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.80


SciPost Phys. Lect. Notes 80 (2024)

is the environment entropy change. The definition of the environment entropy relies on the
principle of local detailed balance [24], which can be seen as a stochastic version of the local
equilibrium concept [163]. At stationarity, the average rate of dissipation is

σ := 〈Ŝn〉/n=
1
2

∑

(x ,y)∈E

Rx yp∞(y) ln
Rx y

Ry x
. (9.61)

In what follows, we discuss the gambler’s ruin problem for three examples of currents Ĵ .

9.5.2 Gambler’s ruin problem for entropy production

The first case we consider is for Ĵ = Ŝ, the stochastic entropy production. The stopping problem
for entropy production reads

T̂S =min
�

n≥ 0 : Ŝn /∈ (−S−, S+)
	

. (9.62)

This case is relevant for two reasons: (i) in the uni-cyclic case, the macroscopic current is
asymptotically proportional to the entropy production; (ii) using the stopping problem T̂Ŝ we
establish relationships that resemble fluctuation relations for entropy production, albeit with
regard to characteristics of entropy production at random times.

The calculation of the ruin probability p−S and the average thermodynamic cost 〈ŜT̂S
〉 is fa-

cilitated by the observation that the process exp
�

−Ŝn

�

is a martingale [137,140,142]. Indeed,

e−Ŝn =
p̃
�

X̂ n
0

�

p
�

X̂ n
0

� , (9.63)

is the ratio of the two path probabilities [34,135,136], viz.,

p
�

X̂ n
0

�

= p∞(X̂0)
n
∏

i=1

RX̂ i X̂ i−1
, (9.64)

and

p̃
�

X̂ n
0

�

= p∞(X̂0)
n
∏

i=1

R̃X̂ i X̂ i−1
, (9.65)

with

R̃x y = Ry x
p∞(x)
p∞(y)

. (9.66)

Hence, according to Eq. (9.30), e−Ŝ(t) is a martingale. Note that

p̃
�

Θn

�

X̂ n
0

��

= p
�

X̂ n
0

�

, (9.67)

where Θn

�

X̂ n
0

�

= (X̂n, X̂n−1, . . . , X̂0) is the time-reversed trajectory, and hence p̃ describes the
statistics of an observer whose arrow of time is reversed.

Using Doob’s optional stopping theorem, see Sec. 9.3.3, we find that

〈e−ŜT̂S 〉= 1 , (9.68)

which is a version of the Integral Fluctuation Theorem at Stopping Times [139]. Further, using
that

P
�

T̂S <∞
�

= p+S + p−S = 1 , (9.69)

140

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.80


SciPost Phys. Lect. Notes 80 (2024)

we obtain
p+S 〈e

−ŜT̂S 〉+ + p−S 〈e
−ŜT̂S 〉− = 1 , (9.70)

where 〈·〉+ and 〈·〉− are the expectation values conditioned on the process terminating at the
positive and negative thresholds, respectively.

If ŜT̂S
∈ {−S−, S+}, which includes the continuum limit, then Eqs. (9.69) and (9.70) yield

p−S =
eS+ − 1

eS++S− − 1
, (9.71)

for the ruin probability. Notice that Eq. (9.71) can be identified with Bernoulli’s formula
Eq. (9.1) when we set S+ = m ln(b/a) and S− = n ln(b/a), with a, b ∈ (0,1) arbitrary num-
bers. Analogously, setting S+ = (ℓ− x) ln(ω+/ω−) and S− = x ln(ω+/ω−) in Eq. (9.71), we
obtain the Eq. (9.10) for the ruin probability in the gambler’s ruin problem. For processes that
are non continuous, we get the inequality [139]

p−S ≤
1

eS− − e−S+
, (9.72)

for the probability of ruin.
Interestingly, the results Eqs. (9.71) and (9.72) for p− allow us to precisely quantify the

negative fluctuations of the entropy production in terms of its infimum value

Ŝinf := infn≥0Ŝn . (9.73)

Indeed, observe that
lim

S+→∞
p−S = P

�

Ŝinf ≤ −S−
�

. (9.74)

Therefore, Eq. (9.72) yields in the limit of S+≫ 1 the inequality

P
�

Ŝinf ≤ −s
�

≤ exp(−s) , (9.75)

such that on average
〈Ŝinf〉 ≥ −1 , (9.76)

with equalities attained in the continuum limit. The inequality (9.75) readily implies the
bound

P
�

Ŝn ≤ −s
�

≤ exp(−s) , (9.77)

that follows from the integral fluctuation relation 〈exp
�

−Ŝn

�

〉 = 1 [34]. Hence, martingale
theory provides bounds on negative fluctuations of entropy production that are tighter than
those obtained from fixed-time fluctuation relations.

Furthermore, if ŜT̂S
∈ {−S−, S+}, then we obtain

〈ŜT̂S
〉= p+S S+ − p−S S− =

S+(eS− − 1)− S−(1− e−S+)
eS− − e−S+

, (9.78)

for the average thermodynamic cost at the termination time. Setting S+ = (ℓ− x) ln(ω+/ω−)
and S− = x ln(ω+/ω−) in Eq. (9.78), yields Eq. (9.11) for the average profit at the termination
time. More generally, the following inequality holds,

〈Ŝ(T̂S)〉 ≥ S+ −
S+ + S−

eS− − e−S+
≥ 0 , (9.79)

which is a specific instance of the second law of thermodynamics at stopping times [139,141].
This law states that on average the entropy production increases, even when we stop the
process at a random stopping time. Key for the second law of thermodynamics at stopping
times to hold is that the random time T̂ obeys causality, i.e., it is a functional of the trajectory
X T̂

0 up to the stopping time. Note that the second law of thermodynamics at stopping times is
a stochastic version of the second law of thermodynamics, as entropy production is evaluated
at a time T that depends on the trajectory’s history.
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Figure 9.3: Two examples of stochastic processes that model the dynamics of two-
headed molecular motors, such as, kinesin-1. The motor states (D:T), (T:φ), and
so forth, denote the chemical states of the rear and front motor head, viz., T stands
for ATP bound, D for ADP bound, D’ for ADP-P bound, and φ for nucleotide free.
Left Panel: Model taken from Ref. [164] with three cycle currents, corresponding to
forward motion ( jf), backward motion ( jb), and a current with no motion yielding a
futile cycle [164]. Notably, the motor position along the biofilament is given by the
edge current Ĵ2→5

n . Right Panel: Molecular motor model of Ref. [165]. In this case,
there are two cycles corresponding with forward motion (with currents jf,1 and jf,2,
respectively), a cycle yielding backward motion (with current jb), and several futile
cycles.

9.5.3 Gambler’s ruin problem for edge currents

In general, currents of interest in nonequilibrium processes do not match the entropy produc-
tion. Indeed, processes typically exhibit multiple currents, and the stochastic entropy produc-
tion is a specific linear combination of those currents, see Eqs. (9.58-9.60). Therefore, in the
present section, we consider the simplest example of a current that is not the stochastic en-
tropy production, viz., an edge current Ĵ = Ĵ(y|x). The corresponding stopping problem is
given by

T̂ (y|x) =min
�

n≥ 0 : Ĵn(y|x) /∈ (−J−, J+)
	

. (9.80)

Note that in general macroscopic currents are not edge currents, but nevertheless, there
exist interesting examples of processes for which this is the case. An example is the position
of two-headed molecular motors bound to a biofilament as described by the model developed
in Ref. [164], whose transition graph is shown in the Left Panel of Fig. 9.3. In this model, the
position of the motor along the filament is given by the edge current Ĵn(5|2).

From the solution of the gambler’s ruin problem for Ŝ, we have learned that it is sufficient
to find a martingale associated with Ĵn(y|x) to solve its gambler’s ruin problem. However,
exp

�

−aĴn(y|x)
�

is not a martingale, except for the trivial case of a = 0. Nevertheless, as shown
in Ref. [146], we can find a martingale that is asymptotically equivalent to exp

�

−aĴn(y|x)
�

,
i.e., up to terms of the order On(1), for a certain value of a. Indeed, the process

M̂n(y|x) :=
p(x ,y)
∞ (X̂0)q∞(X̂n)

p(x ,y)
∞ (X̂n)p∞(X̂0)

exp
�

−a∗(y|x)Ĵn(y|x)
�

, (9.81)

is a martingale, where

a∗(y|x) := ln
Ry x p(x ,y)

∞ (x)

Rx y p(x ,y)
∞ (y)

, (9.82)

is the so-called effective affinity [85,166,167], where p(x ,y)
∞ is the stationary state of the Markov

chain (X̂ ,P(x ,y)) obtained from (X̂ ,P) by removing the edge (x , y) from the Markov transition
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graph, and where q∞ is the stationary state of an auxiliary process (X̂ ,Q) with the transition
matrix V with entries

Vuv =

(

p(x ,y)
∞ (u)

p(x ,y)
∞ (v)

Rvu , if (u, v) ∈ E \ {(x , y), (y, x)} ,

Ruv , if (u, v) ∈ {(x , y), (y, x)} .
(9.83)

In the Appendix 9.7, we perform a calculation analogous to the one in Ref. [146] for continuous
time Markov chains showing that M̂n(y|x) is a Radon-Nikodym derivative process of the form
Eq. (9.29), and hence a martingale with respect to X̂ and P.

Consequently, Doob’s optional stopping theorem in Sec. 9.3.3 applies to the martingale
M̂n(y|x) and the stopping time T̂ (y|x), yielding

〈M̂T̂ (y|x)(y|x)|X̂0 = x0〉= 〈M̂0(y|x)|X̂0 = x0〉=
q∞(x0)
p∞(x0)

. (9.84)

Defining the splitting probabilities

p±(y|x)(x0) = P
�

ĴT̂ (y|x)(y|x) = J±|X0 = x0

�

, (9.85)

which obey
p+(y|x)(x0) + p−(y|x)(x0) = 1 , (9.86)

we find from Eqs.(9.84) and (9.86) that

p−(y|x)(x0) =
exp (a∗(y|x)J+)ζ(x0)− 1

exp (a∗(y|x)(J− + J+))ζ(x)− 1
, (9.87)

where

ζ(u) =
p(x ,y)
∞ (y)q∞(u)

p(x ,y)
∞ (u)q∞(y)

, for u ∈ X . (9.88)

Analogously to the study of the infimum statistics of entropy production, Ref. [146] uses
Eq. (9.87) to determine the probability mass function of the infimum Ĵinf(y|x) of Ĵ(y|x) and
finds that it is geometrically distributed; this follows readily from taking the limit J+ →∞,
see also Ref. [168]. Remarkably, this property is unique to edge currents and can thus be used
to identify whether a measured current Ĵ is an edge current; note that we assume here that
the observer can measure Ĵ but not X̂ .

Since the thermodynamic interpretation of the stationary distributions p∞, p(x ,y)
∞ , and q∞

is not entirely clear, we take the limits J+≫ 1 and J−≫ 1 in Eq. (9.87), with the ratio J+/J−
fixed. In this limit, the formula (9.87) simplifies into

p−(y|x)(x0) = exp
�

−a∗(y|x)J−(1+ oJmin
(1))

�

, (9.89)

with Jmin =min {J−, J+}. Additionally, using the Wald-like equality [169,170],

〈T̂ 〉=
J+

j(y|x)
(1+ oJmin

(1)) , (9.90)

we get that

| ln p−(y|x)(x0)|=
J−
J+

a∗(y|x)〈T̂ 〉 j(y|x)(1+ oJmin
(1)) . (9.91)

The Eq. (9.91) has an appealing thermodynamic meaning when realising that [85,167]

a∗(y|x) j(y|x)≤ σ, (9.92)
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yielding [144]

| ln p−(y|x)(x0)| ≤
J−
J+
〈T̂ 〉σ(1+ oJmin

(1)) . (9.93)

The Eq. (9.93) expresses a trade-off between speed (〈T̂ 〉), dissipation (σ), and uncertainty
(| log p−|) in a nonequilibrium process X̂ . It is a universal inequality in the sense that it applies
to arbitrary Markov chains X̂ and, importantly, it remains valid for generic currents Ĵ as we
discuss in the next subsection.

9.5.4 Gambler’s ruin problem for generic currents

Although edge currents play a significant role in certain specific models — such as for the
position of a molecular motor described by the model illustrated in the Left Panel of Fig. 9.3 —
it is vital to study the first-passage problem of general currents in nonequilibrium processes, as
macroscopic currents are typically not edge currents. This can be seen in the model illustrated
in the Right Panel of Fig.9.3, which is an alternative model for a two-headed molecular motor
that takes into consideration multiple pathways by which the motor can move forwards or
backwards.

Therefore, we consider in this section the gambler’s ruin problem T̂J , described by
Eq. (9.56), for a general current Ĵ of the form given by Eq. (9.53).

It should be noted that the derivations we present in this section are based on continuous
time Markov chains, as this is the setup considered in Ref. [144]. Therefore, we use the time
index t ∈ R+ instead of n ∈ N. Nevertheless, several results for the gambler’s ruin problem
reviewed here also apply to discrete time Markov chain; we will come back on this matter in
more detail.

Ergodic, continuous time, Markov chains defined on a finite setX satisfy a large deviation
principle for the current, see Ref. [93,171], i.e., in the limit of t ≫ 1 it holds that

pĴt/t(u) = exp (−tJ (u)(1+ ot(1))) , (9.94)

where J (u)≥ 0 is the large deviation function defined for u ∈R. The large deviation function
satisfies the bound

J (u)≤ σ
4

�

u
j
− 1

�2

, (9.95)

which was obtained in Refs. [172,173] (where j is the average current). Using this inequality,
Ref. [144] shows that

| ln p−J | ≤
J−
J+
〈T̂J 〉σ(1+ oJmin

(1)) (9.96)

holds generically for currents Ĵ of the form Eq. (9.53). Note that even though the large devia-
tion bound Eq. (9.95) does not apply in discrete time Markov chains, the inequality Eq. (9.96)
applies in the discrete time setting (see previous section for a derivation for edge currents).
The reason for this is that the ruin probability p− is conserved under the mapping from discrete
to continuous time Markov chains discussed in Ref. [174].

The inequality Eq. (9.96) expresses the trade-off between speed (〈T̂ 〉), dissipation (σ),
and uncertainty (| ln p−|), and is interesting from these three perspectives. Let us discuss these
three perspectives below.

The inequality Eq.(9.96) has implications for the speed of processes, as measured by 〈T̂ 〉. It
suggests that far from equilibrium, processes can be faster than their equilibrium counterparts,
but with a cost in terms of either dissipation or uncertainty. This is evident when considering
the nonequilibrium version of Kramer’s escape problem, as discussed in [144]. Near equilib-
rium, the inequality reduces to a van’t Hoff-Arrhenius law-like equality. However, driving the
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Figure 9.4: Rate of dissipation σ and its lower bounds σFPR and σTUR plotted as a
function of the mechanical force fmech exerted on the motor. The model is the one
of Fig. 9.3, and the parameters chosen are physiological relevant and described in
Ref. [146] [data is taken from Figure 5 in Ref. [146]].

process away from equilibrium results in a reduction of 〈T̂ 〉, which is captured by the inequality
Eq.(9.96).

Second, we discuss the inequality from the viewpoint of uncertainty, quantified with
| log p−J |. In general, the quantity p−J decreases exponentially in the threshold J−, i.e.,

p−J = exp
�

a∗J−(1+ oJmin
(1))

�

. (9.97)

One way to approach the challenge of determining a∗ in experiments is to use the inequality
(9.96), which provides a bound on the quantity. Specifically, the inequality implies that a∗

is less than or equal to 〈T̂J 〉σ/J+, up to small corrections that are negligible for large Jmin.
This means that by measuring the rate of dissipation and the mean first-passage time, we can
estimate a∗. This approach is particularly useful as p− decreases rapidly with J−, making it
difficult to directly determine a∗ in experiments.

Lastly, we analyze the inequality from the perspective of dissipation σ. In nonequilibrium
processes, fluctuations of currents carry information about the amount of dissipation. There-
fore, the inequality (9.96) can be interpreted as σ ≥ σFPR(1 + oJmin

(1)), where σFPR is an
estimator of dissipation given by

σFPR =
J+
J−

| ln p−J |

〈T̂J 〉
. (9.98)

This estimator combines the splitting probability p−J and the mean first-passage time 〈T̂J 〉, and
can be used to bound the rate of dissipation from below. We can compare this approach with
the alternative inequality σ ≥ σTUR(1+ oJmin

(1)), where [175]

σTUR = 2
〈T̂J 〉

〈T̂2
J 〉 − 〈T̂J 〉2

, (9.99)

is the thermodynamic uncertainty ratio, that holds for continuous time Markov chains [175];
notice that comparing with (9.96) the σTUR quantifies the uncertainty with the coefficient of
variation, (〈T̂2

J 〉 − 〈T̂J 〉2)/〈T̂J 〉2 instead of | ln p−J |. In this regard, rather surprisingly, it was
found in [145] that σFPR is a better estimator than σTUR for noncontinuous processes that run
far from thermal equilibrium; see Fig. 9.4 for the standard molecular motor example. As a
final remark on this, note that the thermodynamic uncertainty bound (9.99) does not apply in
discrete time, whereas the first-passage ratio bound (9.96) is valid in discrete time.

We end the paper with discussing the thermodynamic cost 〈Ŝ(T̂J )〉 for the gambler’s ruin
problem of a generic current. It holds generically that [139,141]

〈ŜT̂J
〉 ≥ 0 , (9.100)
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for all Ĵ , and in fact, the inequality 〈ŜT̂ 〉 ≥ 0 holds for any stopping time T̂ . We coined this
relation the second law of thermodynamics at stopping times [139, 141]. This law expresses
that an observer cannot anticipate negative fluctuations of entropy production, even if it is
“infinitely" smart and has full knowledge of the trajectory’s history [142]. It will be interesting
to further explore the connection between the second law of thermodynamics at stopping times
and Maxwell demons , see e.g. Refs. [141,176–178].

9.6 Discussion

We discuss some of the questions that were raised by the participants of the workshop.

• Q1:“Thermodynamics methods have exploited the martingale approach to the gamblers ruin
problem but not the difference equations approach. Hence, can we use the difference method
to solve the gambler’s ruin problem in stochastic thermodynamics?"

Answer: This should in principle be possible, but since it has not been explored much
so far, it should be rather taken as a suggestion for future research, than a question. One
of the purposes of the present lecture notes is to precisely draw attention to these kind
of interesting problems.

• Q2:“The trade-off inequality (9.96) is reminiscent of the thermodynamic uncertainty re-
lation for first-passage times (9.99). Why is in the simulations of Figure 9.4 the former
tighter than the latter?

Answer: It is important to note that the two inequalities are distinct. The thermody-
namic uncertainty relation for first-passage times solely relies on the statistics of T̂J at the
positive boundary J+ and is agnostic to the negative boundary J−. In contrast, inequality
(9.96) is based on the probability of reaching the negative boundary, and it seems that
these negative fluctuations are critical for estimating entropy production.

• Q3:“The Eq. (9.96) is an equality when you set Ĵ = Ŝ. Why should we care, as in general
currents Ĵ are not proportional to Ŝ?:

Answer: An equality places more strict limitations on the behavior of nonequilibrium
systems than an inequality. For example, the Jarzysnki equality is considered a stronger
result than the second law of thermodynamics. Although, in general, the equality in
Eq. (9.96) is not realized, we can demonstrate that it is achieved when Ĵ = Ŝ, which
is an intriguing feature. This has practical implications, such as when using σFPR to
estimate dissipation, as it means the estimator is unbiased if Ĵ = Ŝ. An estimator lacking
this attribute is unable to accurately estimate σ even with complete knowledge of Ŝ.

• Q4: To what extent does the martingale formalism for e−Ŝt apply to diffusion processes (or
Langevin processes)?:

Answer: Demonstrating the martingale property of e−Ŝ is more challenging for diffu-
sion processes. It is immediate that e−Ŝ is a local martingale, see [138], but martingality
requires an additional assumption, called the Novikov condition, see Ref. [142]. Alterna-
tively, it is sufficient to show the integral fluctuation relation 〈e−Ŝt 〉= 1, which together
with the local martingale property of e−Ŝt implies that e−Ŝt is a martingale. In the physics
literature, deriving 〈e−Ŝt 〉 = 1 is usually avoided with the (sensible) argument that the
Radon-Nikodym derivative between the forward and backward measures exists, in which
case the latter equality is immediate [40]. Nevertheless, identifying whether for a given
diffusion process the ratio between the forward and backward measures exists is a priori
not clear and a challenging problem.
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9.7 Appendix: Martingality of Eq. (9.81)

We show that M̂n(y|x), as defined in Eq. (9.81), is a martingale. First, in Sec. 9.7.1, we show
that the matrix V, as defined in Eq. (9.83), defines a Markov chain. Second, in Sec. 9.7.2, we
show that M̂n(y|x) is the ratio of two path probabilities, and thus a martingale according to
the derivations in Sec. 9.3.2.

9.7.1 Validity of the Markov transition matrix Eq. (9.83)

We show that the matrix Vuv , given by Eq. (9.83), defines a Markov chain. Since it is clear that
all the elements are nonnegative, it remains to show that

∑

u∈X
Vuv = 1 , (9.101)

for all v ∈ X . For v ∈ X \ {x , y}, Eq. (9.101) is equivalent to
∑

u∈X
p(x ,y)
∞ (u)Rvu = p(x ,y)

∞ (v) , (9.102)

which holds as p(x ,y)
∞ (u) is the stationary state of the Markov chain (X̂ ,P(x ,y)), obtained from

(X ,P) by removing the (x , y) edge from the set E . Note that the removal of an edge yields
a transition matrix R(x ,y) with R(x ,y)

x y = R(x ,y)
y x = 0 and the diagonal elements are adjusted to

preserve normalization so that

R(x ,y)
x x = Ry x +Rx x , and R(x ,y)

y y = Rx y +Ry y . (9.103)

Therefore, for v ∈ X \ {x , y} it holds that R(x ,y)
uv = Ruv , ∀u ∈ X , and hence Eq. (9.102) is the

steady state equation.
We are left to verify Eq. (9.101) for v = x and v = y . We discuss here v = x , and leave

v = y as an exercise for the reader. For v = x , Eq. (9.101) reads

∑

u∈X\{x ,y}

p(x ,y)
∞ (u)

p(x ,y)
∞ (x)

Rxu +Ry x +Rx x = 1 , (9.104)

which simplifies into
∑

u∈X\{x ,y}

p(x ,y)
∞ (u)Rux +R(x ,y)

x x p(x ,y)
∞ (x) = p(x ,y)

∞ (x) , (9.105)

after using Eq. (9.103). Since Eq. (9.105) is the steady state equation for p(x ,y)
∞ , it holds as an

equality, which is what we were meant to show.

9.7.2 The process in Eq. (9.81) is ratio of two path probabilities

We now show that M̂n(y|x), as defined in Eq. (9.81), is a ratio of two path probabilities, and
hence a martingale. The calculation follows along the same lines as the one presented in Sec.
5 of Ref. [146] for continuous time Markov chains.

Specifically, we show that

M̂n(y|x) =
r(X̂ n

0 )

p(X̂ n
0 )

, (9.106)
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where p(X̂ n
0 ) is the path probability

p(X̂ n
0 ) = p∞(X̂0)

n
∏

j=1

RX̂ j X̂ j−1
, (9.107)

and

r(X̂ n
0 ) = q∞(X̂0)

n
∏

j=1

ṼX̂ j X̂ j−1
, (9.108)

is an alternate path probability, where q∞(u) is the stationary state of the Markov chain V,
and

Ṽuv = Vvu
q∞(u)
q∞(v)

, (9.109)

is its corresponding time-reversed Markov chain. Because of the definition of V in Eq. (9.83),
we find the expression

Ṽuv =







p(x ,y)
∞ (v)q∞(u)

p(x ,y)
∞ (u)q∞(v)

Ruv , if (u, v) ∈ E \ {(x , y), (y, x)} ,
q∞(u)
q∞(v)

Rvu , if (u, v) ∈ {(x , y), (y, x)} .
(9.110)

Substituting the expressions (9.107), (9.108), and (9.110) into Eq. (9.106) we obtain the
right-hand side of Eq. (9.81), which we were meant to show.

10 Quantum thermodynamics

Ariane Soret and Vasco Cavina34 This lecture aims at providing the basic concepts to understand
ongoing research in the field of quantum thermodynamics. Starting from the foundations of the
statistical approach to quantum mechanics, we present the notion of quantum measurement as
a tool to compute the full statistics of thermodynamic quantities (heat, work and entropy) in
closed quantum systems. This formalism is then used to discuss the laws of thermodynamics, the
fluctuation theorems and the Jarzynski equality for closed quantum systems. We then extend the
discussion to open systems, where we focus on master equation approaches. Sections 2 and 3 are
mainly based on the references [179] and [180], while the end of section 3 is based on [27].
Section 4 presents recent developments [181].

10.1 Introduction

The initial development of quantum mechanics was motivated by a thermodynamics problem:
Blackbody radiation. Experiments carried out during the 19th century evidenced that the
spectrum of the radiation emitted by a blackbody depended exclusively on its temperature.
Thanks to rapid improvements in experimental methods, providing increasingly accurate data,
by the end of the 19th century Max Planck was able to derive an empirical equation describing
the blackbody spectrum with great accuracy. Planck later tried to find a theoretical explanation
for his equation and succeeded in 1900, by applying Ludwig Boltzmann theory of gases [182].
Boltzmann’s approach relied on a mathematical trick: Dividing the energy spectrum in small
units, which would then be taken infinitely small in order to recover a continuous energy
distribution. Planck realized that the energy spectrum had to be divided in units ε= ħhν, with
ν the frequency at which the molecules of the blackbody resonated, and ħh - later known as
the Planck constant - a quantity which could not be taken arbitrarily small. Five years later,

34AS was the lecturer and wrote this chapter; VC was the angel.
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Albert Einstein took the reasoning one crucial step further, by arguing that the radiation field
was in fact constituted of individual quanta (photons) of energy ħhν [183]. Einstein showed
that this approach fully reconciled Maxwell’s theory of electromagnetism (which predicts a
divergence of the black body spectrum in the ultraviolet regime – the so-called ultra violet
catastrophe) with the blackbody radiation spectrum. This was the starting point of the theory
of quanta, which later on led to the development of quantum mechanics by Bohr [184], then
Schrödinger [185], Heisenberg [186], Born [187] and Dirac [188]. Quantum thermodynamics
appeared as a field of research a few decades later, to study the emergence of thermodynamics
in quantum systems [189,190], and reconnecting with the historical starting point of quantum
physics. Even more recently, the focus in the field was put in the study of out of equilibrium
systems. For further reading on the history of quantum physics and thermodynamics, see
[191], and for more broad and complete reviews on state-of-the-art quantum thermodynamics,
see [180,192].

This course provides an overview of the mathematical foundations of quantum thermody-
namics, and presents modern methods used in the field today as well as recent developments.

Quantum mechanics is an inherently probabilistic theory, in the sense that a full description
of a quantum object requires to perform a series of measurements on copies of that object,
prepared in identical conditions. Consider for example the polarization of a photon: If we
measure it using an interferometer, the result will be either horizontal or vertical, but the
photon was actually in a linear combination of the two. In order to fully describe the photon,
we would therefore need to repeat the experiment several times on a set of photons prepared
in the same way and acquire information on the initial state using the statistics of our series of
measurements. Despite it being intrinsically probabilistic, the framework of quantum statistics
differs strongly from classical statistics. This has to do with the fact that the classical statistical
physics theory, built on probability spaces, is incompatible with the fundamental principles of
quantum mechanics, that a system is fully described only by its wave function on a Hilbert
space. We will explain this point in the first part of the course.

10.2 Mathematical framework for quantum statistics

This chapter contains reminders of quantum mechanics, and introduces the mathematical
framework of quantum statistics. We state the main postulates on which quantum mechanics
is built, define random variables, and introduce the concept of density matrix. We begin with
two fundamental postulates of quantum mechanics:

Postulate 1: A quantum system is described by a state vector, or wave function, |ψ〉,
defined on a Hilbert space H.

Postulate 2: Measurable quantities, or observables, are represented by linear, self-
adjoint operators acting on the Hilbert space H.

Every Hilbert space is naturally equipped with an inner product (also known as scalar
product). The inner product between two vectors |ψ〉, |φ〉 of the Hilbert space is noted 〈ψ|φ〉,
and the norm of a vector |ψ〉 is given by ||ψ|| =

p

〈ψ|ψ〉. Throughout this course, we will
consider only separable Hilbert spaces, i.e., Hilbert spaces with a finite or infinite and countable
basis {φα}, s.t. 〈φα|φβ〉= δαβ . Any vector |ψ〉 then admits a unique decomposition

|ψ〉=
∑

α

〈ψ|φα〉|φα〉 . (10.1)

An operator M̂ is self-adjoint if it is equal to its adjoint M̂†, which is the operator satisfying
〈M̂ψ|φ〉= 〈ψ|M̂†φ〉 for all |ψ〉, |φ〉.
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Example: For a Hilbert space of finite dimension, we can represent the operators by matrices
in the coordinate representation induced by a selected basis. The inner product coincides with
the standard inner product on C. In this case, the matrix associated to the adjoint operator
M̂† is the conjugate transpose of the matrix associated to M̂ .

The time evolution of the state of a quantum system is described by a time dependent wave
function |ψ(t)〉.

Postulate 3: For isolated systems (i.e., systems which exchange neither energy nor
particles with the environment), the state vector |ψ(t)〉 evolves in time according to
the Schrödinger equation,

iħh
d|ψ(t)〉

d t
= Ĥ|ψ(t)〉 , (10.2)

where Ĥ is a time independent operator – the system’s Hamiltonian – and ħh is the
Planck’s constant. If the system is submitted to external forces (e.g. an electromag-
netic field), and if the dynamics of the system can be described as a time dependent
Hamiltonian Ĥ(t), then the system is said to be closed [179], and its state vector satis-
fies

iħh
d|ψ(t)〉

d t
= Ĥ(t)|ψ(t)〉 . (10.3)

The solution of (10.3) takes the form

|ψ(t)〉= Û(t, t0)|ψ(t0)〉 , (10.4)

where Û(t, t0) is the so called propagator or time-evolution operator, satisfying

iħh
∂ Û(t, t0)
∂ t

= Ĥ(t)Û(t, t0) ,

Û(t0, t0) = I : Initial condition.
(10.5)

Û(t, t0) is a unitary operator: Û†(t, t0)Û(t, t0) = Û(t, t0)Û†(t, t0) = I. If the Hamiltonian Ĥ
is time-independent, then Û(t, t0) is given by

Û(t, t0) = e−i(t−t0)Ĥ/ħh . (10.6)

If Ĥ(t) is time dependent, then

Û(t, t0) = T←
�

e−i
∫ t

0 dsĤ(s)/ħh
�

, (10.7)

where T← is the time-ordering operator.
An important theorem for quantum measurement and quantum statistics is the spectral

theorem,

Spectral theorem (discrete version35): For every self-adjoint operator M̂ with a dis-
crete spectrum {µn}, there exists a unique spectral family {Π̂n} of projection operators s.t.
M̂ =

∑

n
µnΠ̂n, with Π̂n =

∑

k
|ψn,k〉〈ψn,k| where {|ψn,k〉}k is an eigenbasis of the eigenspace

associated to the eigenvalue µn. □
The projection operators are orthogonal to each other: Π̂nΠ̂m = δmnΠ̂n, and satisfy the

completeness relation:
∑

n
Π̂n = I.

35This is the discrete version of the spectral theorem; we only introduce the discrete version since, in this course,
we focus on operators with discrete spectra. See section 2.1 in [179] for the continuous version.
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Statistical approach to quantum mechanics. Let us now introduce the framework to de-
scribe quantum mechanics from a statistical point of view. In the statistical interpretation of
quantum mechanics, every state |ψ〉 represents an ensemble E of identically prepared sys-
tems, E = {S1, ..., SN} The result of any measurement process of E , associated to an observable
as stated in postulate 2, can be interpreted in a consistent way as an ensemble of possible
outcomes as state in the following postulate.

Consider an observable M̂ .

Postulate 4 (Born): The outcomes of the measurements of M̂ on |ψ〉 represent a real
valued random variable M . The mean value of M , noted 〈M〉, and its variance var(M),
are then given by

〈M〉= 〈ψ|M̂ |ψ〉 ,

Var(M) = 〈M2〉 − 〈M〉2 = 〈ψ|M̂2|ψ〉 − 〈ψ|M̂ |ψ〉2 .
(10.8)

One could also consider a statistical mixture of a set of ensembles Eα, with weights wα s.t.
∑

α
wα = 1. Such a mixture can be achieved, for instance, by choosing Nα systems from Eα; the

weights wα would then be wα = Nα/N with N =
∑

α
Nα. The measurements of an observable M̂

over the statistical mixture yields a random variable with an average 〈M〉=
∑

α
wα〈ψα|M̂ |ψα〉.

The above description can be conveniently reformulated using the density matrix:

ρ̂ =
∑

α

wα|ψα〉〈ψα| . (10.9)

We can then write

〈M〉=Tr
�

M̂ ρ̂
�

, (10.10)

var(M) =Tr
�

M̂2ρ̂
�

− Tr
�

M̂ ρ̂
�2

. (10.11)

A few properties of the density matrix:

• Self-adjoint: ρ̂† = ρ̂,

• positive: ρ̂ ≥ 0 (positive eigenvalues),

• normalization: Tr[ρ̂] = 1,

• Tr[ρ̂2]≤ Tr[ρ̂], with equality iff ρ̂ is a pure state (i.e., ρ̂ = |ψ〉〈ψ|).

Finally, notice that from (10.2) and (10.9), we deduce that, for a closed system, the density
matrix evolves in time according to the equation

ħh
dρ̂(t)

d t
= −i[Ĥ(t), ρ̂(t)] . (10.12)

This is the Liouville or Liouville-von Neumann equation, whose solution is given by

ρ̂(t) = Û(t, t0)ρ̂(t0)Û
†(t, t0) , (10.13)

where ρ̂(t0) is the initial state of the density matrix at time t0 and where the propagator
Û(t, t0) was given in (10.7).

Remark: Difference between quantum and classical statistics: We point out that the formal-
ism introduced above for quantum statistics automatically rules out deterministic variables,
or dispersion free ensembles, i.e., ensembles such that every operator X̂ is associated to a
random variable X with zero variance: var(X ) = 0 (which is possible for classical stochastic
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states). Indeed, let’s assume that such an ensemble exists. Then, taking M̂ = |ψ〉〈ψ| with
|ψ〉 a unit vector, the condition var(M) = 0 becomes 〈ψ|ρ̂|ψ〉= 〈ψ|ρ̂|ψ〉2, which implies that
〈ψ|ρ̂|ψ〉= 0 or 〈ψ|ρ̂|ψ〉= 1 for all unit vectors, hence ρ̂ = 0 or ρ̂ = I, which is incompatible
with the normalization property Tr[ρ̂] = 1.

Tensor products. We will be interested in studying the energy exchanges between a system
and its environment. According to the postulate 1, the system and the environment can both
be described within their own Hilbert space, what happens when there is a coupling between
the two? The total Hilbert space of system and environment is described by the following
postulate.

Postulate 5: A set of different quantum systems defined in different Hilbert spaces is
described within a global Hilbert space obtained by taking the tensor product of the
individual Hilbert spaces.

The tensor product of two Hilbert spaces HA and HB is noted HA⊗HB. It is a Hilbert space
to which is associated a bilinear map

HA,HB →HA⊗HB ,

|ψA〉, |ψB〉 7→ |ψA〉 ⊗ |ψB〉 .
(10.14)

Let’s note Htot =HA⊗HB. A basis for Htot can be obtained from the bases of HA and HB,
respectively {|φA

i 〉}i and {|φB
i 〉}i , by taking the tensor products of the basis vectors: The set

{|φA
i 〉⊗ |φ

B
j 〉}i, j is a basis of Htot =HA⊗HB. Any vector |ψ〉 in Htot can therefore be written

in the form |ψ〉=
∑

i, j
ci, j|φA

i 〉 ⊗ |φ
B
j 〉 with ci, j ∈ C.

Similarly, any operator acting on Htot can be written as a linear combination of product
operators of the form M̂A⊗ M̂B, where M̂A, M̂B act respectively on HA and HB. Such product
operators act on product states like

(M̂A⊗ M̂B)(|ψA〉 ⊗ |ψB〉) = (M̂A|ψA〉)⊗ (M̂B|ψB〉) . (10.15)

If the density matrix ρ̂ of the total system+bath is of the form ρ̂ = ρ̂A ⊗ ρ̂B, the system and
bath are said to be uncorrelated. In this case, the expectation values of product operators are
given by 〈M̂A⊗ M̂B〉= 〈M̂A〉〈M̂B〉.

The reduced density matrix of the system or bath can be obtained from the total density
matrix by performing a partial trace: ρ̂A = TrB[ρ̂] and ρ̂B = TrA[ρ̂].

Separable states and entangled states. An important feature of quantum mechanics is en-
tanglement. To understand it, it is convenient to use the

Schmidt decomposition theorem: For any state |ψ〉 ∈HA⊗HB, there exist orthogonal bases
– the Schmidt bases – {|χA

i 〉} and {|χB
i 〉} of HA and HB respectively, such that

|ψ〉=
∑

i

ci|χA
i 〉 ⊗ |χ

B
i 〉 . (10.16)

Consider now a vector state |ψ〉 of Htot . If |ψ〉 can be written in the form |ψA〉 ⊗ |ψB〉, it
is a product state; otherwise it is an entangled state. A statistical mixture of states of HA⊗HB
is generically described, using the Schmidt decomposition, by a density matrix of the form,

ρ̂ =
∑

α

wα

�

∑

i

cαi |χ
A,α
i 〉 ⊗ |χ

B,α
i 〉

�

 

∑

j

cα∗i 〈χ
A,α
j | ⊗ 〈χ

B,α
j |

!

. (10.17)
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A state is then said separable if ρ̂ can be written as a probability distribution over uncorrelated
states, i.e.,

ρ̂ =
∑

α

wαρ̂
α
A ⊗ ρ̂

α
B . (10.18)

Otherwise, the state is entangled. Notice that, if ρ̂ is a pure state, i.e., ρ̂ = |ψ〉〈ψ|where |ψ〉 is
the vector state of the system, then ρ̂ is separable iff |ψ〉 is a product state. Entanglement is a
purely quantum feature: Entangled states lead to quantum correlation functions, which cannot
be described using product states. On the other hand, separable states can yield classical
correlations. For an illustration of these differences, see the Einstein-Podolsky-Rosen (EPR)
paradox [193] and Bell’s inequalities [194].

10.3 Quantum measurement and thermodynamic quantities

In this section, we introduce the notion of quantum measurement, and define thermodynamic
quantities. Note that the theory of quantum measurement is still an active field of research,
with fundamental questions regarding the nature of the wave function and decoherence yet
to be answered. We will use the Copenhagen interpretation of quantum mechanics: The wave
function is a mathematical object which yields probabilities for the outcomes of measurements,
and measuring a system involves a brutal change (“collapse") of the wave function. Further
reading about the content of this chapter: Chapter 2 in [179], chapter 1 in [180].

10.3.1 The projection postulate

As explained in the previous section, the outcome of the measurement of an observable M̂
is given by Tr[M̂ ρ̂]. But performing a measurement on a quantum system also perturbs the
system itself. This fact is formalized by the projection postulate:

Postulate 6 (projection postulate): Consider the measurement of an observable M̂ ,
with a spectral decomposition M̂ =

∑

n
µnΠ̂n, on a system described by ρ̂. Then, the

sub-ensemble of systems where the result µn was observed is described by the density
matrix

ρ̂′(µn) =
Π̂nρ̂Π̂n

Tr[Π̂n
ˆ̂ρ]

. (10.19)

ρ̂′(µn) is called the conditional post measurement density matrix. We could choose to
re-mix the post measurement matrices with the probability weights pn = Tr[Π̂nρ̂] of
each possible outcome, to obtain the unconditional density matrix

ρ̂′ =
∑

n

pnρ̂
′(µn) =

∑

n

Π̂nρ̂Π̂n . (10.20)

In general, ρ̂′ ̸= ρ̂. The equality holds, however, if [M̂ , ρ̂] = 0.

Remark: It is possible to describe the quantum measurement (10.19) without resorting to the
projection postulate, using auxiliary systems (“copies" of the system to measure); see chapter
1 in [180] for details.

10.3.2 Two-point measurement method

We now introduce the two-point measurement method, which is a convenient tool to study
the variations and fluctuations of thermodynamic quantities. For further reading see [27].

Consider a (possibly time dependent) observable M̂(t) =
∑

n
µn(t)Π̂n(t). We now perform

two measurements of M̂(t), at times t = 0 and t. The joint probability to observe the value
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µl(0) at t = 0 and µn(t) at t is, using the Born postulate,

P[µn(t),µl(0)] = Tr[Π̂n(t)Û(t, 0)Π̂l(0)ρ̂(0)Π̂l(0)Û
†(t, 0)Π̂n(t)] , (10.21)

where ρ̂(0) is the density matrix of the system at time t = 0, and where we used the projection
postulate combined with the evolution from the initial state obtained by integrating the Liou-
ville equation (10.12). For energy observables, we will mainly be interested in the probability
to observe a fluctuation ∆µ; this probability distribution is given by

p(∆µ) =
∑

µl (0),µn(t)

P[µn(t),µl(0)]δ(∆µ− (µn(t)−µl(0))) . (10.22)

To study the statistics of p(∆µ), it is useful to study its Fourier transform, called the charac-
teristic function:

G(λ, t) :=

∫ +∞

−∞
eiλ∆µp(∆µ) d∆µ , (10.23)

where λ ∈ R is called a counting field. Note that G(λ, t) is time dependent, since ∆µ corre-
sponds to a fluctuation observed between the times t = 0 and t; strictly speaking, we should
write G(λ, t, 0) or use a more general notation G(λ, t f , t i) with t i , t f the initial and final mea-
surement times. The moments of ∆µ are then given by the derivatives of G(λ, t) in λ= 0:

〈∆µn〉= (−i)n∂ n
λ G(λ, t)|λ=0 . (10.24)

It is convenient to re-write G(λ, t) as the trace of a “tilted" density matrix ρ̂λ(t) [27], defined in
the following way. First, we introduce the “dressed" evolution operator Ûλ(t, 0) (the evolution
operator Û(t, 0) “dressed" with the counting field λ),

Ûλ(t, 0) := eiM̂(t)λ/2Û(t, 0)e−iM̂(0)λ/2 . (10.25)

The tilted density matrix ρ̂λ(t) is then defined as

ρ̂λ(t) := Ûλ(t, 0) ˆ̄ρ(0)Û†
−λ(t, 0) , (10.26)

where ˆ̄ρ(0) is the diagonal part of ρ̂(0) in the eigenbasis of M̂ . Let’s show that

G(λ, t) = Tr[ρ̂λ(t)] . (10.27)

Substituting Eq. (10.22) in Eq. (6.23), and using the fact that Π̂n(t)2 = Π̂n(t) and that
∑

µn(t)
eiλµn(t)Π̂n(t) = eiλM̂(t), we obtain

G(λ, t) =
∑

µl (0),µn(t)

eiλ(µn(t)−µl (0))Tr[Π̂n(t)Û(t, 0)Π̂l(0)ρ̂(0)Π̂l(0)Û
†(t, 0)]

=
∑

µl (0)

e−iλµl (0)Tr
�

eiλM̂(t)/2Π̂n(t)Û(t, 0)Π̂l(0)ρ̂(0)Π̂l(0)Û
†(t, 0)eiλM̂(t)/2

�

.

Finally, using
∑

µl (0)
e−iλµl (0)Π̂l(0)ρ̂(0)Π̂l(0) = e−iλM̂(0)/2ρ̂(0)e−iλM̂(0)/2, we obtain the equality

(10.27).
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10.3.3 Heat, work and internal energy

Using the two point measurement with counting fields method presented above, we can study
the fluctuations of the variations of heat, work and internal energy.

We consider the case of a quantum system A coupled to N baths. We allow the system
Hamiltonian ĤA(t) to be time dependent, to describe possible external forces, while the Hamil-

tonian of the baths reads
N
∑

α=1
Ĥα with Ĥα the free Hamiltonian of the α-th bath. The total

Hamiltonian is

Ĥ(t) = ĤA(t) +
N
∑

α=1

Ĥα +
N
∑

α=1

V̂α(t) , (10.28)

where V̂ (t) =
N
∑

α=1
V̂α(t) is the coupling Hamiltonian between the baths and the system. The

total system consisting of the system A and the baths is closed according to the definition in the
postulate 3. Note that, rigorously speaking, we should write ĤA(t)⊗α Iα instead of ĤA(t) in
order to respect the dimensions, and similarly, add to Ĥα the tensor products with the identity
operators of the Hilbert spaces of A and of the baths α ̸= α′. To alleviate the notation, we omit
the identity products throughout the rest of this course.

The system’s bare energy changes, ∆EA, is by definition obtained by measuring the varia-
tions of ĤA(t),

∆EA := Tr[ĤA(t)ρ̂(t)− ĤA(0)ρ̂(0)] . (10.29)

On the other hand, the energy changes leaving bath η between times 0 and t, is identified as
the heat Qη transmitted by the bath η to the system. It is given by measuring Ĥη,

Qη := Tr[Ĥη(ρ̂(0)− ρ̂(t))] . (10.30)

Finally, the work exerted by external forces on the total system (system A and baths) is by
definition given by the variations of the total Hamiltonian Ĥ(t),

W := Tr[Ĥ(t)ρ̂(t)− Ĥ(0)ρ̂(0)] . (10.31)

We highlight that these definitions are compatible with the first law when additionally requir-
ing that the coupling is switched on after the first measurement and switched off before the
final measurement: V̂ (0) = V̂ (t) = 0. Indeed, in this case, the first law is satisfied,

∆EA =W +
∑

η

Qη . (10.32)

We point out that there exist alternative definitions and methods of measurement of work
in quantum thermodynamics; the discussion of these variations go beyond the scope of the
course, we refer to [180,195] for further reading.

Measuring heat, work and internal energy. Since ĤA(t) and all the Ĥα commute, we can
measure them simultaneously and define the general characteristic function

G(t,λ) = Tr[ρ̂λ(t)] , ρ̂λ(t) = Ûλ(t, 0) ˆ̄ρ(0)Û
†
−λ(t, 0) , (10.33)

where
Ûλ(t, 0) = eiλ·Ĥ(t)/2Û(t, 0)e−iλ·Ĥ(0)/2 , (10.34)

where Ĥ(t) = (ĤA(t), Ĥ1, ..., ĤN ) and λ = (λA,λ1, ...,λN ) respectively denote a vector of
system-bath Hamiltonians and a vector of counting fields.

155

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.80


SciPost Phys. Lect. Notes 80 (2024)

Let’s now assume that the initial density matrix is diagonal in a joint eigenbasis of
ĤA(0), Ĥ1, ..., ĤN . Such a basis exists since the Hamiltonians of the system and baths com-
mute with each other. Then, we can replace ˆ̄ρ(0) = ρ̂(0) in (10.33).

To measure the system’s bare energy changes, ∆EA, defined in (10.29), we choose λA = λ
and λα = 0 for all α, and we obtain the variation of ĤA(t) between times 0 and t,

∆EA =
1
i
∂λG(t,λ, 0, ..., 0)|λ=0 = Tr[ĤA(t)ρ̂(t)− ĤA(0)ρ̂(0)] . (10.35)

For the heat Qη leaked by the bath η, defined in (10.30), we choose λA = λα = 0 for all α ̸= η
and λη = −λ:

Qη =
1
i
∂λG (t, 0, 0, ...,−λ, 0, ..., 0)

︸ ︷︷ ︸

−λ at position η

|λ=0 = Tr[Ĥη(ρ̂(0)− ρ̂(t))] . (10.36)

Finally, to measure the work, defined in (10.31), we choose λA = λα = λ,

W =
1
i
∂λG(t,λ, ...,λ)|λ=0

=
1
i
∂λG(t,λ, 0, ..., 0)|λ=0 +

∑

η

∂λG (t, 0, 0, ...,−λ, 0, ..., 0)
︸ ︷︷ ︸

λ at position η

|λ=0 (10.37)

=∆EA−
∑

η

Qη .

Again, recall that this approach is here justified when requiring that the coupling is switched on
after the first measurement and switched off before the final measurement: V̂ (0) = V̂ (t) = 0.

10.3.4 Entropy

We conclude this section by introducing the entropy. In quantum mechanics, the (von Neu-
mann) entropy of a system described by a density matrix ρ̂ is defined as36

S(ρ̂) = −kBTr[ρ̂ log ρ̂] . (10.38)

Using the spectral decomposition ρ̂ =
∑

j
p j|e j〉〈e j|, where {|e j〉} is an orthonormal eigenbasis

of ρ̂ and
∑

j
p j = 1, we can re-write

S(ρ̂) = −kB

∑

j

p j log p j , (10.39)

where we recognize the entropy (also called the Gibbs entropy) introduced in the Chapter 3 in
the context of classical systems. S(ρ̂) expresses the uncertainty, or lack of knowledge, about
the realization of a certain state |e j〉 in the mixture.

Measuring a system increases the entropy. To see this, let us define ∆S = S(ρ̂′) − S(ρ̂).
Using the projection postulate, we have

∆S = S

�

∑

n

Π̂nρ̂Π̂n

�

− S(ρ̂) .

36The von Neumann entropy can also be defined without the Boltzmann constant kB .
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We now introduce the relative entropy: The relative entropy between two density matrices
ρ̂1, ρ̂2 is by definition D(ρ̂1||ρ̂2)=Tr[ρ̂1 log ρ̂1]−Tr[ρ̂1 log ρ̂2] [179]. It satisfies D(ρ̂1||ρ̂2)≥0.
Hence,

0≤ D(ρ̂||ρ̂′) = −S(ρ̂)− Tr[ρ̂ log ρ̂′] . (10.40)

Using the fact that [Π̂n, ρ̂′] = 0, we obtain

−Tr
�

ρ̂ log ρ̂′
�

= −Tr

�

∑

n

Π̂nρ̂ log
�

ρ̂′
�

Π̂n

�

= −Tr

�

∑

n

Π̂nρ̂Π̂n log
�

ρ̂′
�

�

= S(ρ̂′) , (10.41)

and hence ∆S ≥ 0.

10.4 Quantum fluctuation theorems

An important outcome of the stochastic thermodynamics theory is the discovery of fluctuation
theorems [36]. Fluctuation theorems provide a symmetry between the probability to observe
a certain fluctuation of heat or work in the forward process, and the probability to observe
its opposite value in the reversed process. Initially identified for out of equilibrium classical
systems, fluctuation theorems have been extended to quantum systems, where they take the
form of exact symmetries satisfied by the fluctuations of thermodynamic quantities (e.g., work
and heat currents) at the level of the unitary evolution [27,196]. For a review of classical and
quantum fluctuation theorems, see e.g. [197].

In what follows, we derive detailed fluctuation theorems, which take the form of exact
symmetries of the characteristic function, linking the fluctuating entropy of a given forward
process with the one generated in its time reversed counterpart. To do so, we first need to
define the reversed process; we will use the approach of [27]. In quantum mechanics, time
reversal is defined using the time reversal operator Θ, which satisfies Θ2 = I, ΘiΘ = −i (see
appendix C in [180]). Any observable M̂ is either even or odd under Θ, i.e., ΘM̂Θ = M̂
(even) orΘM̂Θ = −M̂ (odd). For instance, the position operator is even, while the momentum
operator is odd.

Consider a closed system described by a Hamiltonian Ĥ(t). The Hamiltonian may contain
odd components, such as spins or magnetic fields. We denote all these components by B̂, and
write explicitely the dependence of in B̂ of the Hamiltonian: Ĥ(t, B̂). We then obtain the
relation

ΘĤ(B̂, t)Θ = Ĥ(−B̂, t) . (10.42)

Let’s now consider a forward process, defined by the initial density matrix ρ̂(0) and the Hamil-
tonian Ĥ(t, B̂), taking place between the times t = 0 and t = t f . As we saw, the postulate 3
implies that the evolution of the density matrix ρ̂(t) follows the Liouville equation (10.12),
and is determined by the propagator (10.7). The reversed process is defined in a similar
way [27, 198]: The propagator of the reversed process, noted ÛR(0, t, B̂), is defined as the
operator satisfying

iħh∂t Û
R(t, 0,−B̂) = Ĥ(−B̂, t f − t)ÛR(t, 0,−B̂) ,

ÛR(0,0, B̂) = I .
(10.43)

It can be shown [198] that the propagators of the forward and backward processes are related
by

ÛR(t, 0,−B̂) = ΘÛ(t f − t, t f , B̂)Θ . (10.44)

In particular, for t = t f , we have

ÛR(t, 0,−B̂) = ΘÛ(0, t, B̂)Θ = ΘÛ†(t, 0, B̂)Θ . (10.45)
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We then define the density matrix of the reversed process as

Θρ̂R(t)Θ := ÛR(t, 0,−B̂)Θρ̂R(0)ΘÛR†(t, 0,−B̂) . (10.46)

Multiplying (10.46) left and right by Θ and using (10.45), we obtain

ρ̂R(t) = Û†(t, 0, B̂)ρ̂R(0)Û(t, 0, B̂) . (10.47)

Following the same path for the tilted dynamics with counting fields, we can identify the
characteristic function for the reversed process as [27]

GR(t,λ) = Tr[ρ̂Rλ(t)] = Tr
�

Û†
λ
(t, 0) ¯̂ρR

0 Û−λ(t, 0)
�

. (10.48)

Now that we have the characteristic function for the reversed process, we may derive quantum
fluctuation theorems.

10.4.1 Closed systems

We consider first the case of closed systems, i.e., systems exchanging energy but not particles
with their environment. In this subsection, the closed system consists of the quantum system
described by ĤA(t) and of the baths Ĥα. While the system Hamiltonian ĤA(t) may be time
dependent, we assume that the bath Hamiltonians Ĥα are time independent. We mention that
this model allows to study, e.g., quantum refrigerators or quantum heat engines [180].

Fluctuation theorem. Let’s assume that the initial density matrices of the forward and time
reversed processes are given by Gibbs states, that is

ρ̂(0) =
e−βAĤA(0)

ZA(0)

⊗

α

e−βαĤα

Zα
,

ρ̂R(0) =
e−βAĤA(t)

ZA(t)

⊗

α

e−βαĤα

Zα
,

(10.49)

where βA,βα are the inverse of the temperatures of the system A and the baths α, and with
ZA(t) = TrA[e−βAĤA(t)] and Zα = Trα[e−βαĤα]. Then, we have the following detailed fluctuation
theorem

GR(t,−λ+ iβ) = G(t,λ)
ZA(0)
ZA(t)

= G(t,λ)eβA∆Feq , (10.50)

with inverse temperatures β = (βA,β1, ...,βN ) and ∆Feq = Feq(t)− Feq(0) where the equilib-
rium free energy of the system is Feq(t) = −

1
βA

log ZA(t). To see this, we begin by writing

G(t,λ) =
1

Z(0)
Tr[Û(t, 0)e−iλ·Ĥ(0)e−β ·Ĥ(0)Û†(t, 0)eiλ·Ĥ(t)] ,

GR(t,λ) =
1

Z(t)
Tr[Û†(t, 0)e−iλ·Ĥ(t)e−β ·Ĥ(t)Û(t, 0)eiλ·Ĥ(0)] ,

(10.51)

with Z(t) = ZA(t)
∏

α Zα. Replacing λ by −λ+ iβ in GR(t,λ), we obtain

GR(t,−λ+ iβ) =
1

Z(t)
Tr[Û†(t, 0)eiλ·Ĥ(t)Û(t, 0)e−iλ·Ĥ(0)e−β ·Ĥ(0)] . (10.52)

The last factor in the trace is exactly the unnormalized initial state of the forward evolution,
given in (10.49). Hence,

GR(t,−λ+ iβ) =
ZA(0)
ZA(t)

Tr[Û†(t, 0)eiλ·Ĥ(t)Û(t, 0)e−iλ·Ĥ(0)ρ̂(0)] , (10.53)

and the result follows. Note that the fluctuation theorem (10.50) is valid at all times.
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Crooks and Jarzynski relations. The fluctuation theorem (10.50) is very general, and al-
lows to obtain special symmetries for the fluctuations of different quantities (heat, work, in-
ternal energy). In particular, we can use (10.50) to derive two celebrated results, the Crooks
fluctuation theorem and the Jarzynski equality.

The Crooks fluctuation theorem, initially derived in the context of classical statistical me-
chanics [39] and later extended to quantum systems [199], is a work fluctuation theorem. It
states that, given a state initially at thermal equilibrium at temperature β−1, the ratio between
the probability p(W ) to observe a work fluctuation W in the forward process and the proba-
bility pR(−W ) to observe the reverse fluctuation in the reversed process is equal to eβ(W−∆Feq),
where ∆Feq is the free energy difference between the initial and final equilibrium states. The
Jarzynski equality follows immediately from the Crooks fluctuation theorem, although histor-
ically it was derived first [41].

To derive these relations from (10.50), we consider the case of a single heat bath η at
temperature β−1

η and assume that βA = βη. As explained previously, to measure the work, we
choose the counting fields λA = λη =: λ, as in (10.37),

W =
1
i
∂λG(t,λ)|λ=0 = Tr[Ĥ0(t)ρ̂(t)− Ĥ0(0)ρ̂(0)] , (10.54)

where Ĥ0(t) = ĤA(t) + Ĥη. Using (10.23), we may write the probability distribution of the
work as

p(W ) =

∫ +∞

−∞
dλe−iλW G(t,λ) . (10.55)

Using (10.50) and (10.23) again, we obtain

p(W ) =

∫ +∞

−∞
dλ

∫ +∞

−∞
dW ′e−βA∆Feq ei(−λ+iβA)W ′

pR(W ′)

= pR(−W )eβA(W−∆Feq) ,

(10.56)

which is the Crooks relation. Taking the average, we obtain the Jarzynski equality [41].

〈e−βAW 〉=
∫ +∞

−∞
dWe−βAW p(W ) = e−βA∆Feq . (10.57)

Second law of thermodynamics. An integral fluctuation theorem and the second law
of thermodynamics can be obtained using an identity similar to the fluctuation theorem
(10.50). Let’s introduce the entropy production Σ, corresponding to changes in the quan-
tity Ŝ(t) +

∑

α
βαĤα, where Ŝ(t) = − log ρ̂A(t) is the operator which, once measured, gives the

system’s entropy, and where βα is the inverse of the temperature of the bath α. We point out
that this definition of Σ corresponds to the entropy production only when the system is cou-
pled to ideal heat baths with fixed temperatures. Further discussion of the notion of entropy
production in more general setups go beyond the scope of this course; for a more thorough
discussion see [180] or [200].

Assuming this time that the initial density matrices satisfy

ρ̂(0) = ρ̂A(0)
⊗

α

e−βαĤα

Zα
,

ρ̂R(0) = ρ̂A(t)
⊗

α

e−βαĤα

Zα
,

(10.58)
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where ρ̂A(t) is the final state of the system in the forward dynamics, we obtain the following
identity

GR
Σ(t,−λΣ + i) = GΣ(t,λΣ) . (10.59)

The identity (10.59) allows to derive an integral fluctuation theorem for the entropy produc-
tion (of the forward dynamics): Setting λΣ = i, we obtain

GΣ(t, i) = 〈e−Σ〉= 1 , (10.60)

where the brackets denote an ensemble averaging: GΣ(λΣ, t) =
∫

dΣeiλΣΣP(Σ). The convex-
ity of the exponential function in (10.60) yields the second law

〈Σ〉 ≥ 0 . (10.61)

First law of thermodynamics at the fluctuating level. We conclude this section on closed
systems with a comment on energy conservation. Let’s assume that the total Hamiltonian Ĥ
is time independent. In this case, the average work performed on the system vanishes, as can
be seen from (10.54), and the first law writes

∆EA−
∑

η

Qη = 0 . (10.62)

One can then express the requirement for the first law to be valid at the fluctuations level, i.e.,
for fluctuations in W to vanish, in terms of the symmetry

ρ̂λ+χ1(t) = ρ̂λ(t) , (10.63)

for all times, 1= (1,1..., 1), χ ∈R. It is clear that (10.63) guaranties the first law on average,
as can be seen by setting λ = 0 and taking the derivative in χ, as in (10.37). The symmetry
(10.63) also guaranties that the fluctuations of the system energy correspond exactly to fluc-
tuations of the bath: Every fluctuation of the bath counted by the counting field χ on ĤB is
exactly compensated by the fluctuations of the system, also counted with the counting field χ
on ĤA. This holds true, for instance, when, at all times t,

�

∑

α

V̂α(t), ĤA+
∑

α

Ĥα

�

= 0 , (10.64)

i.e. when there is a strict energy conservation between the bath and the system.

10.4.2 Open systems: Quantum master equations

This section is more focused on recent research, specifically [181].
In practice, quantum systems we are interested in are often open, i.e., they can exchange

energy and particles with the environment. We then focus on the thermodynamics at the level
of the quantum system described by ĤA(t), while the baths Ĥα now constitute the environment;
more specifically, we wish to trace out the degrees of freedom of the baths in order to obtain
a description of the reduced density matrix ρ̂A := TrB[ρ̂], where B denotes the Hilbert spaces
of all the baths α. The evolution of the system’s reduced density matrix then does not obey
the Liouville equation in general, but can be conveniently described using a quantum master
equation [179, 201–203], obtained by tracing out the baths, and performing approximations
which we will discuss here. The approximations performed during the derivation of a quantum
master equation could break the fluctuation theorem (10.50), leading to a master equation
which fails to accurately describe the thermodynamics of the system A. A thermodynamically
consistent quantum master equation should satisfy the fluctuation theorems valid at the unitary
level. The purpose of this subsection is to explain under which conditions the thermodynamic
consistency is preserved.
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Tilted quantum master equations. In order to trace out the degrees of freedom of the baths,
we first decompose the initial state as ρ̂(0) = ρ̂A(0)⊗

∑

ν
ην|ν〉〈ν|, where |ν〉 are eigenvectors

of the baths. The tilted density matrix in (10.33) becomes

ρ̂λA(t) =
∑

µ,ν

Ŵλ
µ,ν(t, 0)ρ̂A(0)Ŵ

λ†
µ,ν(t, 0) =: Mλ(t, 0)ρ̂A(0) , (10.65)

where Ŵλ
µ,ν =

p
ην〈µ|Ûλ(t, 0)|ν〉. The operators Ŵµ,ν are a set of Kraus operators. Kraus

operators are used to describe quantum operations between quantum states which preserve
the positivity of the density matrix. Such operations are called quantum maps; a quantum
map M is a completely positive operators, such that there exists a set of Kraus operators Ŵj

satisfying M(ρ̂) =
∑

j
Ŵjρ̂Ŵ †

j . The theory of quantum maps is beyond the scope of this course;

for more details on this topic, see subsection 3.2 in [179].
We then perform the Markov approximation, also called the semigroup hypothesis in the

context of quantum maps [179]: Mλ(t, 0) =Mλ(t, s)Mλ(s, 0). Under this assumption, we
obtain a time local equation of the form

dt ρ̂
λ
A(t) = lim

δ→δ0

1
δ
(Mλ(t +δ, t)− I)ρ̂λA(t) =: Lλ(t)ρ̂λA(t) , (10.66)

with ρ̂λA(0) = ρ̂A(0). Notice that the time increment δ is not taken to zero, but instead to a
finite time δ0, called coarse graining time. The coarse graining time is chosen to be larger than
the relaxation time of the bath and smaller than the relaxation time of the system. We will
assume further on that the limit in (10.66) exists, and that the resulting equation does not
explicitly depend on δ0. Let’s now restrict ourselves to the case where the counting fields are
put solely on the baths, λ= (0,λB). Then, the generator assumes the general form

L0,λB
(t)ρ̂0,λB

A = −i
�

Ĥ ′0,λB
(t), ρ̂0,λB

A

�

+D0,λB
(t)ρ̂0,λB

A . (10.67)

For a detailed derivation, see the supplemental material in [181]. To alleviate the notations, we
dropped the t dependence of ρ̂0,λB

A (t). The term Ĥ ′0,λB
(t) is the sum of the system Hamiltonian

ĤA and of a Lamb shift contribution Ĥ0,λB
LS – a shift in the system’s energies induced by the

interaction with the bath – and D0,λB
(t) describes the dissipation. The dissipator D0,λB

(t) can
generically be written as the sum of an anticommutator and a jump term J ,

D0,λB
(t)ρ̂0,λB

A = {Ĝ0,λB
, ρ̂0,λB

A }+J0,λB
(t)ρ̂0,λB

A . (10.68)

We may repeat the same derivation for the time reversed tilted density matrix ρ̂Rλ(t) given
in (10.48), and we obtain

ρ̂Rλ
A (t) =

∑

µ,ν

Ŵ Rλ
µ,ν(t, 0)ρ̂

R
A(0)Ŵ

Rλ†
µ,ν (t, 0) , (10.69)

where the Kraus operators are Ŵ Rλ
µ,ν =

p
ην〈µ|Û

†
λ
(t, 0)|ν〉.

For the rest of this section, we assume that the system Hamiltonian ĤA is time-independent.

Generalized quantum detailed balance condition. Notice that the Kraus operators of the
time reversed dynamics, given in (10.69), obey the symmetry

Ŵ Rλ
µ,ν = eiλAĤA(Ŵ (λA,λB+iβB)

ν,µ )†e−iλAĤA . (10.70)
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Together with the semigroup hypothesis, the identity (10.70) leads to a sufficient condition
for a master equation to satisfy the fluctuation theorems (10.50) and (10.59), which reads

L†
0,−λB

[...] = LR
0,−λB+iβB

[...] , (10.71)

where βB = (β1, ...,βN ), and where the † on the r.h.s. denotes the adjoint: The adjoint O† of a
superoperator O as the one fulfilling Tr[(O(X ))†Y ] = Tr[X †O†(Y )] for all operators X , Y . To
see this, we begin by noticing that the property

Ŵλ
µν(t, 0) = eiλAĤA/2Ŵ 0,λB

µν (t, 0)e−iλAĤA/2 , (10.72)

of the Kraus operators gives, by replacing in (10.65),

ρ̂λA(t) = ei λA
2 ĤAetL0,λB [e−i λA

2 ĤA ¯̂ρA(0)e
−i λA

2 ĤA]ei λA
2 ĤA . (10.73)

Similarly,

ρ̂Rλ
A (t) = ei λA

2 ĤAetLR
0,λB [e−i λA

2 ĤA ¯̂ρR
A(0)e

−i λA
2 ĤA]ei λA

2 ĤA . (10.74)

Let’s now assume that the initial density matrices satisfy

ρ̂A(0) =
e−βAĤA

ZA
,

ρ̂R
A(0) =

e−βAĤA

ZA
.

(10.75)

Then,

G(t,λ) = Tr[ρ̂λA(t)]

= Tr
�

eiλAĤAetL0,λB

�

e−iλAĤAρ̂A(0)
��

, (10.76)

and, replacing λ→ −λ+ iβ in (10.74) and using the definition of the adjoint,

GR(t,−λ+ iβ) = Tr[ρ̂R,−λ+iβ
A (t)]

= Tr
h

e−iλAĤAe−βAĤAetLR
0,−λB+iβB

�

eiλAĤA/ZA

�
i

= Tr
�

�

etLR†
0,−λB+iβB

�

eiλAĤAρ̂A(0)
�
�†

eiλAĤA

�

. (10.77)

Hence, the symmetry (10.50) is satisfied if

etL0,λB

�

e−iλAĤAρ̂A(0)
�

=
�

etLR†
0,−λB+iβB (eiλAĤAρ̂A(0))

�†

⇐⇒
�

etL0,λB (e−iλAĤAρ̂A(0))
�†
= etLR†

0,−λB+iβB (eiλAĤAρ̂A(0))

⇐⇒ etL0,−λB

�

eiλAĤAρ̂A(0)
�

= etLR†
0,−λB+iβB (eiλAĤAρ̂A(0)) , (10.78)

where we used the fact that
�

etL0,λB (e−iλAĤAρ̂A(0))
�†
= etL0,−λB (eiλAĤAρ̂A(0)) , (10.79)

as can be seen using the expression (10.65). The condition (10.78) is then satisfied if
L†

0,−λB
[...] = LR

0,−λB+iβB
[...], which is what we wanted to prove.

The condition (10.71) is called the generalized quantum detailed balance condition [181].
The proof of the symmetry (10.59) for the entropy production follows the same steps, but

this time the only assumption is that ρ̂A(0) = ρ̂R
A(t) and ρ̂R

A(0) = ρ̂A(t).
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Strict and average energy conservation for quantum master equations. We conclude this
section with a brief discussion on how the strict energy balance condition (10.63) translates
for quantum master equations. Let us note Lλ := LλA,λB

. The equivalent of (10.63) then
writes

Lλ[...] = Lλ+χ1[...] . (10.80)

This relation reveals the connection between invariance properties of the quantum master
equation and the symmetries of the generating function [12,13,204]. However, we highlight
that despite the resemblance between (10.80) and (10.63), the former is in fact less restrictive:
Indeed, (10.80) is equivalent to imposing (10.63) at every time intervals δ0, but not at all
times.

Remark: In practice, many quantum master equations do not meet the strict energy conser-
vation condition (10.80) or the generalized quantum detailed balance condition (10.71). In
fact, in order to satisfy both these conditions, it is necessary to perform the secular approxi-
mation (we refer to the section 3.3 in [179] for the definition of the secular approximation);
see [181] for a detailed proof. However, it is possible to relax the strict energy conservation
condition (10.63) and to maintain a thermodynamic consistency on average, provided that
the generalized detailed balance condition (10.71) is satisfied. This is for instance the case in
the weak coupling limit, as illustrated in [181].

10.5 Conclusion and perspectives

In this introduction to quantum thermodynamics course, we covered the basic concepts un-
derlying the theory of quantum statistics and of quantum measurement. We introduced the
two-point measurement method, a relatively modern tool still actively used in research in the
field of open quantum systems. The core of the physical discussion lies in the detailed fluc-
tuation theorems (10.50) and (10.59). These two theorems are very general, and are valid
at all times, not only in the steady state regime. These theorems are formulated using the
two point measurement method with counting fields, and take the form of symmetries of the
characteristic function. An appeal of this approach is that it can be easily used as a crite-
ria to test the thermodynamic consistency of quantum master equations obtained by tracing
out the degrees of freedom of the environment: The counting fields keep track of the energy
exchanges occurring at the microscopic level, hence preserving the symmetries at the coarse
grained level ensures that the energy exchanges are correctly accounted for by the quantum
master equation.

For the discussion on open quantum systems, we have limited ourselves to cases where
the Markov approximation applies. However, the framework can be extended beyond this ap-
proximation, for instance in repeated interaction setups [205] or in the context of thermalizing
scattering maps [206].

Let us also mention that the “work" was introduced here as a projective measurement of
the total Hamiltonian. This approach is not always appropriate. For instance, there is an
alternative definition of what constitutes a work source, introduced in the context of repeated
interactions [205], which is based on a purely thermodynamic criteria: A work source is a
system which transmits energy without changing its entropy. Other definitions are reviewed
and compared in [195]. These variations go beyond the scope of this course, and in fact,
discussions on what should be a definition of work in quantum mechanics are still active.
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11 “(Post)modern” thermodynamics?

Alberto Garilli, Emanuele Penocchio, and Matteo Polettini as eXtemporanea. A moment
of collective reflection about fundamental questions in and on thermodynamics.

11.1 Introduction

The last moment of the school (P)MT, also participated by the attendees of the ensuing work-
shop, was not a frontal lecture but a (semi-serious) structured open discussion inspired by the
somewhat provocative title of the school. The ground for it was prepared through a survey
among participants and by an informal initiative during the lunch break just before the lecture.
The discussion was conducted by one of the organizers and ended with a slide presentation
undisclosing the rationale behind “(Post)Modern Thermodynamics” as title of the school and
workshop. Finally, after the event we had a second survey among participants to ask their
appreciation of the moment. Here we describe the actions, summarize the discussion and the
presentation, and draw some conclusions, also drawing from some comments by the Referees.

The initiative was inspired by similar activities by eXtemporanea, an inclusive collective of
students, researchers and activists, operating mainly in Italy, and interested in experimenting
new forms of dialogue beyond the dichotomy science vs. society.

We emphasize that what follows is a transcript of the live action, as faithful as we could
assemble. This material does not directly represent the Authors’ opinions. However, during
the review process we received some suggestions from Referees, which we gladly discuss.

11.2 Entry survey & breaking the ice

In preparation to the public discussion, in the first two days of the school we launched an
online survey, only open to the participants to the school, about the status, perception and
role of the laws of thermodynamics. However, by mistake participants were initially directed
to the master file rather than to the answer form, and some of them had fun hacking it in
interesting ways. Questions were:

Figure 11.1: A moment at (P)MT.
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- How is thermodynamics linked to the industrial revolution?

- The zeroth/first/second/third law is (principles, facts, definitions, etc.). . .

- Which is the most important past experiment in thermodynamics?

- What would be an important future experiment in thermodynamics?

- How would you define yourself philosophically?

- Thermodynamics is. . .

- Thermodynamics should be. . .

The answers were analyzed overnight. Some initial considerations were:

- Fancy options and answers given by the participants were that with the industrial revo-
lution we gained some followers (“but I wasn’t there”), that the second law is a property
imposed on our choice of parsimonious scientific description, that the third law is a lie
because it does not work for glasses, that thermodynamics is a hammer, or a religion, or
a totalizing meta-narrative infused with folklore that a post-modernist would demistify.

- On most issues, in particular on what the laws of thermodynamics are, there was very
little consensus, with contradictory answers (ranging from facts to conventions).

- The widespread opinion that thermodynamics was guided by the scientific revolution
suggests that the development of science is strongly intertwined with the socio-historical
context.

- Most people believe thermodynamics is a framework, with the alternative hacked answer
“a hammer” receiving some attention.

- Most people believe thermodynamics should be generalized (along with improved, re-
formulated, simplified, put in a museum); this is interesting given that, as Einstein put
it, classical thermodynamics does not add assumptions with respect to those of science
itself, thus it literally applies to any physical system.

- The most popular experiment was Joule’s experiment relating energy and heat, which
is interesting since it deals with the first law but not with the second. Other answers
included experiments to obtain chemical potentials; trying to prove Carnot’s limit wrong;
boiling water to make pasta.

- While a majority defined itself as pragmatic, few were able to propose future experi-
ments, with all proposed experiments quite vague (measure of calorimetric heat at mi-
croscopic scale; an experiment identifying the role of fluctuations of non-thermal origin;
measuring the collapse of the wave function using quantum signatures of thermody-
namic quantities; ruling out dark matter or prove that you can extract work from it).

Finally, during lunch break three whiteboards were placed at the corners of the hall, one
for the first, one for the second, and one for the third law of thermodynamics. People were
asked to write their own favourite formulation of the law.
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11.3 Discussion

What follows is a tentative synthesis of some of the observations that arose during the discus-
sion. The very light-hearted session was structured around the answers of the survey, with the
objective to trigger a discussion about how the current (and future) state of thermodynamics
is perceived by researchers active in the field. The beginning of the discussion was centered
on collocating the development of thermodynamics in a socio-historical framework. Many
participants (about 40%) recognized that the early development of the field was driven by
practical concerns, such as optimizing energy utilization and solving engineering challenges
for application to thermal machines during the industrial revolution. In fact, steam engines
were already used for many applications since a few decades when Carnot, considered the
father of thermodynamics, published his famous book Réflexions sur la puissance motrice du
feu about work and heat [207].

Laws of thermodynamics. After breaking the ice with some history, we assessed the par-
ticipants’ perceptions about the laws of thermodynamics. Here opinions were quite heteroge-
neous, as it can be seen from the variety of answers, and the participants started to actively
contribute to the debate. What emerged is that people mostly divide over two main interpreta-
tions of the first law: on the one hand as the definition of heat giving a name to the non-useful
energy whose mechanical analogue is expressed by friction; on the other hand a conservation
law (conservation of energy) of phenomenological origin that is in agreement with human
empirical experience. It is important to point out that a conservation law is established with
respect to some reference: When we say that energy is conserved, we are considering the en-
ergy of an open system and that of its environment, on the assumption that the two together
form a closed or isolated system. This concept can be extended to a universal scale only if the
whole universe can be assumed to be closed or isolated. This point turned out to be very im-
portant throughout the discussion and appeared many times, especially as regards the second
law. One of its formulations is in fact that entropy cannot decrease in an ideal closed universe,
a requirement we assume in order to be able to perform mental experiments against a more
pragmatic definition based on experience, where we never see heat flowing from cold to hot
reservoirs. However in a closed universe the Poincaré recurrency theorem is also at work: This
latter theorem was largely addressed during the discussion, and seen by some as a proof that
the second law of thermodynamics should be taught as false. However, as counter-argued by
some, the recurrence time is far above the age of the universe for quite simple systems, and
we cannot even say if the universe we belong is closed or isolated.

Another largely discussed point was about entropy being related to order, seen by many as
a relative concept, well expressed by a real-life example that probably everyone experienced
during his early years: In a very disordered room you may know where an object you need
is, even though anyone else would be struggling to find it. Hence, the room has some order
according to you, but it is not the same for your mother who does not have information about
the position of the items scattered around. On the other hand, if she suddenly decides to clean
up your room, and placing items in a way that is ordered for her, you might not be able to
find what you are looking for, since that is her order and not yours. Participants had different
perceptions of order and they tried to impose their own view, some arguing that there is no
reason for entropy to be subjective.

Experiments in thermodynamics. The experiment that is considered by many participants
to be the most important one in thermodynamics is Joule’s experiment relating work and heat,
that proves the first law of thermodynamics (but it was argued that some might have referred
to the Joule effect, which does relate to the second law). Not many experiments about the
second law were proposed, maybe because entropy is quite an abstract concept, not physically
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measurable at least in a direct way. However, as already pointed out, there are formulations of
the second law based on the concept of heat, and any test of efficiency of an engine is a test of
the second law. Despite many people defined themselves as pragmatic not many possible future
experiments were proposed. Some proposals focused on disproving the limitations imposed
by nature itself (such as Carnot’s limit) rather than actually proving something or getting new
insights for future developments of the theory. This discussion sparked little interest though,
probably also because the participants consisted mainly on theoreticians.

Present and future thermodynamics. What emerged from the survey is that thermodynam-
ics is mostly seen as a framework that allows to deal with ignorance about systems, and that
it has to be generalized. Something everyone agreed on is that it can be made more clean,
especially in the way it is taught to students. In fact, it is undeniable that thermodynamics
was developed initially as a phenomenological theory and this is reflected in the way it is pre-
sented to students approaching it for the first time. This also makes it difficult to lead their
intuition and a proposed solution is to make it more systematic. Nowadays it is often intro-
duced as a series of chronologically ordered discoveries and phenomenological laws, but we
now have access to more mathematically rigorous ways of introducing the discipline. It was
pointed out that historically there have been attempts to provide axiomatic formulations of
thermodynamics, as for instance, Carathéodory’s work.

11.4 Denoument

Finally we undisclosed the rationale behind the choice of “(Post)Modern Thermodynamics” as
title of the school and workshop by a frontal presentation, starting off with a poem that one
of the participants generated using a chatbot based on large language models:

«Postmodern thermodynamics,
A concept both strange and new,
A field of study that defies
The rules of what we knew.

It challenges our deepest beliefs
About the nature of the world,
And opens up new possibilities
For scientists to unfurl.

With its theories and its principles,
It changes how we see the past,
And guides us towards a future
That is bright and vast.

So let us celebrate this field
That dares to break the mold,
And embrace the possibilities
Of postmodern thermodynamics bold.»

We then discussed three different tastes of postmodernism (that we called the “good”, the
“bad” and the “ugly”), and introduced the figure of Bruno Latour.

An instance of ugly postmodernism was identified in the so-called “science wars” spurred
for example by the so-called Sokal hoax – whereby mathematician Alan Sokal exposed a jour-
nal in postmodern studies by publishing the nonsensical paper Transgressing the boundaries:
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Toward a transformative hermeneutics of quantum gravity [208] (but see The conceptual penis
as a social construct by Lindsay and Boyle for a similar more recent endeavour [209]). In a fol-
lowing book with Bricmont [210], Sokal insisted that many philosophers and scholars, mostly
of French tradition, abused scientific jargon. More at large, scholars identified as postmodern
were accused of cherry-picking their topics, of mystifying their discourse by obscure language
(often employing scientific jargon), of fostering anti-scientific beliefs, and of creating vacuous
academic careers out of fags.

We introduced bad postmodernism by a quote by Miller, a disciple of Popper and vocal
critic of the allegedly naïve defense of Sokal and Bricmont of critical rationalism [211]:

«A more fundamental obstacle to a general return to rationalism is that rationalism
itself is usually presented in a way that so unedifyingly infringes its own standards
of honesty that the only conversions that it can hope to procure are conversions
to irrationalism.»

We skipped on the complex philosophical arguments by Miller to go to what we perceived as
issues in the posture of Sokal and Bricmont, if maintained today. In particular: Can we gener-
alize their criticism to all of the social sciences? Do we, as scientists, own scientific jargon? Do
we actually understand postmodernist criticism? Is science different in some essential way?
The risk we envisioned is that some of the same tendencies that infected postmodern studies
a couple of decades ago may be acting within the sciences today. This cannot be imputed to
just a few bad apples but to more systemic pressures.

Finally came the good taste of postmodernism in the form of a brief analysis of the 1979
work of Lyotard The Postmodern Condition: A Report on Knowledge [212] (well synthesized
in Ref. [213]). According to Lyotard modernity was dominated by two institutions: Science
(administering truth), and Society (administering justice). Postmodernism is the crisis of these
institutions with respect to their grand narratives, embodied for example in the Humboldtian
university, analyzed in greater depth by Bill Readings [214]. In this era institutions come
in patches that seek their own legitimation through different strategies: performativity, that
is, implementing technical criteria believed to be objective (H-index, impact factor and other
quantifiers of excellence/ impact/merit etc.); consensus – whose spokesperson at the time
was Habermas – that is the idea of re-building society by open participative discussion (a
virtuous example in the sciences today may be the IPCC reports on climate change, or the
process of deliberation by the gravitational wave community documented by Collins [215]);
and paralogy, whose champion is Lyotard itself, that forsters the acceptance of disagreement
and incommensurableness of positions.

In the second part of the presentation we introduced the figure of Bruno Latour, an in-
fluential French intellectual who passed away a few weeks before (P)MT. Latour’s work has
been a constant topic of conversation during lunch and coffee breaks in the CSSM group that
hosted and organized (P)MT, mostly thanks to the group leader’s personal passion for his fig-
ure. Latour was also among the authors criticized by Sokal and Bricmont. One of his major
contributions, that set the stage for all of his future elaborations, was an early ethnography of
scientists working at an endocrinology lab [216]. In the ’90s he proposed actor-network theory:
Science does not explain society just as society does not explain science, but rather they create
networks of mutual definitions and actions. In more recent years his public perception shifted
from being an anti-science demon to almost a science cheerleader [217]. In an interview by
eXtemporanea [218] he said:

«The situation was entirely different when I started to study forty years ago, and
I was accused of criticizing the scientists because we were describing how they
work, and that was seen as a critique. But forty years later the only way to still
defend science is to do exactly this.»
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One of his crucial works is Have we ever been modern?, which departs from an analysis by
Shapin and Schaeffer where the birth of modernity is placed in the creation of the vacuum and
thus of the possibility of creating the pure facts of nature (but see [219] for a more nuanced
discussion as related to thermodynamics). The idea, roughly, is that at the same time when
Boyle produced vacuum experiments for the delightment of the Royal Society of London (thus
creating “nature” as a composition of pure facts), in a symmetric way Hobbes theorized that the
nation state is a pact between individuals who would otherwise be hostile to each other (thus
postulating that no other forms or social organization are possible). This process, called by
Latour “purification”, is the premise for the separation between science and society, nature and
culture that still permeates many narratives, and that we take as a proxy for “modernity”. In a
revealing interview on the gender-based myths and methods of science [220], Evelyn Fox Keller
said about this separation between nature (perceived as feminine) and science (conceived as
masculine):

«I’m objecting to the language of laws and also objecting to the notion that they
are as free of human value as the rules of arithmetics.»

Latour himself was also critical of the relevance of the scientific method. In the interview
we mentioned above he said [218]:

«Science is not actually made of philosophical ideas, it’s made of patches of lots
of little things, like experimental data, puzzles in your head, thousands of other
things which lead you to the capacity to make the things you study convince others.
It’s a very fascinating system which has nothing to do with rationality. Is there one
single technical detail of all your exercise as PhD or writers, which is helped by
saying “I’m embodying rationality”? Ridiculous. In the 20th century, different
from the 21st, when you were teaching the students, if you were giving addresses,
it was good to give the impression that you were incarnating rationality spreading
into the world. But now? People will laugh at you!»

Nevertheless, scientists do resort or at least refer to some sort of “method”. If this is not a
tool to know reality, then what is it? A set of social practices to legitimate science? A set of
scientific practices to legitimate society?

To conclude, we launched a pool tournament following the social dinner, that very night,
and we entitled it to another hero of the CSSM group, Noam Chomsky, given that December
8th is his birthday. This is slightly ironic as Chomsky on several occasions expressed contempt
for postmodernist analysis.

11.5 Considerations

The automated poem above shows that statistical inference algorithms fed by online material
can credibly replicate well-established human formats of online expression. This is one of
the reasons why in this school and workshop we included an open, physically and socially
interactive, “off-the-track” discussion about the context and foundations of the field itself and
about future perspectives as (patches of) a community.

Despite recognizing the novelty and strangeness of the juxtaposition of the two words
“postmodern” and “thermodynamics” (very rarely associated online37), the algorithm reflects
a positivistic and progressive view of science. However, such ideals played almost no role in
our discussions. Rather, the lack of consensus about as fundamental facts as “what is a law”
or “what does a law do?” in favour of a plurality of positions and adjustments was in line

37A few occurrences are interesting. We mention without further discussion Haddad [221], Pynchon [222],
Burr [223], and Rosenberg [224] commenting on Gilles Deleuze.
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with paralogy, a concept proposed by early analyst of the postmodern condition Lyotard to
explain the agency of individuals and groups to create a legitimating metanarrative. Displaying
structural disagreement and local convergence may actually increase participation and trust:
For example, several students privately or through a following survey praised the moment for
giving them the opportunity of seeing for the first time senior scientists engage in foundational
discussions and manifest their passions.

The hacking of the entry survey was a very interesting opportunity for conversation.
Amongst the wittiest hacks, it was suggested that thermodynamics is a hammer, which quite
possibly comes from the saying “to a person with a hammer everything looks like a nail”, thus
suggesting that the community may be a bit too self-focused.

The discussion session underlined how the scientific community, and in particular in the
framework of thermodynamics, has heterogeneous views and perceptions. Interestingly, the
discussion ended up recurrently dealing with speculations about the whole universe.

Opening the discussion programmatically also stimulated several participants to the en-
sueing workshop to include such kind of considerations in their own talks, e.g. by adding
non-scientific citations (e.g. Ivan Illich, Paul Karl Feyerabend), or by framing their contribu-
tion in a more overarching perspective, or even by announcing their departure from academia.

Two hours was too short a time to dwell into all of the many interesting discussions that
initiated, but nevertheless the effort was appreciated as testified by the results of the poll we
launched after the event.

As noted by one of the referees, disagreement and incommensurableness in the other lec-
ture notes is not apparent (indeed there is some, but it can only be spotted by an expert eye).
This could give rise to all sorts of socio-anthropological considerations on which factors create
consensus and which factors hinder discussion, but this is out of our competence. Nevertheless,
we learnt the necessity to propose more of such structured moments of open meta-discussion
at community events, and possibly also on journals, cultural festivals and other locations.
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