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Abstract

We present here various techniques to work with clean and disordered quantum Ising
chains, for the benefit of students and non-experts. Starting from the Jordan-Wigner
transformation, which maps spin-1/2 systems into fermionic ones, we review some of
the basic approaches to deal with the superconducting correlations that naturally emerge
in this context. In particular, we analyze the form of the ground state and excitations of
the model, relating them to the symmetry-breaking physics, and illustrate aspects con-
nected to calculating dynamical quantities, thermal averages, correlation functions, and
entanglement entropy. A few problems provide simple applications of the techniques.
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1 Introduction

The quantum many-body problem is notoriously difficult [1, 2]. Recent times have seen
tremendous development in our experimental abilities in dealing with well-controlled quan-
tum systems, in different platforms, from superconducting qubits used in quantum informa-
tion processing [3–6] to quantum simulators, for instance with trapped ions [7] or ultracold
atoms [8–10].

These experimental advances call for a parallel theoretical understanding of equilibrium,
both at zero and finite temperatures, and out-of-equilibrium properties of systems of interact-
ing spins. While few exactly solvable models are known [11], many numerical techniques have
been developed in the last decades, ranging from quantum Monte Carlo [12] to density matrix
renormalization group [13,14], matrix product states [15] and tensor networks [16,17].

An extremely rich class of models is given by Ising models with long-range interactions, di-
rectly relevant to many experimental platforms, like trapped ions [7], and Rydberg atoms [18].
For Rydberg atoms [18], the relevant Hamiltonian, when written in terms of spin-1/2 (Pauli)
operators σ̂αj (with α= x , y, z and j a site-index) has the form:1

ÒH =
∑

i< j

Ji jσ̂
z
i σ̂

z
j +
∑

i

�

hx
i σ̂

x
i + hz

i σ̂
z
i

�

, (2)

where the couplings Ji j — in principle long-ranged — can be tuned, for instance, by varying
the distance between Rydberg atoms.

What we are going to study in these lecture notes is the much simpler case of an XY/Ising

1This is based on the identification, at each site i, of the atomic ground |gi〉 and Rydberg excited state |ri〉 with
the spin-1/2 eigenstates of σ̂z

i = |gi〉〈gi | − |ri〉〈ri |, | ↑〉 and | ↓〉, respectively, with σ̂x
i = |ri〉〈gi |+ |gi〉〈ri |. In terms

of the projector on the Rydberg state n̂i = |ri〉〈ri |, a standard expression for ÒH is:

ÒH =
∑

i

ħhΩi

2
σ̂x

i −
∑

i

ħh∆i n̂ j +
∑

i< j

Vi j n̂i n̂ j , (1)

where Ωi is the Rabi frequency driving,∆i the detuning, and Vi j the interaction between Rydberg states at different
sites [18]. By writing n̂i = (1− σ̂z

i )/2, the spin representation in Eq. (2) follows directly.
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spin chain with nearest-neighbour interactions in a transverse field:

ÒH = −
L
∑

j=1

�

J x
j σ̂

x
j σ̂

x
j+1 + J y

j σ̂
y
j σ̂

y
j+1

�

−
L
∑

j=1

h jσ̂
z
j , (3)

where L is the length of the chain, and we will allow for arbitrary nearest-neighbour couplings
J x/y

j in the x and y direction in spin space, and arbitrary transverse fields h j .
Interestingly, the quantum Ising chain with nearest-neighbour interactions is closely related

to topological superconductivity, as the model is unitarily equivalent to the quadratic fermionic
Hamiltonian of a p-wave superconducting chain (see Sec. 3), that displays a topological phase
where zero-energy boundary Majorana modes appear [19].2 The p-wave superconducting
model, also known as the Kitaev chain, has been the center of a lot of research in topological
superconductivity, see Refs. [20–22] for a review.

The quantum Ising chain problem is an ideal playground for testing many of the ideas of
statistical mechanics, including recent non-equilibrium physics. As such, it is a standard test
case in much of the recent literature. It has been used for studying the effect of quantum
quenches in integrable systems [23–33], Kibble-Zurek scaling of excitations [34–37], dynam-
ical quantum phase transitions [38,39], dynamics of periodically driven systems [36,40–44],
entanglement transitions [45–55], work statistics [56–59], and time crystals [60, 61], just to
give some examples. A recent book on the subject, Ref. [62], can be used as a source for some
more literature.

These notes are intended for students willing to begin working with quantum Ising chains.
They can be also useful as a practical guide to researchers entering the field. We, unfortunately,
do no justice to the immense literature where concepts and techniques were first introduced
or derived, and even less so to the many papers where physical applications are presented. We
apologize in advance for that with authors whose work is not duly cited. However, most of the
topics include detailed derivations which should make these notes reasonably self-standing.

The level of our presentation is roughly appropriate for graduate students, but master
students should also be able to follow most of the developments, provided they acquire the
necessary pre-requisites: second quantization [1] to deal with bosons and fermions, and basic
knowledge of quantum mechanics of the spin-1/2 [63].

More in detail, we will discuss how to map, through the Jordan-Wigner transformation,
the XY/Ising spin chain in Eq. 3 into a quadratic spinless fermion model:

ÒH = −
L
∑

j=1

�

(J x
j + J y

j )ĉ
†
j ĉ j+1 + (J

x
j − J y

j )ĉ
†
j ĉ

†
j+1 + H.c.

�

+
L
∑

j=1

h j(2n̂ j − 1) , (4)

where ĉ†
j creates a spinless fermion at site j, and H.c. means Hermitian conjugate. This Hamil-

tonian, with a few details on the boundary conditions which we will discuss at length, coincides
with the celebrated Kitaev chain model [19] for p-wave superconductors, supporting Majorana
modes at the boundaries of an open chain.

Following that, we will show how essentially any static and dynamic property of the model
can be determined. In particular, finding the 2L eigenvalues (including multiplicities) and asso-
ciated eigenvectors of ÒH amounts to diagonalising a 2L×2L matrixH containing the couplings,
a massive simplification which allows dealing with very large chain lengths, L ∼ 1000, with
moderate numerical effort. With comparable efforts, one can calculate thermal properties,
spin-spin correlation functions, and the entanglement entropy. Moreover, an explicit time-
dependence of the Hamiltonian parameters can be dealt with quite easily by integrating over
time a system of 2L differential equations, the so-called Bogoliubov-de Gennes equations.

2This phase corresponds to the symmetry-breaking phase of the quantum Ising chain, as we will better clarify
in Sec. 4, and 7.2.
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Here is an outline of the material presented. We start, in Sec. 2, from the Jordan-Wigner
transformation, which allows mapping the spin-chain Hamiltonian in Eq. (3) into the spinless
fermion Hamiltonian in Eq. (4), as detailed in Sec. 3. Next, Sec. 4 treats the case of an ordered
Ising chain with periodic boundary conditions, where a simple analytical reduction to an as-
sembly of 2× 2 problems is possible. In Sec. 6 we discuss the Nambu formalism for dealing
with the quadratic fermionic Hamiltonian in the general disordered case. Section 7 shows how
to diagonalize the spinless fermion Hamiltonian in the general disordered case, while in Sec. 8
we derive the Bogoliubov-de Gennes equations which encode the unitary Schrödinger dynam-
ics for the case of a time-dependent Hamiltonian. Sections 9 and 10 contain the technicalities
related to the calculation of correlation functions involving Jordan-Wigner string operators
and the entanglement entropy, while in Sec. 11 we show how to calculate thermal averages.
Finally, in Appendix A we show how to calculate the overlap between different Fock states for
two different Ising Hamiltonians.

A word on the notation. We will try to be consistent with a notation in which quantum
mechanical operators acting in the full Hilbert space, 2L dimensional for a system of L spins,
are denoted with a hat, such as ÒH for the Hamiltonian or bU for a unitary operator. Matrices
(and vectors) are denoted in boldface, such as U, if they refer to L× L (or 2×2) block matrices,
or as U or H, if they refer to 2L × 2L matrices. Here is a table where the main symbols are
explained.

σ̂αj Pauli matrices (α= x , y, z) at site j

ĉ†
j Creation operator for a spinless fermion at site j

ĉ†
k Creation operator for a spinless fermion with wave-vector k

γ̂†
µ Creation operator for a Bogoliubov fermion
ÒH The Hamiltonian operator

bHp=0,1 The parity even/odd projection (for p= 0/1) of the fermionic Hamiltonian
bHp=0,1 The fermionic Hamiltonian with ABC/PBC (for p= 0/1)
bΨk The two-component Nambu fermion operator with wave-vector k

Hk The 2× 2 Hamiltonian block with wave-vector k

Rk The 3-dimensional effective magnetic field with wave-vector k

Uk The 2× 2 unitary matrix with eigenvectors of Hk with wave-vector k
bΨ The 2L-dimensional Nambu fermion operator composed of ĉ j and ĉ†

j
bΦ The 2L-dimensional Nambu fermion operator composed of γ̂µ and γ̂†

µ

H The 2L × 2L Hamiltonian matrix in the Nambu formalism

U The 2L × 2L unitary matrix with eigenvectors of H
U,V L × L blocks of the unitary matrix U

2 Jordan-Wigner transformation

For systems of bosons and fermions, a large assembly of many-body techniques has been devel-
oped [1]. In particular, while the full Hilbert space for particles on lattices with L sites is expo-
nentially large in L, models which are quadratic in the fermion or bosons creation/destruction
operators are “solvable”, as they reduce to solving a single-particle problem [1]. Spin systems,
on the contrary, are neither bosons nor fermions. Their full Hilbert space is also exponentially
large — 2L for spin-1/2 on a lattice with L sites — but the equivalent of a “solvable quadratic”
problem is lacking: even the simplest spin-spin interactions make the Hamiltonian essentially
unsolvable, in general.
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Consider, to start with, a single spin-1/2, and the three components of the spin operators
represented in terms of the usual Pauli matrices3 σ̂α with α = x , y, z. The Hilbert space of a
single spin is two-dimensional: for instance, you can write a basis as {|↑〉, |↓〉}, in terms of the
eigenstates of σ̂z , with σ̂z|↑〉= |↑〉 and σ̂z|↓〉= −|↓〉. Moreover, if σ̂αj denote Pauli matrices at
different lattice sites j, hence acting on “different” (distinguishable) two-dimensional Hilbert
spaces, then

�

σ̂αj , σ̂α
′

j′
�

= 0 , for j′ ̸= j . (5)

But on the same site, the angular momentum commutation rules lead to
�

σ̂x
j , σ̂ y

j

�

= 2iσ̂z
j , (6)

and cyclic permutations [63]. Interestingly, by defining the raising and lowering operators
σ̂±j = (σ̂

x
j ± iσ̂ y

j )/2 which act on the basis states as σ̂+|↓〉= |↑〉 and σ̂−|↑〉= |↓〉, you can verify
that

�

σ̂+j , σ̂−j
	

= 1 , (7)

where
�

Â, B̂
	

= ÂB̂ + B̂Â denotes the anti-commutator, typical of the canonical anti-
commutation rules for fermions [1].

Using bosons to describe spins would seem impossible. First of all, if we have a single boson
b̂† with associated vacuum state |0〉, such that b̂ |0〉 = 0, then, using the canonical bosonic
commutation rules

�

b̂ , b̂†
�

= 1 you can construct an infinite dimensional Hilbert space [1]
with states

|n〉=
1
p

n!
(b̂†)n|0〉 , where n= 0,1, · · ·∞ .

However, if we decide to truncate such a Hilbert space to only two states, {|0〉, |1〉}, assuming
(b̂†)2|0〉 = 0, then the Hilbert space of a single spin-1/2 can be easily mimicked. Such a
truncation, which can be thought of as adding a large — ideally “infinite” — on-site repulsion
term to the boson Hamiltonian, is known as hard-core boson. We transform the Pauli spin-
1/2 operators σ̂αj (with α = x , y, z, and j a generic site index) into hard-core bosons b̂†

j , by

identifying4 at each site |0〉 ↔ |↑〉 and |1〉 = b̂†|0〉 ↔ |↓〉. Recalling that σ̂± = (σ̂x ± iσ̂ y)/2
act as σ̂+|↓〉= |↑〉, and σ̂−|↑〉= |↓〉, we must have:















σ̂+j = b̂ j ,

σ̂−j = b̂†
j ,

σ̂z
j = 1− 2b̂†

j b̂ j

=⇒















σ̂x
j = b̂†

j + b̂ j ,

σ̂
y
j = i(b̂†

j − b̂ j ) ,

σ̂z
j = 1− 2b̂†

j b̂ j .

(8)

These operators b̂†
j commute at different sites — as the original σ̂αj do — but are not ordinary

bosonic operators. They anti-commute on the same site5
�

b̂ j , b̂†
j

	

= 1 and they verify the

hard-core constraint (b̂†
j )

2|0〉= 0, i.e., at most one boson is allowed on each site.

3Recall that

σ̂x =
�

0 1
1 0

�

, σ̂ y =
�

0 −i
i 0

�

, σ̂z =
�

1 0
0 −1

�

,

which verify [σ̂x , σ̂ y] = 2iσ̂z . The physical spin operators have an extra factor ħh/2.
4This identification is not unique, as you can swap the two states.
5Since on the same site

�

σ̂+j , σ̂−j
	

= 1, this implies that
�

b̂ j , b̂†
j

	

= 1, while ordinary bosons would have the

commutator [b̂ j , b̂†
j ] = 1.

5
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↓ ↓ ↑ ↑ ↓ ↑

1 2 3 4 5 6
= b̂†

1 b̂†
2 b̂†

5 |0〉 = ĉ†
1 ĉ†

2 ĉ†
5 |0〉

Figure 1: Top: An L = 6 site spin configuration. Bottom: The corresponding particle
configuration.

Info: The hard-core boson mapping might be viewed as a way of rewriting spin-1/2 mod-
els in a rather general setting. For instance, if you have a Heisenberg model for spin-1/2
sitting on a lattice, whose sites are denoted by j and with nearest-neighbour pairs denoted
by 〈 j, j′〉 we could write, defining n̂ j = b̂†

j b̂ j :

ÒHHeis =
J
4

∑

〈 j, j′〉

�

σ̂z
j σ̂

z
j′ + 2(σ̂+j σ̂

−
j′ + σ̂

−
j σ̂
+
j′)
�

→ J
∑

〈 j, j′〉

�

(n̂ j −
1
2)(n̂ j′ −

1
2)+

1
2(b̂

†
j′ b̂ j + b̂†

j b̂ j′)
�

.

The second expression shows that we are dealing with hard-core bosons hopping on the
lattice and repelling each other at nearest-neighbors. Needless to say, this helps in no way
in solving the problem.

i

The hard-core constraint seems to be ideally representable in terms of spinless fermions
ĉ†

j , where the absence of double occupancy is automatically enforced by the Pauli exclusion
principle, and the anti-commutation on the same site comes for free.

Unfortunately, whereas the mapping of σ̂αj into hard-core bosons b̂†
j is true in any spatial

dimension, writing b̂†
j in terms of spinless fermions ĉ†

j is straightforwardly useful only in one-
dimension (1D), where a natural ordering of sites is possible, j = 1,2, · · · , L. In other words,
because fermion operators on different sites must anti-commute, the exact handling of the
resulting minus signs — which are absent in the original spin problem — is very natural only
in 1D.

Let ĉ†
j and ĉ j denote the creation and annihilation operators for spinless fermions at site

j, with canonical anti-commutation relations
�

ĉ j , ĉ†
j′
	

= δ j, j′ ,
�

ĉ j , ĉ j′
	

=
�

ĉ†
j , ĉ†

j′
	

= 0, and

n̂ j = ĉ†
j ĉ j the corresponding number operator, whose eigenvalues can be only 0 or 1.

Key properties of eiπn̂
j . Important in the whole discussion below are the following

simple properties of eiπn̂ j :

K1) e
iπn̂

j′ ĉ j = ĉ j e
iπn̂

j′ , for j′ ̸= j ,

K2) eiπn̂ j ĉ j = −ĉ j e
iπn̂ j ,

K3) eiπn̂ j eiπn̂ j = 1 ,

K4) e−iπn̂ j = eiπn̂ j = 1− 2n̂ j .

(9)

i

In words: eiπn̂ j commutes with fermionic operators at different sites, while it anti-commutes
on the same site. The anti-commutation in K2 can be verified by using the fermionic anti-
commutation rules, or by arguing that n̂ j = 0 when it sits to the left of ĉ j , while n̂ j = 1 when

6
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it sits to the right of ĉ j . K3, equivalent to ei2πn̂ j = 1, implies that eiπn̂ j = e−iπn̂ j . By taking the

Hermitian conjugate of K1 and K2 you obtain identical expressions for ĉ†
j . K4 follows because

the possible eigenvalues of n̂ j are 0 and 1.
The Jordan-Wigner (JW) transformation of hard-core bosons into spinless fermions reads:

b̂ j = K̂ j ĉ j = ĉ j K̂ j , with K̂ j =
j−1
∏

j′=1

e
iπn̂

j′ = e
iπ
∑ j−1

j′=1
n̂

j′ , (10)

where the non-local string operator K̂ j is simply a sign, K̂ j = ±1, counting the parity of the
number of fermions before site j, between sites 1 and j−1, multiplying the fermionic operator
ĉ j , with which it commutes.

We will now show that the following two properties of the b̂ j follow:

Prop.1 :











¦

b̂ j , b̂†
j

©

= 1 ,
¦

b̂ j , b̂ j

©

= 0 ,
¦

b̂†
j , b̂†

j

©

= 0 ,

Prop.2 :











�

b̂ j , b̂†
j′

�

= 0 ,
�

b̂ j , b̂ j′

�

= 0 ,
�

b̂†
j , b̂†

j′

�

= 0 ,

if j ̸= j′ , (11)

which is a formal way of writing that the b̂ j are hard-core bosons. Prop.1 is straightforward

because the string K̂ j cancels completely, for instance

b̂†
j b̂ j = ĉ†

j K̂
†
j K̂ j ĉ j = ĉ†

j ĉ j ,

and, similarly, b̂ j b̂†
j = ĉ j ĉ

†
j . In essence, on each site b̂ j inherits the anti-commutation property

Prop.1 from the fermion ĉ j .

To prove Prop.2, let us consider
�

b̂ j1
, b̂†

j2

�

, assuming j2 > j1. Using Eq. (10) and properties
K1,K3 from Eq. (9) it is simple to show that

b̂ j1
b̂†

j2
= ĉ j1

� j2−1
∏

j= j1

eiπn̂ j

�

ĉ†
j2

, (12)

which means that only the piece of JW string from j1 to j2 − 1 survives. Similarly, you can
show that

b̂†
j2

b̂ j1
=
� j2−1
∏

j= j1

eiπn̂ j

�

ĉ†
j2

ĉ j1
= −

� j2−1
∏

j= j1

eiπn̂ j

�

ĉ j1
ĉ†

j2

= +ĉ j1

� j2−1
∏

j= j1

eiπn̂ j

�

ĉ†
j2

, (13)

where the change of sign in the first line is due to the fermionic anti-commutation,
ĉ†

j2
ĉ j1
= −ĉ j1

ĉ†
j2

, and the crucial final change of sign is due to K2, while all the other operators

eiπn̂ j for j ̸= j1 commute with ĉ j1
, due to K1. Comparing Eq. (12) with Eq. (13) you deduce

that
�

b̂ j1
, b̂†

j2

�

= 0. All the other commutation relationships in Prop.2 are proven similarly.

7
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Here is a summary of a few useful expressions where the string operator K̂ j disappears
exactly:

b̂†
j b̂ j = ĉ†

j ĉ j ,

b̂†
j b̂†

j+1 = ĉ†
j (1− 2n̂ j )ĉ

†
j+1 = ĉ†

j ĉ
†
j+1 ,

b̂†
j b̂ j+1 = ĉ†

j (1− 2n̂ j )ĉ j+1 = ĉ†
j ĉ j+1 ,

b̂ j b̂ j+1 = ĉ j (1− 2n̂ j )ĉ j+1 = ĉ j (1− 2(1− ĉ j ĉ
†
j ))ĉ j+1 = −ĉ j ĉ j+1 ,

b̂ j b̂†
j+1 = ĉ j (1− 2n̂ j )ĉ

†
j+1 = ĉ j (1− 2(1− ĉ j ĉ

†
j ))ĉ

†
j+1 = −ĉ j ĉ

†
j+1 .

(14)

Notice the minus signs on the right-hand side, which should not be forgotten. Notice also that
we have used

j−1
∏

j′=1

�

e
iπn̂

j′

� j
∏

j′=1

�

e
iπn̂

j′

�

= eiπn̂ j = 1− 2n̂ j , (15)

because all but the last eiπn̂ j -term cancel in the two strings.

Jordan-Wigner transformation. Summarising, spins are mapped into fermions using:














σ̂x
j = K̂ j (ĉ

†
j + ĉ j ) ,

σ̂
y
j = K̂ j i(ĉ†

j − ĉ j ) ,

σ̂z
j = 1− 2n̂ j ,

with K̂ j =
j−1
∏

j′=1

e
iπn̂

j′ . (16)

Armed with these expressions, it is simple to show that some nearest-neighbor spin-spin
operators transform simply into quadratic fermionic operators

σ̂x
j σ̂

x
j+1 =

�

ĉ†
j ĉ j+1 + ĉ†

j ĉ
†
j+1 +H.c.

�

,

σ̂
y
j σ̂

y
j+1 =

�

ĉ†
j ĉ j+1 − ĉ†

j ĉ
†
j+1 +H.c.

�

. (17)

Unfortunately, a longitudinal field term involving a single σ̂x
j or σ̂ y

j cannot be translated
into a simple local fermionic operator.

i

One important point to note concerns boundary conditions. One often assumes periodic
boundary conditions (PBC) for the spin operators, which means that the model is defined on a
ring geometry with L sites, j = 1, · · · , L, and the understanding that σ̂α0 ≡ σ̂

α
L and σ̂αL+1 ≡ σ̂

α
1 .

This immediately implies the same PBC conditions for the hard-core bosons. Hence, for in-
stance: b̂†

L b̂L+1 ≡ b̂†
L b̂1. But observe what happens when we rewrite a term of this form using

spinless fermions:

b̂†
L b̂1 =

� L−1
∏

j=1

eiπn̂ j

�

ĉ†
L ĉ1 = −

� L
∏

j=1

eiπn̂ j

�

ĉ†
L ĉ1 = −eiπÒN ĉ†

L ĉ1 , (18)

where

ÒN =
L
∑

j=1

ĉ†
j ĉ j , (19)

is the total number of fermions, and the second equality follows because to the left of ĉ†
L we

certainly have n̂L = 1, and therefore eiπn̂L ≡ −1. Similarly, you can verify that:

b̂†
L b̂†

1 =
� L−1
∏

j=1

eiπn̂ j

�

ĉ†
L ĉ†

1 = −
� L
∏

j=1

eiπn̂ j

�

ĉ†
L ĉ†

1 = −eiπÒN ĉ†
L ĉ†

1 . (20)
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Warning: This shows that boundary conditions are affected by the fermion parity
eiπÒN = (−1)ÒN , and PBC become anti-periodic boundary condition (ABC) when ÒN is even.
No problem whatsoever is present, instead, when the boundary conditions are open (OBC),
because there is no link, in the Hamiltonian, between operators at site L and operators at
site L + 1≡ 1. More about this in a short while.

!

3 Transverse field Ising-XY models: Fermionic formulation

Info: There is a whole class of one-dimensional spin systems where a fermionic re-
formulation can be useful. Probably the most noteworthy is the XXZ Heisenberg chain,
which would read:

ÒHXXZ =
∑

j

�

J⊥j (σ̂
x
j σ̂

x
j+1 + σ̂

y
j σ̂

y
j+1) + J zz

j σ̂
z
j σ̂

z
j+1

�

−
∑

j

h jσ̂
z
j . (21)

The corresponding fermionic formulation reads:

ÒHXXZ→
∑

j

�

2J⊥j (ĉ
†
j ĉ j+1 +H.c.) + J zz

j (2n̂ j − 1)(2n̂ j+1 − 1)
�

+
∑

j

h j(2n̂ j − 1) , (22)

which shows that the fermions interact at nearest-neighbours, due to the J zz
j -term.

i

Let us now concentrate on a class of one-dimensional models where the resulting fermionic
Hamiltonian can be exactly diagonalized, because it is quadratic in the fermions: such a class
includes the XY model and the Ising model in a transverse field.

Anisotropic XY model in a transverse field. After a rotation in spin space, we can write
the spin Hamiltonians leading to a quadratic fermion problem (allowing for non-uniform,
possibly random, couplings) as follows:

ÒH = −
L
∑

j=1

�

J x
j σ̂

x
j σ̂

x
j+1 + J y

j σ̂
y
j σ̂

y
j+1

�

−
L
∑

j=1

h jσ̂
z
j , (23)

where σ̂αj are Pauli matrices. The couplings J x ,y
j and the transverse fields h j can be chosen,

for instance, as independent random variables with uniform distribution. For a system of
finite size L with open boundary condition (OBC), the first sum runs over j = 1, · · · , L−1,
or, equivalently, we would set J x ,y

L = 0. If periodic boundary conditions (PBC) are chosen,
the sum runs over j = 1, · · · , L and one assumes that σ̂αL+1 ≡ σ̂

α
1 . For J y

j = 0 we have the

Ising model in a transverse field, for J y
j = J x

j the isotropic XY model in a transverse field.

i

In terms of hard-core bosons, the Hamiltonian becomes:

ÒH = −
L
∑

j=1

�

J+j b̂†
j b̂ j+1 + J−j b̂†

j b̂†
j+1 + H.c.

�

+
L
∑

j=1

h j(2n̂ j − 1) , (24)

where we have introduced a shorthand notation6 J±j = J x
j ± J y

j .

6This notation should not generate confusion with the angular momentum ladder operators. Here there is no
imaginary unit i, and the couplings J±j = J x

j ± J y
j are just real numbers.
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Next, we switch to spinless fermions, since all terms appearing in the previous expression
do not involve explicitly the string operator K̂ j . In terms of fermions, the Hamiltonian is
essentially identical. We would remark that in the fermionic context, the pair creation and
annihilation terms are characteristic of the BCS theory of superconductivity [64]. The only
tricky point has to do with the boundary conditions. If one uses open boundary conditions,
the first sum runs over j = 1, · · · , L − 1 and there is never a term involving site L + 1, hence
we have:

ÒHOBC = −
L−1
∑

j=1

�

J+j ĉ†
j ĉ j+1 + J−j ĉ†

j ĉ
†
j+1 + H.c.

�

+
L
∑

j=1

h j(2n̂ j − 1) . (25)

In the PBC case, terms like b̂†
L b̂L+1 ≡ b̂†

L b̂1 = −eiπÒN ĉ†
L ĉ1 and b̂†

L b̂†
L+1 ≡ b̂†

L b̂†
1 = −eiπÒN ĉ†

L ĉ†
1

appear in the Hamiltonian, where ÒN is the number of fermions operator. Therefore:

ÒHPBC = ÒHOBC + eiπÒN
�

J+L ĉ†
L ĉ1 + J−L ĉ†

L ĉ†
1 + H.c.

�

. (26)

Info: Notice that, although the number of fermions ÒN is not conserved by the Hamiltonian
in Eq. (26), its parity eiπÒN = (−1)ÒN is a “constant of motion” with value 1 or −1. So, from
the fermionic perspective, it is as if we apply anti-periodic boundary conditions (ABC),
hence ĉL+1 = −ĉ1, if there is an even number of fermions and periodic boundary condition
(PBC), hence ĉL+1 = ĉ1, if there is an odd number of fermions. This symmetry can also be
directly seen from the spin Hamiltonian in Eq. (23), where one should observe that the
nearest-neighbour σ̂x

j σ̂
x
j+1 and σ̂ y

j σ̂
y
j+1 can only flip pairs of spins, hence the parity of the

overall magnetization along the z direction is unchanged. Such a parity can be easily and
equivalently expressed as:

ÒP =
L
∏

j=1

σ̂z
j =

L
∏

j=1

(1− 2n̂ j )=
L
∏

j=1

eiπn̂ j = eiπÒN . (27)

We remark that ÒP flips all the σ̂x
j and σ̂ y

j , i.e., ÒPσ̂x ,y
j
ÒP = −σ̂x ,y

j , in the Hamiltonian in
Eq. (23), leaving it invariant. This parity symmetry is the Z2-symmetry which the system
breaks in the ordered ferromagnetic phase, as we will better discuss later on.

i

Let us define the projectors on the subspaces with even and odd number of particles:

bPeven =
1
2
(1̂+ eiπÒN ) = bP0 , and bPodd =

1
2
(1̂− eiπÒN ) = bP1 . (28)

With these projectors, we can define two fermionic Hamiltonians acting on the 2L−1-
dimensional even/odd parity subspaces of the full Hilbert space:

bH0 = bP0ÒHPBC
bP0 , and bH1 = bP1ÒHPBC

bP1 , (29)

in terms of which we might express the full fermionic Hamiltonian in block form as:

ÒHPBC =

�

bH0 0
0 bH1

�

. (30)

Observe that if you write a fermionic Hamiltonian of the form:

bHp=0,1 = −
L−1
∑

j=1

�

J+j ĉ†
j ĉ j+1 + J−j ĉ†

j ĉ
†
j+1 + H.c.

�

+ (−1)p
�

J+L ĉ†
L ĉ1 + J−L ĉ†

L ĉ†
1 + H.c.

�

+
L
∑

j=1

h j(2n̂ j − 1) , (31)
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then you can regard bH1 as a legitimate PBC-fermionic Hamiltonian since

bH1 = −
L
∑

j=1

�

J+j ĉ†
j ĉ j+1 + J−j ĉ†

j ĉ
†
j+1 + H.c.

�

+
L
∑

j=1

h j(2n̂ j − 1) , (32)

with the interpretation ĉL+1 ≡ ĉ1. Similarly, bH0 is a legitimate ABC-fermionic Hamiltonian
where you should pose ĉL+1 ≡ −ĉ1. Neither of them, however, expresses the correct fermionic
form of the PBC-spin Hamiltonian. However, they are useful in expressing the fermionic
blocks:

bH0 = bP0bH0bP0 = bH0bP0 , and bH1 = bP1bH1bP1 = bH1bP1 , (33)

since bHp=0,1 conserve the fermionic parity, hence they commute with bP0,1.

Warning: The distinction between bH0,1 and the corresponding bH0,1 might appear pedan-
tic, but is important, since the former acts non-trivially only on 2L−1-dimensional blocks,
while the latter live in the full Hilbert space, hence are 2L-dimensional. This fact, for in-
stance, complicates the calculation of thermal averages and is further discussed in Sec. 11.

!

Info: In the OBC case, since J±L = 0, the two fermionic Hamiltonians coincide and you
can omit the label: bH0 = bH1 → bH. Because of that, in the OBC case, you can simply set
ÒHOBC = bH and work with a single fermionic Hamiltonian.

i

4 Uniform XY-Ising model

As a warm-up, let us study the uniform case, where J x
j = J x , J y

j = J y , h j = h, originally solved
in Ref. [65]. It is customary to parameterise J x = J(1 + κ)/2 and J y = J(1 − κ)/2, so that
J+ = J and J− = κJ . The Hamiltonian is then:7

ÒHOBC = −J
L−1
∑

j=1

�

ĉ†
j ĉ j+1 + κĉ†

j ĉ
†
j+1 + H.c.

�

+ h
L
∑

j=1

(2ĉ†
j ĉ j − 1) , (34)

for the OBC case, and:

ÒHPBC = ÒHOBC + eiπÒN J
�

ĉ†
L ĉ1 + κĉ†

L ĉ†
1 + H.c.

�

. (35)

We assume from now on that the number of sites L is even: This is not a big restriction and is
useful.

In the spin-PBC case, if the number of fermions ÒN takes an odd value, then we effectively
have ĉL+1 ≡ ĉ1; if, on the contrary, ÒN takes an even value, then the L-th bond has an op-
posite sign to the remaining ones, which can also be reformulated as ĉL+1 ≡ −ĉ1. Since the

7Notice that one can change the sign of the h-term by making a particle-hole transformation c̃ j → (−1) j ĉ†
j ,

which transforms ñ j → 1− n̂ j , and 1−2ñ j → 2n̂ j −1, while leaving the hopping term untouched (same sign of J).
With the current choice of the h-term, the h→ +∞ ground state in the spin representation |↑↑ · · · ↑〉 is mapped
into the fermionic vacuum, which will be useful in discussing the ground state. (Notice that the phase factor (−1) j

exchange the roles of k = 0 and k = π in the discussion of the ground state.) Similarly, the same particle-hole
transformation but without phase factor (−1) j would also invert the sign of the J -term, from ferromagnetic to
antiferromagnetic.
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Hamiltonian conserves the fermion parity, both the even and the odd particle subsectors of the
fermionic Hilbert space have to be considered when diagonalizing the model, precisely as in
the general case of Eq. (30). Introducing the two fermionic Hamiltonians as in Eq. (31) we
now have:

bHp=0,1 = −J
L
∑

j=1

�

ĉ†
j ĉ j+1 + κĉ†

j ĉ
†
j+1 + H.c.

�

+ h
L
∑

j=1

(2n̂ j − 1) , (36)

where we recall that p = 0, 1 is associated with the fermionic parity — p = 0 for even and
p= 1 for odd parity — and that this compact way of writing assumes that the boundary terms
are treated with:

ĉL+1 ≡ (−1)p+1 ĉ1 . (37)

Let us now introduce the fermion operators in k-space, ĉk and ĉ†
k, with {ĉk, ĉ†

k′} = δk,k′ .
The direct and inverse transformations are defined as follows:



















ĉk =
e−iφ

p
L

L
∑

j=1

e−ik j ĉ j ,

ĉ j =
eiφ

p
L

∑

k

e+ik j ĉk ,

(38)

where the overall phase eiφ does not affect the canonical anti-commutation relations, but
might be useful to change the phase of the anomalous BCS pair-creation terms (see below).
Which values of k should be used in the previous transformation depends on p. For p = 1 we
have ĉL+1 ≡ ĉ1, which in turn implies, from the expression for ĉ j in terms of ĉk, that eikL = 1,
hence the standard PBC choice for the k’s:

p= 1 =⇒ Kp=1 =
¦

k =
2nπ

L
, with n= − L

2 + 1, · · · , 0, · · · , L
2

©

. (39)

For p= 0 we have ĉL+1 ≡ −ĉ1, which implies that eikL = −1, hence an anti-periodic boundary
conditions (ABC) choice for the k’s:

p= 0 =⇒ Kp=0 =
¦

k = ±
(2n− 1)π

L
, with n= 1, · · · , L

2

©

. (40)

In terms of ĉk and ĉ†
k, with the appropriate choice of the k-vectors, bHp becomes:8

bHp = −J
∑

k∈Kp

�

2 cos k ĉ†
kĉk + κ

�

e−2iφeikĉ†
kĉ†
−k +H.c.

�

�

+ h
∑

k∈Kp

(2ĉ†
kĉk − 1) . (41)

Notice the coupling of −k with k in the (anomalous) pair-creation term, with the exceptions
of k = 0 and k = π for the p = 1 (PBC) case, which do not have a separate −k partner. It is

8We use the standard fact that the sum over j introduces a Krönecker delta for the wave-vectors:

1
L

L
∑

j=1

e−i(k−k′) j = δk,k′ .
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useful to manipulate the (normal) number-conserving terms9 to rewrite the Hamiltonian as:

bHp =
∑

k∈Kp

�

(h− J cos k)
�

ĉ†
kĉk − ĉ−kĉ†

−k

�

− κJ
�

e−2iφeikĉ†
kĉ†
−k +H.c.

�

�

. (42)

The two terms with k = 0 and k = π, present for p = 1 (PBC), taken together can be written
as:

ÒH0&π = −2J (n̂0 − n̂π) + 2h (n̂0 + n̂π − 1) . (43)

The remaining p= 1 terms, and all terms for p= 0, come into pairs (k,−k). Let us define the
positive k values as follows:

K+p=1 =
¦

k =
2nπ

L
, with n= 1, · · · , L

2 − 1
©

,

K+p=0 =
¦

k =
(2n− 1)π

L
, with n= 1, · · · , L

2

©

.
(44)

Then we can write the Hamiltonians as:

bH0 =
∑

k∈K+0

ÒHk , bH1 = ÒH0 &π +
∑

k∈K+1

ÒHk , (45)

where we have grouped terms with k and −k into a single Hamiltonian ÒHk of the form:

ÒHk = 2(h− J cos k)
�

ĉ†
kĉk − ĉ−kĉ†

−k

�

− 2κJ sin k
�

ie−2iφ ĉ†
kĉ†
−k − ie2iφ ĉ−kĉk

�

. (46)

Interestingly, the Hamiltonians ÒHk commute for different k, [ÒHk,ÒHk′] = 0, and act non-trivially
only in the 4-dimensional space generated by the states:

¦

ĉ†
kĉ†
−k|0〉 , |0〉 , ĉ†

k|0〉 , ĉ†
−k|0〉

©

, (47)

where they have a 4× 4 matrix of the form:








2(h− J cos k) −2iκJe−2iφ sin k 0 0
2iκJe2iφ sin k −2(h− J cos k) 0 0

0 0 0 0
0 0 0 0









. (48)

Check of dimensions. Recall that both bHp=0,1 have 2L eigenvalues (including multi-

plicity). Indeed, there are L
2 such terms for bH0, hence a dimension 4

L
2 = 2L . Notice that

ÒHk=0,π also works in a 4-dimensional subspace,

¦

|0〉 , ĉ†
0ĉ†
π|0〉 , ĉ†

0|0〉 , ĉ†
π|0〉

©

, (49)

and there are L
2−1 wave-vectors inK+1 , hence again a total dimension for bH1 of 4

L
2−14=2L .

Recall, finally, that the correct eigenvalues are obtained from the block Hamiltonians
bHp=0,1 which have 2L−1 eigenvalues each (including multiplicity), those with even (p= 0)
or odd (p= 1) fermion parity.

i

9We use that
∑

k

2cos k ĉ†
k ĉk =

∑

k

cos k
�

ĉ†
k ĉk − ĉ−k ĉ†

−k

�

,

where we used the anti-commutation relations,
∑

k cos k = 0, and
∑

k

(2ĉ†
k ĉk − 1) =

∑

k

�

ĉ†
k ĉk − ĉ−k ĉ†

−k

�

.

13

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.82


SciPost Phys. Lect. Notes 82 (2024)

To deal with the necessary combination of states {ĉ†
kĉ†
−k|0〉 , |0〉} involved in the non-trivial

2 × 2 blocks of the Hamiltonian, requiring essentially a Bogoliubov transformation, we now
define a fermionic two-component spinor

bΨk =

�

ĉk
ĉ†
−k

�

, bΨ†
k = (ĉ

†
k , ĉ−k) , (50)

with anti-commutation relations (α= 1,2 stands for the two components of bΨ )
�

bΨkα, bΨ†
k′α′
	

= δα,α′δk,k′ . (51)

We can then rewrite each ÒHk as:

ÒHk =
∑

α,α′

bΨ†
kα

�

Hk

�

αα′
bΨkα′ = (ĉ

†
k , ĉ−k)

�

2(h− J cos k) −2κJ ie−2iφ sin k
2κJ ie2iφ sin k −2(h− J cos k)

�

︸ ︷︷ ︸

Hk

�

ĉk
ĉ†
−k

�

, (52)

where we have highlighted a 2× 2 Hermitian matrix Hk which can be expressed in terms of
new pseudo-spin Pauli matrices τ̂x ,y,z as:

Hk = Rk · τ̂ . (53)

Here we recognise an “effective magnetic field” Rk given by:

Rk = 2
�

− κJ sin 2φ sin k , κJ cos2φ sin k , (h− J cos k)
�T

. (54)

Info: Observe the role of the arbitrary phase φ introduced in the transformation from
real space to momentum space, Eq. (38). For φ = 0 the effective magnetic field lives in
the y − z plane in pseudo-spin space, while for φ = π

4 it lives in the x − z plane and the
pseudo-spin Hamiltonian is real, as it involves τ̂x and τ̂z .

i

By solving the 2× 2 eigenvalue problem for the pseudo-spin Hamiltonian Hk we find the
eigenvalues εk± = ±εk with:

εk =
�

�Rk

�

�= 2J

√

√

√

�

h
J
− cos k

�2

+κ2 sin2 k ≥ 0 , (55)

with corresponding eigenvectors (vk± , uk±)T which can be expressed in terms of spin eigen-
states in the direction Rk/|Rk|. From now on we will fix φ = 0, so that the pseudo-spin
effective magnetic field lives in the y − z plane. Define the shorthand Rk = (0 , yk , zk)T with
zk = 2(h− J cos k) and yk = 2κJ sin k. For the negative energy eigenvector, we have:

�

vk−
uk−

�

≡
�

vk
uk

�

=
1

p

2εk(εk + zk)

�

i yk
εk + zk

�

, (56)

where we have introduced the shorthands vk = vk− and uk = uk−. Note, in passing, that
u−k = uk, while v−k = −vk, since zk is even in k, while yk is odd. The positive-energy eigen-
vector (vk+ , uk+)T is related to the previous one by a simple transformation:10

�

vk+
uk+

�

=

�

u∗k
−v∗k

�

=
1

p

2εk(εk + zk)

�

εk + zk
i yk

�

. (59)

10Indeed, write the eigenvalue problem for (vk , uk)T, with energy εk− = −εk:
�

zk vk − i ykuk = −εk vk ,

i yk vk − zkuk = −εkuk .
(57)
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The unitary matrix Uk having the two previous eigenvectors as columns:

Uk =

�

u∗k vk
−v∗k uk

�

, (60)

diagonalizes Hk:

U†
k Hk Uk =

�

εk 0
0 −εk

�

. (61)

So, define new fermion two-component operators bΦk through

�

γ̂k
γ̂†
−k

�

def
= bΦk = U†

k
bΨk =

�

ukĉk − vkĉ†
−k

v∗k ĉk + u∗kĉ†
−k

�

. (62)

It is straightforward to verify that γ̂k is indeed a fermion.11 In terms of bΦk = (γ̂k , γ̂†
−k)

T and
bΦ†

k = bΨ
†
kUk = (γ̂

†
k , γ̂−k), we have:

ÒHk = bΨ
†
k Uk U†

k Hk Uk U†
k
bΨk = bΦ

†
k

�

εk 0
0 −εk

�

bΦk = εk

�

γ̂†
kγ̂k − γ̂−kγ̂

†
−k

�

= εk

�

γ̂†
kγ̂k + γ̂

†
−kγ̂−k − 1

�

. (64)

The form of the two bands ±εk, as a function of k and for several values of h is noteworthy.
Figure 2 shows plots that illustrate them.

Now change the sign of the second equation, take the complex-conjugate of both, and rewrite them in inverted
order, to get:

�

zk(u
∗
k)− i yk(−v∗k) = εk(u

∗
k) ,

i yk(u
∗
k)− zk(−v∗k) = εk(−v∗k) ,

(58)

which is the eigenvalue equation for (vk+ , uk+)T.
11One can verify anti-commutation relationships very easily:

�

γ̂k, γ̂†
k

	

=
�

uk ĉk − vk ĉ†
−k, u∗k ĉ†

k − v∗k ĉ−k

	

= |uk|2
�

ĉk, ĉ†
k

	

+ |vk|2
�

ĉ†
−k, ĉ−k

	

= |uk|2 + |vk|2 = 1 , (63)

where the last equality follows from the normalization condition for the eigenvectors.
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Figure 2: (a) The two bands±εk plotted by varying the transverse field h in the range
[0,2]. (b-d) The bands ±εk for three different transverse fields h: (b) h/J = 0.5
(inside the ferromagnetic region), (c) h/J = 1 (the critical point), (d) h/J = 1.5
(inside the paramagnetic phase). Notice the remarkable behaviour at h = hc = J ,
clearly visible in panel (c): A gapless linear spectrum. Notice also how you can hardly
distinguish the bands of the two gapped phases in (b) and (d). But their topology is
distinctly different: see the discussion related to Fig. 3. Here J = 1 and κ= 1.

-2

0

2

4

-2 0 2

yk

zk

h/J=1.5

h/J=0.5

h=J

Figure 3: Curves drawn by the vector Rk as k spans [−π,π), for three values of h.
Here J = 1, κ= 1.
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Winding and topology. It is instructive to trace the behaviour of the “effective magnetic
field” Rk, of magnitude |Rk| = εk, that the system “sees” as the wave-vector k spans the
so-called Brillouin zone [−π,π). Fixing φ = 0 in Eq. (54), this effective magnetic field
lies in the y − z plane, Rk = (0, yk, zk)T with yk = 2κJ sin k and zk = 2(h− J cos k), where
it draws the ellipse of equation12

y2
k

4κ2J2
+
(zk − 2h)2

4J2
= 1 , (65)

as k spans the interval [−π,π). We show in Fig. 3 three examples of this ellipse (circles,
for κ = 1), one for |h| < J , one for h > J , and that for h = J . For |h| < J we see that
the vector Rk turns around and comes back to its original position, making one complete
revolution around the origin, as k varies in [−π,π). We term the number of revolutions as
the index [66] (or winding number) of the vector, and here it equals 1. As we change h in
the range −J < h< J , the index, for continuity reasons, keeps the constant value 1 (it can
only assume discrete values). In the case h> J , the vector Rk makes no revolution around
the origin and its index is 0: It keeps this value for any h > J , for the same continuity
argument as before. The transition of the index between the two values 1 and 0 occurs
at h = J . At that point, the continuity of the index as a function of the curve is broken,
because the index is not defined for h = J , as the curve passes through the origin for
k = 0. The index is a topological quantity, invariant under continuous transformations.
Because it takes different values for |h| < J and h > J we say that these two phases have
different topologies. We see that Rk = 0 corresponds to a degeneracy point of the 2× 2
Hamiltonian Hk — realised for k = 0 and h= J (but also for k = π and h= −J) — and the
discontinuity of the index corresponds to the closing of the gap in the single-quasiparticle
spectrum shown in Fig. 2(c).

i

4.1 Ground state and excited states of the uniform XY-Ising model

The expression Hk = εk

�

γ̂†
kγ̂k+γ̂

†
−kγ̂−k−1

�

in Eq. (64), together with the expression for εk ≥ 0
in Eq. (55), allows to immediately conclude that the ground state of the Hamiltonian must be
the state |;γ〉 which annihilates the γ̂k for all k, positive and negative, the so-called Bogoliubov
vacuum:

γ̂k |;γ〉= 0 , ∀ k . (66)

In principle, one can define two such states, one in the p = 0 (even, ABC) sector, and one in
the p = 1 (odd, PBC) sector. However, one finds that the winner between the two, i.e., the
actual global ground state, is the one in the p= 0 (even) sector, with an energy

EABC
0 = −

ABC
∑

k>0

εk . (67)

The ground state can be written explicitly as:

|;γ〉ABC ∝
ABC
∏

k>0

γ̂−kγ̂k|0〉 , (68)

12The ellipse degenerates into a segment for κ = 0, corresponding to the isotropic XY model. Hence, our
argument requires κ ̸= 0.
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where |0〉 is the vacuum for the original fermions, ĉk|0〉 = 0. The explicit calculation shows
that:

∏

k>0

γ̂−kγ̂k|0〉=
∏

k>0

�

u−kĉ−k − v−kĉ†
k

��

ukĉk − vkĉ†
−k

�

|0〉

=
∏

k>0

(−vk)
�

uk + vkĉ†
kĉ†
−k

�

|0〉 , (69)

where we used that u−k = uk and v−k = −vk. By normalising the state, we arrive at the BCS
form:

|;γ〉ABC =
ABC
∏

k>0

�

uk + vkĉ†
kĉ†
−k

�

|0〉 . (70)

The PBC-sector ground state must contain an odd number of particles. Since a BCS-paired
state is always fermion-even, the unpaired Hamiltonian terms ÒH0&π must contribute with ex-
actly one fermion in the ground state. It is simple to verify that, with our choice of the sign of
h> 0, the ground state has n̂k=0→ 1 and n̂k=π→ 0, resulting in an extra term of the form

δE0&π =min(ÒH0 &π) = −2J . (71)

The PBC-ground state is, therefore:

|;γ〉PBC = ĉ†
k=0

PBC
∏

0<k<π

�

uk + vkĉ†
kĉ†
−k

�

|0〉= γ̂0

PBC
∏

0<k<π

�

uk + vkĉ†
kĉ†
−k

�

|0〉 , (72)

where we defined γ̂0 = ĉ†
0 and γ̂π = ĉπ for the unpaired states. The corresponding energy is:

EPBC
0 = −2J −

PBC
∑

0<k<π

εk . (73)

And here comes an amusing subtlety of the thermodynamic limit L→∞. When you consider
the energy-per-site e0 = E0/L, then the ground state energy should simply tend to an integral:

e0 = − lim
L→∞

1
L

ABC
∑

k>0

εk = −
∫ π

0

dk
2π
εk . (74)

The same integral appearing in Eq. (74) gives the ground state energy-per-site in the PBC sec-
tor, but an amusing role is played by the two boundary points at 0 and π, when one considers
the energy splitting ∆E0 = EPBC

0 − EABC
0 . Notice in particular that Eq. (67) for EABC

0 involves L/2
k-points in the interval (0,π), while Eq. (73) for EPBC

0 involves L/2− 1 points in the interval
(0,π) and an extra term −2J . In the thermodynamic limit L→∞, you discover that the en-
ergy splitting ∆E0 = EPBC

0 − EABC
0 is, in the whole ferromagnetically ordered region −J < h< J ,

a quantity that goes to zero exponentially fast when L→∞: In other words, the two sectors,
ABC and PBC, provide the required double degeneracy of the ferromagnetic phase: You can see
that easily for h = 0. Less trivial, but true, for all |h| < J . On the contrary, ∆E0 is finite13 in
the quantum disordered regions |h| > J , ∆E0 = 2(|h| − J), and goes to zero as a power-law,
more precisely as π/(2L), at the critical points hc = ±J . In Fig. 4 we illustrate these facts by
numerically evaluating ∆E0.

Regarding the excited states, let us start from the p= 0 (even, ABC) sector. Consider, as a
warm-up, the state γ̂†

k1
|;γ〉ABC. A simple calculation shows that, regardless of the sign of k1:

γ̂†
k1
|;γ〉ABC = ĉ†

k1

ABC
∏

k>0
k ̸=|k1|

�

uk + vkĉ†
kĉ†
−k

�

|0〉 . (75)

13Again, the convergence in L to such finite value is exponentially fast in the whole quantum disordered region.
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Figure 4: The gap between the ground state in the PBC and ABC sectors versus the
transverse field h/J . The two lower insets illustrate the exponential drop to 0 of the
gap in the ferromagnetic region (left), and the power-law behaviour at the critical
point (right). Here κ= 1.

In essence, the application of γ̂†
k1

transforms the Cooper-pair at momentum (|k1|,−|k1|) into

an unpaired fermion in the state ĉ†
k1
|0〉. This would cost an extra energy +εk1

over the ground
state: the gain −εk1

obtained from pairing is indeed transformed into a no-gain (energy 0)

for the unpaired state ĉ†
k1
|0〉, consistently with the 4× 4 structure of Eq. (48) predicting two

eigenvalues 0 for the unpaired states. There is a problem with parity, however: A single
unpaired fermion changes the overall fermion parity of the state. Hence, the lowest allowed
states must involve two creation operators, γ̂†

k1
γ̂†

k2
with k1 ̸= |k2|:

γ̂†
k1
γ̂†

k2
|;γ〉ABC = ĉ†

k1
ĉ†

k2

ABC
∏

k>0
k ̸=|k1|,|k2|

�

uk + vkĉ†
kĉ†
−k

�

|0〉 . (76)

The energy of such excitation is EABC
0 + εk1

+ εk2
because we loose two Cooper pairs. Quite

amusingly, if you consider the special case γ̂†
k1
γ̂†
−k1

you find that:

γ̂†
k1
γ̂†
−k1
|;γ〉ABC =

�

− v∗k1
+ u∗k1

ĉ†
k1

ĉ†
−k1

�

ABC
∏

k>0
k ̸=|k1|

�

uk + vkĉ†
kĉ†
−k

�

|0〉 . (77)

This means that γ̂†
k1
γ̂†
−k1

transforms the Cooper pair at momentum (|k1|,−|k1|) into the corre-
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sponding anti-bonding pair:

�

uk1
+ vk1

ĉ†
k1

ĉ†
−k1

�

|0〉
γ̂†

k1
γ̂†
−k1−−−−→

�

− v∗k1
+ u∗k1

ĉ†
k1

ĉ†
−k1

�

|0〉 .

This costs an energy 2εk1
, consistent with the previous expression EABC

0 + εk1
+ εk2

, if you
consider that ε−k1

= εk1
.

Generalising, we can construct all the excited states in the even-fermion sector, by applying
an even number of γ̂†

k to |;γ〉ABC, each γ̂†
k costing an energy εk. In the occupation number (Fock)

representation we have, therefore:

|ψ{nk}〉=
ABC
∏

k

�

γ̂†
k

�nk |;γ〉ABC , with nk = 0, 1 &
ABC
∑

k

nk = even,

E{nk} = EABC
0 +

ABC
∑

k

nkεk . (78)

We see that there are 2L−1 such states, as required.

Remark: An important remark and check is here in order. First: The counting of the
excitation number is correct if the k in Eq. (78) are allowed to range among the L pos-
itive and negative wave-vectors allowed by ABC: 2L Fock states if the parity check is not
enforced, 2L−1 if we enforce parity. Second: recall that we can transform a Cooper pair of
energy −εk into the corresponding anti-paired state, of energy +εk. The state that realises
that is γ̂†

kγ̂
†
−k|;〉

ABC. Its energy is 2εk above that of the ground state, consistently with the
formula given in Eq. (78), since ε−k + εk = 2εk.

!

In the p = 1 (odd, PBC) sector, some care must be exercised. One should apply an even
number of γ̂†

k to the ground state |;γ〉PBC, including in the choice the unpaired operators γ̂†
0,

amounting to removing the fermion from the k = 0 state, and γ̂†
π, amounting to creating a

fermion in the k = π state.

4.1.1 The spectral gap

We now want to understand the spectral gap of our model, i.e., the difference between the
first excited state E1 and the ground state E0,∆E = E1−E0. More generally, we would ask also
for the spectral gap of excitations having a given momentum k,∆k. Naively, one might think
that, starting from the ABC ground state of energy EABC

0 , the lowest excited state is obtained
by considering states with two extra fermions, γ̂†

kγ̂
†
−k|;〉

ABC, which have energy EABC
0 + 2εk.

However, we should consider excitations that, starting for instance from |;〉ABC and applying a
single creation operator γ̂†

k lead to a state in the subspace with opposite fermion parity, γ̂†
k|;〉

ABC,
with an energy gap:

∆k = εk . (79)

The difficulty with this way of reasoning is related to the choice of k appropriate in that con-
struction since the k values corresponding to ABC boundary conditions do not coincide with
those for PBC. However, it is clear that this will make no difference in the thermodynamics
limit L→∞, so that Eq. (79) does indeed express the spectral gap for excitations at momen-
tum k. The smallest such gap is obtained for k = 0 when h > 0 so that, from Eq. (55), we
deduce that:

∆E = 2|h− J |= 2|h− hc| , (80)

20

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.82


SciPost Phys. Lect. Notes 82 (2024)

where hc = J .14 Two things are worth noticing: 1) ∆E vanishes linearly with the deviation
from the critical point |h−hc|; 2) exactly at criticality, see Fig. 2(c), the spectral gap∆k vanishes
linearly in the momentum |k| → 0:

∆crit
k = 2J

Æ

(1− cos k)2 +κ2 sin2 k ≈ 2J |κk| . (81)

4.1.2 The Green’s functions

In calculating expectation values of operators, for instance, spin-spin correlation functions,
it is useful to identify the elementary one-body expectation values, often referred to as one-
particle Green’s functions. Since the number of fermions is not conserved, there are ordinary
and anomalous Green’s functions [64,67], which we define here as follows:15

G j j′ ≡ 〈ψ0|ĉ j ĉ
†
j′ |ψ0〉 , and F j j′ ≡ 〈ψ0|ĉ j ĉ j′ |ψ0〉 . (82)

We assume that the initial state |ψ0〉 is the Bogoliubov vacuum of the operators γ which di-
agonalise the Hamiltonian, |ψ0〉 = |;γ〉ABC. By expressing the real-space fermionic operators
in terms of their momentum space counterparts we immediately deduce, using momentum
conservation, that:



















G j j′ =
1
L

∑

k

eik( j− j′)〈ψ0|ĉk ĉ†
k|ψ0〉=

1
L

∑

k

eik( j− j′)|uk|2 ,

F j j′ =
e2iφ

L

∑

k

eik( j− j′)〈ψ0|ĉk ĉ−k|ψ0〉= −
e2iφ

L

∑

k

eik( j− j′)u∗kvk ,
(83)

where the last step comes from using the relationship ĉk = u∗kγ̂k + vkγ̂
†
−k and the fact that

γ̂k|ψ0〉= 0.

Show that, in the thermodynamic limit L→∞, by taking φ = 0 and using the properties
of uk and vk, one can write:















G j j′ =

∫ π

0

dk
2π

zk

εk
cos (k( j − j′)) +

1
2
δ j, j′ ,

F j j′ =

∫ π

0

dk
2π

yk

εk
sin (k( j − j′)) ,

(84)

where zk = 2(h− J cos k) and yk = 2κJ sin k. Calculate numerically the Green’s functions
in the Ising case κ= 1, for three representative values of the transverse field: A) h= J/2,
b) h = J , c) h = 2J . Observe that the Green’s functions decay exponentially fast in the
separation | j − j′| in cases a) and c). In the Ising case κ = 1, and at the critical point
h = J , show analytically that the Green’s functions decay as a power law of the distance
j − j′, obtaining

G j j′ =
1
2
δ j, j′ −

1
π

1
4( j − j′)2 − 1

, and F j j′ =
2
π

( j − j′)
4( j − j′)2 − 1

.

Problem 1. The elementary Green’s functions.

14For h< 0 the smallest gap is at k = π, and ∆E = 2|h+ J |= 2|h− hc |, with hc = −J .
15There are many definitions of Green’s functions. Here we consider equal-time operators: Apart from a factor
−i we have, in Kadanoff-Baym notation [67], would one would denote as G>.
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4.2 Relationship with the spin representation

It is instructive to comment on the relationship between the spectrum we have found in the
fermionic representation and the corresponding physics in the original spin representation. In
this section, we fix the anisotropy parameter to κ= 1, focusing on the Ising case.

Let us start with the classical Ising model (h= 0)

ÒHclassical = −J
L
∑

j=1

σ̂x
j σ̂

x
j+1 , (85)

and consider the two degenerate ground states that you can easily construct in this case:

|+,+, · · · ,+〉 , and |−,−, · · · ,−〉 , (86)

where |±〉= 1p
2
(1,±1)T denote the two eigenstates of σ̂x with eigenvalues ±1. Recall that the

parity operator reads, in terms of spins, as ÒP =
∏L

j=1 σ̂
z
j , and that σ̂z|±〉 = |∓〉. Hence, you

easily deduce that:

ÒP |+,+, · · · ,+〉= |−,−, · · · ,−〉 , and ÒP |−,−, · · · ,−〉= |+,+, · · · ,+〉 . (87)

This implies that the two eigenstates of the parity operator must be:

|ψ±〉=
1
p

2

�

|+,+, · · · ,+〉 ± |−,−, · · · ,−〉
�

=⇒ ÒP |ψ±〉= ∓|ψ±〉 . (88)

These two opposite parity states must be represented by the two fermionic ground states be-
longing to the ABC and PBC sectors. They are exactly degenerate for h= 0. The states in this
doublet are crucial for the symmetry-breaking in the thermodynamic limit.

Now consider the effect of a small h, taking for simplicity of argument the Ising Hamilto-
nian with OBC:

ÒHOBC = −J
L−1
∑

j=1

σ̂x
j σ̂

x
j+1 − h

L
∑

j=1

σ̂z
j . (89)

Let us consider the limit |h| ≪ J . The two lowest-energy states have exactly the form in
Eq. (86), or Eq. (88), at lowest-perturbative order in |h|/J . To construct higher-energy excita-
tions, consider domain-wall configurations of the form

|l〉= |−,−, · · · ,−
︸ ︷︷ ︸

sites 1→l

, +, · · · ,+〉 , with l = 1 · · · L − 1 . (90)

For h = 0, these L − 1 lowest-energy domain-wall excitations are degenerate and separated
from the two ground states by a gap of 2J . Therefore, we can study the effect of a small
transverse-field term, for |h| ≪ J , using standard textbook degenerate perturbation the-
ory [63]. The Hamiltonian restricted to the L − 1-dimensional subspace of the domain-wall
excitations has the form

Ĥeff = 2J
L−1
∑

l=1

|l〉 〈l| − h
L−2
∑

l=1

�

|l〉 〈l + 1|+H.c.
�

. (91)

This Hamiltonian is quite easy to diagonalize, as it resembles a standard tight-binding problem
with open boundary conditions. As in the quantum mechanical example of an infinite square
well [63], it is simple to verify that the appropriate sine combination of two opposite momenta
plane waves of momentum k satisfy the correct boundary conditions:

|ψk〉=
1
Nk

L−1
∑

l=1

sin(kl) |l〉 , with k =
nπ
L

, (92)
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for n = 1, . . . , L − 1, and Nk a normalization factor. These delocalized domain-walls have an
energy:

µk = 2J − 2h cos k . (93)

We notice that if we expand the excitation energies εk in Eq. (55) up to lowest order in h/J
we obtain εk ≈ µk +O((h/J)2). So, we see that a state with a single quasiparticle γ̂†

k has the
same energy as the delocalized domain-wall state in Eq. (92). This justifies the picture that
quasiparticles are indeed delocalized domain walls.16

Let us continue our perturbative reasoning to see how we can estimate the separation
between the two ground states originating from the h = 0 doublet discussed above, when
h > 0. As mentioned above, the states |+,+, · · · ,+〉 and |−,−, · · · ,−〉 are degenerate for
h = 0, and this doublet is separated from the other states by a gap ≥ 2J . The degenerate
states |+〉 = |+,+, · · · ,+〉 and |−〉 = |−,−, · · · ,−〉 are coupled only at order L in perturbation
theory: we need to flip L spins, with the σ̂z

j operators, to couple one to the other. Hence,

we expect their splitting to be ∆E0 ∼ (h/J)
L , i.e., exponentially small in the system size L

for small |h|: The resulting eigenstates |ψ±(h)〉, even and odd under parity, approach the
two eigenstates in Eq. (88) for h → 0. This energy splitting is exactly the quantity ∆E0 dis-
cussed in Sec. 4.1. So, in the thermodynamic limit, we break the Z2 symmetry. At any fi-
nite size we have the symmetry preserving ground states |ψ±(h)〉 which tend to Eq. (88) for
h→ 0. These states can be regarded as superpositions of two macroscopically ordered states
|±〉h =

1p
2
(|ψ+(h)〉 ± |ψ−(h)〉), where “macroscopically ordered” means that the longitudinal

magnetization M̂ x =
∑

j σ̂
x
j has an expectation value which is extensive in L. So, in the sub-

space generated by |ψ±(h)〉 there can be an explicit symmetry-breaking17 of Z2 only in the
thermodynamic limit, where the two states are degenerate and the slightest local perturbation
selects one of the two macroscopically ordered superpositions |±〉h.

5 Connection with the Onsager solution of the 2d classical Ising
model

Although the quantum Ising chain in a transverse field is the primary interest of these lec-
ture notes, it is important to understand its connection with the classical Ising model in two
dimensions, whose celebrated exact solution was given by Onsager in 1944 [68]. This con-
nection is representative of a general relationship between classical statistical mechanics in d
dimensions, and quantum mechanics in d − 1 dimensions [69]. We will see that the ground
state properties of the one-dimensional quantum Ising model in a transverse field precisely
mirror the finite temperature statistical mechanics properties of the classical Ising model in
two-dimensions, in the high-anisotropy limit [69]. The critical exponents of the two models
are identical, and even the numerical value of the transition temperature predicted by Onsager
is perfectly described by the quantum critical point of the quantum Ising chain.

Consider the classical two-dimensional Ising model sketched in Fig. 5 for a square lattice
with L sites in the x-direction and N in the y-direction, with periodic boundary conditions

16We performed our analysis for the case of OBC. The case with PBC is similar, the only difference being that the
lowest-energy excitations for h= 0 have two domain walls. Nevertheless, with an analysis very similar to the one
above, one can show that the excited states for |h| ≪ J have energy 2µk and can be interpreted as states with two
quasiparticles.

17Nevertheless, all the states in this doublet, |φ〉 = α|ψ+(h)〉+ β |ψ−(h)〉 with |α|2 + |β |2 = 1, show long-range
correlations also at finite size. Indeed, the correlator 〈φ|σ̂x

j σ̂
x
j+l |φ〉 is always finite (equal to 1 in the limit h→ 0),

and
lim
l→∞

lim
L→∞
|〈φ|σ̂x

j σ̂
x
j+l |φ〉| ≠ 0 ,

expressing the long-range order associated with symmetry-breaking. See the related problem in Sec. 9.
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PBC

Jx

Jy

σ j

σ j+1

〈σ j+1|T |σ j〉→

1

2

...

j

j + 1

...

N

1 2 . . . i i + 1 . . . L

Figure 5: The 2-dimensional classical Ising model on a square lattice with L×N sites,
denoted as (i, j) with 1, · · · , L and j = 1, · · · , N . PBC are enforced in the y-direction:
You can think of the system as “living on a cylinder” with axis along the x-direction.
Boundary conditions along the x-direction are left unspecified: They could be open,
fixed, or periodic. In the latter case, you might picture the system as “living on a
torus”. The blue lines highlight the couplings Jx , connecting sites (i, j) and (i+1, j),
and Jy , connecting (i, j) and (i, j+1). The shaded rectangle highlights the Boltzmann
weights included in the definition of the “transfer matrix” 〈σ j+1|T|σ j〉.

(PBC) in the latter. Each lattice since (i, j) is associated with an Ising spin σ j
i = ±1. The

partition function of the model is given by: [70]

Z =
∑

σ1,··· ,σN

〈σ1|T|σN 〉 〈σN |T|σN−1〉 · · · 〈σ j+1|T|σ j〉 · · · 〈σ2|T|σ1〉 ≡ TrTN , (94)

where the trace emerges from the PBC choice of boundary conditions along the y-direction.
Here, σ j denotes the j-th row configuration, comprising the L spins in the x-direction, which
we denote as σ j = (σ j

1,σ j
2, · · · ,σ j

L), and 〈σ j+1|T|σ j〉 is a matrix element of the so-called
transfer matrix T, a 2L × 2L matrix collecting all the Boltzmann weights pertaining to rows j
and j + 1:

〈σ j+1|T|σ j〉= e
β

L
∑

i=1

�

Jyσ
j
iσ

j+1
i +

Jx

2

�

σ
j
iσ

j
i+1 +σ

j+1
i σ

j+1
i+1

�

+
h
2

�

σ
j
i +σ

j+1
i

�

�

. (95)

We can regard the row configuration σ j as a computation basis state for a spin chain with L
sites, i.e., simply the eigenstates of Pauli spin operators σ̂z

i :

σ̂z
i |σ

j〉= σ j
i |σ

j〉 .

It is simple to write a quantum operator which faithfully reproduces the matrix elements of
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the transfer matrix:18

bT = e

β

2

L
∑

i=1

�

Jx σ̂
z
i σ̂

z
i+1 + hσ̂z

i

�

� L
∏

i=1

�

eβJy1i + e−βJy σ̂x
i

�

�

e

β

2

L
∑

i=1

�

Jx σ̂
z
i σ̂

z
i+1 + hσ̂z

i

�

= C L e

β

2

L
∑

i=1

�

Jx σ̂
z
i σ̂

z
i+1 + hσ̂z

i

�

e
Γ

L
∑

i=1

σ̂x
i

e

β

2

L
∑

i=1

�

Jx σ̂
z
i σ̂

z
i+1 + hσ̂z

i

�

. (97)

Although exact, the quantum expression for bT is not easy to handle: The three differ-
ent terms do not commute and you cannot rewrite bT as the exponential of a single quantum
Hamiltonian operator. Suppose, however, that the coupling constants Jx and Jy are highly
anisotropic.

The high-anisotropy limit. More precisely, assume that:

High-anistropy limit:















βJx = εJ ,

βh= εh∥ ,

Γ = εh⊥ =⇒ βJy = −
1
2

log tanhεh⊥ ,

(98)

where ε (with dimensions of “time/ħh”) is “small”, and J , h∥, h⊥ (with dimensions of
“energy”) are suitable constants. More properly, the dimensionless combinations εJ , εh∥,
and εh⊥ are assumed to be small. These assumptions imply that when βJx is “small”,
then βJy = −

1
2 log tanhεh⊥ is “large”, justifying the terminology “high-anisotropy limit”,

when ε→ 0.

i

In terms of these quantities, let us now define two quantum operators:

ÒHz = −
L
∑

i=1

�

Jσ̂z
i σ̂

z
i+1 + h∥σ̂z

i

�

, and ÒHx = −h⊥
L
∑

i=1

σ̂x
i , (99)

such that the exact transfer matrix can be written as

bT = C L e−
ε
2
ÒHz e−εÒHx e−

ε
2
ÒHz . (100)

In high-anisotropy limit ε→ 0, the three exponentials can be combined by using the relation-
ship

eεÂeεB̂ = eεÂ+εB̂+ ε
2
2 [Â,B̂]+··· = eε(Â+B̂) +O(ε2) , (101)

which is the simplest instance of the Baker-Campbell-Hausdorff formula.

18The first expression is easy to establish from the requirement in Eq. (95). The second expression follows by
rewriting:

�

eβJy1i + e−βJy σ̂x
i

�

≡ C eΓ σ̂
x
i ≡ C

�

1i cosh Γ + σ̂x
i sinh Γ

�

,

where we used (σ̂x )2n = 1, and (σ̂x )2n+1 = σ̂x in the second equality, to expand the exponential. To find the
constants C and Γ we write explicitly:

¨

C cosh Γ = eβJy ,

C sinh Γ = e−βJy
=⇒







tanh Γ = e−2βJy ,

C2 =
2

sinh 2Γ
.

(96)
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Re{λ}

Im{λ}

λ00

Figure 6: The Perron-Frobenius theorem. The red dot denotes λ0, the Perron root,
which is the maximum eigenvalue of T, real and positive. All other eigenvalues
(smaller black dots) stay within the circle of radius λ0 in the complex plane. For
the symmetric T considered here, all other eigenvalues are real as well.

The transfer matrix in the high-anisotropy limit. This leads us to our final expression:

bT
ε→0
≃ C L e−ε

ÒH , with ÒH = ÒHz + ÒHx = −
L
∑

i=1

�

Jσ̂z
i σ̂

z
i+1 + h∥σ̂z

i + h⊥σ̂x
i

�

. (102)

So, in the high-anisotropy limit, the classical transfer matrix has been mapped onto the
imaginary-time19 evolution operator of a quantum Ising chain in a transverse field h⊥. The
y-direction of the classical problem — for which we chose periodic boundary conditions
— becomes the imaginary-time direction of the quantum problem.

i

To better understand the deep relationship between the statistical mechanics of the classi-
cal Ising model in two dimensions, and the physics of the quantum Ising chain, let us return
to the classical transfer matrix T. Since T is a positive real matrix — and even symmetric, by
construction — we can use Perron-Frobenius theorem, which guarantees that T has a unique
(positive) eigenstate |λ0〉 with a maximum eigenvalue λ0 — the so-called Perron root — which
is itself real and positive and greater than the modulus of any other eigenvalue, λ0 > |λα>0|, in
general complex, but in the present case real, because T is symmetric. We can write, in terms
of the eigenstates |λα〉 of T, the spectral decomposition of T as:

T =
2L−1
∑

α=0

λα|λα〉〈λα| =⇒ Z = TrTN =
2L−1
∑

α=0

λN
α ,

where the last equation follows because TN is easy to calculate on the basis of the eigenvectors
of T, and its trace, leading to Z , is also simply the sum of all λN

α .

19The usual real-time evolution operator e−i tÒH/ħh becomes, under the substitution t → −iτ, the imaginary-time
evolution operator e−τÒH/ħh, very important in numerical Quantum Monte Carlo approaches, see Ref. [12], and in
statistical mechanics, see Ref. [70].
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Exponential dominance of the Perron root. Let us denote the maximum eigenvalue of
T by λ0. In the limit N →∞, the partition sum is exponentially dominated by λ0:

βF
N
= −

1
N

log Z
N→∞
−−−−→ − logλ0 .

i

In the high-anisotropy limit ε→ 0, we rewrite the partition function as:

Z = TrTN ≡ Tr bTN ε→0
≃ C LN Tr e−εNÒH . (103)

The Perron-Frobenius theorem, in this context, tells us that the largest eigenvalue of T, con-

nected to the ground state energy of ÒH, λ0
ε→0
≃ Ce−εE0 , dominates the partition sum. Indeed,

for any finite L, the quantum Hamiltonian ÒH has a finite gap ∆E = E1 − E0 above its (non-
degenerate) ground state energy E0 = Le0, so that the next eigenvalue makes a negligible
contribution in the limit N →∞ (as long as ε > 0):

λN
1
ε→0
≃ CN e−εN E1 = CN e−εN E0e−εN∆E ≈ λN

0 e−εN∆E .

All in all, for large N (and fixed small ε) we would write:

Z = e−βF ε→0
≃ C LN e−εN E0

�

1+ e−εN∆E + · · ·
�

≈ C LN e−εLNe0 + · · · .

Taking the logarithm and dividing by N2d = N L we get the free-energy per spin f :

β f = lim
N2d→∞

βF
N2d
= − lim

N2d→∞

log Z
N2d

ε→0
≃ ε e0 − log C , (104)

where the constant C plays a minor role: It is simply an additive contribution to the free energy.

Singularities of f correspond to singularities of e0. The important point is that we
expect that the singularities of the classical free-energy per spin f (in the thermodynamical
limit) should be reflected by the singularities of e0, the ground state energy per spin of the
quantum model.

i

Let us check this prediction. In zero longitudinal field (h = 0) and for uniform couplings
with PBC in both directions, the classical Ising model in d = 2 has been solved by Onsager,
who succeeded in diagonalizing the exact transfer matrix T [68]. Onsager’s solution predicts
that the 2d Ising model in zero longitudinal field has a transition temperature Tc (where the
free-energy f shows singularities) given by:

sinh (2βcJx) sinh (2βcJy) = 1 . (105)

Let us briefly summarize the physics of this classical model. For T > Tc the system is in a
disordered phase, where the thermal average of the local spin at any site R vanishes in zero
longitudinal field (h = 0): 〈σR〉0 = 0. For T < Tc , on the contrary, the Z2 symmetry of the
classical model in zero field is spontaneously broken in the thermodynamic limit and a non-
vanishing local order parameter m develops:

m= 〈σR〉0 = lim
h→0+

lim
N2d→∞

〈σR〉> 0 . (106)
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The way in which m vanishes when T → T−c , the critical temperature, is captured by a critical
exponent traditionally denoted as β (not to be confused with 1/kB T):

m(T )∝ (Tc − T )β , T ≤ Tc . (107)

For the Ising model in d = 2, its exact value is β = 1
8 . When the symmetry is spontaneously

broken, the large-distance limit of the correlation function of the order parameter tends expo-
nentially fast to the square of the local order parameter:

〈σRσR′〉0
|R−R′|→∞
−−−−−−→ m2 +O

�

e−|R−R′|/ξ(T )
�

, (108)

where ξ(T ) is a temperature-dependent correlation length. This exponentially fast decrease of
correlations is indeed true both in the broken symmetry phase, where m ̸= 0, as well as in the
high-temperature symmetric phase, where m = 0, suggesting that it is convenient to define
the connected correlation functions as

C conn
x = 〈σxσ0〉0 −m2 , (109)

which decays exponentially fast to zero both for T < Tc , and for T > Tc . A power-law be-
haviour emerges at Tc , where ξ(Tc) = ∞ (in the thermodynamic limit). A scaling Ansatz
proposed by M. Fisher [71,72] tells us that:

C conn
x = 〈σxσ0〉0 −m2∝

e−|x|/ξ(T )

|x/a|d−2+η
, (110)

where the last expression is valid for |x| ≫ a, the lattice spacing. Here d is the dimensionality
of the lattice, ξ(T ) is the correlation length, and η is the anomalous exponent for correlations.
The correlation length ξ(T ) is finite for T ̸= Tc , but diverges at Tc with a critical exponent ν

ξ(T )∼
1

|T − Tc|ν
. (111)

For the Ising model in d = 2, ν= 1 and η= 1
4 .

Let us now switch to the quantum Ising chain. The quantum critical point of the uniform
quantum Ising chain, where singularities of

e0 = lim
L→∞

E0

L
= −

∫ π

0

dk
2π
εk , (112)

are present, occurs at h⊥c = J . Indeed, if you look at the bands in Fig. 2 you immediately see
that they are very smooth for h⊥ ̸= J (panels b and d), but develop a cusp for h⊥ = J (panel
c). This corresponds, in terms of Eq. (98), to

h⊥c = J ⇐⇒ Γc = βcJx ⇐⇒ e−2βc Jy = tanhβcJx . (113)

The correspondence of parameters is such that the high-temperature (disordered) phase for
T > Tc , and the low-temperature (ordered) phase for T < Tc are mapped into the quantum
phases with h⊥ > J , and h⊥ < J , respectively.

Remarkably, all exact critical exponents of the zero-field 2d Ising model are reproduced by
the quantum Ising chain. Let us consider the correlation length critical exponent ν. Following
Kogut [69][Sec. III], consider the spin-spin correlation function between sites with the same
x-coordinate, and a distance na away in the y-direction: R = a(i, 1) and R′ = a(i, n + 1).
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Translational invariance implies that the result depends only on n. By calculating the thermal
average using the transfer matrix, and taking the high-anisotropy limit, we get:

Cn = 〈σn+1
i σ1

i 〉=
1

TrTN
Tr(TN−nσn+1

i Tnσ1
i )

small ε
−−−−→

1

Tre−εNÒH
Tr(e−ε(N−n)ÒH σ̂z

i e−εnÒH σ̂z
i ) . (114)

In the limit N →∞, the quantum ground state |ψ0〉 dominates the trace, hence:

Cn
small ε, N→∞
−−−−−−−−→

1
e−εN E0

〈ψ0|e−ε(N−n)ÒHσ̂z
i e−εnÒH σ̂z

i |ψ0〉

= eεnE0〈ψ0|σ̂z
i e−εnÒH σ̂z

i |ψ0〉

=
∞
∑

m=0

〈ψ0|σ̂z
i e−εn(ÒH−E0)|ψm〉〈ψm|σ̂z

i |ψ0〉

=
∞
∑

m=0

e−εn(Em−E0)
�

�〈ψm|σ̂z
i |ψ0〉

�

�

2
, (115)

where we have inserted a resolution of the identity with eigenstates |ψm〉 of ÒH. In the limit of
large n, it is appropriate to keep only the ground and first excited state |ψ1〉 out of the infinite
sum, hence:

Cn
small ε, n large
−−−−−−−−→

�

�〈ψ0|σ̂z
i |ψ0〉

�

�

2
+ e−εn(E1−E0)

�

�〈ψ1|σ̂z
i |ψ0〉

�

�

2
+ · · · . (116)

The spectral gap ∆E = E1 − E0 emerges as the crucial quantity determining the large n be-
haviour of correlations. By comparing this expression with the general form in Eq. (108), we
realize that:

m= 〈ψ0|σ̂z
i |ψ0〉 , and

a
ξ
= ε∆E . (117)

Since ∆E vanishes linearly at the critical point, see Eq. (80), we conclude that ν= 1.
Concerning the order parameter m, the calculation by Pfeuty [65][Eq. 3.12] shows that

m= 〈ψ0|σ̂z
i |ψ0〉=







�

1−
�

h⊥/J
�2�

1
8

, for |h⊥/J |< 1 ,

0 , for |h⊥/J | ≥ 1 .
(118)

Hence β = 1
8 .

As for the anomalous exponent η, it should be extracted from the calculation of spin-spin
correlations at the critical point. We will address this calculation explicitly in Sec. 9. The result
will be that η= 1

4 , as expected.
Finally, concerning the specific heat singularities, observe that one expects, at a general

second-order critical point: [70]

cv(T ) = −T
∂ 2 f
∂ T2
∝ |T − Tc|−α , (119)

where α = 0 (a logarithmic singularity) for the 2d Ising model. The quantum equivalent of
this singularity shows up in the second derivative of the ground state energy per spin, e0, with
respect to the transverse field h⊥.
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Figure 7: Plot of order parameter m for the Ising chain in a transverse field, according
to Eq. (118).

Calculate the second derivative of e0 with respect to h⊥, and show that it has a logarithmic
divergence, in the thermodynamic limit, for h⊥→ J .

Problem 2. Singularities of the ground state energy.

Quantitatively, you might wonder how close are the two predictions for Tc — the one
deduced from Onsager’s solution, Eq. (105), and the one deduced from the critical point of
the quantum Ising chain, Eq. (113) —- as a function of the anisotropy of the couplings Jx/Jy
(which should be “small” for the quantum mapping to be in principle valid). The two results
are shown in Fig. 8: Rather surprisingly, Eqs. (105) and (113) give precisely20 the same Tc for
all values of the anisotropy Jx/Jy .

Summary of classical to quantum mapping. To summarise, the quantum Ising chain
in a transverse field captures perfectly well the critical singularities of the classical two-
dimensional Ising model. As a bonus (but this is not general), we even get a quantitatively
perfect prediction for the critical point temperature Tc , well beyond the high-anisotropy
limit. Interestingly, the Jordan-Wigner mapping is unable to solve the 1d quantum Ising
chain precisely in the case Onsager’s solution cannot deal with: In the presence of a lon-
gitudinal field.

i

20If you call z = e−2βc Jy , from the Onsager relation Eq. (105), solving a simple quadratic equation, you get:

z = e−2βc Jy =
p

S2 + 4− 2
S

, with S = 2 sinh(2βc Jx ) .

Straightforward algebra, using duplication formulas cosh(2βc Jx ) = cosh2(βc Jx ) + sinh2(βc Jx ) and
sinh(2βc Jx ) = 2 sinh(βc Jx ) cosh(βc Jx ), leads then to the result stated in Eq. (113).
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Figure 8: Plot of the critical coupling βcJy = Jy/(kB Tc) from the 2d Onsager’s solu-
tion, Eq. (105), compared to the quantum-mapped prediction of Eq. (113), versus
the anisotropy of the lattice Jx/Jy . The two predictions coincide.

6 Nambu formalism for the general disordered case

As we have seen, in the ordered case the Hamiltonian can be diagonalized by a Fourier trans-
formation, reducing the problem to a collection of 2×2 “pseudo-spin-1/2” problems, followed
by a Bogoliubov transformation, as first shown in Refs. [65,73,74]. In the disordered case, we
can proceed similarly, but we cannot reduce ourselves to 2×2 problems in a simple way.21 By
using the Nambu formalism, we define a column vector ÒΨ and its Hermitian conjugate row
vector ÒΨ†, each of length 2L, by

ÒΨ =





















ĉ1
...

ĉL
ĉ†
1
...

ĉ†
L





















=

�

ĉ
ĉ†

�

, ÒΨ† =
�

ĉ†
1 , · · · , ĉ†

L , ĉ1 , · · · , ĉL

�

=
�

ĉ† , ĉ
�

, (120)

or ÒΨ j = ĉ j , ÒΨ j+L = ĉ†
j , and ÒΨ†

j = ĉ†
j , ÒΨ

†
j+L = ĉ j , for j ≤ L.22

21For the time-independent case, a theorem due to Bloch and Messiah guarantees that there is always an appro-
priate basis in which the problem reduces to 2 × 2 blocks, but this is not very useful if you are willing to tackle
dynamical problems. See Sec. A.

22The notation for ĉ might be a bit confusing and should be intended as a shorthand, rather than a column
vector. We are not consistently assuming, for instance, that ĉ† is a row vector. The same shorthanded but imperfect
notations will be assumed later on for the Bogoliubov rotated operators γ̂ and γ̂†.
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Warning: Notice that the ÒΨ satisfy quite standard fermionic anti-commutation relations

{ÒΨ j ,ÒΨ
†
j′}= δ j, j′ , (121)

for j, j′ = 1, ..., 2L, except that {ÒΨ j ,ÒΨ j+L} = 1 for all j ≤ L, which brings about certain
factors 2 in the Heisenberg’s equations of motion (see later).

!

It is useful, for later purposes, to introduce the 2L × 2L swap matrix S:

S=
�

0L×L 1L×L
1L×L 0L×L

�

, (122)

in terms of which ÒΨ† = (SÒΨ )T.
Consider now a general fermionic quadratic form

ÒH =
∑

j j′

�

A j′ j ĉ
†
j′ ĉ j +A∗j′ j ĉ

†
j ĉ j′
�

+
∑

j j′

�

B j′ j ĉ
†
j′ ĉ

†
j +B∗j′ j ĉ j ĉ j′

�

, (123)

where A j′ j = A∗j j′ , i.e., A = A† is Hermitian, and B j j′ = −B j′ j , i.e., B = −BT is anti-symmetric

because ĉ j ĉ j′ is anti-symmetric under exchange of the two operators, and any symmetric part

of B would not contribute. It is simple to verify that ÒH can be expressed in terms ofÒΨ , omitting
an irrelevant constant term TrA, as:

ÒH =ÒΨ†HÒΨ =
�

ĉ† , ĉ
�

�

A B
−B∗ −A∗

��

ĉ
ĉ†

�

. (124)

There is an intrinsic particle-hole symmetry in a fermionic Hamiltonian having this form.
This symmetry, further discussed in Sec. 7.1, is connected with the fact that the Hermitian
2L × 2L matrix H satisfies:

HS= −SH∗ . (125)

In the XY-Ising case, all couplings are real and we have two different fermionic Hamilto-
nians, one for each parity sector p = 0, 1, which we report here for convenience, using also
2n̂ j − 1= ĉ†

j ĉ j − ĉ j ĉ
†
j :

bHp=0,1 = −
L
∑

j=1

�

J+j ĉ†
j ĉ j+1 + J−j ĉ†

j ĉ
†
j+1 + H.c.

�

+
L
∑

j=1

h j(ĉ
†
j ĉ j − ĉ j ĉ

†
j ) , (126)

with the boundary condition:
ĉL+1 = (−1)p+1 ĉ1 . (127)

The corresponding 2L × 2L matrices Hp are now real and symmetric. Hence A is real and
symmetric (A= A∗ = AT), and B is real and anti-symmetric (B= B∗ = −BT):

H=
�

A B
−B∗ −A∗

�

Ising
−→ Hp =

�

A B
−B −A

�

. (128)

The structure of the two blocks A and B is given, in the Ising case, by:






A j, j = h j ,

A j, j+1 = A j+1, j = −
J+j
2
= −

J j

2
,







B j, j = 0 ,

B j, j+1 = −B j+1, j = −
J−j
2
= −

κJ j

2
,

(129)
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where we have assumed, once again, that J x
j = J j(1 + κ)/2 and J y

j = J j(1 − κ)/2. In the
PBC-spin case, we have additional matrix elements:

AL,1 = A1,L = (−1)p
J+L
2
= (−1)p

JL

2
, (130)

and

BL,1 = −B1,L = (−1)p
J−L
2
= (−1)p

κJL

2
, (131)

both depending on the fermion parity p. The OBC case is recovered by simply setting JL = 0,
which makes H1 =H0.

7 Diagonalisation of ÒH: The time-independent case

We start considering the eigenvalue problem for a general Hermitian 2L×2L matrix showing
that the intrinsic particle-hole symmetry of the problem leads to the Bogoliubov-de Gennes
(BdG) equations. See Refs. [75–77]. We remark that one recovers the results of Sec. 4 when
the couplings are uniform and the matrices A and B have a simple translationally-invariant
structure.

7.1 The Bogoliubov-de Gennes equations

Let us consider the eigenvalue problem for a general Hermitian 2L × 2L matrix H

H
�

uµ
vµ

�

=

�

A B
−B∗ −A∗

��

uµ
vµ

�

= εµ

�

uµ
vµ

�

, (132)

where u,v are L-dimensional column vectors, composing the 2L-dimensional column vector
�

uµ
vµ

�

, and the µ index refers to µ-th eigenvector. By explicitly writing the previous system,

we find the so-called Bogoliubov-de Gennes equations:

�

A uµ +B vµ = εµuµ ,

−B∗uµ −A∗vµ = εµvµ .
(133)

It is easy to verify that if
�

uµ , vµ
�T

is eigenvector with eigenvalue εµ, then
�

v∗µ , u∗µ
�T

is an

eigenvector with eigenvalue −εµ.23 In the Ising case, A = A∗ and B = B∗, and we can always
take the solutions to be real.

We can organize the eigenvectors in a unitary (orthogonal, if the solutions are real) 2L×2L
matrix

U=
�

u1 · · · uL v∗1 · · · v∗L
v1 · · · vL u∗1 · · · u∗L

�

=

�

U V∗

V U∗

�

, (134)

23Indeed:
¨

A v∗
µ
+B u∗

µ
= −εµv∗µ ,

−B∗v∗
µ
−A∗u∗

µ
= −εµu∗µ ,

coincides exactly with Eq. (133), after taking a complex conjugation, exchanging the two equations and reshuffling
the terms. An alternative derivation uses the fact that

S
�

u
v

�

=
�

v
u

�

,

and that HS= −SH∗, see Eq. (125).
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U and V being L × L matrices (real, as we can choose to be, in the Ising case) with the u j and
v j as columns. As a consequence:

U†HU=



























ε1 0 · · · 0 0 0 · · · 0
0 ε2 · · · 0 0 0 · · · 0
...

... · · ·
...

...
... · · ·

...
0 0 · · · εL 0 0 · · · 0
0 0 · · · 0 −ε1 0 · · · 0
0 0 · · · 0 0 −ε2 · · · 0
...

... · · ·
...

...
... · · ·

...
0 0 · · · 0 0 0 · · · −εL



























≡ diag(εµ,−εµ) = Ediag . (135)

If we define the new Nambu fermion24 operators bΦ and bΦ† in such way that

ÒΨ = U bΦ , (136)

we can write ÒH in diagonal form

ÒH =ÒΨ†HÒΨ = bΦ†U†HU bΦ = bΦ†Ediag bΦ . (137)

Similarly to ÒΨ , we can define new fermion operators γ̂ such that

bΦ =

�

γ̂

γ̂†

�

= U†
ÒΨ =

�

U† V†

VT UT

� �

ĉ
ĉ†

�

. (138)

More explicitly, we can write:25























γ̂µ =
L
∑

j=1

(U∗jµ ĉ j +V∗jµ ĉ†
j ) ,

γ̂†
µ =

L
∑

j=1

(V jµ ĉ j +U jµ ĉ†
j ) ,

(140)

which can be easily inverted, remembering that ÒΨ = U bΦ , to express the ĉ j operators in terms

of the γ̂µ:














ĉ j =
∑

µ

(U jµγ̂µ +V∗jµγ̂
†
µ) ,

ĉ†
j =

∑

µ

(V jµγ̂µ +U∗jµγ̂
†
µ) .

(141)

24We have:
�

bΦ
µ
, bΦ†

µ′

	

=
�

∑

j′

U†
µ j′
ÒΨ j′ ,

∑

j

ÒΨ†
jU jµ′

	

=
∑

j j′

U†
µ j′U jµ′

�

ÒΨ j′ ,ÒΨ
†
j

	

=
∑

j

U†
µ jU jµ′ = (U†U)µµ′ = δµµ′ .

25The conditions for the transformation in Eq. (140) to be canonical are:

U†U=
�

U†U+V†V U†V∗ +V†U∗

VTU+UTV VTV∗ +UTU∗

�

=

�

1 0
0 1

�

⇒
§

U†U+V†V= 1 ,
VTU+UTV= 0 ,

(139)

since you realise that the block 22 is simply the ∗ of block 11 and block 12 is the † of block 21. Interestingly, the
condition VTU+ UTV = 0 tells us that VTU is anti-symmetric, and the same happens for UTV. From the fact that
UU† must also equal the identity matrix, we might deduce that UU† +V∗VT = 1 and UV† +V∗UT = 0.
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Finally ÒH in terms of the γ̂ operators reads, assuming we have taken εµ > 0:

ÒH =
L
∑

µ=1

�

εµγ̂
†
µγ̂µ − εµγ̂µγ̂

†
µ

�

=
L
∑

µ=1

2εµ

�

γ̂†
µγ̂µ −

1
2

�

, (142)

and the ground state is the state annihilated by all γ̂µ, which we denote by |;γ〉:

γ̂µ|;γ〉= 0 ∀ µ =⇒ ÒH|;γ〉= E0|;γ〉 , with E0 = −
L
∑

µ=1

εµ . (143)

The 2L eigenstates can be expressed as:

|ψ{nµ}〉=
L
∏

µ=1

�

γ̂†
µ

�nµ |;γ〉 , with nµ = 0,1 ,

E{nµ} = E0 + 2
∑

µ

nµεµ . (144)

Warning: The previous discussion applies to a generic quadratic fermion Hamiltonian ÒH.
Consequently, it also applies to the two different parity Hamiltonians bHp relevant for the
Ising case, which one could express as:

bHp =
L
∑

µ=1

�

εp,µγ̂
†
p,µγ̂p,µ − εp,µγ̂p,µγ̂

†
p,µ

�

=
L
∑

µ=1

2εp,µ

�

γ̂†
p,µγ̂p,µ −

1
2

�

. (145)

This implies that there are two distinct Bogoliubov vacuum states |;p〉, one for each set
of operators γ̂p,µ. Recall, however, that the block Hamiltonian bHp = bPpbHpbPp involves pro-
jectors on the appropriate sub-sectors, which must be handled appropriately. Moreover,
the possible presence of zero-energy eigenvalues must be appropriately taken care of: see
below. This is important in calculating thermal averages, as further discussed in Sec. 11.

!

Before ending, a note on zero-energy eigenvalues, which has a practical relevance when
calculating thermal averages. If you calculate the eigenvalues {εµ} by a numerical diagonal-
ization routine, the presence of zero-energy eigenvalues complicates the story. Indeed, the
zero-energy eigenvalues, if present, must come in an even number. This is rather clear from
the fact that the total dimension is 2L and that every non-zero positive eigenvalue εµ > 0 must
have a negative partner −εµ < 0. Unfortunately, the computer will produce eigenvectors as-
sociated with the degenerate zero-energy eigenvalues which do not have the structure alluded
at in Eq. (134). To enforce such a structure you can exploit the swap matrix S.
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Info: Let us consider the Ising case, where H is real and particle-hole symmetry reads
HS= −SH. Hence if

�

uµ , vµ
�T

is a zero-energy state, so is S
�

uµ , vµ
�T
=
�

vµ , uµ
�T

. Hence
the zero-energy subspace — the so-called KerH, whose even dimension we denote by N0
— is invariant for S. Hence you can restrict S to such N0-dimensional subspace, and di-
agonalize it there. But S is such that S2 = 1, hence its eigenvalues can be only ±1, the
eigenstates of S being even or odd under swap of the first and last L components. Even
more: You can show that S must have exactly as many +1 as −1 eigenvalues in that sub-
space. Now, if (u , u)T is a zero-energy even-swap eigenstate, and (v , −v)T a zero-energy
odd-swap eigenstate — both normalised and orthogonal — then the two combinations:

1
p

2

�

u+ v
u− v

�

, and
1
p

2

�

u− v
u+ v

�

, (146)

are both normalised, orthogonal, and have precisely the structure shown in Eq. (134).
These states should be used to enforce the required structure of Eq. (134), crucial to
fulfilling the correct anti-commutation rules.

i

Show that the static Bogoliubov-de Gennes equations in Eq. (133) are equivalent, for
general couplings, to the diagonalization of the following tight-binding problem for the

two-component spinor W jµ
def
=

�

U jµ
V jµ

�

:

−
J j

2
(τ̂z + iκτ̂y)W j+1,µ −

J j−1

2
(τ̂z − iκτ̂y)W j−1,µ + h jτ̂

zW jµ = εµW jµ ,

where τ̂ are pseudo-spin Pauli matrices acting on the two components of W jµ.
Next, consider the uniform case J j = J and h j = h. Use Fourier transforms

W jµ =
1
L

∑

k eik jWkµ (where the k-vectors used depend, as usual, from the boundary
conditions) to show that:

�

Hk − 2εµ
�

Wkµ = 0 ,

where Hk = (2κJ sin k)τ̂y + 2(h− J cos k)τ̂z as in Eq. (52). This shows that the correct
correspondence between the general BdG approach of Sec. 7 and the k-space approach
of Sec. 4, is given by 2εµ→εk.

Problem 3. Tight-binding formulation of the BdG equations.
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Consider now a uniform Ising chain with κ = 1 and a single impurity on-site j = l. Take
J j ≡ J > 0, h j = h − himpδ jl , with 0 < himp ≪ h, himp ≪ J , J ̸= ±h. Show that the
impurity induces two bound-state excitations, one above and one below the continuum
[2|J − h|, 2|J + h|] of the extended excitations of the uniform chain.

Answer: 2ε±µ=2|J±h|± hJ
|J±h|

�

himp
J

�2
+o
�

himp
J

�2
.

Hint: Assuming that 2εµ is outside of the spectrum of the unperturbed uniform chain, and using
Fourier transforms, show that you arrive at the following equation determining the non-trivial
solutions εµ:

�

1−
2himp

L

∑

k

�

Hk − 2εµ
�−1
τ̂z

�

Wlµ = 0 .

Assuming himp ≪ h, show that, for L →∞, 1 ≃ 2himp

∫ 2π

0
dk
2π Tr

�

�

Hk − 2εµ
�−1
τ̂z
�

. Calculate the

trace using Hk = εkeiθkτ̂
x/2 τ̂z e−iθkτ̂

x/2 with tanθk =
J sin k

h−J cos k , and perform the integral over k. Give
an expression for εµ approximated to second order in himp/J .

Problem 4. Bound-state excitations for an Ising chain with an impurity.

The next problem helps in understanding that the presence of disorder changes the nature
of the eigenstates, from being extended in space (plane-wave-like) to being space localized.

Consider the model with the disorder in both J j and h j . Assume that J j ∈ [Jmin, 1] and
h j ∈ [0, hmax] are uniformly distributed, with Jmin > 0. Numerically solve the Bogoliubov-
de Gennes equations Eq. (133) and show that, whatever the choice of hmax and Jmin,

the spinor eigenfunctions W jµ
def
=

�

U jµ
V jµ

�

are localized in space. This means that these

eigenfunctions are uniformly bounded by a function exponentially decaying over a char-
acteristic length-scale ξloc, the so-called localization length. More formally, fixing hmax
and Jmin, there exists a ξloc such that

q

|U jµ|2 + |V jµ|2 ≤ C e−| j−lµ|/ξloc , ∀ µ , (147)

where lµ depends on µ and C is a constant. This phenomenon can be seen when the
system size exceeds the localization length, L > ξloc. Study localization also using the
inverse participation ratio [78,79]

IPRµ =
∑

j

�

�|W jµ|2
�

�

2
=
∑

j

�

�|U jµ|2 + |V jµ|2
�

�

2
. (148)

Average IPRµ over µ and verify that it tends towards a constant value, for increasing L.26

Problem 5. Anderson localization of states for the disordered Ising chain.

The space localization phenomenon discussed in the previous problem is an example of
Anderson localization, see Refs. [78,79]. The space localization of the eigenstates has profound
consequences on the physics of the problem. As shown in Ref. [81], there is still a region of

26Observe that plane-wave delocalized states have IPR = 1/L, while fully localized states have IPR = 1. The
problem of Anderson localization in the Kitaev model – the fermionic representation of the quantum ising chain –
has been considered in [80].
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transverse fields where the system shows ferromagnetic long-range order. Contrary to the
ordered case — where long-range order is seen in the ground state only and is immediately
lost in higher excited states — the presence of disorder, with the associated space-localized
excitations, leads to the consequence that the whole spectrum shows long-ranged spin-spin
correlations. See Ref. [82].

7.2 Open boundary conditions and Majorana fermions

The case of a chain with open boundary conditions is particularly interesting, because Ma-
jorana fermions, and the associated zero-energy modes, emerge quite naturally from the dis-
cussion [19]. In this section, we work out explicitly the case of a chain with open boundary
conditions, introduce the Majorana fermions first as a formal device to perform the diago-
nalization, and then discuss the physical role they have as boundary excitations at vanishing
energy in the broken symmetry phase.

For illustration purposes, let us consider the case in which the spin chain has L = 4 sites,
and couplings J1, J2, J3 > 0, while J4 = 0 (as dictated by OBC).27 The 2L × 2L Hamiltonian
matrix (in this case, an 8 × 8 matrix) will have the form (we fix the anisotropy parameter
κ= 1):

H=
1
2























2h −J1 0 0 0 −J1 0 0
−J1 2h −J2 0 J1 0 −J2 0
0 −J2 2h −J3 0 J2 0 −J3
0 0 −J3 2h 0 0 J3 0
0 J1 0 0 −2h J1 0 0
−J1 0 J2 0 J1 −2h J2 0
0 −J2 0 J3 0 J2 −2h J3
0 0 −J3 0 0 0 J3 −2h























. (149)

Let us consider first the case with h = 0, corresponding to the classical Ising model with the
given couplings. The corresponding eigenvalues/eigenvectors (disregarding the ordering of
the non-zero eigenvalues) are found to be:

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J1 J2 J3 0 −J1 −J2 −J3 0

−1
2 0 0 1p

2
1
2 0 0 0

1
2 −

1
2 0 0 1

2
1
2 0 0

0 1
2 −

1
2 0 0 1

2
1
2 0

0 0 1
2 0 0 0 1

2 −
1p
2

1
2 0 0 1p

2
−1

2 0 0 0
1
2

1
2 0 0 1

2 −1
2 0 0

0 1
2

1
2 0 0 1

2 −1
2 0

0 0 1
2 0 0 0 1

2
1p
2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

, (150)

where you should observe that the structure of Eq. (134) is correctly respected, except for the
two zero eigenvalues, which the diagonalization routine has decided to give us in this partic-
ular form. This form itself is particularly interesting. It suggests that the following fermionic

27If you want to do numerical tests, we suggest you take different values for J j , for instance, J1 = 1, J2 = 2 and
J3 = 3, to avoid degeneracies, which might lead to a mixing of the corresponding eigenvectors.
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combinations naturally emerge:

ε1 = J1 → bΦ1 = γ̂1 =
1
2(ĉ

†
2 + ĉ2) +

1
2(ĉ

†
1 − ĉ1) ,

ε2 = J2 → bΦ2 = γ̂2 =
1
2(ĉ

†
3 + ĉ3) +

1
2(ĉ

†
2 − ĉ2) ,

ε3 = J3 → bΦ3 = γ̂3 =
1
2(ĉ

†
4 + ĉ4) +

1
2(ĉ

†
3 − ĉ3) ,

ε4 = 0 → bΦ′4 =
1
p

2
(ĉ†

1 + ĉ1) ,

−ε1 = −J1 → bΦ5 = γ̂
†
1 =

1
2(ĉ

†
2 + ĉ2)−

1
2(ĉ

†
1 − ĉ1) ,

−ε2 = −J2 → bΦ6 = γ̂
†
2 =

1
2(ĉ

†
3 + ĉ3)−

1
2(ĉ

†
2 − ĉ2) ,

−ε3 = −J3 → bΦ7 = γ̂
†
3 =

1
2(ĉ

†
4 + ĉ4)−

1
2(ĉ

†
3 − ĉ3) ,

−ε4 = 0 → bΦ′8 =
1
p

2
(ĉ†

4 − ĉ4) .

(151)

Several things strike our attention. First: bΦ′4 is Hermitian and bΦ′8 is anti-Hermitian, and they
are not Hermitian conjugate pairs, contrary to all other (bΦ j , bΦ j+4) pairs. If you want to con-
struct ordinary fermionic operators, then you should redefine:

bΦ′4 → bΦ4 = γ̂4 =
1
2(ĉ

†
1 + ĉ1) +

1
2(ĉ

†
4 − ĉ4) ,

bΦ′8 → bΦ8 = γ̂
†
4 =

1
2(ĉ

†
1 + ĉ1)−

1
2(ĉ

†
4 − ĉ4) ,

(152)

with an orthogonal transformation which leaves the subspace of two degenerate eigenvalues
0 invariant, precisely as alluded to in the last info-box of 7.1. Second: certain Hermitian
combinations seem to play a peculiar role. In particular, let us define the Majorana fermions:28

č j,1 = (ĉ
†
j + ĉ j ) , and č j,2 = i(ĉ†

j − ĉ j ) . (154)

These operators are manifestly Hermitian. They allow us to express the original fermions as:

ĉ j =
1
2(č j,1 + i č j,2) , and ĉ†

j =
1
2(č j,1 − i č j,2) , (155)

and satisfy the anti-commutation relations:

{č j,α, č j′,α′}= 2δ j, j′δα,α′ . (156)

Notice, in particular, that this implies that different Majorana anti-commute, but (č j,α)
2 = 1.

In terms of these operators, we have:

bΦ1 = γ̂1 =
1
2(ĉ

†
2 + ĉ2) +

1
2(ĉ

†
1 − ĉ1) =

1
2(č2,1 − i č1,2) ,

bΦ2 = γ̂2 =
1
2(ĉ

†
3 + ĉ3) +

1
2(ĉ

†
2 − ĉ2) =

1
2(č3,1 − i č2,2) ,

bΦ3 = γ̂3 =
1
2(ĉ

†
4 + ĉ4) +

1
2(ĉ

†
3 − ĉ3) =

1
2(č4,1 − i č3,2) ,

bΦ4 = γ̂4 =
1
2(ĉ

†
1 + ĉ1) +

1
2(ĉ

†
4 − ĉ4) =

1
2(č1,1 − i č4,2) ,

bΦ5 = γ̂
†
1 =

1
2(ĉ

†
2 + ĉ2)−

1
2(ĉ

†
1 − ĉ1) =

1
2(č2,1 + i č1,2) ,

bΦ6 = γ̂
†
2 =

1
2(ĉ

†
3 + ĉ3)−

1
2(ĉ

†
2 − ĉ2) =

1
2(č3,1 + i č2,2) ,

bΦ7 = γ̂
†
3 =

1
2(ĉ

†
4 + ĉ4)−

1
2(ĉ

†
3 − ĉ3) =

1
2(č4,1 + i č3,2) ,

bΦ8 = γ̂
†
4 =

1
2(ĉ

†
1 + ĉ1)−

1
2(ĉ

†
4 − ĉ4) =

1
2(č1,1 + i č4,2) .

(157)

28This definition is non-standard. The standard definition used by Kitaev [19] duplicates the sites and defines
the Majorana fermions as living on even/odd sites as:

č2 j−1 = (ĉ
†
j + ĉ j ) , and č2 j = i(ĉ†

j − ĉ j ) . (153)
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γ̂1 γ̂2 γ̂3

1 2 3 4

ĉ1 ĉ2 ĉ3 ĉ4

1 2 3 4

Figure 9: Left: An L = 4 open chain with the off-site Majorana pairing leading to
the Bogoliubov vacuum. Right: The on-site Majorana pairing leads to the ordinary
vacuum for h j > 0.

There is something simple behind the previous story. If you rewrite the original Ising
coupling in terms of fermions, you realize that for instance:

−J jσ̂
x
j σ̂

x
j+1→−J j(ĉ

†
j ĉ j+1 + ĉ†

j ĉ
†
j+1 +H.c.) = −J j(ĉ

†
j − ĉ j )(ĉ

†
j+1 + ĉ j+1)

≡ −iJ j č j,2 č j+1,1 , (158)

i.e., the Ising term couples in a precise way neighbouring Majorana operators. All we have
done, to diagonalise it, is to introduce the appropriate combination γ̂ j =

1
2(č j+1,1 − i č j,2) and

γ̂†
j =

1
2(č j+1,1 + i č j,2) and re-express the coupling term as:

−J jσ̂
x
j σ̂

x
j+1→−iJ j č j,2 č j+1,1 = J j(γ̂

†
j γ̂ j − γ̂ j γ̂

†
j ) , (159)

which suggests that the ground state is the vacuum of those γ̂ j operators.29

There is a second simple case we can deal with. Take all h j > 0 and J j = 0, so that the
Hamiltonian is now:

ÒH =
L
∑

j=1

h j(2n̂ j − 1) =
L
∑

j=1

h j(ĉ
†
j ĉ j − ĉ j ĉ

†
j )→ i

L
∑

j=1

h j č j,1 č j,2 . (160)

This shows that the ground state, now the vacuum of the ĉ j , still involves a “pairing” of Majo-
rana fermions, but now on the same site j. The two different Majorana pairings are sketched
in Fig. 9.

Returning to the previous case with h j = 0, the ground states certainly verify

γ̂ j |;〉= 0 , for j = 1, · · · , L − 1(= 3) . (161)

But there are two states satisfying such a condition, a degeneracy that is ultimately related to
the presence of unpaired Majorana operators at the end of the chain, as emerging from Fig. 9
(left). Indeed, one such state is also the vacuum of γ̂L=4:

γ̂ j |;0〉= 0 , for j = 1, · · · , L(= 4) . (162)

On such a state, we have (generalising now to arbitrary even L)

γ̂Lγ̂
†
L|;0〉= |;0〉 =⇒ i č1,1 čL,2|;0〉= |;0〉 . (163)

The second possible ground state is |;1〉= γ̂
†
L|;0〉 for which:

γ̂†
Lγ̂L|;1〉= |;1〉 =⇒ i č1,1 čL,2|;1〉= −|;1〉 . (164)

29Interestingly, in the vacuum we gain an energy−J j from each bond. Breaking that, we would get a contribution
+J j from the bond, hence an energy cost, referred to the vacuum, of 2J j: This explains, for instance, the factor 2
in front of εµ in Eq. (142).
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Figure 10: The spectrum of eigenvalues ϵµ = 2εµ ≥ 0 of an ordered Ising chain with
OBC, versus the transverse field h. (We show only half of the particle-hole symmetric
spectrum ±εµ. ) Here L = 256. Notice the zero-energy eigenvalue for h < hc = J .
This eigenvalue is exponentially small in the length L for all h< hc .

These two ground states have opposite fermion parity,30 because they differ by the application
of γ̂†

L .

Info: As discussed by Kitaev [19], the two zero-modes survive for 0< h< J , with a split-
ting which is exponentially small in the length of the chain, as long the broken symmetry
leads to two possible ground states.

The existence of these modes is deeply related to the topological considerations done
when discussing Fig. 3. Indeed, a fermionic chain with |h| < J and OBC is equivalent
to surrounding the chain with the fermionic vacuum — in turn, equivalent to an Ising
chain with h→∞. But one cannot go continuously from a phase with a winding index
of 1 to a phase with an index of 0. Therefore, at the border between two phases with
different indexes, the gap must close to enforce this discontinuity (we saw when discussing
Fig. 3, the deep connection between the discontinuity of the index and the closing of
the gap). Hence, the gap must close at the boundary, and this effect appears as two
zero-energy boundary modes which behave as Majorana excitations. As we saw above,
there are only two ways of combining them into fermionic excitations, which are indeed
very non-local objects. For any finite system size L, the two Majorana fermions have an
overlap exponentially small in L. If we combine them into fermionic excitations, we find
a gap between them which is exponentially small in the system size. This is the same gap
we found in Secs. 4.1 and 4.2, which vanishes in the thermodynamic limit and leads to
symmetry-breaking. Now we appreciate its intimate connection with topology.

i

30Notice, incidentally, that the fermionic parity can be expressed as:

ÒP =
L
∏

j=1

(1− 2n̂ j ) =
L
∏

j=1

�

(ĉ†
j + ĉ j )(ĉ

†
j − ĉ j )

�

=
L
∏

j=1

(−i č j,1 č j,2) . (165)
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To visualize these facts, we show in Fig. 10 the spectrum of eigenvalues εµ ≥ 0 (evaluated
numerically) of an ordered Ising chain with OBC. We mark in red one of the two zero-energy
modes we have discussed above, surviving for all h ≤ hc = J . The mode is not exactly at
zero, but, rather, exponentially small in L. Finite-size effects (here L = 256) lead to a visible
rounding effect in the proximity of hc .

Consider a uniform Ising chain in a transverse field, with open boundary conditions. Con-
sider the following expectation value of Majorana fermion operators:

ψ j,α = 〈;1|č j,α|;0〉 ,

where |;0〉 is the Bogoljubov vacuum of the γ̂µ and |;1〉 = γ̂
†
µ=0|;0〉, with the convention

that γ̂†
µ=0 creates a Bogoljubov fermion with eigenvalue εµ=0 = 0+, the “zero-energy”

eigenvalue. By using the transformation between the ĉ j and γ̂µ, show that:

ψ j,1 =
�

U∗j,µ=0 + V ∗j,µ=0

�

, and ψ j,2 = i
�

U∗j,µ=0 − V ∗j,µ=0

�

.

Show that |ψ j,α|2 are both normalized to 1. By evaluating numerically the relevant
quantities, plot |ψ j,α|2 versus j for a few values of the transverse field h, including
h= 0, 0.1,0.9, 1.

Problem 6. Majorana fermion wave-functions.

7.3 The BCS form of the ground state

The next problem we would like to solve is how to write the Bogoliubov vacuum |;γ〉 in terms
of the ĉ†

j in the general non-homogeneous case, in a way that generalizes the simple BCS form
we have in k-space:

|;γ〉ABC =
ABC
∏

k>0

�

uk + vk ĉ†
k ĉ†
−k

�

|0〉 . (166)

For that purpose, let us make the Ansatz that |;γ〉 can be written as a Gaussian state of the
form:

|;γ〉=N exp
�1

2

∑

j1 j2

Z j1 j2 ĉ†
j1

ĉ†
j2

�

|0〉 ≡N eZ |0〉 , (167)

where Z will be our shorthand notation for the quadratic fermion form we exponentiate.
Clearly, since ĉ†

j1
ĉ†

j2
= −ĉ†

j2
ĉ†

j1
we can take the matrix Z to be antisymmetric (but complex, in

general): Any symmetric part of Z would give no contribution. The conditions that Z has to
satisfy should be inferred from the fact that we require that γ̂µ|;γ〉= 0, hence:

N
L
∑

j=1

�

U∗jµ ĉ j +V∗jµ ĉ†
j

�

eZ |0〉= 0 , ∀ µ . (168)

Since Z is made of pairs of ĉ†s, it commutes with ĉ†
j , hence, ĉ†

j e
Z |0〉= eZ ĉ†

j |0〉. The first term,

containing ĉ j e
Z |0〉, is more problematic. We would like to commute ĉ j through eZ to bring it
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towards the fermionic vacuum state |0〉, where it annihilates. To do so, let us start calculating:

�

ĉ j ,Z
�

=
1
2

�

ĉ j ,
∑

j1 j2

Z j1 j2 ĉ†
j1

ĉ†
j2

�

=
∑

j′
Z j j′ ĉ

†
j′ , (169)

where we have used the antisymmetry of Z. We see, therefore, that [ĉ j ,Z], being a combina-

tion of ĉ†
j′ commutes with Z and with any function of Z. It takes then little algebra31 to show

that:
�

ĉ j , e
Z
�

=
�

ĉ j ,Z
�

eZ = eZ
�

ĉ j ,Z
�

⇒ ĉ j e
Z = eZ

�

ĉ j + [ĉ j ,Z]
�

. (170)

The conditions in Eq. (168) therefore read:

N eZ
L
∑

j=1

�

U∗jµ
�

ĉ j + [ĉ j ,Z]
�

+V∗jµ ĉ†
j

�

|0〉= 0 , ∀ µ . (171)

Noticing that ĉ j |0〉= 0, substituting Eq. (169), and omitting irrelevant prefactors we therefore
have:

�∑

j j′
U∗j′µZ j′ j ĉ

†
j +

∑

j

V∗jµ ĉ†
j

�

|0〉= 0 , ∀ µ , (172)

where we have exchanged the dummy indices j and j′ in the first term. Next, we collect the
two terms by writing:

∑

j

�

(U†Z)µ j + (V
†)µ j

�

ĉ†
j |0〉= 0 ⇒ Z= −(U†)−1V† . (173)

This is the condition that Z has to verify for the state |;γ〉 to be annihilated by all γ̂µ. This is
the so-called Thouless formula [83]. It takes very little algebra32 to verify that, indeed, such a
form of Z is antisymmetric.

We will see in Sec. 8.1, see Eq. (207), that the Gaussian form just derived applies also to a
time-dependent state |ψ(t)〉 when the dynamics follows a unitary Schrödinger evolution with
an Hamiltonian ÒH(t) which is quadratic in the fermionic operators.

According to a theorem of linear algebra [84] any antisymmetric matrix can always be
reduced to a “standard canonical” form by applying a unitary matrix D as follows:

Z= DΛDT , with Λ=















0 λ1 0 0 · · ·
−λ1 0 0 0 · · ·

0 0 0 λ2 · · ·
0 0 −λ2 0 · · ·
...

...
...

...
...















L×L

, (175)

31Simply expand the exponential in the usual way, realise that

[ĉ j ,Z
n] = n [ĉ j ,Z]Z

n−1 ,

because [ĉ j ,Z] commutes with all powers of Z, and reconstruct the exponential to get the result.
32Observe that:

ZT = −(V†)T
�

(U†)−1
�T
= −V∗

�

(U†)T
�−1
= −V∗ (U∗)−1 .

However, from block 12 in Eq. (139) we get:

U†V∗ = −V†U∗ ⇒ ZT = −V∗(U∗)−1 = (U†)−1V† = −Z . (174)
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where in general the λp are complex. If L is even, there are L
2 blocks 2×2 with some λp, while

if L is odd, Λ has an extra row/column of zeroes. The unitary matrix D allows us to define
combinations of the fermions c†

j which form natural “BCS-paired” orbitals,

d̂†
p =

∑

j

(DT)p j ĉ
†
j =

∑

j

D jp ĉ†
j . (176)

Labelling the consecutive columns of D as 1, 1, 2, 2, · · · , p, p, · · · , with p up to L/2, one can
readily check that in terms of the d†s the Bogoliubov vacuum |;γ〉 reads:

|;γ〉=N exp
�

L/2
∑

p=1

λp d̂†
p d̂†

p

�

|0〉=N
L/2
∏

p=1

�

1+λp d̂†
p d̂†

p

�

|0〉 . (177)

It remains to evaluate the normalization constant N . Now we calculate:33

1= 〈;γ|;γ〉= |N |2 〈0|
L/2
∏

p=1

�

1+λ∗p d̂p d̂p

� �

1+λp d̂†
p d̂†

p

�

|0〉

= |N |2
L/2
∏

p=1

�

1+ |λp|2
�

= |N |2
�

det
�

1+ΛΛ†
��1/2

= |N |2
�

det
�

1+ ZZ†
��1/2

= |N |2
�

det
�

1+ (U†)−1V†VU−1
��1/2

= |N |2
�

det
�

(U†)−1(U†U+V†V)U−1
��1/2

= |N |2
�

det
�

(UU†)−1
��1/2

= |N |2 1
|det(U)|

⇒ |N |=
Æ

|det(U)| . (178)

Summarising, we have derived the so-called Onishi formula [83], which states that:

�

�

�〈0|;γ〉
�

�

�

2
= |N |2 = |det(U)| . (179)

If we express the Bogoliubov vacuum in terms of the λp we have:

|;γ〉=
L/2
∏

p=1

1
Æ

1+ |λp|2

�

1+λp d̂†
p d̂†

p

�

|0〉=
L/2
∏

p=1

�

up + vp d̂†
p d̂†

p

�

|0〉 , (180)

where we have defined up = 1/
Æ

1+ |λp|2 and vp = λp/
Æ

1+ |λp|2, which verify
|up|2 + |vp|2 = 1.

Further details about the overlap between BCS states of the form discussed previously are
given in Appendix A.

33In the derivation we use that:

ΛΛ† =













|λ1|2 0 0 0 · · ·
0 |λ1|2 0 0 · · ·
0 0 |λ2|2 0 · · ·
0 0 0 |λ2|2 · · ·
...

...
...

...
...













L×L

.
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8 Schrödinger dynamics in the time-dependent case

A time dependence of the Hamiltonian can come from many different sources [7, 9, 10, 85].
The simplest case, which is used in the so-called quantum annealing approach [86–88], consists
in assuming that the transverse fields are time-dependent h j(t): for instance, they might be
slowly annealed from a very large value towards zero. Alternatively, the Hamiltonian couplings
might be changed in some time-periodic fashion [89], as further discussed in Sec. 8.3. In all
these cases, the elements of the matrices A and B become time-dependent and consequently
ÒH → ÒH(t). We proceed now in general, assuming A(t) and B(t).

Start from Schrödinger’s equation:

iħh
d
d t
|ψ(t)〉= ÒH(t)|ψ(t)〉 . (181)

Since the norm of |ψ(t)〉 must be conserved, this implies the existence of a unitary evolution
operator bU(t, t0) such that |ψ(t)〉= bU(t, t0)|ψ(t0)〉, which satisfies the same equation:

iħh
d
d t
bU(t, t0) = ÒH(t)bU(t, t0) , with bU(t0, t0) = 1̂ . (182)

Next, consider the expectation value of a time-dependent operator Ô(t) in the Schrödinger’s
picture

〈Ô(t)〉 ≡ 〈ψ(t)|Ô(t)|ψ(t)〉= 〈ψ(t0)|bU†(t, t0)Ô(t)bU(t, t0)|ψ(t0)〉

≡ 〈ψ(t0)|ÔH(t)|ψ(t0)〉 , (183)

where we have introduced Heisenberg’s picture operator

ÔH(t)≡ bU†(t, t0)Ô(t)bU(t, t0) . (184)

Therefore the equation of motion of an operator in Heisenberg’s picture for the general case
of a time-dependent Hamiltonian reads:34

iħh
d
d t

ÔH(t) = bU†(t, t0)
�

�

Ô(t),ÒH(t)
�

+ iħh
∂

∂ t
Ô(t)

�

bU(t, t0) . (186)

8.1 The time-dependent Bogoliubov-de Gennes equations

Let’s write Heisenberg’s equation of motion for operator ĉ j

iħh
d
d t

ĉ jH(t) = bU†(t, t0)
�

ĉ j ,ÒH(t)
�

bU(t, t0) . (187)

34Here we use:

iħh
d
d t
bU(t, t0) = ÒH(t)bU(t, t0) , and − iħh

d
d t
bU†(t, t0) = bU†(t, t0)ÒH(t) .

Notice that if ÒH and Ô are time-independent

�

bU ,ÒH
�

=
�

bU†,ÒH
�

= 0 , and iħh
∂

∂ t
Ô = 0 ,

then Eq. (186) takes the well-known form:

iħh
d
d t

ÔH =
�

ÔH,ÒH
�

. (185)
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By calculating the commutator

�

ĉ j ,ÒH(t)
�

=
2L
∑

l,l ′=1

Hl l ′(t)
�

ĉ j ,ÒΨ
†
l
ÒΨl ′

�

=
2L
∑

l,l ′=1

Hl l ′(t)
�¦

ĉ j ,ÒΨ
†
l

©

ÒΨl ′ −ÒΨ
†
l

¦

ĉ j ,ÒΨl ′

©�

=
2L
∑

l,l ′=1

Hl l ′(t)
�

δl, jÒΨl ′ −ÒΨ
†
l δl ′, j+L

�

= 2
L
∑

j′=1

�

A j j′(t)ĉ j′ +B j j′(t)ĉ
†
j′

�

, (188)

we see that we have a linear equation of motion

iħh
d
d t

ĉ jH(t) = 2
L
∑

j′=1

�

A j j′(t) ĉ j′H(t) +B j j′(t) ĉ†
j′H(t)

�

, (189)

and analogously for the operator ĉ†
j . With a more compact notation, one can write the linear

Heisenberg equations of motion for the elementary fermionic operators as:

iħh
d
d t
ÒΨ

H
(t) = 2H(t)ÒΨ

H
(t) , (190)

the factor 2 on the right-hand side originating from the off-diagonal {ÒΨ j ,ÒΨ j+L} = 1 for
j = 1 · · · L. The initial condition for these equations can be written as:

ÒΨ
H
(t = t0)≡ÒΨ = U0

�

γ̂

γ̂†

�

= U0 bΦ , (191)

where γ̂ are the Bogoliubov fermions that diagonalise ÒH(t0), and U0 the corresponding rota-
tion matrix.

We are not quite done: We have an explicit linear equation for ÒΨ
H
(t), but we need an

explicit solution for this equation, obtained by some “simple enough” integration of a finite-
dimensional linear problem. There are now at least two ways of getting the desired result.

First route. We make the Ansatz that |ψ(t)〉, the time-evolved state of the system, is a Bo-
goliubov vacuum annihilated by a set of time-dependent quasi-particle annihilation operators
γ̂µ(t)

γ̂µ(t) |ψ(t)〉= 0 , ∀ µ , ∀ t . (192)

This requirement immediately implies, by taking a total time derivative, that:

0= iħh
d
d t

�

γ̂µ(t) |ψ(t)〉
�

=
�

iħh
∂

∂ t
γ̂µ(t)

�

|ψ(t)〉+ γ̂µ(t)
�

iħh
d
d t
|ψ(t)〉

�

=
�

iħh
∂

∂ t
γ̂µ(t) + γ̂µ(t)ÒH(t)− ÒH(t)γ̂µ(t)

�

|ψ(t)〉 , (193)
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where we have added, in the last step, a term γ̂µ(t) |ψ(t)〉= 0. The last expression implies:35

iħh
∂

∂ t
γ̂µ(t) = −

�

γ̂µ(t),ÒH(t)
�

. (194)

By considering the equation of motion of the Heisenberg operator γ̂µH
(t) we have

iħh
d
d t
γ̂µH
(t) = bU†(t, t0)

�

�

γ̂µ(t),ÒH(t)
�

+ iħh
∂

∂ t
γ̂µ(t)

�

bU(t, t0)≡ 0 , (195)

where we have used Eq. (194) in the last step. So, since γ̂µH
does not depend on t, it must

coincide with its t = t0 value. Let’s call this value γ̂µ = γ̂µH
= γ̂µ(t = t0).

Let us assume now, inspired by Eq. (141), that the ĉ jH(t) are indeed expressed by

ĉ jH(t) =
L
∑

µ=1

�

U jµ(t) γ̂µ +V∗jµ(t) γ̂
†
µ

�

, (196)

and let us see if this expression solves the required Heisenberg equations in Eq. (189) for
an appropriate choice of the time-dependent coefficients U jµ(t) and V jµ(t). Substituting in
Eq. (189) we get:

L
∑

µ=1

�

iħh
�

d
d t

U jµ(t)
�

γ̂µ + iħh
�

d
d t

V∗jµ(t)
�

γ̂†
µ

�

= 2
L
∑

j=1

Ai j(t)
�

U jµ(t)γ̂µ +V∗jµ(t)γ̂
†
µ

�

+ 2
L
∑

j=1

Bi j(t)
�

V jµ(t)γ̂µ +U∗jµ(t)γ̂
†
µ

�

. (197)

By equating the coefficients of γ̂µ and γ̂†
µ we obtain the time-dependent Bogoliubov-de Gennes

equations:






















iħh
d
d t

U jµ(t) = 2
L
∑

j′=1

�

A j j′(t)U j′µ(t) +B j j′(t)V j′µ(t)
�

,

iħh
d
d t

V jµ(t) = −2
L
∑

j′=1

�

B∗j j′(t)U j′µ(t) +A∗j j′(t)V j′µ(t)
�

,

(198)

or more compactly, collecting together µ= 1, · · · , L solutions in L × L blocks U and V:36

iħh
d
d t

�

U(t)
V(t)

�

= 2H(t)
�

U(t)
V(t)

�

. (200)

Notice that if
�

uµ(t) , vµ(t)
�T

is solution of Eq. (198) then
�

v∗µ(t) , u∗µ(t)
�T

is also a solution,
so we need to find only µ = 1, · · · , L solutions, as indeed alluded by the compact form (200),
not 2L. Once we have the first L, it is automatically guaranteed that:

iħh
d
d t

�

U(t) V∗(t)
V(t) U∗(t)

�

= 2H(t)
�

U(t) V∗(t)
V(t) U∗(t)

�

. (201)

35A mathematician would complain, here, that this is not a valid implication: An arbitrary linear combination of
γ̂
µ
(t) could be added that, acting on |ψ(t)〉, gives 0. We are a bit swift here, but the result is correct. We will get

to the same result by a second route in a short while.
36In the time-independent case, the solution is equivalent to solving the time-independent Bogoliubov-de Gennes

equations. Indeed in this case the time evolution of the solution is

H
�

uµ
vµ

�

= εµ

�

uµ
vµ

�

⇒
�

uµ(t)
vµ(t)

�

= e−2iεµ t/ħh
�

uµ
vµ

�

, (199)

and, as you can easily verify, the same result can be obtained by using directly Eq. (200) with H(t) =H.
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Second route. It is reassuring to get to the same time-dependent Bogoliubov-de Gennes
equations by a second, quicker, route. Let us recall the linear equation we want to solve, with
its initial condition:

iħh
d
d t
ÒΨ

H
(t) = 2H(t)ÒΨ

H
(t) ,

ÒΨ
H
(t = t0)≡ÒΨ = U0

�

γ̂

γ̂†

�

= U0 bΦ ,

where γ̂ are the Bogoliubov fermions that diagonalise ÒH(t0), andU0 the corresponding 2L×2L
transformation matrix. Inspired by the form of the initial condition, let us search for a solution
of the same form:

ÒΨ
H
(t) = U(t)

�

γ̂

γ̂†

�

= U(t) bΦ , (202)

with the same bΦ used to diagonalise the initial t = t0 problem. For this to be a solu-
tion, the time-dependent coefficients U(t) must satisfy the linear Bogoliubov-de Gennes time-
dependent equations:

iħh
d
d t
U(t) = 2H(t)U(t) , (203)

with initial conditions U(t = t0) = U0. The latter form is just a compact way of expressing
Eq. (201).

It is easy to verify that this implies that the operators γ̂µ(t) in the Schrödinger picture
are time-dependent and annihilate the state |ψ(t)〉: this was indeed the starting point of the
Bogoliubov Ansatz presented in the first route. The Ansatz here is that the Heisenberg operators
associated with the Bogoliubov fermions are time-independent, coinciding with the original γ̂µ
at time t = t0. This amounts to saying that:

�

γ̂
H

γ̂†
H

�

=

�

γ̂

γ̂†

�

= U†(t)

�

ĉ
H
(t)

ĉ†
H
(t)

�

. (204)

By linearity, it follows that, in the Schrödinger picture:
�

γ̂ (t)
γ̂†(t)

�

= U†(t)

�

ĉ
ĉ†

�

, (205)

or more explicitly:

γ̂µ(t) =
L
∑

j=1

�

U∗jµ(t) ĉ j +V∗jµ(t) ĉ†
j

�

. (206)

If we go back to Sec. 7.3, we realize that the algebra carried out there is perfectly applicable
here, and allows us to write the time-dependent state |ψ(t)〉 in the explicit Gaussian form:

|ψ(t)〉=N (t) exp
�1

2

∑

j1 j2

Z j1 j2(t)ĉ
†
j1

ĉ†
j2

�

|0〉 , (207)

with the anti-symmetric matrix Z(t) given by:

Z(t) = −
�

U†(t)
�−1

V†(t) . (208)

It is not very hard to explicitly verify that such a state satisfies the Schrödinger equation:

iħh
d
d t
|ψ(t)〉= ÒH(t)|ψ(t)〉 , (209)
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provided U(t) and V(t) satisfy the time-dependent BdG equations in Eq. (200). Indeed, the
time derivative of the state |ψ(t)〉 is simply:

iħh
d
d t
|ψ(t)〉= iħh

�

1
2
(ĉ†)TŻ(t)(ĉ†) +

Ṅ (t)
N (t)

�

|ψ(t)〉 .

On the right-hand side, the Hamiltonian terms can be rewritten by using that, for instance:
∑

j j′
ĉ†

j′A j′ j ĉ j e
Z(t)|0〉=

∑

j j′
ĉ†

j′(AZ) j′ j ĉ
†
j e

Z(t)|0〉 .

Rewriting all the Hamiltonian terms we get:

ÒH(t)|ψ(t)〉=
�

(ĉ†)T
�

B+AZ+ ZA+ ZB∗Z
�

(ĉ†)− TrA− TrB∗Z
�

|ψ(t)〉 .

By explicitly calculating the derivative of Z(t) using the BdG equations one can check, after
some lengthy algebra, that the two expressions indeed coincide.

Consider the uniform model with anisotropy κ = 1. Take J = 1 (constant in time, and
taken as our unit of energy), and consider a time-dependent transverse magnetic field
h(t). Show that, in analogy with the form of the ABC ground state in Eq. (70), the time-
dependent state

|ψ(t)〉=
ABC
∏

k>0

�

uk(t) + vk(t)ĉ
†
k ĉ†
−k

�

|0〉 ,

solves the time-dependent Schrödinger equation iħh|ψ̇(t)〉= bH0(t)|ψ(t)〉 in the fermionic
ABC sector provided uk(t) and vk(t) satisfy, for all k, the following BdG equations:

iħhψ̇k(t) = Hk(t)ψk(t) , with ψk(t) =

�

vk(t)
uk(t)

�

.

Problem 7. Time-dependent BdG equations for a uniform chain.

Consider now a slow annealing of the transverse field h(t) from the initial value hi≫ J at
time t = 0, to the final value hf = 0 at time t = τ, for instance linearly: h(t) = hi(1− t/τ).
Initialize the system in the ground state of ÒHk(t = 0), and numerically study the BdG
evolution for all k, for a sufficiently large L. Consider now the expectation value of the
density of defects over the ferromagnetic ground state at the end of the non-equilibrium
protocol

ρdef(τ) =
1

2L

L
∑

j=1

〈ψ(τ)|(1− σ̂x
j σ̂

x
j+1)|ψ(τ)〉 .

Show that ρdef(τ) ∼ τ−1/2 for sufficiently large τ, provided L is large enough.37 This is
the so-called Kibble-Zurek scaling, see Refs. [35,90] for details and further references on
this topic.

Problem 8. Out-of-equilibrium protocol: crossing the critical point.

37The power-law scaling of ρdef(τ) holds for τ ≪ τ∗L where τ∗L ∝ L2 is a characteristic time where the finite-
size critical gap, scaling as 1/L, starts to be visible. For larger τ, the finite-size critical gap at hc/J = 1 becomes
relevant, and the density of defects starts decaying faster.
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8.2 Calculating time-dependent expectation values

Once we have a solution to the time-dependent BdG equations, we can calculate time-
dependent expectations of operators quite easily. Consider, for instance, the elementary one-
body Green’s function:

G j j′(t)≡ 〈ψ(t)|ĉ j ĉ
†
j′ |ψ(t)〉= 〈ψ(t0)|ĉ jH(t)ĉ

†
j′H(t)|ψ(t0)〉 ,

F j j′(t)≡ 〈ψ(t)|ĉ j ĉ j′ |ψ(t)〉= 〈ψ(t0)|ĉ jH(t)ĉ j′H(t)|ψ(t0)〉 .
(210)

We assume that the initial state |ψ(t0)〉 is the Bogoliubov vacuum of the operators γ which
diagonalise ÒH(t0), i.e., |ψ(t0)〉 = |;γ〉. The algebra is most directly carried out by working
with the 2L × 2L Nambu one-body Green’s function matrix

G j j′(t)≡ 〈ψ(t)|ÒΨ j
ÒΨ†

j′ |ψ(t)〉= 〈ψ(t0)|ÒΨ jH(t)ÒΨ
†
j′H(t)|ψ(t0)〉 , (211)

by using the fact that the corresponding transformed Green’s function is simple, since
|ψ(t0)〉= |;γ〉:

Gγ
µµ′
≡ 〈ψ(t0)|bΦµbΦ

†
µ′
|ψ(t0)〉=

�

1 0
0 0

�

. (212)

In matrix form, we immediately calculate:

G(t) = 〈ψ(t0)|ÒΨH
(t)ÒΨ†

H
(t)|ψ(t0)〉= U(t) 〈ψ(t0)|bΦ bΦ†|ψ(t0)〉U†(t)

= U(t)
�

1 0
0 0

�

U†(t) =

�

U(t)U†(t) U(t)V†(t)
V(t)U†(t) V(t)V†(t)

�

. (213)

Summarising, the four L × L blocks of G read:

G(t) =
�

G(t) F(t)
F†(t) 1−GT(t)

�

=

�

U(t)U†(t) U(t)V†(t)
V(t)U†(t) V(t)V†(t)

�

. (214)

Info: Notice that, quite generally, G is Hermitian, while F, as a consequence of the
fermionic anti-commutations is anti-symmetric:

G(t) = U(t)U†(t) = G†(t) , and F(t) = U(t)V†(t) = −FT(t) . (215)

i

Expectation values of more complicated operators can be reduced to sums of products
of Green’s functions through the application of Wick’s theorem [1]. This fact will be explic-
itly used later on, for instance, when calculating expectation values for spin-spin correlation
functions, see Sec. 9, or the Entanglement entropy, see Sec. 10. Moreover, time-correlation
functions with Heisenberg operators at different times can be calculated similarly.

8.3 Floquet time-dependent case

A particular case of dynamics is that in which the Hamiltonian is periodic in time, i.e., a pe-
riod τ exists such that ÒH(t + τ) = ÒH(t). The whole field of Floquet engineering is recently
actively pursuing this strategy to construct interesting phases of matter, sometimes without a
counterpart in equilibrium physics. See Refs. [89,91] and reference therein for more details.

The Floquet theorem [92,93] guarantees the existence in the Hilbert space of a complete
basis of solutions of the time-dependent Schrödinger equation which are periodic “up to a
phase factor”, i.e., such that:

|ψFα(t)〉= e−iEα t/ħh |ψPα(t)〉 , with |ψPα(t)〉= |ψPα(t +τ)〉 . (216)
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This way of writing is closely reminiscent of the time-independent case, except that the state
|ψPα(t)〉, known as Floquet mode, is now periodic in time rather than a time-independent eigen-
state of the Hamiltonian; the Eα, which plays the role of the eigenenergy, is known as Floquet
quasi-energy. There are 2L , as many as the dimension of the Hilbert space, Floquet solutions
of this type, and these solutions can be used as a convenient time-dependent basis to expand
states. Their usefulness consists in the fact that if we expand a general initial state as

|ψ(0)〉=
∑

α

|ψPα(0)〉〈ψPα(0)|ψ(0)〉 ,

then the time-evolution can be written, for free, in a form that is reminiscent of the time-
independent case, i.e.:

|ψ(t)〉=
2L
∑

α=1

e−iEα t/ħh |ψPα(t)〉 〈ψPα(0)

︸ ︷︷ ︸

bU(t)

|ψ(0)〉 . (217)

Explicit construction of the many-body Floquet states can be obtained through a Floquet
analysis of the time-dependent Bogoliubov-de Gennes (BdG) equations, in a way similar to
that, used to construct the energy eigenstates from the solution of the static BdG equations
(see Sec. 7). To do that, let us write the BdG equations (203)

iħh
d
d t

�

U(t)
V(t)

�

= 2H(t)
�

U(t)
V(t)

�

. (218)

Since H(t + τ) = H(t) is a periodic 2L × 2L matrix, the Floquet theorem guarantees the
existence of a complete set of 2L solutions which are periodic up to a phase. L of them have
the form:

e−iεµ t/ħh
�

uPµ(t)
vPµ(t)

�

, for µ= 1 · · · L , with

�

uPµ(t +τ) = uPµ(t) ,

vPµ(t +τ) = vPµ(t) ,

and the remaining L, by particle-hole symmetry, are automatically obtained as

eiεµ t/ħh
�

v∗
Pµ(t)

u∗
Pµ(t)

�

.

Collecting all the quasi-energies εµ into a diagonal matrix ε = diag(εµ), and the various col-
umn vectors uPµ(t) and vPµ(t) into a L × L matrices UP(t) and VP(t), it is straightforward to
show that the structure of the Floquet solutions of the BdG solutions is38

UF(t) =

�

UF(t) V∗
F
(t)

VF(t) U∗
F
(t)

�

=

�

UP(t)e−iεt/ħh V∗
P
(t)eiεt/ħh

VP(t)e−iεt/ħh U∗
P
(t)eiεt/ħh

�

. (219)

Using these solutions, we can construct the Bogoliubov operators γ̂
Fµ(t) which annihilate a

vacuum Floquet state |;F(t)〉 through the standard method employed in the general time-
dependent case (see Eq. 140):

�

γ̂
F
(t)

γ̂†
F
(t)

�

= U†
F
(t)

�

ĉ
ĉ†

�

, (220)

38Notice that the quasi-energy phase factors have to stay on the right of the periodic part, for the ordinary rules
of matrix multiplication to give the correct phase-factor to each column of the matrix.
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or, more explicitly, for µ= 1, · · · , L:

γ̂
Fµ(t) = eiεµ t/ħh

L
∑

j=1

�

(U∗
P
(t)) jµ ĉ j + (V

∗
P
(t)) jµ ĉ†

j

�

⇒ γ̂
Fµ(t +τ) = eiεµτ/ħhγ̂

Fµ(t) , ∀ t .

(221)
The Floquet vacuum state |;F(t)〉 annihilated by all the γ̂

Fµ(t) has the Gaussian form (see
Eq. (207)):

|;F(t)〉=NF(t) exp

 

1
2

∑

j1 j2

(ZF(t)) j1 j2
ĉ†

j1
ĉ†

j2

!

|0〉 , (222)

where, see Secs. 7 and 8, the Thouless and Onishi formulas hold:

ZF(t) = −(U†
F
(t))−1V†

F
(t) , and NF(t) =

Æ

|det(UF(t))| . (223)

Let us show that the Floquet vacuum state is periodic, i.e.,

|;F(t +τ)〉= |;F(t)〉 ,

or, to put it differently, its many-body quasi-energy is E0 = 0. To this aim, it suffices to show that
ZF(t) and NF(t) are both periodic. From VF = VP e−iεt/ħh and UF = UP e−iεt/ħh we immediately
derive that V†

F
(t) = eiεt/ħh V†

P
(t) and (U†

F
(t))−1 = (U†

P
(t))−1 e−iεt/ħh. From these relationships, in

turn, it follows immediately that the quasi-energy phase-factors cancel in ZF, i.e.:

ZF(t) = −(U†
F
(t))−1V†

F
(t) = −(U†

P
(t))−1V†

P
(t) , (224)

which is manifestly periodic in time, ZF(t + τ) = ZF(t), because both UP and VP are periodic.
The periodicity of NF(t) follows because

�

�det(UF(t))
�

�=
�

�det(UP(t)) det(e−iεt/ħh)
�

�=
�

�det(UP(t))
�

�

�

�e−i
∑

µ εµ t/ħh�
�=

�

�det(UP(t))
�

� ,

i.e., once again something manifestly periodic in time. At this point, we can easily, in principle,
construct all the 2L many-body Floquet states by simply applying any product of γ̂†

Fµ(t) to
|;F(t)〉:39

|ψF{nµ}(t)〉=
L
∏

µ=1

�

γ̂†
Fµ(t)

�nµ |;F(t)〉 , (225)

where nµ = 0 or 1 is the occupation number of the γ̂†
Fµ(t) operator. From Eq. (221) and the

periodicity of the Floquet vacuum, it follows that the quasi-energy of |ψF{nµ}(t)〉 is given by:

E{nµ} =
L
∑

µ=1

nµεµ . (226)

9 Spin-spin correlation functions

As discussed in Sec. 5, the thermal physics of the classical Ising model in two dimensions is
reproduced by the ground state physics of the quantum Ising chain. Here we consider spin-
spin correlation functions. From the general theory we know that, see Eq. (110), the ground

39Some care should be exercised if the boundary conditions depend on the fermionic parity. In that case, one
should work separately in the two subsectors with even and odd fermionic parity, starting from the corresponding
vacuum state.
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state expectation value of the spin-spin (order-parameter) correlations for a translationally
invariant system should have the form:40

C x x
j, j+n = 〈σ̂

x
j σ̂

x
j+n〉

n large
−−−→ m2 + const×

e−an/ξ

nη
, (227)

where m is the order-parameter m = 〈σ̂x
j 〉, ξ the correlation length, and η the anomalous

exponent.
The question we address here is how to calculate spin-spin correlation functions for the

quantum Ising chain, see Refs. [74,94] for a more in-depth and general discussion. Specifically,
we want to show how to calculate spin-spin correlations for the three possible directions in
spin-space:

C x x
j1, j2
= 〈σ̂x

j1
σ̂x

j2
〉 , C y y

j1, j2
= 〈σ̂ y

j1
σ̂

y
j2
〉 , Czz

j1, j2
= 〈σ̂z

j1
σ̂z

j2
〉 . (228)

Here we discuss in detail the equilibrium case only.
The Czz

j1, j2
does not involve the Jordan-Wigner non-local string, and comes automatically

from using Wick’s theorem, once you have calculated the single-particle Green’s functions,
including the anomalous term, see Sec. 4.1.2 and Sec. 8.2.

By a direct application of the Jordan-Wigner mapping σ̂z
j = 1− ĉ†

j ĉ j and of Wick’s theorem,
show that:

Czz
j1, j2
= 4

�

G j1, j1 −
1
2

��

G j2, j2 −
1
2

�

+ 4G j1, j2(δ j1, j2 − G j2, j1) + 4|F j1, j2 |
2 . (229)

Verify that Czz
j1, j1
= 1. Show that:

〈σ̂z
j 〉= 2

�

G j, j −
1
2

�

. (230)

Recognise that the first term in Czz
j1, j2

is simply 〈σ̂z
j1
〉〈σ̂z

j2
〉. As a consequence, the so-called

connected correlation function is given by:

Czz,conn
j1, j2

def
= Czz

j1, j2
− 〈σ̂z

j1
〉〈σ̂z

j2
〉= 4G j1, j2(δ j1, j2 − G j2, j1) + 4|F j1, j2 |

2 . (231)

For the translationally invariant critical Ising case (κ = 1, h = J), using the Green’s
functions derived in Sec. 4.1.2, verify that:

Czz,conn
1,1+n =

4
π2

1
4n2 − 1

. (232)

Compare this with Eq. (3.3) of Ref. [65].

Problem 9. The zz correlations.

Consider now the calculation of the σ̂x
j1
σ̂x

j2
correlations41 for j2 > j1. Using the Jordan-

Wigner mapping we get:

C x x
j1, j2
= 〈σ̂x

j1
σ̂x

j2
〉= 〈(ĉ†

j1
+ ĉ j1

)exp
�

iπ
j2−1
∑

j= j1

n̂ j

�

(ĉ†
j2
+ ĉ j2

)〉 . (233)

40Recall that the rotation in spin-space we have performed is such that the longitudinal direction is given by σ̂x .
41Recall that, in our convention, x is the spin direction in which the symmetry-breaking occurs.
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Recall now that:

eiπn̂ j = 1− 2n̂ j = ĉ j ĉ
†
j − ĉ†

j ĉ j = (ĉ
†
j + ĉ j )(ĉ

†
j − ĉ j ) = bA jbBj , (234)

where the last expression involves the definitions [75]

bA j = (ĉ
†
j + ĉ j )≡ č j,1 , and bBj = (ĉ

†
j − ĉ j ) = −i č j,2 , (235)

closely related to the Majorana fermions. Hence we can write:

C x x
j1, j2
= 〈σ̂x

j1
σ̂x

j2
〉= 〈bA j1

�

j2−1
∏

j= j1

bA jbBj

�

bA j2〉

= 〈bBj1
bA j1+1bBj1+1 · · · bA j2−1bBj2−1bA j2〉 , (236)

where we used that (bA j)2 = 1.
At this point, we use Wick’s theorem [1], since this is a product of fermion operators av-

eraged on the ground state of a quadratic Hamiltonian (a Gaussian state, as we have seen
in Sec. 7.3), or on a thermal state of a quadratic Hamiltonian, depending on whether we
are calculating correlations at T = 0 or finite T . There are 2( j2 − j1) elements in the product,
which we should be contracted pairwise in all possible ways, with the appropriate permutation
sign [1].

Recall: The results of Sec. 8.2 concerning the elementary fermionic Green’s functions
tell us that:

G j j′
def
= 〈ĉ j ĉ

†
j′〉=

�

UU†
�

j j′ , (237)

and
F j j′

def
= 〈ĉ j ĉ j′〉=

�

UV†
�

j j′ . (238)

Recall also that the anti-commutation of the fermionic destruction operators forces F to
be anti-symmetric. Moreover, if the average is taken over the ground state so that U and
V can be taken to be both real,42 then G= UUT is real and symmetric, and F= UVT is real
and anti-symmetric.

!

Let us start by observing that

bA jbA j′ = 〈bA jbA j′〉= 〈(ĉ
†
j + ĉ j )(ĉ

†
j′ + ĉ j′)〉= G j j′ + (δ j, j′ −G j′ j) + F j j′ + F∗j′ j = δ j, j′ , (239)

where we used that G= GT and (F∗)T = −F. Similarly, we have that:

bBjbBj′ = 〈bBjbBj′〉= 〈(ĉ
†
j − ĉ j )(ĉ

†
j′ − ĉ j′)〉= −G j j′ − (δ j, j′ −G j′ j) + F j j′ + F∗j′ j = −δ j, j′ . (240)

These findings simply eliminate contractions between operators of the same type.43

We are therefore left with the contractions of the type:

bBjbA j′ = 〈bBjbA j′〉= 〈(ĉ
†
j − ĉ j )(ĉ

†
j′ + ĉ j′)〉= −G j j′ + (δ j, j′ −G j′ j)− F j j′ + F∗j′ j

= δ j, j′ − 2(G j j′ + F j j′)
def
= M j, j′ , (241)

42The same results can be easily obtained from thermal averages, see Sec. 11.
43Observe that contractions of the type 〈bA j

bA j〉 or 〈bBj
bBj〉 never occur from the Wick’s expansion.
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and

bA jbBj′ = 〈bA jbBj′〉= 〈(ĉ
†
j + ĉ j )(ĉ

†
j′ − ĉ j′)〉= G j j′ − (δ j, j′ −G j′ j)− F j j′ + F∗j′ j

= 2(G j′ j + F j′ j)−δ j, j′ = −M j′, j , (242)

as perhaps expected.

Warning: The previous considerations apply to expectations calculated on the ground
state or to thermal expectations. When considering time-dependent expectations the con-
dition of reality of the matrices G and F no longer applies, and appropriate modifications
would be needed, see Ref. [94].

!

We now have to account for all possible contractions of the B-A type, say, with the proper
permutation sign. If you think for a while, you realize that you can organize the whole of
Wick’s sum into the determinant of an appropriate matrix as follows:

Wick → bBj1
bA j1+1bBj1+1bA j1+2 · · ·bBj2−1bA j2 + bBj1

bA j1+1bBj1+1bA j1+2 · · ·bBj2−1bA j2 + · · ·

= det









M j1, j1+1 M j1, j1+2 · · · M j1, j2
M j1+1, j1+1 M j1+1, j1+2 · · · M j1+1, j2

...
...

. . .
...

M j2−1, j1+1 M j2−1, j1+2 · · · M j2−1, j2









( j2− j1)×( j2− j1) .

(243)

Here, to help the reader recognize the various contractions, we have used colours.

Info: A good way to understand the structure of the matrix determinant you see is to
notice that the second (column) index is constant — going from j1 + 1 to j2 — and tells
you which is the bA operator in the contraction: the corresponding first (row) index tells
you the bB partner in the contraction, and as you see it grows from j1 up to j2 − 1, as
appropriate for the bB partners.

i

Summarizing, we can write:

C x x
j1, j2
= det































M j1, j1+1 M j1, j1+2 · · · M j1, j2−1 M j1, j2

M j1+1, j1+1 M j1+1, j1+2 M j1+1, j1+3 · · · M j1+1, j2

...
...

. . .
...

...

M j2−2, j1+1 M j2−2, j1+2 · · · M j2−2, j2−1 M j2−2, j2

M j2−1, j1+1 M j2−1, j1+2 · · · M j2−1, j2−1 M j2−1, j2































. (244)
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With similar arguments, using the Jordan-Wigner mapping of σ̂ y
j , show that:

C y y
j1, j2
= 〈σ̂ y

j1
σ̂

y
j2
〉= (−1) j2− j1−1〈bBj1+1bA j1+1 · · · bBj2−1bA j2−1bBj2

bA j1〉 . (245)

Use Wick’s theorem to deduce that:

C y y
j1, j2
= det































M j1+1, j1 M j1+1, j1+1 · · · M j1+1, j2−2 M j1+1, j2−1

M j1+2, j1 M j1+2, j1+1 · · · M j1+2, j2−2 M j1+2, j2−1

...
...

. . .
...

...

M j2−1, j1 M j2−1, j1+1 · · · M j2−1, j2−2 M j2−1, j2−1

M j2, j1 M j2, j1+1 · · · M j2, j2−2 M j2, j2−1































. (246)

Problem 10. The yy correlations.

The translationally invariant case is particularly noteworthy, since the various M j, j′ depend
only on the difference of sites. Denoting by M j− j′ = M j, j′ , setting j1 = 1 and j2 = 1+ n, we
can then write:

C x x
n

def
= C x x

1,1+n = det































M−1 M−2 · · · M−(n−1) M−n

M0 M−1 · · · M−(n−2) M−(n−1)

...
. . .

. . .
. . .

...

Mn−3 Mn−4 · · · M−1 M−2

Mn−2 Mn−3 · · · M0 M−1































, (247)

and

C y y
n

def
= C y y

1,1+n = det































M1 M0 · · · M−(n−3) M−(n−2)

M2 M1 M0 · · · M−(n−3)

...
. . .

. . .
. . .

...

Mn−1 Mn−2 · · · M1 M0

Mn Mn−1 · · · M2 M1































, (248)

both having the form of an n× n Toeplitz matrix44 determinant.

44By definition, a matrix in which every sub-diagonal is constant.
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By referring to the results for the one-particle Green’s functions, show that the critical
Ising case (h = J and κ = 1), and in the thermodynamic limit L →∞, the elementary
contractions are given by:

M j, j′ =M j− j′ =
1

π
p

2

∫ π

0

dk
cos(k( j − j′ + 1))− cos(k( j − j′))

p
1− cos k

. (249)

Evaluate the integral, showing that:

M j− j′ = −
2
π

1
1+ 2( j − j′)

.

Problem 11. The translationally invariant case.

Consider a uniform Ising chain with PBC. By working in the fermionic ABC sector, calculate
numerically the spin-spin correlation function C x x

1,1+n for the three cases: A) h/J = 1/2,
b) h/J = 2 and c) h/J = 1. Verify that the correlations C x x

1,1+n tend to decrease with
increasing n, until n ∼ L/2, and then increase back towards a value C x x

1,L ≡ C x x
1,2. Explain

why this happens. Verify numerically that, when L → ∞ — practically, try increasing
L in your calculation — C x x

1,L/2 tends towards a finite value for case a), it goes to zero
exponentially fast in case b), and as a power law in case c). Estimate the exponent of such
a power law. In the critical case c), compare the results obtained for a finite chain length
L, and those obtained by using the contractions M j− j′ evaluated in the thermodynamic
limit L →∞ (see previous problem). Repeat the calculations for C y y

1,1+n. Compare with
the analytical solutions provided in Ref. [65].

Problem 12. Spin-spin correlation functions.

Thanks to the existence of approximate formulae for the asymptotic behavior of Toeplitz
matrix determinants [95–99], these exact formulas are the starting point of many large-
distance results [29,65,74,94,100], also related to the 2d classical Ising model [101–103].

10 Entanglement entropy

The entanglement entropy is a way to quantify entanglement [104], that plays a fundamental
role in many-body physics, both in- and out-of-equilibrium. In the first case, the development
of long-range quantum correlations captured by the entanglement entropy is closely related to
critical points of second-order quantum-phase transitions [105]. In the case of the Ising model
we are discussing here, the situation has been discussed in [106, 107], and it was found that
the half-chain entanglement entropy scales logarithmically with the system size at the critical
point, in deep connection with conformal field theories [107–109].

On the non-equilibrium side, the entanglement plays an important role in the dynamics
of quenched many-body systems. In the case of ergodic thermalizing systems, local observ-
ables thermalize, and this happens because the local density matrix becomes mixed, due to
the strong entanglement quantum correlations generated by the dynamics (see [110,111] for
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a review). In the case of integrable Hamiltonians, there is no thermalization, but local ob-
servables tend to an asymptotic value described by the so-called generalized Gibbs ensemble
(GGE) [111, 112]. In this case, the asymptotic local density matrix is less mixed and the dy-
namics generates less quantum correlations due to local constraints [113–115].

The entanglement entropy quantifies these quantum correlations and is an invaluable tool
to distinguish between thermalizing and GGE cases (see, for instance, [116]). Moreover, in
case of disorder, many-body localization can appear, an integrable phase where quantum cor-
relations propagate slowly, and half-chain entanglement entropy increases logarithmically in
time, in contrast with the linear increase of clean ergodic or integrable systems [117–121]. The
Ising model is integrable, and under a quantum quench its half-chain entanglement entropy
linearly increases in time, until it reaches an asymptotic value linear in the system size and
smaller than the thermal value, as discussed in [27, 115], also in connection with conformal
field theories [108].

Finally, the entanglement entropy has a very important role in witnessing the so-called en-
tanglement transitions. If a quantum system undergoes random measurements from a classical
environment, the entanglement can show very different behaviours, depending on whether the
effect of the quantum dynamics dominates (strong entanglement) or the effect of the onsite
measurements (small entanglement). This is reflected in the behaviour of the half-chain en-
tanglement entropy that scales differently with the system size in each entanglement phase.
Also in this context the Ising model has been widely employed [45–55], together with similar
quadratic fermionic models [45,52,122–131], where one evaluates the entanglement entropy
using the methods described here.

So, the question of how to calculate the entanglement entropy for the quantum Ising chain
is a very important one, and we address it here using the methods developed in [27, 106].
(Equivalent methods leading even to closed expressions for the ground-state entanglement
entropy are described in [132–134]. The approach of Ref. [135] for a general real Gaussian
density matrix is also worth mentioning.). To explain what the entanglement entropy is, let us
start from the concept of reduced density matrix. For a system described by a pure state |ψ〉,
we can equivalently adopt a density matrix formulation [70], using ρ̂ = |ψ〉〈ψ|. The reduced
density matrix is a proper (generally non-pure) density matrix obtained by tracing out a part
of the system. To be concrete, if our Ising chain has L sites, then we can write:

ρ̂l = Tr{l+1,··· ,L} ρ̂ , (250)

where Tr{l+1,··· ,L} indicates that we take a partial trace over the sites of the chain not belonging
to the connected subsystem with sites {1, · · · , l}.

The reduced density matrix ρ̂l must be a positive Hermitian operator acting in the Hilbert
space of the {1 · · · l} spins, whose trace is 1. It has 2l non-negative eigenvalues wi which sum
to 1. The only case in which it is itself a pure state is when only one of the wi is equal to 1,
and all the others vanish. This, in turn, is only possible when the state of the two connected
subchains {1 · · · l} and {l+1 · · · L} is a product state, i.e., a state without entanglement. A good
way to capture such entanglement is to calculate the so-called entanglement entropy

Sl = −Tr{1,··· ,l} ρ̂l log ρ̂l = −
2l
∑

i=1

wi log wi , (251)

which vanishes exactly when the state is a product state and is positive otherwise.
What do we know about ρ̂l? Recall now that a basis of Hermitian operators for each spin

is given by the three Pauli matrices, supplemented by the identity matrix which we denote by
σ̂0 = 12. Hence, we can certainly write ρ̂l as:

ρ̂l =
1
2l

∑

α1, ...,αl

Cα1···αl
σ̂
α1
1 · · · σ̂

αl
l , with αi = 0, x , y, z . (252)
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The first question is how the coefficients Cα1···αl
in this expansion can be written.

Info: Let us recall the analogous problem for the case of a single spin. If we write
ρ̂ = 1

2

∑

α Cασ̂
α, then while C0 = 1 due to the unit trace of ρ̂, we can reconstruct the

other coefficients Cα=x ,y,z from measurements of the different components of the spin,
more precisely, from the spin expectation values

〈σ̂α〉= Tr
�

σ̂αρ̂
�

=
1
2

∑

α′

Cα′ Tr
�

σ̂ασ̂α
′�
= Cα , (253)

where we used that Tr(σ̂ασ̂α
′
) = 2δα,α′ . The name tomography is often used in this

context: You reconstruct full information on the state by appropriate measurements.

i

In a very similar way, consider measuring the expectation value of the operator σ̂α1
1 · · · σ̂

αl
l

on the state ρ̂l . We get:

Cα1···αl
= Tr{1···l}

�

σ̂
α1
1 · · · σ̂

αl
l ρ̂l

�

= Tr{1···l} Tr{l+1···L}

�

σ̂
α1
1 · · · σ̂

αl
l ρ̂

�

= Tr{1···L}
�

σ̂
α1
1 · · · σ̂

αl
l ρ̂

�

≡ 〈ψ|σ̂α1
1 · · · σ̂

αl
l |ψ〉 , (254)

where the second step follows from Eq. (250).

Remark: The 4l complex coefficients Cα1···αl
completely specify the reduced density ma-

trix ρ̂l , an operator in a 2l -dimensional space. How to get the eigenvalues of ρ̂l and
extract the entanglement entropy Sl , seems a highly non-trivial task, at this stage. Notice
also that the previous considerations apply to any spin system. There is nothing special,
so far, about the quantum Ising chain.

!

Let us look more closely at an example of such a term. Consider, for a block of l = 8 sites
the term C000xz00y :

C000xz00y = 〈ψ|σ̂x
4 σ̂

z
5σ̂

y
8 |ψ〉 . (255)

First of all observe that such a term respects the parity invariance of the Hamiltonian, as it
possesses an even number of σ̂x and σ̂ y operators: If there was an odd number of them, the
coefficient would vanish due to the parity selection rule. Next, we map spins into fermions.
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Info: To map spins into fermions, recall the Jordan-Wigner transformation:














σ̂x
j = K̂ j (ĉ

†
j + ĉ j ) ,

σ̂
y
j = K̂ j i(ĉ†

j − ĉ j ) ,

σ̂z
j = 1− 2n̂ j ,

with K̂ j =
j−1
∏

j′=1

(1− 2n̂ j′) . (256)

Recall also the following useful ways of writing some of the previous fermionic quantities.
First of all, Majorana (Hermitian) combinations appear explicitly in σ̂x and σ̂ y :

č j,1 = (ĉ
†
j + ĉ j ) , and č j,2 = i(ĉ†

j − ĉ j ) . (257)

Second, you can re-express in many ways the operator 1− 2n̂ j :

1− 2n̂ j = ĉ j ĉ
†
j − ĉ†

j ĉ j = (ĉ
†
j + ĉ j )(ĉ

†
j − ĉ j ) = −i č j,1 č j,2 . (258)

i

Therefore, we get:45

C000xz00y = 〈ψ|K̂4 (ĉ
†
4 + ĉ4) (1− 2n̂5) K̂8 i(ĉ†

8 − ĉ8)|ψ〉

= 〈ψ|(ĉ†
4 + ĉ4) (1− 2n̂4) (1− 2n̂6) (1− 2n̂7) i(ĉ

†
8 − ĉ8)|ψ〉

= 〈ψ|č4,1 (−i č4,1 č4,2) (−i č6,1 č6,2) (−i č7,1 č7,2) č8,2|ψ〉

= 〈ψ| (−i č4,2) (−i č6,1 č6,2) (−i č7,1 č7,2) č8,2|ψ〉 . (259)

Warning: In the notation of Sec. 9, see Eq. (235), such an expectation value would trans-
late into:

C000xz00y = i〈ψ|bB4bA6bB6bA7bB7bB8|ψ〉 , (260)

hence in equilibrium (i.e., for a ground state or thermal calculation) it would still vanish,
simply because you cannot construct the correct number of non-vanishing Wick’s con-
tractions! In any case, you notice how the approach we have undertaken is essentially
impossible to carry out. Even after calculating, through an appropriate application of
Wick’s theorem, all possible non-vanishing coefficients Cα1···αl

calculating the eigenvalues
of the corresponding reduced density matrix seems an incredibly difficult task!

!

But there is something very special about a quantum Ising chain. If |ψ〉 is the ground
state of the quantum Ising chain, the state has a Gaussian form, as explained in Sec. 7.3.
Similarly, for a state |ψ(t)〉 = bU(t, 0)|ψ(0)〉, corresponding to a Schrödinger time evolution
with an arbitrary quantum Ising chain Hamiltonian, starting from some |ψ(0)〉with a Gaussian
form. In all these cases, Wick’s theorem comes to rescue us in the calculation of the relevant
expectation values, which can be expressed as a sum of products of elementary one-particle
Green’s functions [1]. It turns out that working with Majorana fermions is a good way of
handling efficiently ordinary and anomalous fermionic Green’s functions. To do that, let us be
equipped with a matrix notation for the Majorana as well.

45Use the fact that (1−2n̂ j ) commutes with terms which do not involve fermions at site j, and that (1−2n̂ j )
2 = 1.

This leads, in particular, to a cancellation of the two tails originating from the Jordan-Wigner string operators K̂4

and K̂8 . Moreover, recall that the square of a Majorana gives the identity: (č j,1)
2 = (č j,2)

2 = 1.
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To be consistent with the Nambu notation for the ordinary fermions, we better define the
Majorana column vector:46

č =































č1,1

č2,1
...

čL,1

č1,2

č2,2
...

čL,2































=



























1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 1
−i 0 · · · 0 i 0 · · · 0
0 −i · · · 0 0 i · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · −i 0 0 · · · i























































ĉ1
ĉ2
...

ĉL
ĉ†
1

ĉ†
2
...

ĉ†
L





























=WÒΨ , (262)

where we defined the 2L × 2L block matrix:

W=
�

1 1
−i1 i1

�

. (263)

One can define the Majorana 2L × 2L correlations matrix as:

Mnn′ = 〈ψ|čnčn′ |ψ〉=
∑

j, j′
(W)n j〈ψ|ÒΨ j

ÒΨ†
j′ |ψ〉(W

†) j′n′ , (264)

which in full matrix form is immediately related to the Nambu Green’s function G:

M=WGW† . (265)

Upon substituting the block-expression for the Nambu Green’s function G in Eq. (214) we
obtain, after simple block-matrix algebra:

M=
�

1+ (G−GT) + (F− F∗) i(G+GT − 1)− i(F+ F∗)
−i(G+GT − 1)− i(F+ F∗) 1+ (G−GT)− (F− F∗)

�

= 1+ iA , (266)

where the 2L × 2L matrix A is real and anti-symmetric,47 and both G and F are (in general)
complex.

Remark: Notice that, quite generally, FT = −F as a consequence of the fermionic anti-
commutation. If we are in equilibrium (ground state or thermal) then both G and F can
be taken to be real. Moreover, G is symmetric, G= GT. This implies that

M= 1+ i

�

0 −1+ 2G− 2F
1− 2G− 2F 0

�

, (267)

in agreement with the Majorana equilibrium correlators seen in Sec. 9.

!

46The standard definition [19] which in row-vector form would read:

č = (č1, č2, č3, č4, · · · , č2L−1, č2L)≡ (č1,1, č1,2, č2,1, č2,2, · · · , čL,1, čL,2) , (261)

mixes the different blocks of the Nambu fermions in a way that makes the algebra extremely painful.
47The fact thatA is real and anti-symmetric follows from the fact that, quite generally, from G= UU† and F= VU†

and the unitary nature of the Bogoliubov rotation — see Eq. (8.2) — it follows that G+GT is real and symmetric,
F+ F∗ is real and anti-symmetric, while both G−GT and F− F∗ are purely imaginary and anti-symmetric.

61

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.82


SciPost Phys. Lect. Notes 82 (2024)

This algebra of re-expressing the Green’s functions in terms of Majorana correlators, which
in turn involve a single 2L×2L real and anti-symmetric matrix A, will be important in a short
while.48

How to calculate the reduced density matrix spectrum. We are now ready to proceed,
circumventing the difficulty of calculating all the 4l complex coefficients of the reduced density
matrix in Eq. (252) and finding its spectrum.

Step 1: The Majorana matrixM fully determine the (pure) state |ψ〉, because of the Gaus-
sian nature of the latter and Wick’s theorem. We can equivalently write

Mnn′ = 〈ψ|čnčn′ |ψ〉= Tr
�

čnčn′ρ̂
�

, (268)

where ρ̂ = |ψ〉〈ψ| is the pure-state density matrix associated with |ψ〉.
Step 2: Consider now restricting the Majorana correlation matrix to the sub-chain {1 · · · l}.

We will denote such a 2l × 2l matrix asMl . Ml is made by four l × l blocks suitably extracted
from the full 2L × 2L matrixM according to the site-indices involved in {1 · · · l}. Most impor-
tantly, since it is the block-truncation of anM = 1+ iA, with A = A∗ = −AT, it will retain the
same structure. More precisely, assuming now n, n′ ∈ {1, · · · , l} we have:

�

(Ml)n,n′ = δn,n′ + iAn,n′(Ml)n,l+n′ = iAn,L+n′ ,

(Ml)l+n,n′ = iAL+n,n′(Ml)l+n,l+n′ = δn,n′ + iAL+n,L+n′ .
(269)

With a slight leap in the notation, we will now denote these 4 blocks as:

Ml = 12l + iAl , (270)

where bothMl and Al are taken to be 2l × 2l and Al is real and anti-symmetric.
Ml contains correlations between Majorana fermions living on the physical sites of the

reduced chain {1 · · · l}. All other sites have been effectively eliminated from the discussion to
the point that we might consider restricting our Majorana operators to

č =































č1,1

č2,1
...

čl,1

č1,2

č2,2
...

čl,2































2l

=



























1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 1
−i 0 · · · 0 i 0 · · · 0
0 −i · · · 0 0 i · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · −i 0 0 · · · i



























2l×2l





























ĉ1
ĉ2
...
ĉl
ĉ†
1

ĉ†
2
...
ĉ†

l





























2l

. (271)

48Incidentally, although we will not use it, the same transformation might be applied to the Hamiltonian ÒH to
rewrite it in terms of Majorana fermions as follows:

ÒH =ÒΨ†HÒΨ =
1
4
(č)TWHW† (č) ,

where use used thatW−1 = 1
2W

† and, see Eq. (124):

WHW† =

�

(A−A∗) + (B−B∗) i(A+A∗)− i(B+B∗)
−i(A+A∗)− i(B+B∗) (A−A∗)− (B−B∗)

�

= iAH ,

with a real anti-symmetricAH = A∗H = −A
T
H
, since A= A† and BT = −B. The unitary Bogoliubov rotation would now

translate into a real orthogonal rotation of Majorana fermions which transforms the real anti-symmetric matrix AH

into a standard canonical form.
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Hence, we can use the reduced density matrix in these averages:

(Ml)n,n′ = Tr
�

čnčn′ρ̂
�

≡ Tr{1···l}
�

čnčn′ρ̂l

�

= δn,n′ + i(Al)n,n′ . (272)

Step 3: We can transform the matrix Al to a canonical form, by a (real) orthogonal trans-
formation R. The canonical form of a real anti-symmetric matrix is, see Ref. [84], made of l
anti-symmetric 2× 2 blocks along the diagonal:

Al = R�RT , with �=























0 λ1 0 0 · · · 0 0
−λ1 0 0 0 · · · 0 0

0 0 0 λ2 · · · 0 0
0 0 −λ2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 λl
0 0 0 0 · · · −λl 0























2l×2l

, (273)

with λq=1···l real. Using the rotation matrix R, we can define 2l new combinations of Majorana
fermions:

ďq =
2l
∑

n=1

Rnq čn , for q = 1, · · · , 2l . (274)

These new Majorana combinations, which now mix different sites of the sub-chain {1 · · · l},
have a very simple correlation matrix:

Tr{1···l}
�

ďqďq′ρ̂l

�

= δq,q′ + i�q,q′ . (275)

Now we switch back to ordinary fermions, simply because we are much more trained and used
to thinking in terms of them. We therefore define:

d̂q =
1
2

�

ď2q−1 + iď2q

�

, for q = 1, · · · , l . (276)

By construction, given the simple correlations encoded by the matrix �, these fermions have
averages

Tr{1···l}
�

d̂†
q d̂q′ρ̂l

�

= δq,q′
1+λq

2
≡ δq,q′Pq , (277)

which shows that λq ∈ [−1, 1], in order for the average fermionic occupation to be 0≤ Pq ≤ 1,
and that the different fermions d̂q are uncorrelated.

Step 4: We have found l new uncorrelated fermionic operators. Hence, in this rather
non-local basis the reduced density matrix factorizes, each 2× 2 block having eigenvalues

Pq =
1+λq

2
, and 1− Pq =

1−λq

2
, (278)

and contributing an entropy S = −Pq log Pq − (1− Pq) log(1− Pq). Hence, we finally arrive at
the entanglement entropy:

Sl = −
l
∑

q=1

�

Pq log Pq + (1− Pq) log(1− Pq)
�

. (279)

The evaluation of the correlation matrix and the entanglement entropy can be implemented
numerically with rather standard techniques.
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Calculate the ground-state entanglement entropy for a uniform Ising chain, with l = L/2,
in the three cases: A) h/J = 1/2, b) h/J = 2, and c) h/J = 1. Show that the half-chain
entanglement entropy tends to a constant, for increasing L, in cases a) and b), while it
grows logarithmically in the critical case c).49

Problem 13. Ground state entanglement for a uniform Ising chain.

11 Thermal averages

Thermal properties of the random transverse-field Ising chain have been studied by P. Young in
Ref. [76]. The case of open boundary conditions (OBC) poses indeed no particular difficulties
in calculating thermal averages: we are, after all, dealing with a free Fermi gas of Bogoliubov-
de Gennes quasiparticles, whose spectrum can be numerically determined. The calculations
become more tricky in the ring geometry (PBC) case, where two different fermionic Hamil-
tonians should be used to determine the spectrum in the two different even and odd fermion
parity sub-sectors of the Hilbert space. This constraint on the parity of the total number of
fermions makes the calculation more difficult, in a way that is conceptually similar to that of
a free Fermi gas in the canonical ensemble. Such a complication is dealt with in the present
section.

Let us recall a few basic facts about the general structure of the Ising model Hamiltonian.
The full Hamiltonian, when PBC are imposed to the spins reads:

ÒHPBC =

�

bH0 0
0 bH1

�

. (280)

The two blocks of even and odd parity can be written as:

bH0 = bP0bH0bP0 = bH0bP0 , and bH1 = bP1bH1bP1 = bH1bP1 , (281)

where bHp=0,1 both conserve the fermionic parity, hence they commute with bP0,1 and are given
by:

bHp=0,1 = −
L
∑

j=1

�

J+j ĉ†
j ĉ j+1 + J−j ĉ†

j ĉ
†
j+1 + H.c.

�

+
L
∑

j=1

h j(2n̂ j − 1) , (282)

with the boundary condition set by the requirement ĉL+1 ≡ (−1)p+1 ĉ1.

Warning: Neither bHp=0 nor bHp=1, alone, expresses the correct fermionic form of the PBC-
spin Hamiltonian. Indeed, after the BdG diagonalization, we can write:

bHp =
L
∑

µ=1

2εp,µ

�

γ̂†
p,µγ̂p,µ −

1
2

�

, (283)

hence we have, in general, two different vacuum states |;p〉 such that γ̂p,µ|;p〉 = 0, and
2L corresponding Fock states, with different eigenvalues, unless the spins have OBC, in
which case JL = 0 and therefore bHp=1 = bHp=0. But we should keep only 2L−1 even and
2L−1 odd eigenvalues! How to do correctly the sums involved in the thermal averages is
the next issue we are going to consider.

!

49The logarithmic divergence in the critical case is consistent with the conformal field theory analysis of Ref. [107,
136]. Away from criticality, where the correlation length ξ is large but finite, the results of Ref. [107] apply.
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Consider calculating the thermal average of an operator Ô. We should calculate:

Tr
�

Ô e−βÒH
�

=
∑

p=0,1

Tr
�

bPpÔ e−βÒH
�

=
∑

p=0,1

Tr
�

bPpÔ e−βÒHbPp

�

=
∑

p,p′
Tr
�

bPpÔ bPp′e
−βÒH

bPp

�

=
∑

p

Tr
�

bPpÔ bPpe−β bHp
bPp

�

=
∑

p

Tr
�

bPpÔ bPpe−β bHp
bPp

�

=
∑

p

Tr
�

bPpÔ bPpe−β bHp
�

[Ô,bPp]=0
=

∑

p

Tr
�

Ô bPpe−β bHp
�

. (284)

This derivation uses standard properties of projectors and the trace, and, in the final step, the
assumption that Ô commutes with the parity. The thing to remark is that now the fermionic
Hamiltonians bHp appear, accompanied by a single projector bPp. Next, we recall that

bPp =
1
2
(1̂+ (−1)peiπÒN ) . (285)

Hence we arrive at:

Tr
�

Ô e−βÒH
�

=
1
2

∑

p=0,1

�

Tr
�

Ô e−β bHp
�

+ (−1)p Tr
�

Ô eiπÒN e−β bHp
�

�

. (286)

The next thing to consider is how to deal with the term eiπÒN , which we can always re-
express as:

eiπÒN = 〈;p|eiπÒN |;p〉e
iπ
∑L
µ=1 γ̂

†
p,µγ̂p,µ . (287)

Info: The meaning of such expression should be reasonably transparent. Parity is a
good quantum number. Once you determine it on the Bogoliubov vacuum, calculating
〈;p|eiπÒN |;p〉 = ±1, then the parity of each Fock state simply amounts to counting the
number of γ̂† operators applied to the Bogoliubov vacuum. There is a slight ambiguity in
the meaning of |;p〉 that is good to clarify here. We have not defined |;p〉 to be the ground
state in the sub-sector with parity p — in which case you would directly anticipate that
〈;p|eiπÒN |;p〉 = (−1)p, but rather the Bogoliubov vacuum state associated with bHp. So,
depending on the couplings and boundary conditions, the parity of |;p〉 might differ from
(−1)p. There are cases where, for instance, there is a single bH with a single associated
|;〉, but also cases where such a single bH can have two degenerate vacuum states |;p〉, as
discussed in Sec. 7.2.

i

The explicit evaluation of 〈;p|eiπÒN |;p〉 can be carried out with the techniques explained in
Sec. 9. With the same notation used there, you can show that:

〈;p|eiπÒN |;p〉= 〈;p|bA1bB1bA2bB2 · · · bALbBL|;p〉

= (−1)L〈;p|bB1bA1bB2bA2 · · ·bBLbAL|;p〉

= (−1)L det









M1,1 M1,2 · · · M1,L
M2,1 M2,2 · · · M2,L

...
...

. . .
...

ML,1 ML,2 · · · ML,L









L×L

. (288)
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Figure 11: (a) Comparison between Jordan-Wigner (JW) and numerical Exact Di-
agonalization (ED) results for the average energy density, on a small ordered Ising
chain (L = 10). (Right panel) Open boundary conditions (OBC) and periodic bound-
ary conditions (PBC) are compared for a larger chain (L = 100), where ED cannot
be performed. The system considered is always a Ising chain with J j = J = 1 and
h j = h= 0.5J , with κ= 1. For OBC we set JL = 0.

Hence, defining:
ηp = (−1)p〈;p|eiπÒN |;p〉 , (289)

we finally get:

Tr
�

Ô e−βÒH
�

=
1
2

∑

p=0,1

�

Tr
�

Ô e−β bHp
�

+ ηp Tr
�

Ô e−β
bHp+iπ

∑L
µ=1 γ̂

†
p,µγ̂p,µ

�

�

. (290)

In particular, the partition function can be expressed as:

Z = Tr
�

e−βÒH
�

=
1
2

∑

p=0,1

�

Tr
�

e−β bHp
�

+ ηp Tr
�

e−β
bHp−iπ

∑L
µ=1 γ̂

†
p,µγ̂p,µ

�

�

=
1
2

∑

p=0,1

eβ
∑L
µ=1 εp,µ

� L
∏

µ=1

(1+ e−2βεp,µ) +ηp

L
∏

µ=1

(1− e−2βεp,µ)
�

. (291)

The relevant single-particle thermal averages needed are then:50

〈γ̂†
p,µγ̂p,µ′

bPp〉=
1
Z
〈γ̂†

p,µγ̂p,µ′
bPpe−βÒH〉

=
1

2Z

�

Tr
�

γ̂†
p,µγ̂p,µ′ e

−β bHp
�

+ ηp Tr
�

γ̂†
p,µγ̂p,µ′ e

−β bHp+iπ
∑L
µ=1 γ̂

†
p,µγ̂p,µ

�

�

= δµ,µ′
e−2βεp,µ

2Z

� L
∏

l=1
l ̸=µ

�

1+ e−2βεp,l
�

− ηp

L
∏

l=1
l ̸=µ

�

1− e−2βεp,l
�

�

, (294)

50Observe that to calculate the fermionic single-particle Green’s functions we need the separate ingredients for
the two sub-sectors p:

G=



ÒΨ ÒΨ†
�

=
∑

p=0,1




ÒΨ ÒΨ†
bPp

�

=
∑

p=0,1

Up

¬

bΦp
bΦ†

p
bPp

¶

U†
p , (292)

where for every p-sector we defined (see Sec. 7)

bΦp =

�

γ̂p

γ̂†
p

�

= U†
p
ÒΨ . (293)

Since, in (292) Up depends on p, we have a weighted sum: It is not enough to calculate directly
∑

p=0,1

¬

bΦp
bΦ†

p
bPp

¶

.
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and:

〈γ̂p,µγ̂
†
p,µ′
bPp〉=

1
Z
〈γ̂p,µγ̂

†
p,µ′
bPpe−βÒH〉

=
1

2Z

�

Tr
�

γ̂p,µγ̂
†
p,µ′ e

−β bHp
�

+ηp Tr
�

γ̂p,µγ̂
†
p,µ′ e

−β bHp+iπ
∑L
µ=1 γ̂

†
p,µγ̂p,µ

�

�

= δµ,µ′
1

2Z

� L
∏

l=1
l ̸=µ

�

1+ e−2βεp,l
�

+ηp

L
∏

l=1
l ̸=µ

�

1− e−2βεp,l
�

�

. (295)

Clearly, the averages where you destroy or create two γ̂ fermions vanish:

〈γ̂p,µγ̂p,µ′
bPp〉= 0 , and 〈γ̂†

p,µγ̂
†
p,µ′
bPp〉= 0 . (296)

Info: From the averages of the Bogoliubov operators, it is a simple matter to reconstruct
all elements of the ordinary and anomalous thermal Green’s functions for the original
fermions, as defined in Sec. 8.2. From these, using Wick’s theorem, other thermal averages
and correlation functions can be calculated, see Sec. 9.

i

We have tested these formulas on a chain of length L = 10. In the left panel of Fig. 11 we
show the average internal energy E = 〈ÒH〉 for L = 10, comparing the Jordan-Wigner results
to those obtained by Exact Diagonalisation (ED) of the problem with both open and periodic
boundary conditions. In the right panel of Fig. 11 we compare, for L = 100, the thermal
averages for E = 〈ÒH〉 obtained with the Jordan-Wigner approach for OBC and PBC.

Consider a uniform quantum Ising chain with PBC. Using the techniques explained, cal-
culate (numerically) the free energy per site, F/L = − 1

β L log Z , and the entropy per site,
S/L = (E − F)/(LT ), as a function of the temperature T , for three representative values
of the (uniform) transverse field: h= 0.5J , h= J and h= 2J .

Problem 14. Free-energy and entropy.

12 Conclusion

We have presented a pedagogical description of the numerical and analytical methods for
studying the statics and the dynamics of the quantum Ising model in a transverse field and, in
general, of quadratic fermionic models. These methods are useful because these models are
at the center of many recent studies in quantum many-body non-equilibrium physics, due to
their rich phenomenology and the fact that the numerical analysis is feasible up to very large
system sizes.

We have started with the Jordan-Wigner transformation, needed to write the Ising chain
in the form of a quadratic fermionic model (known as the Kitaev model) and we have diago-
nalized it in the case of a uniform chain. We have given special attention to the second-order
phase transition of this model and the connection with the classical phase transition of the
Ising model in two dimensions.
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Then we moved to the diagonalization of the generic disordered model. We have intro-
duced the Nambu formalism, which has allowed us to show that the ground state has a BCS
(or Gaussian) form, and to get the Bogoliubov-de Gennes equations for the diagonalization.
To find the quasiparticle excitations, and then find eigenvalues and eigenstates, one reduces
to diagonalize a matrix with size quadratic in the system size, which allows to scale up to large
chains. We have applied these methods to the open Kitaev chain, to show the existence of the
zero-energy Majorana modes in the topological phase of this model.

Then we have considered the case of the dynamics, where a very similar formalism is valid
and the state has still a Gaussian form for which Wick’s theorem is valid. Here the dynamical
Bogoliubov-de Gennes equations are valid, that are similar to a set of Schrödinger equations for
a single quasi-particle Hamiltonian. Their solution provides all the properties of the Gaussian
state and applying Wick’s theorem one can get the expectations of all the observables.

Using this formalism, valid both for the ground state and the dynamics, we have then
studied how to get from the Gaussian state some important properties of the system, such as
the spin correlators and the entanglement entropy. The formulae we get are valid not only for
the Ising model but also for generic quadratic fermionic systems.

Finally, we moved to consider thermal averages. We have shown how to compute the
expectation of the observables at finite temperature by paying attention to fermion parity
effects, that are important at finite size.
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A Overlap between BCS states

Sometimes, for instance, in the context of quantum quenches, where the Hamiltonian is
abruptly changed, it is important to know how to calculate the overlap between BCS states
belonging to two different XY-Ising Hamiltonians ÒH0 and ÒH1. This appendix gives details on
this.

Let us start considering the two BCS ground states of ÒH0 and ÒH1. These two states are
Bogoliubov vacua for the fermionic operators γ̂0µ and γ̂1µ, and we denote them, for a more

compact notation, as
�

�;γ0

�

= |;0〉 and
�

�;γ1

�

= |;1〉. We will first compute |〈;1 |;0〉 |2, and then
we will extend the result to the overlap of general excited states. The two sets of fermions can
be written in terms of the original Jordan-Wigner fermions as:

�

γ̂α
γ̂†
α

�

= U†
α
ÒΨ =

�

U†
α V†

α

VT
α UT

α

��

ĉ
ĉ†

�

, (A.1)
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where α = 0, 1. We can write the direct unitary transformation from one set to the other as
follows:

�

γ̂1
γ̂†

1

�

= U†
1U0

�

γ̂0
γ̂†

0

�

= U†

�

γ̂0
γ̂†

0

�

=

�

U† V†

VT UT

��

γ̂0
γ̂†

0

�

, (A.2)

where:

U ≡
�

U V∗

V U∗

�

, (A.3)

with:
U= U†

0U1 +V†
0V1 , V= VT

0U1 +UT
0V1 . (A.4)

We will prove that, if |;0〉 and |;1〉 are not orthogonal, then:

|〈;1|;0〉|
2 = |det(U)| , (A.5)

a relationship which is known as Onishi formula. Indeed, we have already given proof of this
relationship in Sec. 7.3, for the special case in which one of the two sets of fermions were the
original Jordan-Wigner fermions ĉ j with associated vacuum state |0〉. There we showed that,
with the present notation:

|;α〉=Nα exp
�1

2

∑

j1 j2

(Zα) j1 j2
ĉ†

j1
ĉ†

j2

�

|0〉 , (A.6)

with:
Zα = −(U†

α)
−1V†

α , (A.7)

and |〈0|;α〉|2 = |Nα|2 = |det(Uα)|. With the same algebra, we could establish, for instance,
that:

|;1〉=N eZ |;0〉=N exp
�1

2

∑

j1 j2

Z j1 j2
γ̂†

0, j1
γ̂†

0, j2

�

|;0〉 , (A.8)

with:
Z= −(U†)−1V† , (A.9)

and |〈;0|;1〉|2 = |N |2 = |det(U)|. Several points in the previous derivation would call for
appropriate specifications: for instance, we assumed that U is invertible. Also, the case of
possible orthogonality of the two ground states was not discussed. Finally, the case of pure
Slater determinant without BCS-pairing, relevant for the isotropic XY model, was not explicitly
addressed.

We will now give an alternative proof that makes use of an interesting theorem due to Bloch
and Messiah [83, 137], and which clarifies all these issues. We will perform an intermediate
canonical transformation which first allows us to write an explicit equation for |;1〉 in terms of
|;0〉, and then to compute easily 〈;1| ;0〉. The theorem that Bloch and Messiah proved [137]
shows that matrices with the structure of U above can be decomposed into a product of three
unitary transformations as follows:

U=
�

D 0
0 D∗

��

U V
V U

��

C 0
0 C∗

�

, (A.10)
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where D, C are L × L unitary matrices and U, V are L × L real matrices of the form:

U=









































0
...

0
u1 0
0 u1

. . .
un 0
0 un

1
...

1









































, (A.11)

V=









































1
...

1
0 v1
−v1 0

...
0 vn
−vn 0

0
...

0









































, (A.12)

in which up > 0, vp > 0 and u2
p + v2

p = 1. From these relations we have:

U= DUC , V= D∗VC . (A.13)

To proceed, we now notice that since:
�

γ̂0
γ̂†

0

�

= U
�

γ̂1
γ̂†

1

�

=

�

D 0
0 D∗

��

U V
V U

��

C 0
0 C∗

��

γ̂1
γ̂†

1

�

, (A.14)

we can think of the transformation as the product of 1) a first unitary transformation C which
does not mix particles and holes for fermions γ̂1, defined by

�

α̂1
α̂†

1

�

=

�

C 0
0 C∗

��

γ̂1
γ̂†

1

�

, (A.15)

followed by 2) a simple “canonical form” of a transformation leading to new fermions:
�

α̂0
α̂†

0

�

=

�

U V
V U

��

α̂1
α̂†

1

�

, (A.16)

and a final transformation 3) leading to the fermions γ̂0, through a unitary D which does not
mix particles and holes:

�

γ̂0
γ̂†

0

�

=

�

D 0
0 D∗

��

α̂0
α̂†

0

�

. (A.17)
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In essence, what the Bloch-Messiah theorem guarantees is that one can always find a basis
such that the transformed fermions, α̂0 and α̂1, are coupled by a particularly simple matrix in
which there are only three possibilities: i) for some indices, which we denote by l, there is no
transformation at all (the 1s in the diagonal of U), i.e., α̂1l = α̂0l ; ii) for some other indices,

which we denote by k, the transformation is a pure particle-hole α̂†
1k = α̂0k: These indices

correspond to the 0s in the diagonal of U, and the 1s in the diagonal of V; iii) all other indices,
denoted by (p, p), are BCS-paired in a simple way, and they form 2× 2 blocks in the matrices
U and V with coefficients up and vp, such that:

α̂†
1p = upα̂

†
0p − vpα̂0p ,

α̂†
1p = upα̂

†
0p + vpα̂0p .

(A.18)

We must stress that the theorem does not tell us how many indices belong to the three cate-
gories above: In some cases, all the indices might be 2× 2-paired, but it is also possible that
the transformation is a pure particle-hole transformation without any pairing at all.

The construction of the relationship between |;0〉 and |;1〉 becomes particularly simple in
terms for the fermions α̂0(1). The key idea is the α̂0(1) is related to γ̂0(1) by a transformation

which does not mix particles and holes, and therefore it is still true that α̂0n |;0〉 = 0 and
α̂1n |;1〉= 0. Since |;1〉 is the state which is annihilated by any α̂1n we can write it as:

|;1〉=N
∏

n

α̂1n |;0〉=
∏

k

α̂†
0k

∏

p

�

up + vpα̂
†
0pα̂

†
0p

�

|;0〉 , (A.19)

where N is a normalization constant. Notice that we included only BCS-paired indices and
particle-hole transformed k-indices but not l-indices, since α̂1l = α̂0l and the inclusion of such

terms would give zero, since α̂0l |;0〉 = 0. Since, by hypothesis, the two states |;0〉 and |;1〉
are not orthogonal there should not be pure particles-holes k-indices either, and therefore:

〈;0 |;1〉= 〈;0|
∏

p

�

up + vpα̂
†
0pα̂

†
0p

�

|;0〉=
∏

p

up =
√

√

∏

p

u2
p =

q

det(U) . (A.20)

Finally, since U= D†UC†, and D, and C are unitary transformations:

|〈;0 |;1〉 |2 = |det(D†UC†)|= |det(U)| , (A.21)

which is what we wanted to show.
The extension to the calculation of the overlap between |;0〉 and any eigenstate

�

�{n1µ}
�

=
∏

µ∈I γ̂
†
1µ |;1〉, where I is the set of occupied states (n1µ = 1), is in principle straight-

forward. Here is a possible way to tackle the problem.
This state can be thought of as the vacuum of the following new set of fermions:

β̂†
µ = γ̂

†
1µ , if µ /∈ I , β̂†

µ = γ̂1µ , if µ ∈ I , (A.22)

in which we have performed a particle-hole transformation for the occupied modes. Now we
can use the equation obtained for the scalar product between empty states, i.e.,

�

�〈;0| {n1µ}〉
�

�

2
=
�

�det(U′)
�

� , (A.23)

where the matrix U′ is:
U′ = U†

0U′1 +V†
0V′1 , (A.24)
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in which:
(U′1) jµ = (U1) jµ , if µ /∈ , I(U′1) jµ = (V

∗
1) jµ , if µ ∈ I ,

(V′1) jµ = (V1) jµ , if µ /∈ , I (V′1) jµ = (U
∗
1) jµ , if µ ∈ I .

(A.25)

A second approach to calculating these overlaps with excited states makes explicit use of
the Gaussian nature of the states. The relevant algebra follows directly from that of Sec. 7.3.
Let us start by considering the overlap between γ̂†

0µ1
γ̂†

0µ2
|;0〉 and |;1〉=N eZ |;0〉. This is given

by:

〈;0|γ̂0µ2
γ̂0µ1
|;1〉=N 〈;0|γ̂0µ2

γ̂0µ1
eZ |;0〉

=N 〈;0|eZ
�

γ̂0µ2
+
∑

µ′2

Zµ2µ
′
2
γ̂†

0µ′2

��

γ̂0µ1
+
∑

µ′1

Zµ1µ
′
1
γ̂†

0µ′1

�

|;0〉

=N 〈;0|eZ γ̂0µ2

�∑

µ′1

Zµ1µ
′
1
γ̂†

0µ′1

�

|;0〉= 〈;0|;1〉 Zµ1µ2
,

wherein the second step we have made use of the commutation property:

γ̂0µeZ = eZ
�

γ̂0µ + [γ̂0µ,Z]
�

= eZ
�

γ̂0µ +
∑

µ′

Zµµ′ γ̂
†
0µ′

�

. (A.26)

Notice that, for the overlap to be non-vanishing, we were forced to contract γ̂0µ2
against γ̂†

0µ′1
in the final step. A similar calculation shows that, if we have an even number 2n of operators,
the result is highly reminiscent of Wick’s theorem sum-of-products of contractions:

〈;0|γ̂0µ2n
· · · γ̂0µ1

|;1〉=N 〈;0|eZ
�

γ̂0µ2n
+
∑

µ′2n

Zµ2nµ
′
2n
γ̂†

0µ′2n

�

· · ·
�

γ̂0µ1
+
∑

µ′1

Zµ1µ
′
1
γ̂†

0µ′1

�

|;0〉

= 〈;0|;1〉
∑

P

(−1)PZµP1
µP2

ZµP3
µP4
· · ·ZµP2n−1

µP2n

= 〈;0|;1〉 Pf (Z)2n×2n , (A.27)

while the overlap vanishes for an odd number of γ̂0µi
. In the last expression, the Wick’s sum is

rewritten in terms of the so-called Pfaffian of the anti-symmetric matrix Z (or more properly,
of the 2n× 2n elements of Z required by the indices µ1 · · ·µ2n):

Pf (Z)2n×2n = Pf









0 Zµ1µ2
Zµ1µ3

· · · Zµ1µ2n

Zµ2µ1
0 Zµ2µ3

· · · Zµ2µ2n
...

...
...

...
...

Zµ2nµ1
Zµ2nµ2

Zµ2nµ3
· · · 0









def
=
∑

P

(−1)P ZµP1
µP2

ZµP3
µP4
· · ·ZµP2n−1

µP2n
︸ ︷︷ ︸

n factors

. (A.28)

Notice that the Pfaffian is defined by a Wick’s sum which contains n products of Z-matrix
elements, and not 2n, as the familiar det (Z)2n×2n. However, a remarkable identity exists [138]
which links the two objects:

det (Z)2n×2n =
∑

P

(−1)P Zµ1µP1
Zµ2µP2

· · ·Zµ2nµP2n
︸ ︷︷ ︸

2n factors

= (Pf (Z)2n×2n)
2 . (A.29)
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Notice, however, that the link exists only if the dimension of the antisymmetric matrix we are
considering is even: The determinant of an odd-dimension anti-symmetric matrix is simply
zero, while the Pfaffian is not defined. To summarise, we have obtained the generalization of
the Onishi formula in the form:

〈;0|γ̂0µ2n
· · · γ̂0µ1

|;1〉= 〈;0|;1〉 Pf (Z)2n×2n = 〈;0|;1〉 (det (Z)2n×2n)
1/2 . (A.30)
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