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Abstract

Theoretical physicists have been fascinated by the phenomena of life for more than a cen-
tury. As we engage with more realistic descriptions of living systems, however, things get
complicated. After reviewing different reactions to this complexity, I explore the opti-
mization of information flow as a potentially general theoretical principle. The primary
example is a genetic network guiding development of the fly embryo, but each idea also is
illustrated by examples from neural systems. In each case, optimization makes detailed,
largely parameter–free predictions that connect quantitatively with experiment.
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1 Introduction

The history of physics teaches us that qualitatively striking phenomena have correspondingly
deep theoretical explanations. In some cases the relevant phenomena are quite mundane,
and it takes time to appreciate just how surprised we should be. The (literally) everyday ob-
servation that the sky gets dark at night turns out to be one of these familiar but profound
facts [1,2], as does the rigidity of solid objects [3]. Today, however, the search for fundamen-
tally new physics is concentrated in places very far from our immediate experience: looking
back to the earliest times in our universe’s history; at the shortest distances and highest ener-
gies; at the lowest temperatures; and in materials that do not occur in nature. One might be
tempted to conclude that everyday phenomena are understood, at least in outline.

For theoretical physicists, declaring something to be “understood” requires meeting a high
standard. We expect a wide range of phenomena to be explained using a small set of general
principles; we expect these principles to be summarized in compact mathematical form; and
we expect this framework to be tested in quantitative experiments, often with little room for
adjusting parameters as we try to reach detailed numerical agreement between theory and
experiment. By these standards, the everyday phenomena of life are not understood.

In living systems matter organizes itself with an intricacy that is unmatched in the inan-
imate world. This organized state maintains and even reproduces itself, with extraordinary
fidelity. Once organized, living systems behave in ways that are reasonably described as func-
tional or even purposeful and intelligent. While it seems silly to say that water is trying to flow
downhill, it would seem equally silly not to admit that a predator is trying to catch its prey.
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We should be careful not to anthropomorphize, and certainly we no longer believe in a vital
force, but surely there is something different about life.

A physicist’s understanding would make the difference between animate and inanimate
matter precise. This should yield a classification of complexity in cellular and animal behavior,
and predict quantitative connections between this macroscopic complexity and the richness of
underlying microscopic mechanisms. These are ambitious goals, but theoretical physics is not
a modest enterprise.1

1.1 An example, and a problem

Crucial facts about living systems provide ingredients for sharpening our questions. A famous
example is the discovery in the 1930s that genes are the size of molecules, or more precisely
that the targets for radiation to produce mutations are of molecular dimensions [4,5], which
was the foundation for the questions and conjectures in What is Life? [6]. The explosive growth
of molecular biology has given us a veritable encyclopedia of facts about life’s microscopic
mechanisms [7, 8], and it is natural to try and summarize these facts in mathematical terms,
perhaps leading to something that we would recognize as a theory of the phenomena that first
attracted our attention. But such efforts lead to a forest of arbitrary parameters.

Let us start with an unambiguously striking phenomenon, the development of a single
cell into a complete multicellular organism. Building on a century of foundational work by
biologists, we will focus on the case of a fruit fly, Drosophila melanogaster, where it takes
just twenty–four hours to go from one cell to a larva (maggot) that emerges from the egg
shell and walks away, ready to navigate the world. The maggot has a segmented body, and
it is remarkable that if you know which molecules to look at then you can measure striped
patterns in the concentration of these molecules (Fig 1); these stripes provide a preview of the
segmented structure. It is perhaps even more striking that these stripes develop just three hours
after the egg is laid, a time when almost all the∼ 214 cells are geometrically equivalent, arrayed
in a featureless lattice covering the embryo’s surface. Thus (in this case) Nature has divided
the problem of development into laying out a blueprint—transmitting to each cell information
about its position in the embryo, and hence its ultimate fate in the final structure—and then
actually building the structure by changing the shape of the embryo.

How does the fly embryo make stripes? By the turn of this century, there was a clear outline
of how this works. To start, all the relevant molecules were identified, and this was one of
the greatest triumphs of using genetic methods to dissect a complex phenomenon in living
systems [9,11,12]. The molecules with striped patterns of concentration are a group of eight
proteins that are encoded by the “pair–rule” genes. Whether these proteins are synthesized2

is controlled largely by the concentrations of another set of four proteins that are encoded in
the “gap genes,” so named because a mutation in one of these genes causes a large gap in
the body plan. The gap genes not only regulate the pair–rule genes, they also regulate one
another, forming a network. Finally, there are three inputs to the gap gene network that are
provided by the mother when she makes the egg. This flow of information through three layers
of a molecular network is schematized in Fig 2.

Schematics with nodes connected by arrows are common in descriptions of living systems.
How do we turn these schematics into equations? There is no unique mapping but there are

1I am hoping that these notes capture some of the fun and informality of the original lectures. One advantage
of the written version is that I can give references. I may have been over–enthusiastic about this, but perhaps the
long bibliography will provide guidance to a literature that sprawls across physics and multiple subfields of biology.

2When the information encoded in a particular gene is read out to make the corresponding protein we say that
the gene is “expressed.” This occurs in two steps, the synthesis of mRNA from the DNA template (transcription)
and then the synthesis of protein from the mRNA template (translation). Both steps are regulated, although our
emphasis will be on the regulation of transcription. When someone talks about the “expression level of a gene” it
can be ambiguous whether this means the number of mRNA molecules or the number of protein molecules.
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(A)

(B)

(D)

(C)

Figure 1: Segmented body plans of larval insects, and the underlying molecular
blueprint. (A) Caterpillar of the agreeable tiger moth, in which the segments are
especially visible. Image by Cyndy Syms Parr, from Wikipedia under the CC–SA 2.0
license. (B) Larva (maggot) of the fruit fly Drosophila melanogaster. Image by Sal-
vatore Vitanza, with permission. (C) The “cuticle preparation” of the Drosophila
maggot shortly after hatching, highlighting the segmented structure. Thanks to Eric
Wieschaus for the image, from experiments described in Ref [9]. (D) An optical sec-
tion through an embryo stained for three of the “pair–rule” proteins, showing striped
patterns that align with the body segments; data from Ref [10], with thanks to M
Nikolić for the image.
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Figure 2: A schematic of information flow in the early fly embryo. The maternal
inputs have simple spatial profiles: one with high concentration at the anterior end
(left), one with high concentration at the posterior end (right), and one that is sym-
metrically high at the both ends (middle). These molecules activate the expression of
four gap genes, which also regulate one another. Finally the gap genes modulate the
expression of eight pair–rule genes, whose concentration profiles consist of striped
patterns; one example is shown. Not illustrated are paths by which the maternal in-
puts can reach around the gap genes to regulate the pair–rule genes directly. Images
reproduced from Ref [10], with permission.

some common themes. In a genetic network such as the one relevant for the fly embryo,
drawing an arrow A → B means that the rate of synthesis of B molecules depends on the
concentration of A molecules (Fig 3), so at the very least we must have something like

dB
d t
= rmax f (A)−

1
τ

B , (1)

where rmax is the maximum synthesis rate, 1 > f (A) > 0 is a normalized regulatory function,
and τ is the lifetime of B molecules; throughout these lectures I’ll usually use the same symbol
for the name of the molecular species and for its concentration. We can use τ to set the units
of time, and the combination rmaxτ to set the units of B, but we still need to describe the
regulatory function. Plausibly it is monotonic, increasing if A activates the expression of B
and decreasing if A represses the expression of B.3 A smooth function running monotonically
between 0 and 1 has at least two parameters, roughly the concentration A at which f (A) = 1/2
and the slope or sensitivity at this point. We can imagine that the slope is controlled by the
number of A molecules that bind cooperatively to the relevant sites along the DNA and regulate
the gene encoding B, although we should not take this too literally.

3In networks of neurons we speak conventionally of excitation and inhibition, rather than activation and re-
pression as in genetic networks. I am not sure how these differences in jargon arose.
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Figure 3: Parameters hiding under the arrow. A is a transcription factor activating the
expression of B, as in Eq (1). If this system comes to steady state then the expression
level B = rmaxτ f (A), and we are free to choose units such that rmaxτ = 1, so that
B = f (A) as shown here. The regulatory function f (A) has at least two parameters,
as shown. The system also is noisy, which we neglect in Eq (1), but this will be
important below.

So, to give a quantitative description we need to attach at least two numbers to every arrow
in our schematic, and even this leaves things out:

• Something complicated could happen at places where multiple arrows converge.

• We have associated one molecular species with each gene, but there could be at least
two—the protein and the corresponding messenger RNA.

• We have assumed the dependence of synthesis rates on regulatory inputs is instanta-
neous, but switching among regulatory states could introduce relevant time scales.

• In the embryo there are many cells,4 so there is a separate copy of these dynamics at
each of∼ 214 sites. Exchange of molecules between sites can be described by an effective
diffusion constant, but the dynamics could be more complicated.

• During the relevant time period there are multiple rounds of nuclear division, and the
regulation of gene expression could interact with this cycle.

Even with these simplifications, a network of four gap genes with three maternal inputs could
have (4 × 4) + (3 × 4) = 28 arrows, and in fact there is evidence that most of these exist;
certainly there is no reason to exclude any of them a priori from a theory of this network. But
then there are at least 56 parameters needed to describe the first few hours of development

4In the fly, there are actually no membranes separating the cells until well into the fourteenth cycle. It would
be more precise to say “many nuclei.”
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along one axis of the embryo of one particular organism. It seems fair to say that this kind of
complex model is uncomfortable for most theoretical physicists.

In the traditional core of theoretical physics our models of the world have parameters [13],
but somehow fitting these parameters does not seem to be the central focus. We assume that if
there are too many parameters there must be something that unifies them, and if we need to set
these parameters precisely to non–generic values we hope there is some extra dynamics that
can make this happen more naturally. More strongly, their are spectacular successes which are
almost parameter independent, such as the BCS theory of superconductivity [14], the renor-
malization group theory of critical phenomena [15–18], the theory of the fractional quantum
Hall effect [19], and more. These theories make detailed quantitative predictions about the
properties of real materials, despite the complexity of these materials on an atomic scale. In
fact the periodic table of the elements, and hence most of the rules of chemical bonding, can
be derived from quantum mechanics by knowing only one parameter (α ∼ 1/137), and even
this isn’t so important in the first rows of the table. Perhaps ironically, the standard model of
elementary particles has many more parameters [13], but non–trivial predictions that are the
foundation for our confidence in this model are nearly parameter–free, as with the connection
of deep inelastic scattering experiments to the asymptotic freedom of QCD [20–23].

Not all our efforts at theorizing reach the lofty heights of BCS or QCD. But generations of
theoretical physicists have developed a distaste for highly parameterized models, and by and
large this bias has served the community well.5 If we need 50+ parameters to describe one
genetic network in one organism, and there are no principles that cut through the arbitrariness
of these parameters, then we will be led to a different model for each of the many different
genetic networks relevant in the life of complex organisms. The same concern applies to other
classes of processes. The resulting collection of independent models for each of many different
but related phenomena is almost the opposite of the physicist’s search for unification.

1.2 Reacting to complexity

In many ways, theoretical physicists’ engagement with the phenomena of life can be classified
by their reaction to this proliferation of parameters. At the risk of being cartoonish, let me list
some of these broad classes:6

0. Give up, life really is that complicated. A positive way of saying this is that living systems
really must be described by models with many parameters, as in the example of the fly embryo,
and so the interesting theoretical problems concern how we infer these parameters from data,
or how prediction may be possible even when parameters are underdetermined. This once
seemed pessimistic, but it has received renewed attention in response to the dramatic successes
of deep neural networks [24] and large language models [25,26]. These models grew, over a
long period, out of efforts in the physics community to build theories of brain function [27–31],
and many physicists now are interested in the question of why these networks ‘work’ as well
as they do [32–36]. It is not unreasonable to think that a theory of deep networks will circle
back to influence how we think about the physics of life.

1. We should study theories that remind us of the real thing, and not try for quantitative
comparison of theory with experiments on real living systems. There was a period in
which this style of work came under the heading of “biologically inspired physics” [37]. As
an example, much of the work on soft and active matter grew out of efforts to create simpler,
better controlled examples of phenomena that we first encounter in the living world, from

5It will be interesting to see whether this view survives the current revolution in artificial intelligence.
6References are meant to be illustrative rather than exhaustive, and are a mix of original papers and reviews.
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fluid membranes [38] to flocks and swarms [39]. In the same spirit, neural networks are a
source of statistical physics problems that now are quite independent of efforts to understand
how real brains process information and learn from their experience. In the background of
this approach is the worry that experiments on living systems are irreducibly messy, and so
we will never have the kind of theory/experiment comparison in biological physics that is
characteristic of physics more broadly. This concern is addressed explicitly below.

2. The only real theory is of how things are related to one another. One sometimes hears
the claim that biology is different from physics because biology is historical and physics is
not. This is a complicated claim,7 but it suggests that even if we can’t have a theory of life
as we see it today, we could have a quantitative theory of the relationships among different
life forms, over time—evolution. Indeed, circa 2000, a number of physicists realized that
population genetics and evolutionary dynamics could be seen as statistical physics problems,
and this has been extraordinarily productive: even the simplest models of evolutionary change
have subtle properties, the progress of a population of organisms over a fitness landscape is
dominated by individuals in the tail of the distribution [40, 41], and more realistic contexts
lead to fascinating interacting many–body problems [42–44]. This work has involved both
sophisticated theory and quantitative connections to experiment, both in the laboratory [45–
47] and in the populations of viruses that infect humans all over the world [48–50].8

3. We are interested in (relatively) macroscopic behaviors, and these could be more uni-
versal than their microscopic mechanisms, in the spirit of the renormalization group.
Biologists often complain that physicists oversimplify when we think about living systems, but
we also simplify when we think about inanimate matter. These simplifications work not just
because we are lucky. The renormalization group teaches us that if we start with a detailed
microscopic description of a system and coarse–grain to arrive at a model for behavior on long
distances and long time scales, then in this process many of the microscopic details will be lost.
In technical language, there usually are only a small number of relevant operators [15–18].
Thus, quantitative descriptions of macroscopic phenomena can be simpler and more universal
that the underlying microscopic mechanisms. This inspires us to think that essentially macro-
scopic functional phenomena in living systems could be similarly independent of microscopic
details. Possibly related ideas of simplification arise from thinking about the broad spectrum of
sensitivities to different parameters [51,52], and the universal behavior of dynamical systems
near transition or bifurcation points [53].

4. The fact that living systems function (often quite well!) can be promoted to a principle
that selects parameters or behaviors, circumventing details. On a dark night, our visual
system can count single photons [54]; in bright daylight, insect eyes reach a resolution close
to the diffraction limit [55]; bacteria navigate chemical gradients so reliably that they must
be counting every molecule that arrives at the their surface [56]. These and other examples
suggest that organisms can reach levels of functional performance close to the limits of what
is allowed by the laws of physics [57]. We can turn this around, promoting evidence of near
optimal performance to a principle from which we can derive aspects of the underlying mech-
anisms: rather than fitting highly parameterized models to data, we can hope that parameters

7In our modern understanding, the particular locations of stars or galaxies are accidents of history, but the
distribution out of which these positions are drawn is not. Thus one can see cosmology as historical. But this
absolutely does not preclude having theories in the same way as in other areas of physics—based on fundamental
principles and tested by detailed comparison to (very!) quantitative experiments.

8As a result there have been important practical consequences of this work, both in designing next season’s flu
vaccines and in the global response to covid–19. See, for example, https://nextstrain.org.

8

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.84
https://nextstrain.org


SciPost Phys. Lect. Notes 84 (2024)

have been driven to values that optimize performance. This is in keeping with the formula-
tion of many ideas in the core of physics as variational principles, such as least action or the
minimization of free energy.

Exploring each of these reactions to complexity would make for a long review article, or
perhaps a whole semester’s worth of lectures. With four lectures, it seems best to choose one
approach and explore it more deeply, so these lectures will be about approach #4. We will
keep coming back to the example of the fruit fly embryo, but I also will try in each lecture to
connect what we have been doing with the embryo to work on other examples, encouraging
you to think about the generality of the principles involved. You will have to decide how far
we have come, but I hope to communicate my ambitions. But first...

1.3 A few words about experiments

Theoretical physics aims at a compact and compelling mathematical description of the world.
Because our theories are mathematical, our predictions are numerical. Testing our theories
thus involves measuring numbers, and this is such a central feature of physics that we can
take it for granted. But can we do this in living systems, with all their functional complexity?

Not so long ago, experiments on living systems seemed hopelessly noisy and messy. Few
things were measured quantitatively. Some suggested that this absence of quantification was
an essential difference between biology and physics, that crucial features of living systems
were not reproducible as we expect in experiments on the inanimate world. This view—
which was surprisingly popular—always involved ignoring particular fields where experiments
had reached physics–level precision, e.g. in studying the ability of the visual system to count
single photons or the connection of neural dynamics to the properties of single ion channel
molecules. If correct, the view of biological systems as intrinsically messy would mean that
there simply is no path to build an understanding of life that parallels the theoretical physicists’
understanding of the inanimate world. It is not just that we would need new principles, which
would be welcome, but that we would have to retreat from what we mean by “understand.”
This all has changed dramatically. There has been an explosion of opportunities for physics
experiments on the functional behavior of living systems, across all scales from molecules to
ecosystems. I hope we can banish forever the prejudice that life is a mess.9 As data improve,
we should ask more from our theories.

As a theorist I can be an unapologetic fan of what my experimental colleagues are doing.
Since the early fly embryo will be our prime example, let’s focus on how measurements are
made in this system, and then circle back to give a quick survey of how things work in other
contexts. In the embryo we have a network of interacting genes, so we’d like to monitor the
dynamical variables at each node of the network. How do we do this? In Les Houches I only
drew schematics on the blackboard, but here I take the liberty of showing real data, including
some of the raw microscope images from which these data are extracted. I find these very
beautiful, and hope you will too.

The relevant variables in a genetic network are the concentrations of proteins and mRNAs.
There are ways of measuring both, and this can be done in live embryos and in fixed embryos
that give us snapshots of the underlying dynamics. Each method has pros and cons, and
methods evolve with time. I am writing this just after hearing about (admittedly preliminary)
measurements that were not possible a few months before when I gave these lectures in Les
Houches. As a theorist you will need to keep up with what can be done experimentally.

The oldest methods for exploring the genetic networks of the fly embryo involve mea-
surements of protein concentrations in fixed samples. One gently cooks the egg, stopping
all the action, and then does some chemistry to make the embryo permeable and cross–link

9Certain aspects of life, of course, will remain messy, and delightfully so.
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the proteins so that they don’t move around. At this point we have plenty of time to make
measurements. Cells make many thousands of different proteins, and we want to know the
concentrations of just a few of these, marked with the labels on the network nodes. To do this
we exploit the specificity of life’s own mechanisms.

We can purify the protein we are interested in and inject it into an animal which will then
mount an immune response. To a good approximation, we can extract antibodies that bind
to the protein of interest and nothing else. If we can tag these antibodies with a fluorescent
molecule, then when they diffuse into the embryo they will stick to the target protein and
the local fluorescence intensity will be proportional to the protein concentration; this is im-
munofluorescent staining.10 With care in the choice of fluorophores, one can now measure,
simultaneously, the concentrations of four proteins, sufficient to probe all the nodes of the gap
gene network, for example.

Figure 4 shows an example of these measurements in the embryo, for one of the gap genes.
The embryo is intact, but the plane of focus is midway through its depth, so cells are arrayed
along the rim of the optical slice. One can resolve individual nuclei, but here we just plot
the fluorescence intensity averaged over a window with diameter equal to that of the nuclei,
sliding along the rim; we measure the position x of the window by projecting onto the midline,
so that x = 0 is the anterior end (future head) and x = L is the posterior end (future tail). It
is hard to convert the raw fluorescence intensity into absolute protein concentrations, so we
choose units where the maximum mean concentration across embryos is maxx〈g(x/L)〉 = 1,
and we subtract a background so that minx〈g(x/L)〉= 0, where 〈g(x/L)〉 is the average across
the ensemble of embryos at fixed x/L.11 To be clear, this single normalization is applied to
all the embryos in the sample. Plausible alternatives, such as normalizing each image by the
maximum intensity in that image, are unphysical and distort our estimates of noise, which will
be important below. The small fluctuations from embryo to embryo that we see here provide a
first glimpse of how the picture of biology as noisy can be conquered by careful experiments.

It would be nice to take a shortcut and have the proteins themselves be fluorescent. Most
of the fluorescence, and indeed most of the color that we see in living systems is generated by
medium–sized organic pigment molecules that are synthesized through pathways that engage
several enzymes (proteins that catalyze specific chemical reactions). A major advance was
the discovery that the fluorescence we see in some species of jellyfish and other sea creatures
arises directly from a single protein molecule, with no accessory pigments, soon named the
“green fluorescent protein” or GFP [59,60]. It would take thirty years until it was possible to
clone and sequence the gene that encodes this protein, and then insert this gene into other
organisms [61, 62]. Importantly one can attach the gene for GFP to the gene for a protein
you are interested in, with a short linker, so that the protein is synthesized with an intrinsic
fluorescent tag; these are called GFP fusions. Considerable effort has gone into engineering
the fluorescent proteins so that they have a range of emission and absorption spectra [63].

All of the proteins we are interested in here are present at very low concentrations, so
the proportionality of GFP fluorescence to its concentration is guaranteed. With immunoflu-
orescent staining it is a bit less obvious, because nonlinearities might creep in through the
two steps of antibody binding. By making a GFP fusion with a particular protein and then

10This technique is a little more complicated. Rather than tagging the (precious) antibodies against the protein
of interest, one makes a large batch of general purpose anti–antibody antibodies, and tags these. This depends
on the fact that antibody molecules have two parts, one specific to their target and one common to all targets
but varying from animal to animal. There thus are two steps: exposing the embryo first to antibodies against the
protein whose concentration we want to measure, and then to the fluorescently tagged secondary antibodies.

11These experiments are done in inbred laboratory stocks of flies, minimizing genetic variation. Nonetheless
there are small variations in the embryo length L, even in eggs laid by the same mother in succession. Our (very
conventional) choice to plot always vs x/L suggests that the underlying pattern formation dynamics have some
mechanism that compensates for these variations, achieving a kind of scale–invariance. This is a subtle problem
that I stayed away from in my lectures, but we have come back to it since then [58].
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Figure 4: Measuring protein concentrations in the Drosophila embryo. (A) Image of
fluorescence from labeled antibodies against one of the proteins encoded by the gap
genes, corresponding to g2 in Fig 11 below; the gene is named krüppel. Embryo is
∼ 500µm long. Reproduced from Ref [10], with permission. (B) Raw fluorescence
intensity from images of many such embryos, measured along the (straigher) upper
edge. Embryos are chosen to be a in narrow time window after the egg is laid, and in a
narrow range of orientations. We define a background (lower dashed line) and a scale
(upper dashed line) so that the mean concentration is in the range 0 < 〈g2(x)〉 < 1.
(C) Mean and standard deviation across this large ensemble of embryos. Note that
fluctuations in the peak concentration are ∼ 10%, and the flanks around the peak
are defined very sharply. Data from Ref [10], with thanks to T Gregor, MD Petkova,
G Tkačik, and EF Wieschaus.

directing immunofluorescent stains against both the protein and GFP itself, one can verify that
immunofluorescence intensity really is proportional to protein concentration, and that nothing
funny happens to break the 1–to–1 link between the protein and the GFP tag [64].

The construction of GFP fusion proteins has the obvious advantage that one can measure
protein concentrations in live cells or embryos, making the dynamics of these signals (literally)
visible in real time. The disadvantage is that GFP does not immediately fold into the structure
that supports maximal fluorescence, but rather takes time to “mature.” There is a continuing
stream of work to engineer GFP variants that have shorter maturation times, but we are not
quite where we would like to be. Thus, if we want to measure the concentration of a maternal
morphogen during nuclear cycle fourteen, we are looking at proteins that have been synthe-
sized more than two hours ago and everything is fine.12 On the other hand, if we make GFP
fusions with the pair–rule genes we can see the stripes emerging during cycle fourteen but the
dynamics we see probably are lagging the true dynamics.

The obvious disadvantage of immunofluorescent staining is that one has only a snapshot of
a dynamic process. We can do better by fixing and staining hundreds of embryos at once so that
we get many snapshots, and unless we make a big effort to synchronize things these snapshots
will be at different times after the eggs are laid. Just by counting we can see whether we have
stopped the action in nuclear cycle 12, 13, or 14, but we can do better. As noted above, the
first cycles of nuclear division are completed without pause to make membranes that define

12Dual immunofluorescence experiments (above) can detect small corrections due to the maturation time.
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separate cells. During nuclear cycle fourteen these membranes are constructed by infolding of
the membrane that surrounds the whole embryo—the membrane of the initial fertilized egg
cell. If you watch this process in many live embryos, you see that the distance the membrane
has progressed is such a reproducible function of time that you can take it as a clock accurate to
one minute [65]. If you are not careful about this and mix together embryos fixed at different
times, you vastly over estimate the noise in the expression levels.13 As an example, in Fig 4
we look only at embryos in the window 40< t < 44min into nuclear cycle fourteen.

Rather than measuring protein concentrations one can observe the mRNA molecules.
Again we rely on the specificity of interactions among biological molecules to point accu-
rately to the mRNAs that are transcribed from particular genes. Short segments of DNA can be
synthesized that are complementary to different pieces of an mRNA sequence, each labelled
with a fluorescent molecule. As with the antibodies directed at proteins, we can diffuse these
molecules into a fixed and permeabilized embryo, in effect “lighting up” each individual mRNA
molecules with dozens of fluorophores, making it bright enough that we can count molecules
one by one, as shown in Fig 5 [66]. This can be done in multiple colors, counting the mRNAs
from multiple genes, and again this is sufficient to monitor all of the gap genes simultaneously.
These methods can be extended using combinations of fluorophores and cycles of washing and
relabelling, so that eventually one can count hundreds of different mRNA species, each with
single molecule resolution [67,68].

In Figure 5 you see not only the individual mRNA molecules in the cytoplasm, but also
one or two exceedingly bright spots inside the nuclei. These are the locations along the two
chromosomes where the mRNA for this gene is being transcribed. The gene is long enough
that many copies of the transcriptional apparatus can operate simultaneously, with the result
that many mRNA strands are “in progress” and still tethered to the DNA. With care one can
calibrate against the fluorescence intensity of the cytoplasmic spots and effectively count these
nascent transcripts. By tagging probes directed against the early and late parts of the sequence
one gets a distribution of both colors and intensities across spots, and this can be used to test
models of the underlying dynamics [69]. By interleaving the different colors one can check
the precision of the measurement.

As with proteins, there is a strategy for live measurements of transcriptional activity. In-
stead of attaching the DNA sequence encoding GFP to the gene of interest, one can add a
sequence drawn from a virus that carries its genome as RNA rather than DNA. To package the
genome, proteins that form the coat of the virus bind to these specific RNA sequences, which
fold into three–dimensional structures called “stem loops.” If the fly also has been genetically
engineered to produce the coat protein tagged with GFP, then as the gene we are interested
in gets transcribed these molecules, initially distributed throughout the nucleus, will bind to
the nascent transcript [70–72]. If there are many stem loops there will be many GFPs, enough
to light up the mRNAs much as in the nuclear spots of Fig 5. After a decade of development
the noise levels in these measurements now are at the point where one can almost count
transcripts one by one [73].

This strategy for visualizing transcriptional activity again exploits the specificity of inter-
actions among biological molecules (here the coat protein and the stem loop), it makes use
of sophisticated genetic engineering, and it depends on pushing the state of the art in optical
microscopy. These experiments get directly at the dynamics, showing for example that genes
switch between near zero (silent) and near maximal (active) transcription rates, with the prob-
ability of being active responding to the input transcription factors. These switching dynamics
are essentially universal across all four gap genes. Relatedly, the maximum number of mRNA
molecules that one finds in cell–sized volumes surrounding a nucleus also is the same for all

13More subtly, the embryo is not cylindrically symmetric, so you also have to be careful not to mix measurements
from different orientations. For a full discussion of all these concerns see Ref [65].
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Figure 5: Single molecule mRNA detection in a small region of the Drosophila em-
bryo. Yellow probes are complementary to the mRNA of the hb gene (protein concen-
tration is shown as g1 in Fig 11) and all nuclei are labeled in blue. Detailed analysis
shows that all the spots outside the nuclei have brightness drawn from a narrow
distribution, and a size consistent with the point spread function of the microscope;
these and other observations indicate that they are single molecules. The one or two
brighter spots inside the nuclei are points at which mRNAs are being transcribed,
as explained in the text. Expression is larger toward the left, corresponding to the
anterior of the embryo. Scale bar 5µm. Image courtesy of T Gregor, from the exper-
iments of Ref [66].

the gap genes. These kinds of absolute statements would have been impossible not so long
ago, and this is just a start.

Before leaving the fly, let me note that one can adapt these live fluorescence experiments
for other purposes, probing the nanoscale molecular events that underlie the control of concen-
trations and flow of information through gene networks. As an example one can label a point
along the DNA close to the start of transcription for one gene (the promoter), introduce stem
loops into the sequence of that gene, and also label a point along the DNA where regulatory
proteins bind (an enhancer). With these three labels you can measure the distance between
the promoter and enhancer, and find that these must be in close proximity in order for tran-
scription to start [74]. Higher resolution versions of these experiments show that proximity is
not contact, so that even when transcription is active the promoter and enhancer are separated
by ∼ 150 nm [75]. We don’t know how this apparent action at a distance is achieved.

It is important that the ability to do physics experiments in living systems extends far
beyond measuring protein concentrations and counting mRNA molecules. Indeed, studying
systems in which signals are carried by changing concentrations of particular molecules is chal-
lenging in part because monitoring each different species of molecule could require a different
probe, especially if we want to make real time measurements on live cells. In contrast, cells
in the brain communicate by generating voltage differences across their membranes, and of
course if we can record voltage in one cell we can in principle record from all cells with the
same methods. The currents that support transmembrane voltage changes are large enough
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Figure 6: Recording action potentials from retinal ganglion cells. (A) Salamander
retina on an array of electrodes. The electrodes, and the leads that carry signals away
from the electrodes, are black features on a transparent slide; the ganglion cells of
the retina have been filled with a green dye. Round green objects are cell bodies,
and long lines are bundles of axons that eventually converge to form the optic nerve.
Note that the number of electrodes is comparable to the number of cells (B) The next
generation of electrode arrays. (C) Voltage traces from a selection of these electrodes
during an experiment on the salamander retina. Blue traces are the actual voltages,
and orange traces are a reconstruction of the voltages as a superposition of stereo-
typed waveforms—action potentials (spikes) from individual neurons—learned from
a different part of the data. (D) At left, a raster plot of the action potentials found
in (C) for 100+ cells, a dot showing the time of a spike from each neuron. At right,
expanded version of the red box, with responses expressed as binary (spike/silence)
words in 20 ms bins. (A–C) reproduced from Ref [57], with permission; data from ex-
periments by MJ Berry II and colleagues, including D Amodei, O Marre, JL Puchalla,
and R Segev, with thanks [80,82].

that they result in voltage differences that are measurable in the salty water outside the cell; in
particular many cells generate discrete pulses termed action potentials or spikes, and these are
easier to identify. Action potentials from single neurons were first measured nearly one hun-
dred years ago [76]. The exploration of electrical activity in single neurons has been a source of
productive interactions between physics and biology, exploiting very sensitive electronics and
shaping theoretical ideas about the microscopic mechanisms of this activity [77,78] and about
the abstract structure of spike sequences as a code for sensory inputs and motor outputs [79].
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There has been dramatic progress in our ability to monitor the activity of many single
neurons simultaneously, where “many” began with ∼ 10 and now is ∼ 105 and soon 106. An
early strategy was to focus on relatively flat pieces of brain tissue, such as the retina, which
can be dissected out and placed onto an array of electrodes (Fig 6). This led to experiments
monitoring essentially all of the hundreds of cells that provide the brain with information about
a small patch of the visual world as the retina is driven by complex visual inputs, including
fully naturalistic movies [80–82]. There are three–dimensional arrays of electrodes that can
be inserted into thicker tissue [83, 84], and most recently there are flexible polymer based
electrodes [85]. An alternative to direct electrical measurements is to genetically engineer
organisms so that neurons make proteins whose fluorescence is sensitive to electrical activity.
The ideal would be to have proteins that insert into the cell membrane and report directly on
trans–membrane voltage, but these have developed slowly [86–89]. Much better established
are fluorescent proteins that respond to changes in calcium concentration inside the cell, which
are (slower) corollaries of electrical activity [90–92].

Fluorescent calcium indicators turn the problem of recording from large numbers of neu-
rons into a problem of imaging (Fig 7). To reach cellular resolution requires sophisticated
microscopy methods, often built around scanning two–photon microscopy [93, 94], with re-
cent developments involving more advanced optics to allow better access to depth [95–97]. To
obtain high resolution images it is easiest if the brain is not moving, but many aspects of brain
function are tightly coupled to behavior, and one solution is to construct virtual reality for ex-
perimental animals [98]. The combination of genetic engineering, state of the art microscopy,
and virtual reality in these experiments is impressive. In particular, note in Fig 7C the very
quiet baseline in individual cells, which demonstrates the generally low noise levels that can
be achieved with these methods. These tools are being used in a wide variety of organisms,
from worms to mammals, and in many different regions of the brain devoted to different tasks.

For smaller animals, such as the worm C elegans or the larval zebrafish, we are getting close
to recording from every single neuron in the brain at reasonable time resolution [99,100]. The
same techniques of genetic engineering that have led to calcium–sensitive fluorescent proteins
have also led to proteins that act as light–sensitive ion channels [101–103]. Combining these
tools means that one can both inject currents into neurons and record their responses, all
using light and working at single cell resolution. In C elegans this has led to a nearly complete
“pump–probe” experiment probing signal transfer among all ∼ 104 pairs of neurons [104].

It had long been possible to do physics experiments on isolated parts of living systems,
culminating in the observation and manipulation of single molecules [107–109], but what has
emerged more recently is the ability to tame complexity and do physics experiments on an
ever wider range of intact, functioning systems. The genetic and neural networks discussed
here are good examples, but one can also look to measurements on flocks of birds and swarms
of insects [110,111], populations of bacteria [112,113], pattern formation in groups of stem
cells [114, 115], and much more.14 While many systems remain to be tamed, the enormous
variety of systems where it is possible to do physics experiments has removed a major obstacle
to theorizing. Importantly, as data improve we should expect more from our theories.

1.4 Agenda

This explosion of experimental developments obviously creates a need for new methods of
data analysis. Indeed, as these approaches to high dimensional data collection have pene-
trated the mainstream of biology, the biology community itself has emphasized the urgency of
this need for mathematical analysis. But for physicists theory is more than data analysis. The
most powerful analyses are grounded in theories, and there is a strong case that all analysis

14Again, references are illustrative rather than exhaustive. Broader coverage, including historical context, can
be found in the first Decadal Survey of our field [116].
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Although some experimental studies have tried to characterize
the instability in the place code and to probe the activity of cells
whose activity is not significantly place-modulated (Epsztein
et al., 2011; Fenton andMuller, 1998; Ferguson et al., 2011; Kele-
men and Fenton, 2013), little to no theoretical effort has been
dedicated to studying the phenomenology of CA1 beyond posi-
tion encoding. Furthermore, recent development of large-scale
neural imaging technologies now allows us access to the activity
of all neurons, place- and non-place-coding, in a field of view.
With this progress arises the need for theoretical approaches
that will help elucidate these large population-level dynamics.
Among the possible mathematical models that can reproduce

a given pattern of neural activity, we chose the one that does so
without incorporating additional structure or assumptions. This
minimally informative model is the one that maximizes the en-
tropy of the system (Jaynes, 1957, 1982). In this study, we use
themaximumentropy approach to build amodel for the probabil-
ity of all different joint activity patterns of the neurons.We report a
successful description of the full probability distribution inferred
solely from mean activities and pairwise correlations, which
yields accurate predictions both for higher-order phenomena in
the network and for the activity of individual place and non-place
neurons in relation to the rest of the network. Finally, we show that
this collective description, for the population as a whole, yields
better predictions than the classical view of individual place cells
as independently encoding locations on a spatial map.

RESULTS

The Data: Cellular Resolution Imaging of Neural Activity
in the Mouse during Runs along a Virtual Track
We analyze data taken from transgenic mice that express a
genetically encoded calcium indicator, GCaMP3. Our virtual
reality setup allows imaging of neural activity with cellular res-
olution in awake head-restrained mice while they run on a
spherical treadmill (Figure 1A). Each imaging session included
up to !80 simultaneously active neurons in the CA1 hippo-
campus, recorded as a mouse runs along a 4-m-long virtual
linear track. Right before the end of the track, the mouse
received a water reward. Runs were consecutive in nature
because when the mouse reached the end of the virtual reality
environment, the next one started immediately. In agreement
with the literature, sub-populations of the imaged neurons
(usually !30%) were found to be place cells, with activity in
specific place fields along the environment. (Figure 2C;
Figure S4).
The raw data from this experiment are essentially a movie. To

reduce this to activity of individual neurons as a function of time,
we follow the pre-processing steps described in Method Details
in the STAR Methods. In an outline, we correct the movies for
motion of the brain, identify each neuron as a ‘‘region of interest’’
in the movie, verify these regions manually, and then associate
the activity of each cell with the integral of the fluorescence

A D

EC F

B

Figure 1. Experimental Setup
(A) Left: a photograph of the experimental apparatus, consisting of a spherical treadmill, a virtual reality apparatus, and a custom two-photon microscope. Right:

a top view of the virtual environment of a linear track. (Adapted from Dombeck et al., 2010).

(B) Field of view under the microscope. Scale bar, 50 mm.

(C) Distribution of ‘‘on’’ activity events durations. The majority of events are !500 ms long.

(D) Identifying significant calcium transients. Shown in gray is the raw signal from a neuron in units of normalized fluorescence. Shown in red (arbitrary height) is the

binarization of the signal. The neuron is on (which is converted to a ‘‘1’’ value) at every time point where the red line is not 0. The neuron is off (which is converted to

a ‘‘0’’ value) at every time point where the red line is 0 (seeMethod Details in the STARMethods). The dashed yellow horizontal line shows the 3.5s threshold in the

distribution of all fluorescence values. Points above this threshold qualify in our initial step of binarization of the signal as potential activity events.

(E and F) Enlarged examples of two raw activity transients (gray) and their binarized versions (red).
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We develop a phenomenological coarse-graining procedure for activity in a large network of neurons,
and apply this to recordings from a population of 1000+ cells in the hippocampus. Distributions of coarse-
grained variables seem to approach a fixed non-Gaussian form, and we see evidence of scaling in both static
and dynamic quantities. These results suggest that the collective behavior of the network is described by a
nontrivial fixed point.

DOI: 10.1103/PhysRevLett.123.178103

In systems with many degrees of freedom, it is natural
to search for simplified, coarse-grained descriptions; our
modern understanding of this idea is based on the renorm-
alization group (RG). In its conventional formulation, we
start with the joint probability distribution for variables
defined at the microscopic scale, and then coarse grain by
local averaging over small neighborhoods in space. The
joint distribution of coarse-grained variables evolves as we
change the averaging scale, and in most cases the distri-
bution becomes simpler at larger scales: macroscopic
behaviors are simpler and more universal than their micro-
scopic mechanisms [1–4]. Is it possible that simplification
in the spirit of the RG will succeed in the more complex
context of biological systems?
The exploration of the brain has been revolutionized

over the past decade by methods to record, simultaneously,
the electrical activity of large numbers of neurons [5–15].
Here we analyze experiments on 1000+ neurons in the CA1
region of the mouse hippocampus. The mice are genetically
engineered to express a protein whose fluorescence
depends on the calcium concentration, which in turn
follows electrical activity; fluorescence is measured with
a scanning two-photon microscope as the mouse runs along
a virtual linear track. Figure 1(a) shows a schematic of the
experiment, described more fully in Ref. [15]. The field of
view is 0.5 × 0.5 mm2 [Fig. 1(b)], and we identify 1485
cells that were monitored for 39 min, which included 112
runs along the virtual track. Images are sampled at 30 Hz,
segmented to assign signals to individual neurons, and
denoised to reveal transient activity above a background of
silence [Fig. 2(a)].
In familiar applications of the RG, microscopic variables

have defined locations in space, and interactions are local,

so it makes sense to average over spatial neighborhoods.
Neurons are extended objects, and make synaptic con-
nections across distances comparable to our entire field of
view, so locality is not a useful guide. But in systems with
local interactions, microscopic variables are most strongly
correlated with the near spatial neighbors. We will thus
use correlation itself, rather than physical connectivity,
as a proxy for neighborhood. We compute the correlation
matrix of all the variables, search greedily for the most
correlated pairs, and define a coarse-grained variable by
the sum of the two microscopic variables in the pair [16],
as illustrated in Fig. 2. This can be iterated, placing the
variables onto a binary tree; alternatively, after k iterations,
we have grouped the neurons into clusters of size K ¼ 2k,
and each cluster is represented by a single coarse-grained
variable. We emphasize that this is only one of many
possible coarse-graining schemes [17].

(a) (b)

FIG. 1. (a) Schematic of the experiment, imaging inside the
brain of a mouse running on a styrofoam ball. Motion of the ball
advances the position of a virtual world projected on a surround-
ing toroidal screen. (b) Fluorescence image of neurons in the
hippocampus expressing calcium sensitive fluorescent protein.

PHYSICAL REVIEW LETTERS 123, 178103 (2019)

0031-9007=19=123(17)=178103(6) 178103-1 © 2019 American Physical Society

(C)

(A) (B)

Figure 7: Monitoring electrical activity in the brain by imaging of calcium sensitive
fluorescent proteins as a mouse moves in virtual reality. (A) Schematic of the ex-
periment, with mouse (in black) running on a styrofoam ball. Motion of the ball
advances the position of a virtual world projected on a surrounding toroidal screen,
and a scanning two–photon microscope is focused on a single layer of cells in the
hippocampus. (B) Fluorescence image of these neurons expressing calcium sensi-
tive fluorescent protein. (C) Integrated fluorescence from a single cell vs time. Note
the very quiet baseline interrupted by discrete events. These can be binarized, and
(as shown in the insets) we understand enough about the dynamics of the indicator
molecule to assign unusually slow transient decays as flickering off and on. (A) and
(B) reproduced from Ref [105]; (C) reproduced from Ref [106], with permission.
With thanks to L Mehsulam, JL Gauthier, CD Brody, and DW Tank.
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methods embody some theoretical prejudice.15 Something we do well in physics is to make
these theoretical prejudices explicit.16 Returning to the fly embryo, as we discussed at the out-
set any attempt to give a realistic quantitative description immediately leads into a dense forest
of parameters. Do we have clues about what principle(s) might cut through this complexity?

The system is extraordinarily precise. It has been thought for decades that just ∼ 3hrs after
the egg is laid, every cell along the anterior–posterior axis knows its fate [119]. Apparently the
genetic network schematized in Fig 2 carries enough information to do this. Since cell fates are
tied to positions, and there are fewer than 100 rows of cells along the anterior–posterior axis,
this means that the concentrations of just a handful of molecules specify position with ∼ 1%
accuracy. This can be made explicit, e.g. by measuring the reproducibility of the pair–rule
stripe positions as in Fig 8 [120,121].

The concentrations of relevant molecules are low. Almost all the molecules in the network of
Fig 2 are transcription factors—proteins that bind to specific sites along DNA and regulate the
expression of other genes, in this case other genes in the network. Again it has been known
for decades that transcription factors function at concentrations measured in nanoMolar [122–
124], and there is no reason to doubt that this is true of the relevant molecules in the embryo
[125]. Cell nuclei have dimensions measured in microns, and 1 nM = 0.6 molecules/µm3, so
even the absolute numbers of molecules can’t be very large.

These two facts (here somewhat stylized) might be in conflict—at low concentrations
things are noisy (because of physics not biology), and it is hard for molecules to convey much
information. On the other hand there might be a principle that reconciles the conflict: param-
eters of the relevant networks have been selected to convey as much information as possible
from these physically limited signals. This principle will be the focus of what follows.

Before getting started let me acknowledge that optimization principles engender strange
reactions. For some, optimization is obvious because evolution has had billions of years to
get things right. For others, optimization is nonsense because evolution is not about being
best, but about being better than the competition. Things get worse when we are optimizing
abstract quantities such as information—why should the organism care about bits? These
discussions can devolve into debates about beliefs rather than evidence. Nobody knows how
to do a calculation that weighs the benefits of optimizing performance (e.g., counting single
photons in vision) against the costs of the underlying mechanisms (energy dissipation in the
biochemical amplification of single molecular events), and we certainly don’t know enough to
calculate how long it would take evolution to find the optimal tradeoff.

Optimization comes along with an aesthetic that you might or might not find appealing.
But what matters is that optimization principles make quantitative predictions that can be
tested in modern experiments.17 In many cases, as we will see, these predictions are essen-
tially parameter free and accomplish the goal of circumventing highly parameterized models.
Importantly, the claim that information flow is being optimized can be tested by measuring
the information flow itself, in bits or as an effective noise level against which independently
measured signals must be compared in order for the system to function. If we go back to
the picture of information flow from maternal inputs through the gap genes to the pair–rule
stripes, we can identify three distinct opportunities for optimization.

15In particle physics, for example, the signals from thousands of detector elements are reduced to a plot of
the rate for some class of events vs some energy variable. An enormous amount of theoretical understanding is
contained in the idea that this is the right thing to plot, even before we ask theory to predict what the plot shows.

16At the risk of being pedantic, consider the simple idea that high dimensional data—expression levels of hun-
dreds of genes, electrical activity of thousands of neurons, and more—live in low dimensional spaces. This seems
“theory free,” testable by standard methods for linear [117] or nonlinear [118] dimensionality reduction. But low
dimensionality is a theoretical claim: what is the principle that limits the dimensionality of the dynamics? More
subtly, to measure how well a low dimensional description works, we need a metric, and this metric is a theoretical
claim about which variations are most relevant, or perhaps which variations are measured most reliably.

17See also Chapter 3 in Ref [57].
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Figure 8: Pair–rule stripes have positional noise σx/L ∼ 0.01. (A) Positions of the
seven pair–rule stripes for the gene shown at bottom in Fig 2 drift with time during
the fourteenth cycle of nuclear divisions, illustrated here for 100+ embryos. (B)
Once corrected for drift, the variance of stripe positions is very small. Results for
seven stripes from three different pair–rule genes (Fig 1, bottom); error bars are
standard errors of the mean. Dashed line is a positional noise equal to one percent of
the embryo length. Redrawn from Refs [120,121], with thanks to H Casademunt, JO
Dubuis, T Gregor, L McGough, M Nikolić, MD Petkova, G Tkačik, and EF Wieschaus.

Optimal decoding. Information about position is encoded in the concentrations of the
four gap gene products. Given the (measured) noise levels in these concentrations, there is
an optimal strategy for decoding this information, extracting an estimate of position that is as
accurate as possible. Does this optimal precision match the observed ∼ 1% precision of the
pair–rule stripes? Can we test whether the embryo really implements something functionally
equivalent to the optimal decoding algorithm?

Matching distributions. The information that a system’s output provides about its inputs
depends not only on the internal dynamics and noise level in the system, but also on the
distribution of its inputs. In transmitting positional information, the embryo can’t choose
the distribution of positions, but it can adjust the representation of position by the maternal
morphogens, which provide the direct input to the gap gene network. How should these inputs
be adjusted to optimize information transmission? Can we see signatures of this optimization?

Network architecture. Finally, we can go back to the 50+ parameters of the gap gene net-
work and ask if these parameters have been set to optimize information transmission. This is a
hard problem, and we have tried to make progress by breaking off small pieces. Recently there
has been a major step forward, optimizing the whole gap gene network over a class of models
that is (almost) rich enough to include the real network. We are coming close to deriving the
properties of this network from a general physical principle, with no free parameters.
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We will take these problems in sequence, and in each case we’ll see how the same principles
are relevant to very different systems. The first efforts to use these principles came in the
context of neural information processing, and the idea that neural and genetic networks might
be shaped by common principles is appealing in itself. I take the liberty of including a few
subsections that I didn’t have time for in the lectures, and hopefully these provide more context.

2 Optimal decoding

If we think that the genetic regulatory networks in the embryo have been selected to transmit as
much positional information as possible while using a limited number of molecules, it would be
very odd if the cells then used this information inefficiently. So it is reasonable to ask how the
embryo could use the concentrations of the gap proteins to draw the most reliable inferences
about position, and whether we can find signatures of this optimization. We’ll need to build
up some tools to answer these questions.

2.1 A warmup exercise

The essential problem of inference is that we can only measure things that are related to
what we care about, we can’t get direct access. This is familiar in the physics lab, where (for
example) we measure currents in response to applied voltages to estimate the resistance of
a material. What we measure in this case is proportional to what we want to know, but also
noisy. So the simplest version is that we want to know x but we measure y , and these are
connected by

y = x +η . (2)

If, as often is the case, the noise is Gaussian with zero mean, then

P(y|x) =
1

p

2π〈η2〉
exp

�

−
(y − x)2

2〈η2〉

�

. (3)

This predicts the values of y that we will observe if we control x . But the problem we face is
that x varies in ways outside our control, and we would like to infer these variations based on
measurements of y . Everything that we can say about this inference problem is contained in
the conditional probability distribution P(x |y).18

We recall that what we need can be constructed from Bayes’ rule:

P(x , y) = P(y|x)PX (x) = P(x |y)PY (y) (4)

⇒ P(x |y) =
1

PY (y)
P(y|x)PX (x) . (5)

Just to be clear, P(x , y) is the probability (density) for observing particular values of x and
y together, while PX (x) and PY (y) are the probabilities for observing each value indepen-
dent of the value for the other.19 Bayes’ rule tells us that to make inferences we combine the
data, which sits in P(y|x), with prior knowledge or expectations, encoded in PX (x). Let’s try
assuming that x is drawn from a Gaussian distribution with zero mean, so that

P(x |y) =
1

PY (y)
1

p

2π〈η2〉
exp

�

−
(y − x)2

2〈η2〉

�

1
p

2π〈x2〉
exp

�

−
x2

2〈x2〉

�

. (6)

18I am a little embarrassed that what I give here as a warmup exercise also appeared in my Les Houches lectures
20+ years ago [126]. It’s still a good exercise, but I’ll go more quickly, as I did in the 2023 lectures.

19I am being a bit pedantic to emphasize that the two marginals are different functions. I think most of us would
write P(x) and P(y) when calculating in private, and trust that we can keep things straight.
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We could work a little harder on the algebra, but you can see that this is a Gaussian function
of x . The mean is the same as the most likely value, which we can find from

0=
∂

∂ x

�

(y − x)2

2〈η2〉
+

x2

2〈x2〉

�

x=x∗

(7)

⇒ x∗ =
〈x2〉

〈x2〉+ 〈η2〉
y . (8)

This most likely value of x given our observation of y is one definition of the “best estimate.”
Another definition is to find the estimator xest(y)which makes the smallest mean–square error

χ2 =

∫

d x

∫

d y P(x , y) [xest(y)− x]2 . (9)

The best estimate in this sense, that is the solution to δχ2/δxest(y) = 0, can be found for
arbitrary distributions, and is equal to the conditional mean,

xopt
est (y) =

∫

d x x P(x |y) . (10)

In the case where both the signal x and the noise η are Gaussian, as above, then these two
different definitions of the optimal estimate agree. More generally if different but plausible
definitions of “best” lead to significantly different estimators, it probably is a sign that P(x |y)
has a complicated structure, such as multiple peaks, so that inference is not just noisy but
genuinely ambiguous.

Notice that with Gaussian signals x and Gaussian noise η, and a linear input/output rela-
tion for the x → y transformation, the optimal estimate of x from y also is linear. This doesn’t
generalize. Suppose that

PX (x) =
a
2

e−a|x | . (11)

Then

P(y|x)∝ exp

�

−a|x | −
(y − x)2

2〈η2〉

�

, (12)

and one can see that the most likely x is a thresholded function of y ,

x∗(y) = 0 , |y|< a〈η2〉 , (13)

x∗(y) = y − a〈η2〉sgn(y) , |y|> a〈η2〉 . (14)

If we compute the conditional mean then the threshold is softened but the optimal estimator
still is nonlinear. This emphasizes that the statistical structure of the inputs can shape the
qualitative structure of the estimator.

One other point is that the optimal estimator is not a perfect estimator. There is noise,
which leads to random errors, but also there are systematic errors. If you work through, you
can see that (for example) Eq (8) describes an estimator that systematically underestimates
the magnitude of x , and this also is obvious in Eqs (13, 14). There is a tradeoff between
systematic and random errors, and there is a best tradeoff, but no way to escape from both.

With these remarks in mind, let’s do a real problem.

2.2 Counting photons and estimating motion

The ability of visual systems to count single photons remains, for me, one of the most striking
facts about the physics of life. There is an obvious sense in which this provides an example of
near optimal performance, close to the limits of what the laws of physics allow. To reach this
level of performance one has to think about physics at many scales [57]:
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• the dynamics of the rhodopsin molecules, where photon–driven transitions are so fast
that they compete with the loss of quantum coherence, and spontaneous transitions are
so slow that individual molecules are stable for a thousand years;

• the biochemical mechanisms of amplification, which allow the photoreceptor cell to
“smell” one rhodopsin molecule out of one billion that has changed structure in response
to photon absorption, and generate a macroscopic response;

• the circuitry of the retina, which preserves and processes the single photon responses of
individual receptor cells amid a sea of noise from other cells;

• and neural computations that combine single photon signals with prior expectations, for
example to compensate for long delays in the retinal response.

There is much to discuss here, much of it now classical but still some questions remain open.
I want to focus on one part of the retinal circuitry problem.

Let’s consider the limit where each receptor cell i receives either zero or one photon. Each
photon triggers a rather reproducible pulse of current, and we can choose units in which this
pulse has unit amplitude. Then the signal from each cell becomes

yi = ni +ηi , (15)

where ni = 0 or 1 is the number of photons and ηi is a Gaussian noise source with variance
σ2. While σ ≪ 1, there is a problem in combining signals from many cells. As an example,
the initial experiments showing that the statistics of human responses to dim light flashes are
consistent with photon counting involved flashes that delivered ∼ 5 photons distributed over
∼ 500 receptor cells. In some species we know that integration over such a large area happens
as receptor cell signals cross the first synapse, converging on the bipolar cell. If the bipolar cell
just adds up the signals, then the fluctuations in the sum are > 20σ, and now single photon
signals will be lost.

Although yi is on average equal to ni the best estimate of photon count is not the receptor
output itself. Following the argument above, we have

P(ni|yi) =
1

P(yi)
P(yi|ni)P(ni) , (16)

P(yi) =
∑

ni

P(yi|ni)P(ni) . (17)

From Eq (15) we have

P(yi|ni) =
1

p
2πσ2

e−(yi−ni)2/2σ2
. (18)

Further, since the lights are low the only nonzero values for P(ni) are P(0) and P(1), so that

P(n= 1|y) =
P(1)exp

�

−(y − 1)2/2σ2
�

P(1)exp [−(y − 1)2/2σ2] + P(0)exp [−(y)2/2σ2]
(19)

=
1

1+ e−β(y−θ )
, (20)

which is a sigmoidal function. In this regime the conditional mean of ni, which we recall is
the best estimate in the least squares sense, is just P(ni = 1|yi). So the best estimate of the
photon count is the sigmoidal function in Eq (20), with “threshold”

θ = σ2 ln
�

P(0)
P(1)

�

+
1
2

, (21)
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A B
Receptor cells

bipolar cells? bipolar cells?

Figure 9: Two models of integrating single photon signals at the first synapse in
the retina [57]. (A) Receptor cell signals are summed, and the target (bipolar) cell
applies a nonlinearity, as in conventional neural network models. (B) Each receptor
cell signal is passed through a nonlinearity, as suggested by Eq (20), and the resulting
estimates of photon count are summed.

and sensitivity

β =
1
σ2

. (22)

After passing through this near threshold nonlinearity, we can sum the signals from many cells
with much less sensitivity to the background noise.

We can think of these arguments as contrasting two models, shown in Fig 9. In (A) we
see something like the conventional neural network model: inputs to a single neuron sum
linearly, and a sigmoidal nonlinearity is applied after the summation [24,27]. In (B) we have
the opposite, where nonlinearities are applied to each input signal as it crosses the synapse,
and these processed signals are summed. Despite expectations, optimal estimation of photon
counts requires something more like (B). Happily, these synaptic nonlinearities have been
detected directly in the mouse retina, in at least semi–quantitative agreement with theory
[127]; importantly these nonlinearities do not appear at synapses to bipolar cells which are not
involved in processing single photon signals. This discussion has emphasized instantaneous
nonlinearities, but temporal filtering can also help to separate single photon signals from noise
at this first synapse [128].

In addition to detecting light and estimating its intensity, the brain of course draws many
more sophisticated inferences from its visual inputs. An interesting example, especially ap-
pealing for physicists, is the inference of movement. The fact that we have the appearance
of motion from discrete flashing lights is also among the foundational observations of gestalt
psychology. We can study visual motion perception in humans, and the behavioral responses
of insects to visual motion, and there are striking similarities across this enormous evolution-
ary distance. In particular, humans and insects make similar systematic errors in estimating
movement velocities, especially in scenes with low contrast.

One might think that estimating movement velocity is not so hard. Let’s work in one
dimension (which admittedly hides some important issues), so the image that falls on our
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retina is I(φ, t) where φ is the azimuthal angle. If a small patch of the visual world is moving
relative to us at velocity v, then we should have

I(φ, t) = I0(φ − vt) . (23)

This suggests that

vest = vderiv = −
∂ I/∂ t
∂ I/∂ φ

, (24)

provides a direct estimate of velocity as the ratio of temporal and spatial derivatives. This
is overly optimistic, because we have neglected noise; more subtly we have neglected any
dynamics in the image that cannot be ascribed directly to movement. In the presence of noise
it is dangerous to differentiate, because noise typically extends to higher frequencies than the
signal, and it is dangerous to divide, because the denominator might fluctuate to zero. In Eq
(24) we commit both these sins.

Equation (24) says that, in the presence of motion, the spatial and temporal derivatives
should be proportional to one another. A gentler statement is that these derivatives are cor-
related, and the strength of this correlation should be related to the movement velocity. This
suggests that we might be able to estimate

vest = vcorr∝
∂ I
∂ t
×
∂ I
∂ φ

. (25)

Notice that if we double the variations in light intensity, then this estimate will increase by
a factor of four, unless we do some sort of normalization. But this confounding of contrast
and velocity is one of the systematic errors made by humans and insects alike, at least at low
contrast. The idea that brains estimate motion based on spatiotemporal correlation goes back
to classical experiments on insect behavior [129,130] and reappears decades later as a model
of “motion energy” in human and non–human primate vision [131,132].

It is especially attractive to study visual motion estimation in flies because there is a very
accessible and beautifully laid out population of neurons that encode these estimates and
ultimately drive behaviors such as flight control [133–135]. In this system one can also
give a detailed characterization of signals and noise in the photoreceptors and second or-
der neurons, including evidence that photon shot noise is dominant at counting rates up to
∼ 106 s−1 [136, 137]. By the early 1990s, a theory/experiment collaboration with Rob de
Ruyter van Steveninck had shown that sequences of action potentials from the motion sensi-
tive neurons in flies encoded motion estimates with a reliability close to the physical limits set
by noise in the photoreceptors and diffraction blur in the compound eye [138,139].

Motivated by the observation of near–optimal performance, we developed a theory of op-
timal motion estimation following the lines sketched above [140]. We were excited that, as
a function of signal strength or noise level the optimal estimator interpolated between some-
thing like the ratio of derivatives in Eq (24) and the correlator in Eq (25). This suggested that
some of the systematic errors of real visual motion estimation might actually be features of the
optimal estimator. The problem is that the detailed form of the optimal estimator depends,
as expected from §2.1, on the statistical structure of the visual inputs, and in the early work
we just had to guess at this. In particular, depending on this structure, the crossover between
correlator and ratio estimators might or might not occur in a regime that is relevant for real
brains under natural conditions.

To make progress let’s focus on motion estimates derived from very small patches of the
visual world; in the fly this could just mean a handful of neighboring receptors on the lattice
of the compound eye. Rob and his colleagues built a special purpose camera that samples the
visual world at high frame rates and with optics that matches those of the compound eye [141].
From a long walk in the woods, one can derive many samples of the local image derivatives
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Figure 10: Estimation of visual motion from local derivatives. The optimal estimator
in Eq (26) is computed from data collected by a special purpose camera during a
walk in the woods. Black line indicates the predictions of Eq (24) for vderiv = 70 ◦/s.
White square encloses 90% of the data. Redrawn from Ref [141], with thanks to S
Sinha and RR de Ruyter van Steveninck.

and the angular velocity of the camera at the same moment in time. To remove the (largely
irrelevant) absolute light level we can take the log intensity as the raw data, so we can think
of this experiment as providing an estimate of the joint distribution P(∂t ln I ,∂φ ln I , v). Then
we can form the conditional distribution P(v|∂t ln I ,∂φ ln I), and finally the optimal estimator

vest(∂t ln I ,∂φ ln I) =

∫

dv vP(v|∂t ln I ,∂φ ln I) . (26)

Results are shown in Fig 10.
If the optimal estimator were the ratio of derivatives, then contours of constant vest would

be straight lines in Fig 10, as with the black line at 70 ◦/s. We see that this is a decent de-
scription of the estimator at large spatial and temporal derivatives. On the other hand, the
correlator model predicts that contours of constant vest are hyperbolic, and this curvature is
what we see at small values of the derivatives; we can make this clearer by taking different
slices through the data [141]. If we test the system with a rigidly moving spatial pattern then in
the small derivative regime the optimal estimator will be systematically wrong, with these er-
rors arising as a by product of insulation against random errors. What we have called “small”
and “large” can be read from Fig 10, but importantly real derivatives are mostly small: the
white box shows a range of spatial and temporal derivatives that contains 90% of the samples
collected on an hour long walk through the woods. These results provide direct evidence that
motion estimation in a naturalistic context really is in the regime where correlation is optimal.

There is much more to be done. We have not yet added back the effects of photon shot
noise20 and other sources of noise in the receptor cells; these will widen the dynamic range

20The camera is built to have a much larger collecting area than the fly’s receptor cells, so the signals analyzed
here are essentially noiseless.
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over which the correlator model is optimal. Asymmetries in the underlying distributions should
lead to asymmetries in the optimal estimator, which are barely visible in Fig 10 and should
be connected to the separate processing of on and off signals [142, 143]. If the walk takes
us through regions of very different statistical structure we may be able to divide the data
accordingly and predict adaptation of the optimal estimator to the input statistics, perhaps
connecting to adaptation seen in the responses of motion–sensitive neurons. It also will be
interesting to understand the rules for optimal combination of these local estimators into wide
field motion signals.

After many decades we have gotten used to the idea that the visual system can count
single photons, and perhaps we forget that this provides evidence for optimal performance—
functional behavior near the limits of what is allowed by the laws of physics. It is tempting
to think that such physical limits are irrelevant to vision on a bright sunny day, but Fig 10
shows us that this is not true. From data collected literally at noon, we see that the physical
structure of visual input is such that to make maximally precise estimates the brain must do
unexpected things, including making systematic errors of the same form made by humans and
insects. These errors are driven by physics, not by biological limitations.

2.3 Concentration measurements, revisited

How do these ideas play out in the fly embryo? Roughly three hours after the egg is laid, indi-
vidual cells have access to the concentrations (expression levels) of the four proteins encoded
by the gap genes. In order to do the right thing, cells need to know where they are in the
embryo. So it is natural to ask how a cell could infer its position from the gap gene expression
levels. This idea that cells extract positional information from the concentration of specific
morphogen molecules is very old [144]. The fact that in the fly we can identify all the relevant
molecules gives us a chance to turn these words into mathematics.

Figure 11 shows the spatial profiles of the gap gene expression levels along the long
(anterior–posterior) axis of the embryo.21 These data are extracted from the fluorescent an-
tibody staining experiments discussed in §1.3. We will refer to the concentration of each
molecule at position x as gi(x), with the index i = 1, 2, 3, 4. Solid lines show the mean
concentrations 〈gi(x)〉, with cyan shading to indicate the standard deviation of fluctuations
around this mean.22 An important qualitative observation is that these fluctuations in fact
are quite small. These data sets are large enough that we can estimate, reliably, the 4 × 4
covariance matrix of fluctuations at each point,

�

Ĉ(x)
�

ij = Cij(x) = 〈δgi(x)δgj(x)〉 , (27)

where as usual
δgi(x) = gi(x)− 〈gi(x)〉 . (28)

If we can make the approximation that fluctuations δg are Gaussian, then armed with these
measurements we can write the probability distribution

P ({gi}|x) =
1

Z(x)
exp

�

−
1
2
χ2({gi}; x)

�

, (29)

χ2({gi}; x) =
∑

ij

δgi(x)
�

Ĉ−1(x)
�

ijδgj(x) , (30)

Z(x) =
q

(2π)4 det Ĉ(x) , (31)

21I tried to give this course without mentioning the names of these (and other) molecules, because I don’t think it
matters. But, to connect with the literature, the names are (1) Hunchback, (2) Krüppel, (3) Giant, and (4) Knirps.

22Recall from Fig 4 that we choose units such that 〈gi(x/L)〉 runs between 0 and 1 for each gene.
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x/L

Figure 11: Expression levels of the four gap genes as a function of position along
the long (anterior–posterior) axis of the embryo. Bottom panels show the means
〈gi(x)〉 (blue lines) and standard deviations

p

〈[δgi(x)]2〉 (cyan shading). Top pan-
els show examples of the covariance matrix Cij(x) = 〈δgi(x)δgj(x)〉 at three posi-
tions, x/L = 0.3,0.5, and 0.7. Data from Ref [10], with thanks to T Gregor, MD
Petkova, G Tkačik, and EF Wieschaus.

where Ĉ−1 is the inverse of the matrix Ĉ and det Ĉ is its determinant.
As is in the examples above, the problem facing the embryo is inverse to the problem

we face in characterizing the patterns of gene expression. A cell (again, more precisely, a
nucleus) has access to the concentrations {gi} and must infer its position x . Everything that
can be known about x by observing {gi} is contained in the conditional probability distribution

P (x |{gi}) =
P ({gi}|x) PX (x)

P ({gi})
. (32)

In the embryo all positions are equally likely a priori, so PX (x) = 1/L, and

P ({gi}) =
∫

d x P ({gi}|x) PX (x) . (33)
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From the distribution P (x |{gi}) we can compute many things.
In particular it is tempting to think about constructing a single estimator xest ({gi}). As

above, this could be the optimal estimator in the least–square sense, the conditional mean

x (1)est ({gi}) =
∫

d x x P (x |{gi}) , (34)

or it could be the maximum likelihood estimator

x (2)est ({gi}) = arg max
x

P (x |{gi}) . (35)

If the distribution P (x |{gi}) has a single sharp peak in the neighborhood of x (2)est ({gi}), then
these two estimators will be very close to one another, and to any other reasonable estimator,
e.g. the one that minimizes the mean absolute error (the L1 estimator). On the other hand, if
there is genuine ambiguity, so that P (x |{gi}) has more than one peak, or if the estimation is
very uncertain, so that P (x |{gi}) is extremely broad, then no single estimator really captures
what a cell “knows” based on the expression levels {gi}. At the start, it is not obvious that cells
won’t be in one of these ambiguous or uncertain situations, so we would like to keep all the
available information. This requires us to visualize P (x |{gi}) more directly.

Consider a cell at (actual) position x along the anterior–posterior axis. In one particular
embryo α, this cell has expression levels {gαi (x)} at this position. If we ask what this cell knows
about its possible or estimated position x∗, it is chosen from

Pα(x∗|x) = P (x∗|{gi})
�

�

�

�

{gi=gαi (x)}
. (36)

For simplicity it is useful to look at the average of these “decoding maps” across all Nem embryos
in an experimental ensemble,

P(x∗|x) =
1

Nem

Nem
∑

α=1

P (x∗|{gi})
�

�

�

�

{gi=gαi (x)}
→
∫

�

∏

i

d gi

�

P (x∗|{gi}) P ({gi}|x) . (37)

To understand how this works, let’s start not with all four gap genes but with one, as shown
in Fig 12, which focuses on the information contained in g2.

The concentration g2 peaks roughly in the middle of the embryo, and falls to be very low in
both the front quarter and the back quarter. Thus cells in these regions would be very uncertain
about their position if they had access to only this one gene. In contrast, cells in the middle of
the embryo experience near maximal concentrations and this “points” to a relatively narrow
region along the anterior–posterior axis. This peak rises to an amplitude P(x∗/L|x/L) ∼ 25
which means that the width of the distribution must be σx/L ∼ 1/25 ∼ 4%. Because the
mean profile 〈g2(x)〉 is non–monotonic, rising and falling almost symmetrically around the
peak, cells that are on these flanks have a two–fold ambiguity in the inference of x∗ from g2.
This combination of uncertainty at the ends, precision in the middle, and ambiguity on the
flanks gives rise to the X–like pattern that we see when representing P(x∗|x) in gray levels
in Fig 12C. If g2 were the only signal available, embryos literally would not know their head
from their tail, and no single cell could reach the precision of σx/L ∼ 1% that is seen all along
the anterior–posterior axis (§3.3).

Fortunately cells have access to multiple gap genes. We see in Fig 13 that as we use more
of these genes to infer position, ambiguities are removed and uncertainty is reduced. Finally
when we use all four genes the distribution P(x∗|x) narrows essentially to a single band around
the diagonal x∗ = x . The peak height is ∼ 100, which means that the width is ∼ 0.01. Thus,
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Meinhardt, 1986), or with the use of binary switch-like or boolean
networks to describe genetic circuits more generally (Kauffman
et al., 1978; Sánchez and Thieffry, 2001). If we collapse the
continuous profiles into on/off domains, then decoding maps
are ambiguous even in WT embryos (Figures S1F and S1G),
andmeaningful predictions for stripe positions in the mutant em-
bryos are impossible. Thus, rather than forming a set of four bi-
nary switches, the gap gene expression levels represent a
more continuous, analog coordinate system that specifies posi-
tion for individual cells.

Decoding in Mutant Embryos
That the four gap genes carry precise, unambiguous information
about position does not mean that the embryo uses this informa-
tion to determine cellular identities. To test whether this is the
case, we exploit the powerful genetic tools that have been estab-
lished in Drosophila. We perturbed the maternal signals Bicoid
(bcd), Nanos (nos), and Torso-like (tsl), which strongly affect
the gap gene network (Figure S2; Video S1). Importantly,
because we have perturbed only the inputs to the gap gene
network, we expect that decoding is carried out with the same
mechanism in WT and mutant embryos. If the optimal
readout strategy is used by the embryo, our decoder should
generate meaningful position estimates in mutant backgrounds
(Equation 4), and these estimates can be compared directly to

actual position readouts in mutant embryos, using locations of
pair-rule expression stripes as positional markers.
We have analyzed embryos from lines in which we delete the

three maternal signals individually, in pairs, and all together.
The latter is a control, which confirms that all information about
position indeed is provided by the three maternal signals (Fig-
ure S2K). For each of the remaining six combinations, we
measured expression levels for all four gap genes simulta-
neously (Figures S2A–S2H). In every case, we construct the
posterior distribution Pðx"jfgigÞ from WT gene expression
levels in absolute units, and then apply it to individual mutant
embryos measured in the same batch, thus avoiding variations
in staining, imaging, normalization, etc., across batches. The
results of these analyses are a series of decoding maps (Fig-
ure 4), which should be compared to the map for WT embryos
(Figure 3D).
Before proceeding to analyze these maps and to test our pre-

dictions, we emphasize that even the possibility of decoding the
expression patterns in mutant backgrounds is non-trivial. The
optimal decoder is built out of the distribution of expression
levels that we see in WT embryos, and these fill only a very small
region of the full four dimensional space of possibilities. If the
expression levels in mutant embryos fell far outside this region,
then we would have no reason to trust our description of the dis-
tributions PðfgigjxÞ, and hence no basis from which to make

A B C

Figure 2. Coding and Decoding of Position in Fly Embryos
(A) Optical section through the midsagittal plane of a Drosophila embryo with immunofluorescence labeling for Krüppel (Kr) protein (scale bar, 100 mm). Raw

dorsal fluorescence intensity profile of depicted embryo (blue curve, ga(x)) and encoding probability distribution PðKrjxÞ (gray) constructed from 38 WT embryos

of ages between 40–44min into n.c. 14. Position x along the AP axis is normalized by embryo length L, with x=L= 0 (1) for the anterior (posterior) poles. Probability

distribution of Kr expression levels (left).

(B) Decoding probability distribution PðxjKrÞ constructed via Bayes’ rule from the measured probability distributions PðgÞ and PðgjxÞ in (A), using a uniform

prior PXðxÞ = 1=L. PðxjKrÞ is input for the optimal decoder, which maps Kr levels to positions along the AP axis. Posterior probability distributions of locations

x consistent with observing Kr levels 0.05, 0.5, or 1 are the conditional probability densities PðxjKrÞ shown in top panels.

(C) Decoding map Pa
gðx"jxÞ for a single embryo a. Top cartoons display regions of inferred positions based on Kr alone. Dynamic range (gray bar, right) applies to

all three probability panels.

See also Figure S1.
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Figure 12: Decoding position from a single gene. (A) Top panel is an optical section
through the midsagittal plane of a Drosophila embryo with immunofluorescence la-
beling for the protein encoded by a single gap gene, corresponding to g2 in Fig 11
(scale bar 100µm). Bottom panel shows the normalized g2(x) for this particular
embryo (blue) and a gray–level visualization of P(g2|x); P(g2) is at left. (B) The
distribution P(x |g2), shown in gray levels (bottom) and slices at fixed g2 (top). (C)
The average decoding map P(x∗|x) from Eq (37). Top panel schematizes the combi-
nation of ambiguity and uncertainty. Reproduced from Ref [10], with permission.

the gap genes provide enough information to specify position with 1% accuracy, but only if
cells read this information optimally.

We recall that the pair–rule stripes are positioned with ∼ 1% accuracy, and similarly the
location of the cephalic furrow is reproducible from embryo to embryo with ∼ 1% precision.
A possible conclusion is that embryos “read out” the information carried by local gap gene
concentrations and use this to guide subsequent events. This read out is optimal, and sets the
precision of the body plan. Certainly what we see is consistent with this conclusion, but the
evidence is not unambiguous.

As an example, we could imagine that cells make dramatically sub–optimal use of the
local concentration information, but compensate at the next stage through interactions among
many cells. More subtly, driven by the nature of experiments we have emphasized reading the
signals from gap genes at a single moment in time, while any realistic mechanism will involve
some integration over time, perhaps providing another opportunity to reduce noise. There are
reasons to think that these options are more limited than they seem: noise in the expression
levels of the gap genes is correlated over long distances [121,145], and momentary expression

reliable inferences. To test whether this could be the case, we
compared c2 in Equation 2 between the mean WT and the
mutant gap gene expression (see STAR Methods, Exploring
mutant embryos). We found a surprising degree of overlap: the
largest c2 in the WT embryos is larger than 98% of the values
that we see in mutant embryos (Figure S2I); extreme values of
c2 in the mutant backgrounds are confined to small regions of
the embryo. Deletingmaternal signals introduces large perturba-
tions, yet the gap gene network responds in a way that is not far
outside the distribution of possible responses under WT condi-
tions. This fact is what makes decoding positional information
in mutant embryos feasible.

Many features of the decoding maps in Figure 4 are expected
from previous, qualitative characterizations of these mutant
backgrounds. Thus, whenwe delete tsl the distortions are largely
at the embryo’s poles (Figure 4A), to which tsl expression is
confined (Martin et al., 1994); and when we delete osk (which
controls the localization of the nos signal), we see major distor-
tions in the posterior (Figure 4C), consistent with nos being a
posterior determinant (Wang and Lehmann, 1991). When we
delete bcd there are major distortions in the anterior portion of
the map (Figure 4B), where the concentration of Bcd protein is
highest, but distortions of the map extend along the entire length
of the embryo, in contrast to the more local effects of removing
tsl or nos.

To further characterize the maternal patterning inputs, we
examined double mutant backgrounds, in which the positional
information is supplied by a single remaining maternal input (Fig-
ures 4D–4F). When the only spatial information is supplied by tsl
or nos (in embryos from mothers doubly mutant for bcd nos or
bcd tsl, respectively), the resultant embryos lack much of the
WT gap gene pattern. Inferred positions based on the levels of
the remaining gap genes at no point match the diagonal defined
by the WT pattern.

One challenge in analyzing embryos with patterning informa-
tion only from Bcd is that removal of nos and tsl results in uni-
formly high ectopic levels of maternal Hb (Hülskamp et al.,
1989; Struhl, 1989). These uniform levels confer no positional in-
formation but the repressive activity of Hb as a transcription fac-
tor blocks expression of gap genes and thus all patterning in the
abdomen (Gavis et al., 2008; Irish et al., 1989). As an alternative,
we have generated germline clones (Hannon et al., 2017), which
lack maternal hb activity, as well as positional cues from nos and
tsl. These mutant backgrounds have a rich collection of pair-rule
stripes, providing amore detailed test of our theory. Surprisingly,
decoding maps in these mutant embryos (Figure 4E) have a
nearly continuous ridge of density, with a width close to that in
WT, that runs nearly from x=L= 0:3 to x=L = 0:8. This is qualita-
tively consistent with the observation that these embryos show
WT patterns between the gnathal and sixth abdominal segments
(Hannon et al., 2017). It is also surprising that we can achieve
precise (if distorted) decoding at x=Lx0:8, where the only source
of positional information is the Bcd protein, which is present at
very low concentrations (Little et al., 2011, 2013).

Quantitatively Testing the Dictionary
While the predictions of optimal decoding are in qualitative
agreement with expectations from previous work, it is crucial
that this theoretical framework makes detailed quantitative pre-
dictions about positions. The peaks of pair-rule expression are
positional markers that predict features of the final body plan,
and thus we take these peaks as a measure of the embryo’s
own readout of positional information (Figures S5B–S5D). Inde-
pendent of our work, it is much less clear how levels of pair-
rule expression relate to development; therefore, the units of
pair-rule gene expression are normalized within each genotype,
and we make no attempt to compare these levels across
genotypes.

A B C D

Figure 3. Decoding with an Increasing Number of Gap Genes in WT Embryos
(A–D) Top row: dorsal fluorescence intensity profile(s) from simultaneously stained embryos (mean± SD); units scaled so that 0 (1) corresponds to minimum

(maximum) mean expression. Bottom row: decoding maps, Pðx"jxÞ from Equation 4, averaged over 38 embryos. (A) Decoding using single gene (Kr, blue) (also

Figures 2 and S1C).

(B) Decoding using a combination of two genes, Kr (blue) and Hb (red) (also Figure S1D).

(C) Decoding using three genes, Kr (blue), Hb (red), and Gt (orange) (also Figure S1E).

(D) Decoding using all four gap genes.

See also Figure S1.
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Figure 13: Decoding position from an increasing number of gap genes reduces un-
certainty and eliminates ambiguity. Redrawn from Ref [10], with permission.
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Figure 14: Gap gene concentration profiles change in mutant flies missing one of
the maternal inputs. At left are the profiles in wild type flies, as in Fig 11 but with
the four genes represented by different colors. At right are the results of the same
measurements done in flies that are missing the terminal inputs T. Reproduced from
Ref [10], with permission. It is essential that although concentrations are normalized
(maximum mean concentration is one in the wild type), the normalization is the same
in both panels so that concentrations can be compared meaningfully.

levels are the output of a network whose dynamics imposes temporal correlations on these
noise levels; both these effects limit the possibilities for noise reduction by averaging. Still,
one would like a more positive and convincing test of the idea that cells are performing the
optimal readout of the positional information encoded in the gap genes.

If the embryo performs an optimal readout, then if the spatial patterns of gap gene ex-
pression are perturbed cells will get the wrong answer for their estimates of position, and this
effect should be both systematic and predictable. We can perturb the gap gene patterns by
knocking out one or two of the three maternal inputs to the gap gene network. We recall that
one of the maternal inputs has high concentration at the anterior (A) of the embryo, one has
high concentration at the posterior (P), and one has high concentration at both ends (the “ter-
minal” inputs T). Figure 14 shows what happens in mutant flies that are missing the T inputs.
As expected there is very little change to the gap gene expression levels in the middle of the
embryo, with larger perturbations at both the anterior and posterior extremes, but in general
it seems fair to say that these perturbations are fairly gentle.

Figure 15 shows what happens when we try to decode the patterns of gap gene expression
found in the mutants of Fig 14. The idea is that we take the measured {gi} in the mutant and
pass it through the function P(x∗|{gi}), which was constructed from data taken in the normal
(wild–type) embryos, and then we average as before to get a new map Pmut(x∗|x). By analogy
with Eq (37) we can write

Pmut(x
∗|x) =

∫

�

∏

i

d gi

�

P (x∗|{gi}) Pmut ({gi}|x) . (38)

As expected, the map is only slightly perturbed in the central region of the embryo. Signals at
small x/L are noisy and ambiguous, while at large x/L the ridge of maximum probability is
systematically at x∗ < x , along a gently curving trajectory.

We can test the predicted Pmut(x∗|x) with a simple idea. If the only information that cells
have about position is their estimate x∗, then pair–rule stripes should be at locations x∗ = xs
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As a first example, when we delete bcd (Figure 4B), quantita-
tive distortions of the map extend even into the posterior half of
the embryo, so that the map is shifted, and the plot of x! versus x
(following the ridge of high probability in the map) does not have
unit slope. In particular, expression levels found at x=L= 0:7 (or at
x=L = 0:55) have their most likely decoded values at x!=L= 0:75
(or x!=L = 0:67). But in the WT embryo, positions x=L= 0:75 and

x=L= 0:67 are associated with the stripes vii and vi of expression
for the pair-rule gene eve, as shown at left in Figure 4. If the ma-
chinery for interpreting gap gene expression is using the same
dictionary that we have constructed mathematically, then we
predict that the bcd deletion mutants should shift these two
Eve stripes to x=L= 0:7 and x=L = 0:55, which is what we see
(Figure 4B). More dramatically, expression levels at x=L= 0:23

TA P TA P TA P

TA P TA P TA P

A B C

D E F

Figure 4. Decoding Maps and Stripe Locations in Mutant Embryos
(A–F) Average decoding maps for six maternal mutant backgrounds (whitened APT symbols above the panels signify whether the anterior A, posterior P, or

terminal T systems are deficient): (A) etsl4; (B) bcdE1; (C) osk166; (D) bcdE2 osk166; (E) Bcd-only germline clone; and (F) bcdE etsl1; same grayscale used in Figure 3D.

Measured Eve expression profiles in WT embryos (left side of A and D), and in mutant embryos (below each corresponding decoding map); individual profiles

(gray), mean profile (black), and peak locations (black dots), units scaled so that 0 (1) corresponds to minimum (maximum) mean Eve expression within each

genotype. Average locations of WT Eve stripes (horizontal dotted lines) are used to predict Eve stripes in the mutant backgrounds: stripes expected at AP lo-

cations in mutant embryos where horizontal dotted lines intersect peak(s) of the probability density. Open black circles mark intersections of horizontal dotted

lines and respective average locations of Eve stripes in mutant embryos (vertical dotted lines). Variable number of Eve stripes highlighted by horizontal starred

bars (see B and F; see Figure S6). Red line in (C) marks observed Eve stripe that is not predicted by the decoding map. Red line in E shows a predicted Eve stripe

that is not observed in the mutant embryo. When horizontal lines intersect a broad probability distribution, we expect to observe diffuse Eve stripes like in (F).

(A) shows additional predictions for Run (cyan) and Prd (magenta) stripes; the dense collection of markers traces the ridge of implied positions in the decoding

map with very high accuracy.

See also Figures S2, S3, and S4 and Video S1.
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Figure 15: Optimal decoding predicts pair–rule stipe shifts in mutant embryos. We
use the distribution P(x∗|{gi}) constructed from data on wild type flies to interpret
the gap gene expression signals in flies missing terminal inputs T (Fig 14). Results are
shown as the average decoding map Pmut(x∗|x) from Eq (38); density in grey scale
(bottom left). At left is the expression of Eve, one of the pair–rule genes; individual
embryos in grey, mean in black, illustrating the seven stripes at positions xi. When
Pmut(x∗ = xi|x) is large we expect a stripe at (real) position x in the mutant, as
confirmed at the bottom. Markers summarize these results, and those for two other
pair–rule genes. Reproduced from Ref [10], with permission.

not x = xs as in the wild–type embryo, for each stripe s; this is the construction shown by
dashed lines in Fig 15 for the gene eve.23 We can test all of the stripes, for each of several
pair–rule genes, and we see that the results track along the ridge of Pmut(x∗|x), with high
precision.

We can redo the analysis of Fig 15 six times, deleting the three maternal inputs singly
and then in pairs. A sanity check is that if we delete all three inputs there is no positional
information, so any nonzero gi is uniform in x . Detailed descriptions of the results can be
found in the original paper [10], so let me draw attention here to a few points:

• In most cases when we delete maternal inputs the density in P(x∗|x) fails to intersect
x∗ = xs for many values of the stripe index s. This predicts that certain stripes should
be missing, and these (many) predictions are correct.

23This is one place where I’ll use names. Eve is short for “even–skipped,” which gives a sense for what goes
wrong in the structure of the mutant embryo. The convention is that genes are named in lower case italics, while
the protein products are described with capitalized Roman text. Also, beware that biochemists name molecules
after what they do, while geneticists name molecules after what goes wrong when they are mutated.
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• We can analyze maps Pαmut(x
∗|x) constructed from data on individual mutant embryos

(before averaging), and in some cases the density is sufficiently variable at x∗ = xs that
we predict stripes to be present in some but not all of the embryos. This variability never
happens in wild–type embryos but it happens in the mutants, where we predict it.24

• In mutants where the anterior input is deleted, the most likely x∗ is a non–monotonic
function of x . Most of the eve stripes are predicted to be missing, but the seventh stripe
is predicted to be duplicated, and this happens at the predicted location. Details of the
underlying molecular biology show that this really is a duplicate of stripe seven and not
a shifted version of a more anterior stripe.

• In mutants where both the anterior and posterior inputs are deleted, we predict that
there should be only two eve stripes located symmetrically along the anterior–posterior
axis, and this is confirmed.

In total we have 70 of these examples, and almost all predictions are confirmed within experi-
mental error. More subtly, the predicted noise in stripe position, from the width of Pmut(x∗|x),
agrees with the measured variability. The few errors are in places where the map Pmut(x∗|x)
has discontinuities, so that a little bit of spatial averaging (which we neglect) would have large
effects, or where expression levels in the mutant are very deep in the tails of P({gi}).

We have constructed the optimal decoder P(x∗|{gi}) from measurements in a small win-
dow of time during the fourteenth nuclear cycle. This window is chosen to surround the point
at which positional information is maximized, and is as narrow as possible while still leaving a
reasonable number of samples. But gap gene expression profiles vary slowly throughout cycle
fourteen. If the embryo implements the optimal decoding, tuned to the time of maximal posi-
tional information, then pair–rule stripes are predicted to evolve with time as well. This effect
has been known for a long time, and subject to multiple interpretations. We were surprised
to find that these details—shifts of ∆x(t)/L corresponding to just a few percent over half an
hour—are predicted correctly as well.

Optimization principles provide a compact formulation for much of physics. As applied to
living systems we typically use such principles to select the behavior of the particular systems
that we see in nature out of the universe of possibilities available. In the past, this sort of
argument has led to a single number, or a scaling relation between different numbers. What
is new, I think, in this analysis of positional information in the fly embryo is that a single
optimization principle leads to a rich set of subtle parameter free predictions, essentially all
of which agree quantitatively with experiment. It is the same physical principle that leads to
predictions about visual motion estimation in Fig 10.

3 Matching distributions

In the fly embryo information flows from maternal inputs to the gap gene network to the
striped patterns of pair–rule gene expression. The previous lecture was about optimization
at the output of the gap gene network. Can we also optimize the inputs? This is part of
a more general question: given some signal processing system with fixed signal and noise
characteristics, how can we choose the inputs to optimize information flow?

To be more explicit, a random cell along the length of the embryo encounters concentra-
tions of maternal input morphogens that are drawn out of a distribution. We would like to

24A limitation of the experiments is that they measure all the gap genes or the pair–rule genes, but not in the
same embryo. Thus we know that pair–rule stripes are variable where we predict them to be variable based on
measurements of the gap genes in many mutant embryos, but we don’t know if the presence or absence of stripes
is connected deterministically to the gap gene profiles in single embryos, as we predict.
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Figure 16: Matching distributions to the input/output relation [57]. (A) Example
of an input/output relation. (B) Different possible probability distributions for the
inputs. With either of the orange distributions, the output is either fully on or fully
off and provides no information about the input signal. With the blue distribution the
modulations of the output are very small, and likely to be obscured by noise (which is
missing from the figure). The green distribution seems to be a better match, moving
the output through its full dynamic range.

formulate an optimization principle for this distribution. Some intuition for this is given in Fig
16, where we compare the distribution of inputs to the structure of a hypothetical input/output
relation. In this example, if the inputs x are concentrated at high or low values, then the out-
put y is “stuck” in a fully on or fully off state, and not sensitive to any variations in the input. If
the inputs are concentrated near the point of maximum sensitivity (here, zero input) then the
responses will be larger, but if the distribution is too narrow than the variations in the output
still will be small and can easily be masked by noise. It seems sensible that the best we can do
is to have inputs that are centered on the point of maximum sensitivity and have a distribution
wide enough to drive the outputs through their full dynamic range.

The intuitions of Fig 16 can be formalized in the language of information theory. Infor-
mation theory is a beautiful subject that has deep connections to statistical mechanics, but
physicists vary in their level of comfort and familiarity with the ideas. I gave the lecture in Les
Houches as if people knew the basics, but there was a strong desire for a more pedagogical
introduction. So we followed the regular lecture with a tutorial [146], which we plan to have
as an Appendix to the Summer School proceedings.25 For completeness let me also note that
(in contrast to many other subjects) one really can learn much of what you need to know
about information theory by reading Shannon’s original paper [147]. The standard textbook
is by Cover and Thomas [148], a version aimed at the physics community is by Mézard and

25My sincere thanks to Tarek Tohme, who will co-author this Appendix, having recorded the tutorial and helped
turn it into coherent prose. He even captured many of the excellent questions from the students.
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Montanari [149], and I have tried to give a fuller account of these ideas in the context of
biophysics [57]. Each of these texts provide more than you need to make sense out of these
lectures, but perhaps you will want to explore more deeply.

3.1 One input, one output

The simplest version of information transmission is a system in which one input x drives one
output y . The mutual information I(x; y) between these variables can be thought of either as
the information that the output provides about the input or vice versa, as a measure of control
power. This measure is unique, and can be written as

I(x; y) =

∫

d x

∫

d y P(x , y) ln
�

P(x , y)
PX (x)PY (y)

�

, (39)

where, as usual, P(x , y) is the joint distribution while PX (x) and PY (y) are the two marginals.
Mutual information is a measure of correlation between x and y . If the variables were

independent, then the entropy of the joint distribution would be equal to the sum of the en-
tropies of the two marginal distributions, but in fact it is smaller. The mutual information is
exactly this decrease in entropy:

I(x; y) = S[PX (x)] + S[PY (y)]− S[P(x , y)] , (40)

where S[P] is the entropy of the distribution P,

S[P(z)] = −
∫

dz P(z) log P(z) . (41)

We also can think of the mutual information as a functional of the two distributions,

I(x; y) = I[PX (x), P(y|x)] =
∫

d x PX (x)

∫

d y P(y|x) log
�

P(y|x)
PY (y)

�

, (42)

PY (y) =

∫

d x P(y|x)PX (x) . (43)

The convexity of the entropy implies that I(x; y) has a maximum with respect to variations in
PX (x) and a minimum with respect to variations in P(y|x). Thus if we fix the way in which y
responds to x , as encoded in P(y|x), we can maximize information transmission by adjusting
the distribution of inputs.

To be concrete, let’s assume that

P(y|x) =
1

q

2πσ2
y(x)

exp

�

−
(y − ȳ(x))2

2σ2
y(x)

�

. (44)

Notice that

I(x; y) =

∫

d x PX (x)

∫

d y P(y|x) log
�

P(y|x)
PY (y)

�

= −
∫

d y PY (y) log PY (y)−
∫

d x PX (x)

�∫

d y P(y|x) log P(y|x)
�

(45)

= S[PY (y)]− 〈S[P(y|x)]〉(x) , (46)
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where 〈· · · 〉(x) denotes an average over the distribution PX (x). We can compute the conditional
entropy from Eq (44), now using natural logs:

S[P(y|x)]≡ −
∫

d y P(y|x) ln P(y|x) (47)

= −
∫

d y
1

q

2πσ2
y(x)

exp

�

−
(y − ȳ(x))2

2σ2
y(x)

��

−
1
2

ln
�

2πσ2
y(x)

�

−
(y − ȳ(x))2

2σ2
y(x)

�

(48)

=
1
2

ln
�

2πσ2
y(x)

�

+
1
2

(49)

=
1
2

ln
�

2πeσ2
y(x)

�

. (50)

This result for the entropy of Gaussian distributions is very useful.
Substituting into Eq(46), we have

I(x; y) = S[PY (y)]− 〈S[P(y|x)]〉(x)

= −
∫

d y PY (y) ln PY (y)−
∫

d x PX (x)
1
2

ln
�

2πeσ2
y(x)

�

. (51)

Now if the function ȳ(x) is monotonic, and the noise is small, we can approximate

PY (y)d y ≈ PX (x)d x , (52)

so that

I(x; y)≈ −
∫

d x PX (x) ln

�

PX (x)

�

�

�

�

d y
d x

�

�

�

�

−1
�

−
∫

d x PX (x)
1
2

ln
�

2πeσ2
y(x)

�

(53)

= −
∫

d x PX (x) ln
�

PX (x)
p

2πeσeff
x (x)

�

, (54)

where we identify
1

σeff
x (x)

=
1

σy(x)
d ȳ(x)

d x
. (55)

We can understand this as the propagation of the noise σy back into an estimate of x with
effective noise level σeff

x (x), illustrated in Fig 17. This approximation is self–consistent if
σeff

x (x) is small on the scale over which ȳ(x) and PX (x) vary.
Starting from Eq (54), we can vary the input distribution PX (x) to maximize the informa-

tion I(x; y), introducing a Lagrange multiplier to enforce normalization:

0=
δ

δPX (x)

�

I(x; y)−λ
�∫

d x PX (x)− 1

��

(56)

=
δ

δPX (x)

�

−
∫

d x PX (x) ln
�

PX (x)
p

2πeσeff
x (x)

�

−λ
�∫

d x PX (x)− 1

��

(57)

= − ln
�

PX (x)
p

2πeσeff
x (x)

�

− 1−λ (58)

⇒ PX (x) =
1
Z

1
σeff

x (x)
, (59)

where we collect all the normalization constants into

Z =

∫

d x
σeff

x (x)
. (60)

34

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.84


SciPost Phys. Lect. Notes 84 (2024)

output
noise level

effective
input
noise 

input

ou
tp

ut

Figure 17: Error propagation, from Eq (55). The noise level at the output—which
often can be estimated directly from experiment—is translated to an effective noise
level at the input, using the local slope of the input/output relation.

Notice that with this result ln
�

PX (x)
p

2πeσeff
x (x)

�

= ln[Z/
p

2πe], so that

Imax(x; y) = ln
�

Z
p

2πe

�

. (61)

The crucial result here is Eq (59): to transmit the maximum information (at low noise levels)
we should use inputs in inverse proportion to their effective noise levels. In this sense the
optimal input distribution matches the input/output relation and the associated noise levels.

The result that inputs should be used in inverse proportion to their noise level is a precise
version of familiar ideas. When writing we avoid words that we don’t know how to spell,
and when speaking a foreign language we avoid constructions which we suspect we might get
wrong. Different species of frogs call to one another in different frequency bands, and these
match the bands where they hear best. In the low noise limit we can think of the matching
condition as applying equally well to the input or the output,

PX (x)∝
1

σeff
x (x)

⇒ PY (y)∝
1

σy(x)

�

�

�

�

x= x̃(y)
, (62)

where x̃(y) is the inverse of the function ȳ(x).

3.2 Neural input/output relations

An important special case of these arguments is where the noise at the output is constant,
σy(x) = σy . Then Eq (62) tells us that optimal information transmission corresponds to PY (y)
also being constant. Outputs always have limited dynamic range, so this means that the system
transmits the maximum information by using this dynamic range uniformly, maximizing the
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entropy of the outputs.26 A familiar example is where the outputs are quantized, as with a
digital image. Then the dominant source of (effective) noise often is the discretization itself,
and thus is constant—we distinguish 1 vs 2 as reliably as we distinguish 254 vs 255. Then
optimal information transmission occurs when all the output values are used equally often,
and this is called “histogram equalization” or adaptive binning.

We can go one step further and choose units such that 0< y < 1, so the optimized uniform
distribution of outputs is PY (y) = 1. In the low noise limit we have Eq (52), so that

PY (y)d y = PX (x)d x

d y = PX (x)d x (63)

d y
d x
= PX (x) . (64)

Again because this is the low noise limit the y which appears here can be taken as ȳ(x), and
so we have

d ȳ(x)
d x

= PX (x) . (65)

Integrating, the optimal input/output relation becomes the cumulative distribution of inputs.
Two interesting things just happened. First, we started by optimizing the distribution of

inputs and ended up by expressing the result as an optimal input/output relation. Second,
we have a prediction that the input/output relation should match the distribution of inputs,
quantitatively and with no free parameters. If the distribution PX (x) has a single peak, ȳ(x)
should be roughly sigmoidal, as one finds for the input/output behaviors of many biological
systems.

In an inspiring paper, now 40+ years ago, Laughlin took these theoretical ideas seriously
and applied them to the responses of neurons in the fly retina, the “large monopolar” cells
(LMCs) that take inputs directly from the photoreceptors [150].27 These cells produce a
graded voltage in response to changes in light intensity around a background. Laughlin built
a photodetector to match the optics of a single receptor cell in the fly’s eye and measured the
distribution of light intensities found by scanning natural scenes. He then measured the in-
put/output relations of the LMCs, with the comparison shown in Fig 18. Note that there are
no free parameters.

To be fair, the input/output relation is not a very complicated function, so saying that we
predict its form with no free parameters may be an overstatement. What we predict is that,
in the normalized units of Fig 18, the maximum slope should be at a location near x = 0 and
the width of the response should span x ∈ [−0.5,0.5]; these predictions come from the shape
of the distribution of light intensities.

The light intensity that we see is the product of a source intensity and the reflectivity of the
surface we are looking at. As the overall brightness changes, e.g. from dawn through noon
to dusk, reflectivities are constant. This suggests that the distribution of log intensity should
keep roughly the same shape, just shifting along the intensity axis. The matching condition Eq
(65) then predicts that the neural responses to log intensity should keep the same shape, just
shifting their midpoints, and this is a good zeroth order theory of what happens during light
and dark adaptation.

There are many over–simplifications here, but the idea is powerful. When we ask why the
input/output relation of a neuron looks the way it does, the standard answer is to start explain-
ing all the molecular, cellular, and synaptic mechanisms that lead to the final phenomenology.

26Maximizing information transmission generally is not the same as maximizing the entropy of the outputs. The
difference arises both because the noise can have structure [σy(x) ̸= σy] and because we can depart from the low
noise limit where Eqs (59, 62) were derived. This will be important below.

27These cells are in the same position in the fly’s retina as the bipolar cells in the vertebrate retina (§2.2).
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Figure 18: Input/output relations match the distribution of inputs. Brief changes in
light intensity∆I above or below background Ī produce transient voltage changes in
the large monopolar cells (inset), and the peaks of these responses are taken as the
cell’s output∆V . Normalized responses are compared to the cumulative probability
distribution of light intensities, testing the predictions of Eq (65). Data redrawn from
Ref [150], under the Creative Commons Attribution NC-ND 3.0 License.

Such explanations, as emphasized in the introductory lecture, lead us into a forest of param-
eters. Worse yet, these parameters are adjustable, for example if the cell in question had
expressed different ion channels, different neurotransmitter receptors, etc. The idea here is
different: input/output relations have the form that they do because they are matched to
their inputs, optimizing information transmission. The fact that the predictions from such a
potentially general, parameter free theory are even approximately right is very encouraging.

If we think that input/output relations are matched to the distribution of inputs, it is natural
to ask on what time scale this matching occurs. More critically, one might worry that “the”
distribution is such a dynamic object that it is not well defined. But maybe this is a good thing,
since we know that input/output relations in neurons are themselves dynamic objects.

The fact that input/output relations of neurons change in response to background condi-
tions is called adaptation.28 In the original descriptions of adaptation in sensory neurons, the
focus was on the fading response to constant stimuli, in effect subtracting a constant from the
output, but this is far from the whole story. The time scales of response often change with the

28Surely “adaptation” is one of the most over used words in the description of biological systems.
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background, e.g. as visual responses become slower in the dark. More subtly there are changes
in the gain of the response, e.g. as one extra photon produces a smaller response when added
to a brighter background of light. All of these effects, however, can be seen as driven by the
mean background signal. Maximizing information transmission predicts that neurons should
match their input/output relations to the whole distribution of input signals.

Maybe the simplest question is whether neurons adapt to the variance of inputs as well as
to the mean. As an example, if we look at the activity of the neurons that carry the output of
the retina to the brain (retinal ganglion cells), then stimulate the retina with time varying light
intensity, there is a clear and rather immediate response to changing the mean intensity and
that gradually relaxes as the retina adapts. The same thing happens if we suddenly change
the variance of the light intensity, or its spatial correlations [151], which certainly is consistent
with the idea that input/output relations are changing to match the input distribution.

We would like to map the input/output relations in the steady states that are reached after
the system has adapted to different distributions of inputs. How to do this is a subject in itself.
Briefly, we are interested here in neurons that respond to inputs with a sequence of discrete,
identical electrical pulses called action potentials or spikes. We will assume for simplicity that
the input is a single function of time s(t). One characterization of the input/output relation
is then to give the probability per unit time that the neuron will generate a spike near time t
given the history of inputs up to this moment, s(t −τ) for τ > 0. If the inputs were weak one
could try a linear approximation,

Pspike(t) = r̄

�

1+

∫ ∞

0

dτ g(τ)s(t −τ) + · · ·
�

, (66)

where r̄ is the mean probability per unit time or rate of generating spikes, and g(τ) is the
linear response function. This is too restrictive, and easily runs up against the constraint that
Pspike ≥ 0. A natural extension is to say that only the filtered inputs are important, but these
could be processed nonlinearly,

Pspike(t) = r̄ F

�∫ ∞

0

dτ g(τ)s(t −τ)
�

, (67)

where F is arbitrary but a natural choice might be something sigmoidal as in Fig 18.
The “linear–nonlinear” model in Eq (67) is quite popular [79,152]. It is interesting in part

because it is tractable. If the input signals s(t) are Gaussian with zero mean,29 then we can
separate the filter from the nonlinearity by computing a correlation function between the spike
sequence and the input, or equivalently an average of the input triggered on spike times:

〈s(tspike − t)〉 ∝
∫

dτg(τ)〈s(t)s(τ)〉 . (68)

In the simplest case where the inputs are both Gaussian and white, so that 〈s(t)s(τ)〉 ∼ δ(t−τ),
we have just 〈s(tspike − t)〉 ∝ g(t). This strategy for describing neural responses came from
work on the neurons that first encode sound in the inner ear, as people tried to separate the
mechanical filtering of sound from the nonlinearity of spiking [153].

Another way of expressing Eq (67) is to say that the input is a high dimensional vector—
the function s(t < tspike), perhaps sampled at discrete times—and that the neural response
depends on only one projection of this vector. Then there is a natural generalization

Pspike(t) = r̄ F [s1(t), s2(t), · · · , sK(t)] , (69)

sµ(t) =

∫ ∞

0

dτ gµ(τ)s(t −τ) . (70)

29I think in the computer science and applied mathematics literature one would say “Gaussian stochastic process.”
Physicists use “Gaussian” more vaguely to describe anything from a single random variable to a free field theory.
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This description emerged from analysis of the distribution of inputs conditional on the occur-
rence of a spike [154] and would be used as a model of responses only later [155–157]. Again
the key is that triggered averages are connected to the underlying structure. If we compute the
covariance of inputs in the neighborhood of a spike, and compare with the total (not triggered)
covariance, then Eq (69) implies that

∆C(t, t ′) =
�

〈s(tspike − t)s(tspike − t ′)〉 − 〈s(tspike − t)〉〈s(tspike − t ′)〉
�

− 〈s(t)s(t ′)〉 , (71)

is an operator of rank K . Further, the eigenfunctions of this operator span the same space as
the filters {gµ(τ)}, blurred by the input correlation function. If the rank K is reasonably small
this gives us a path to identify the relevant projections of the input and map the input/output
relation F[{sµ}]. We can then change the distribution of inputs P[s] and ask if this relation
changes in ways that we expect for the optimization of information transmission.

To be fair, we don’t really know how to solve the relevant optimization problem for spiking
neurons. Obviously the assumption of constant noise at the output, as above, doesn’t really
make sense when the output is the probability of generating a spike. But if the noise levels are
small, then in any reasonable scenario the scales of the optimal input/output relation F[{sµ}]
will be set by the scale of the probability distribution P[s(t)] itself. Concretely, if we rescale
the input signals we expect a compensatory rescaling of the response function,

s→ λs ⇒ F[{sµ}]→ F[{sµ/λ}] . (72)

Maybe a clearer way to say this is that the input/output relations should be different in re-
sponse to different distributions of input, but these should collapse if we plot the response not
vs the projected signals sµ but rather vs the normalized projections sµ/s

rms
µ .

These predictions were tested in experiments on motion–sensitive neurons in the fly visual
system [155]. The fly watches a movie of a random spatial pattern that moves with velocity
s(t) chosen from a Gaussian distribution with a short (2ms) correlation time, and the standard
deviation of this distribution could be changed by rescaling as above. Mean rates of spiking
were r̄ ∼ 70 spikes/s, and the spike–triggered covariance ∆C(t, t) had only two significantly
nonzero eigenvalues. The filter f1(τ) smooths the velocity over a∼ 50ms window, while f2(τ)
is almost exactly the derivative of f1(τ). It then is natural to express s1 in the same physical
units as the input angular velocity (◦/s), and s2 as an angular acceleration (◦/s2). Figure 19
shows the projections of F(s1, s2) onto the two axes as measured under four different conditions
where the standard deviation of the input velocity varies by an order of magnitude.

Figures 19A and C show the input/output relation in physical units. We see that when the
same velocity is chosen from a different distribution, the response of the neuron can differ by
orders of magnitude. But if we rescale the inputs by their standard deviations, these enormous
variations collapse onto a single function, as in Figs 19B and D. As an aside, we note that this
approach maps the input/output relations over a dynamic range of ∼ 103, and the rescaling
is essentially perfect across this full range. Although harder to visualize, we can see the same
rescaling in the (s1, s2) plane. This is exactly what we expect from Eq (72).

One might worry that the changing input/output relations are an artifact of sampling a
fixed function of many variables in different parts of the space as we change distributions. We
are reassured by the fact that we see the same behavior along two dimensions, separately and
together, and that ∆C is very accurately of low rank. We can also check that the information
that single spikes convey about the pair (s1, s2) is equal to the information that is conveyed
about the stimulus as a whole, within experimental error. The same effects can be recapitulated
in response to inputs that have orders of magnitude slower time scales.

These results show that the system can implement not just a single input/output relation
F(s1, s2) but rather a whole family of relations F(bs1, bs2), where the scale factor is inversely
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Neuron
698

Figure 5. Velocity and Acceleration Sensi-
tivity
The two dominant stimulus features that con-
trol the response of the H1 neuron (a and b)
and the corresponding nonlinear neural re-
sponse functions (c and d).
(a) The dominant filter is a smoothing filter,
implying that H1 is sensitive to a smoothed
version of the time-dependent velocity.
(b) The second filter is approximately the de-
rivative of the first, implying that H1 is also
sensitive to the smoothed acceleration. The
two filters are normalized to units appropriate
to their interpretation as velocity and acceler-
ation. The firing rate is a nonlinear function
of both stimulus dimensions, s1 and s2, and
the one-dimensional projections of this func-
tion are shown in (c) and (d).

the relevant filters from the data, rather than to postulate r(s1) and r(s2), shown in Figures 5c and 5d. Note that
although the filters defining s1 and s2 were found bythem a priori, and this can indeed be done (see Proce-

dures). By an extension of the reverse correlation linear analysis, the response functions are nonlinear.
C onsistent with the interpretation of s1 as the smoothedmethod, we can show that the response of H1 is domi-

nated by the time-dependent signal, as seen through velocity, the function in Figure 5c is qualitatively similar
to that in the slowly varying limit (Figure 1b).two filters. Figures 5a and 5b depict the two filters, and

they correspond to our intuition: the first filter smoothes We performed experiments using rapidly varying stim-
uli with G aussian statistics; the correlation time was 10the velocity signal over a window of about 50 ms, and

the second filter is approximately the derivative of the ms, and the standard deviation took four values, ranging
from s 5 188/s to s 5 1808/s. Since the two filters arefirst, corresponding to a smoothed acceleration.

C onstructing the input/output relation (see Proce- derived from the data in each case, there are generally
some differences in the details of these filters for thedures), we describe the spike rate in H1 as a function

of the two dominant stimulus dimensions, s1 and s2, different stimulus ensembles; however, they always
have similar form and correspond to smoothed velocitycorresponding to velocity and acceleration. For simplic-

ity, we discuss here the two projections of this function and acceleration. Measuring the stimulus component s1

in units of velocity, that is, degrees/s, we find that theseparately; then, we have two input/output relations,

Figure 6. Rescaling of Responses to Dy-
namic Inputs
Adaptive rescaling of the input/output rela-
tions along the two leading dimensions.
(a and c) Response as a function of stimulus
velocity as seen through the first (a) and sec-
ond (c) filter (see Figure 5).
(b and d) Response as a function of stimulus
projections, each normalized by its standard
deviation.
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Figure 19: Adaptive rescaling in the responses of a motion–sensitive neuron in the
fly visual system. Normalized neural response F(s1, s2) from Eq (69) projected onto
stimulus features s1 in (A, B) and onto s2 in (C, D). (A, C) Input/output functions are
different when inputs are chosen from different distributions and plotted in physical
units; inset in (A) indicates the standard deviation of the input velocities in the four
distributions. (B, D) Input/output relations collapse in normalized units, confirming
the prediction of Eq (72). Reproduced from Ref [155], with permission, and thanks
to N Brenner and RR de Ruyter van Steveninck.

proportional to the standard deviation of the stimulus, b = λ/srms. The real system is char-
acterized by a particular value of λ, which depends on exactly how we normalize the filters
fµ(τ); as we did things the real λ = 1. But we could imagine systems that achieve adaptive
rescaling, stretching their input/output relation as the stimulus variance is increased, but the
value of λ could be different. If we make a model of this behavior, we find that information
transmission is maximized at the observed λ= 1: not only does the system rescale as predicted
by our optimization principle, but the precise rescaling factor is optimal [155]. If we make a
sudden shift in the input variance, then we can “catch” the neuron in an intermediate state,
before adaptation, and in this state each spike really does transmit less information about the
input [158]. The recovery of the information is very fast, perhaps as fast as the system can
reliably infer that the input distribution has changed, although longer time scale dynamics
help to encode the input variance, resolving ambiguities.

The same adaptive rescaling phenomena have been seen in the bird “field L,” which is
an analog of our auditory cortex [159]; in the rat “barrel cortex,” which responds to whisker
movements [160]; and many other systems. Related effects are seen in midbrain regions of
mammalian auditory processing, and there is direct evidence that these adaptations improve
information transmission by the population of neurons as a whole [161]. The dynamics of
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these adaptation processes, as in the example of the fly [158], span many time scales, which is
a separately fascinating subject [162]. In the retina one can make progress toward identifying
the molecular mechanisms responsible for adaptation to the distribution [163,164].

3.3 Positional error in the embryo

The gap gene expression levels {gi} encode information about position x along the anterior–
posterior axis. In §2.3 we have discussed how to decode this information, but we haven’t
talked about how much information is present. In general this is hard to estimate, but a useful
observation is that noise levels are small. Let’s explore [120,165].

Formally we have Eqs (29–31),

P ({gi}|x) =
1

Z(x)
exp

�

−
1
2
χ2({gi}; x)

�

, (73)

χ2({gi}; x) =
∑

ij

δgi(x)
�

Ĉ−1(x)
�

ijδgj(x) , (74)

Z(x) =
q

(2π)4 det Ĉ(x) , (75)

where as usual δg(x) is the fluctuation around the mean value at x ,

δgi(x) = gi(x)− 〈gi(x)〉 , (76)

and Ĉ(x) is the covariance matrix of these fluctuations
�

Ĉ(x)
�

ij = Cij(x) = 〈δgi(x)δgj(x)〉 . (77)

Suppose that the concentrations {gi} are those found in a cell at position x = xtrue. Then it
is convenient to expand χ2({gi}; x), and we’ll assume that the covariance varies more slowly
than the mean. So we start with

〈gi(x)〉= 〈gi(xtrue)〉+
�

d〈gi(x)〉
d x

�

x=xtrue

(x − xtrue) + · · · , (78)

which then implies

χ2({gi}; x) = χ2({gi}; xtrue)− 2A(x − xtrue) + B(x − xtrue)
2 + · · · , (79)

A=





∑

ij

d〈gi(x)〉
d x

�

Ĉ−1(x)
�

ij (gj − 〈gj(x)〉)





x=xtrue

, (80)

B =





∑

ij

d〈gi(x)〉
d x

�

Ĉ−1(x)
�

ij

d〈gj(x)〉
d x





x=xtrue

. (81)

If the distribution of positions P(x) is smooth, then the conditional distribution P(x |{gi})
becomes a Gaussian with a mean that is slightly shifted from xtrue by terms related to the
noise δg and a variance σ2

x = 1/B. All of these approximations are self–consistent if the
values of σx that we compute in this way comes out to be small enough.

It is useful to think of these results as a generalization of error propagation, as in the
discussion surrounding Fig 17. If the position x is encoded by a single variable g that has
variance σ2

g , then the effective variance in x is determined by

1
σ2

x
=

1
σ2

g

�

d〈g〉
d x

�2

. (82)
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of positions that are consistent with a particular set of expression
levels that we might observe. By Bayes’ rule, this can be written as

PðxjfgigÞ=
P
!
fgigjx

"
PxðxÞ

Pg
!
fgig

" ; [9]

where PxðxÞ is, as before, the (nearly uniform) distribution of cell
positions and PgðfgigÞ is the (joint) distribution of expression
levels averaged over all cells in the embryo.
If the noise levels are small, then PðxjfgigÞ will be sharply

peaked at some xpðfgigÞ, which is the best estimate of the posi-
tion, given the expression levels. Expanding around this estimate,
the distribution is approximately Gaussian,

P
!
xjfgig

"
≈

1ffiffiffiffiffiffiffiffiffiffi
2πσ2x

p exp

"

−
!
x− xp

!
fgig

""2

2σ2x

#

; [10]

where the error in our position estimate is defined by

1
σ2x

=
X4

i;j=1

"
dgiðxÞ
dx

!
C−1"

ij

dgjðxÞ
dx

#$$$$$
x=xpðfgkgÞ

: [11]

All the terms in Eq. 11 are experimentally accessible.
Eq. 11 tells us the precision with which expression levels en-

code position: Observing the expression levels fgig allows us (or
the cell) to specify position, at best, with an “error bar” σx ; this
error could be different at different points in the embryo, so we
really should write σxðxÞ. Checking our intuition, we see that this
error bar is smaller when the variability in expression is smaller
(smaller C), when the mean slopes of the expression levels are
larger (larger dgi=dx), or when we can sum over more genes.
We can define a similar quantity based on measurements of
a single gene,

1
σxðxÞ

=
$$$$
dgiðxÞ
dx

$$$$
1

σiðxÞ
; [12]

and this construction is shown schematically in Fig. 4 A and B in
the case of Hb. Note that when σx is small, we can justify our
approximation that PðxjfgigÞ is sharply peaked, but when σx
becomes large, it is more rigorous simply to say that we do not
have much information about x rather than trying to give a more
quantitative interpretation.
Analyzing the spatial profiles and variability of gene expres-

sion as suggested by Eq. 11, we obtain the estimates of σx shown
in Fig. 4C. Remarkably, the reliability of position estimates based
on the four gap genes is σx=L∼ 1% (compare with dashed line),
almost precisely equal to the observed reproducibility with which
pattern elements are positioned along the anterior/posterior axis.
This is strong evidence that the gap genes, taken together, carry
the information needed to specify the full pattern. Further, this
positional accuracy is almost constant along the length of the
embryo, which again is consistent with what we see in Fig. 2. This
constancy emerges in a nontrivial way from the expression pro-
files, the noise levels, and the correlation structure of the noise.
If we try to make estimates based on one gene, we can reach
∼ 1% accuracy only in a very limited region of the embryo, but
the detailed structure of the spatial profiles ensures that these
signals can be combined to give nearly constant accuracy.
If the errors in estimating position really are Gaussian, as

in Eq. 10, then we can substitute into Eq. 4 to show that
I = hlog2½0:8L=ðσx

ffiffiffiffiffiffiffiffi
2πe

p
Þ$i, where L is the length of the embryo,

and h⋯i denotes an average over position. Computing this av-
erage, we have I = 4:14± 0:05  bits. Alternatively, we can use the
distribution of expression levels at each position, Eq. 8, to
compute the information directly as in Eq. 6, and we find

I = 4:1± 0:23  bits. The agreement between these estimates sup-
ports our approximations and gives us confidence that the mea-
surement of σx in Fig. 4 really does characterize the encoding of
positional information by the gap genes.
Thus, the gap genes carry enough information for each nu-

cleus to know its position with an error bar ∼ 1% of the embryo’s
length, and this is equal to the variability in localization of fea-
tures that emerge in later stages of development. On the other
hand, as noted above, this is not quite enough to specify the
position of every nucleus uniquely. Is it possible that more in-
formation is “hiding” in the expression profiles? In particular, if
the noise in neighboring cells is correlated, the errors in speci-
fying relative positions (e.g., that one cell is more posterior than
another) could be much smaller than the errors in specifying
absolute positions. As a first step, we can ask how much in-
formation the expression levels of the gap genes provide about
position measured from a “center of mass” that we compute
from the whole spatial profile, rather than position in the fixed
coordinate system that starts with x= 0 at the anterior end of the
embryo. This relative positional information is 0:7  bits larger
than the absolute positional information; although the data
are very preliminary, we see hints of a similar gain of informa-
tion about relative position for the peaks of Eve expression in
Fig. 2. These results indicate that, through spatial comparisons,
there may be enough information available to specify each
cell’s identity.

More Than One Bit per Gene?
The positional information carried by single gap genes is more
nearly two bits than one, as described above, suggesting that
spatial variations in gene expression define much more than on/
off expression domains. However, when we combine information
from different genes, redundancy among the spatial profiles of
the different genes limits the information gain, with the result

A B

C

Fig. 4. Positional error as a function of position. (A) Geometrical inter-
pretation of the positional error for a single gene (Hb) at a given position.
From Eq. 12, σxðxÞ is proportional to the reproducibility of the profiles and is
inversely proportional to the derivative of the mean profile. (B) Positional
error based on the expression of Hb alone (red; mean ± SEM from boot-
strapping) compared with the mean profile (gray). (C) Positional error based
on combinations of gap genes, from Eq. 11. Note that once we combine
information from all the gap genes, the net positional error is nearly con-
stant and equal to 1% along the entire anterior/posterior axis.
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Figure 20: Effective positional noise levels from gap gene expression levels. Calcula-
tions ofσx are done in the small noise limit, from Eq (84), using the data illustrated in
Fig 11. As indicated in the inset, different curves correspond to including just g1, the
combinations {g1, g2} and {g1, g2, g3} and finally all four gap genes {g1, g2, g3, g4}.
With all the genes we find that the positional error is small along the entire anterior–
posterior axis, and close to σx/L = 0.01 (dashed line). Reproduced from Ref [120],
with thanks to JO Dubuis, G Tkačik, EF Wieschaus, and T Gregor.

Measurements are like springs that hold our estimate of the underlying variable close to its
true value. As with the thermal fluctuations of a particle hanging from a spring, the variance is
inversely proportional to the spring constant. If we make multiple independent measurements
the spring constants should add, reducing the total variance,

1
σ2

x
=
∑

a

1
σ2

ga

�

d〈ga〉
d x

�2

. (83)

In fact we have
1
σ2

x
=
∑

ij

d〈gi(x)〉
d x

�

Ĉ−1(x)
�

ij

d〈gj(x)〉
d x

, (84)

but this reduces to Eq (83) if we rotate into the eigenbasis of the covariance matrix Ĉ(x).
Notice that in this small noise approximation, the effective positional noise σx depends on the
true position but not on the particular concentrations {gi} that we happen to observe. Also,
in contrast to the discussion of decoding in §2.3, this analysis is local, and does not address
ambiguities; again, it makes sense in a small noise limit, where ambiguities are resolved.

Everything that we need to compute the effective positional error is contained in the data
of Fig 11, where we see the mean expression levels 〈gi(x)〉 and covariance matrices Ĉ(x) as
functions of position. Although Eq (84) includes multiple genes, we can start with just one,
corresponding to g1 in Fig 11. We see that with this one gene the positional noise drops to
σx/L ∼ 0.01 in a window near the middle of the embryo, but is much larger outside this
window. As we add more of the gap genes, the very largest values of σx are reduced dramati-
cally, and we end up with a nearly uniform σx/L ∼ 0.01 across the full length of the embryo.
Among other things, this is small enough that our approximations above are self–consistent.
One should also see this as quantifying the progressive improvement of the decoding maps as
we add more genes in Fig 13.30

30Although the analysis of positional errors came before the full decoding maps, by roughly five years [10,120].
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There are at least two distinct points of interest in Fig 20. First, the scale of the positional
errors, σx/L ∼ 0.01. This is the same as the scale of positional errors in pair–rule stripe posi-
tions, and also in the placement of the “cephalic furrow” [166], which is the first macroscopic
structural change that happens after the embryo is separated into discrete cells. The conven-
tional perspective on this system has been that information flow from maternal inputs to gap
genes to pair–rule genes entails a gradual refinement, with noisy inputs ultimately generating
a precise and reproducible pattern [167, 168]. We see here that the precision visible at the
pair–rule genes already is present in the gap genes, so information must be transformed and
preserved rather than refined.

Second, the positional error is nearly uniform along the anterior–posterior axis. This is
surprising because individual genes have complicated patterns of expression and noise, and
provide precise information only in limited regions. Indeed, as we saw in §2.3, information
carried by single gap genes is not only inhomogeneous but also ambiguous. Somehow the
signal and noise (and even the covariances) of all four gap genes conspire to generate nearly
constant precision.

To understand why the constancy of precision is so interesting, let’s finish our project of
estimating the information, in bits carried by {gi}. We can write

I({gi}; x) = S[PX (x)]− 〈S[P(x |{gi})]〉 , (85)

where as before S[P] is the entropy of the distribution P. But we have seen that P(x |{gi}) is
nearly Gaussian, which means immediately that

S[P(x |{gi})] =
1
2

ln
�

2πeσ2
x

�

. (86)

Further, we have seen that σx doesn’t depend on the precise expression levels, but only on the
position of the cell in which these expression levels are observed. Thus the average in Eq (85)
can be written as an average over positions, so that

I({gi}; x) = −
∫

d x PX (x) ln PX (x)−
1
2

∫

d x PX (x) ln
�

2πeσ2
x(x)

�

(87)

= −
∫

d x PX (x) ln
�

PX (x)
p

2πeσx(x)
�

, (88)

which brings us back exactly to Eq (54). Although there are many dimensions to the output
of this system, the fact that there is only one dimension at the input means that, at least in the
low noise limit, we can get back to a picture very much like the one input, one output system
that we started with in §3.1.

In particular, if we imagine that the embryo could adjust the distribution of cell positions,
then the optimal information transmission would occur when

PX (x)∝
1

σx(x)
. (89)

Since the real PX (x) is essentially uniform, optimal information transmission predicts that
σx(x) should be uniform, and this is what we see. Again, it requires considerable conspiracy
among the four gap genes to achieve uniform positional error, so this seems like a significant
success for the theory of optimal information transmission. There are two problems.

The first problem is that σx(x) is not exactly uniform, but theory actually gives us a way to
measure the significance of these deviations. With uniform PX (x) = 1/L the actual information
transmitted is, substituting into Eq (88),

I =
1
L

∫ L

0

d x ln

�

L
p

2πeσx(x)

�

. (90)
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On the other hand, if we are free to optimize PX (x) over the range 0 < x < L then from Eq
(61) the maximum information possible given the measured σx(x) becomes

Imax = ln

�

1
p

2πe

∫ L

0

d x
σx(x)

�

. (91)

If we plug in the results from our analysis of the experimental data, we find31

I
Imax

= 0.984± 0.003 . (92)

Thus optimization of information transmission predicts a match between the positional noise
levels and the distribution of cell positions, and this match is sufficiently good that it brings
the embryo within 2% of the optimum [120].

The second problem is that it seems a bit weird to talk about redistributing cells along the
embryo’s axis. We don’t really need to do this. The gap gene network output can be thought
of not as providing information about position but rather about the concentrations of the ma-
ternal input molecules. The mapping between position and input concentration is something
that could be different with different parameters of the relevant dynamics, different anchoring
of the mRNA molecules, etc.. Thus we can imagine a family of embryos with different possible
distributions of inputs to the gap gene network. But if the mapping between position and in-
put concentration is deterministic and invertible, then information about concentration is the
same as information about position, and all of the arguments here about matching go through.

To get a rough estimate of the total positional information conveyed by the gap genes we
can use Eq (90) but with ln→ log2 so the units are bits, and the approximate σx/L ∼ 0.01,
which gives I ∼ log2(100/

p
2πe)∼ 4.6bits. We can’t see all of this because we are measuring

only in the central 80% of the anterior–posterior axis (0.1 < x/L < 0.9); outside this region
imaging becomes prone to systematic errors from the curvature of the embryo. But if we
correct for this then the integral gives a result very close to the rough answer, and also very
close to a more brute force integration over the four dimensional space {gi}, which does not
require any small noise or Gaussian approximations [120,165].

The actual number of bits is not that much more than four, and there are four gap genes
... maybe it’s just one bit per gene after all? The way to test this is to imagine that the readout
mechanisms can only resolve two levels of expression, high and low; formally this means
transforming

gi→ σi = H(gi − θi) , (93)

where H is the step function and θ is a threshold that divides the two levels. If we know the
thresholds then we can compute Iθ ({σi}; x), where the notation reminds us that the answer
depends on the thresholds θ = {θi}. To be generous, we can optimize the thresholds, maximiz-
ing how much information this on/off description of gene expression can capture. The answer
is that I({σi}; x)< 3 bits [120]. Further, this information is distributed very inhomogenously,
so that some “binary words” {σi} point to x values that span ∼ 10% of the anterior–posterior
axis. Thus, to extract ∼ 4 bits of positional information from four genes requires mechanisms
that have much more than this capacity to read out the expression levels.

Recently we returned to the issue of readout precision [169, 170]. We know, as just ex-
plained, that reading each concentration with one bit of precision is not enough to extract all
the available information. On the other hand, our discussion of decoding positional informa-
tion from the gap genes (§2) assumed that cells had access to the true measured concentrations

31Estimating information theoretic quantities from real data can be challenging, and there are interesting theo-
retical questions about how best to do this, especially if you need control over the error bars (as in this case). See,
for example, Appendix A.8 of Ref [57].

44

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.84


SciPost Phys. Lect. Notes 84 (2024)

of each molecule, which surely is unrealistic. How can the embryo best trade bits of precision
in the readout against the bits of relevant positional information that are preserved?

Formally we can imagine that the expression levels of the gap genes are mapped into some
intermediate variable, such as the occupancy of binding sites along the DNA; let’s call this
intermediate variable C . Inevitably this mapping is noisy, and this means that the informa-
tion which C can carry about {gi}, I(C; {gi}), is limited. Given this limitation, what mapping
{gi} → C will maximize the information about position I(C; x)? This defines a new optimiza-
tion problem

max
P(C |{gi})

[I(C; x)− T I(C; {gi})] , (94)

where T is a Lagrange multiplier and we make explicit that the mapping {gi} → C is prob-
abilistic; this is an example of the information bottleneck problem [171]. To extract all the
available information, that is to have I(C; x) ≈ I({gi}; x), requires readout mechanisms with
a capacity I(C; {gi}) of at least 8bits [169]. Further, the most efficient mechanisms involve C
being sensitive to combinations of the different expression levels; if we have separate sensors
gi → Ci they need to have vastly more capacity. Finally, the embryo is in a regime where the
trading of I(C; x) vs I(C; {gi}) has a universal form [170]. If we take seriously the idea that
C is something like the occupancy of binding sites, or the collective states of the “enhancers”
into which these sites are grouped, then these arguments about trading bits provide a path to
predict the molecular mechanisms that instantiate the optimal decoding strategies of §2.3.

Before leaving this topic I want to emphasize that Figs 18, 19, and 20 all are testing the
same optimization principle. Thus we are making predictions about neurons that generate
graded voltages, neurons that generate spikes, and networks of genes, all with the same the-
oretical idea and all connecting to experiment with no free parameters.

4 Network architecture

In the flow of positional information from the maternal inputs to the gap genes to the pair–
rule genes, we have seen evidence for optimization in the distribution of inputs (§3.3) and
in the processing of the outputs (§2.3). We now have to ask if we can apply optimization
principles to the network itself. Doing this involves returning to the challenge laid out in the
first lecture: realistic descriptions of the gap gene network require 50+ parameters, and are in
some obvious sense very complicated. To approach optimization of such a complex network
it will be useful to break off smaller pieces of the problem and gain intuition.

The idea that we can derive the functional behavior of a network from the optimization of
information transmission is quite old, having its origins in the context of sensory information
processing by the brain. Just a decade after Shannon’s original work on information theory
the National Physical Laboratory in the UK hosted a remarkable Symposium on the Mechaniza-
tion of Thought Processes. Among other presentations, Horace Barlow spoke about “Sensory
mechanisms, the reduction of redundancy, and intelligence” [172]. This was, I think, the first
place where optimization principles for neural information processing were articulated.32 It
also seems worth emphasizing the ambition that one sees in these titles, both of Barlow’s paper
and for the symposium as a whole.

4.1 Linear filtering in neural networks

Let’s dive in and think about a network in which a layer of input variables {xi} drives a layer
of output variables {yi}, as in Fig 21. The simplest possibility is that the transformation is a

32Barlow revisited these ideas at another conference a few years later, and this is the more widely cited version
of his ideas about “efficient coding” [173]. Thinking about our modern publication habits, it seems worth noting
that this work had impact on generations of scientists even though there is no regular journal article to cite.
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Figure 21: Transformation from inputs {xi} to outputs {yi}, as in Eq (95). Only a
fraction of possible connections Mij are illustrated; fewer still are labelled. Not shown
are the independent noise sources added to each output element.

noisy linear mapping, so that
yi =

∑

j

Mij xj + ζi , (95)

again to keep things simple we imagine the number of inputs and outputs are the same so
i = 1, 2, · · · , N and similarly for j. Let the noise ζi be Gaussian and independent at every
site i. In this case optimizing the network means choosing the transformation matrix M̂ to
maximize the mutual information between inputs and outputs. If the variance of the noise is
fixed, then one can always increase the mutual information by increasing the magnitude of M̂ ,
which seems like cheating. To have a well defined problem we should bound the magnitudes,
so that the scale of the noise has meaning in relation to the inputs; a conventional choice is to
constrain the summed variances of the outputs. This leaves us with the optimization problem

max
M̂

�

I ({yi}; {xi})−µ
N
∑

i=1

〈y2
i 〉

�

. (96)

The structure of this problem depends on the distribution P({xi}) from which inputs are drawn.
The general version of Eq (96) is challenging. It is much easier if we can approximate

P({xi}) as Gaussian. Then we have

P({xi}) =
1

p

(2π)N
exp



−
1
2

lndet Ĉx −
1
2

∑

i,j

xi

�

Ĉ−1
x

�

ij xj



 , (97)

P({yi}|{xi}) =
1

p

(2π)N
exp



−
N
2

ln〈ζ2〉 −
1

2〈ζ2〉

∑

i

 

yi −
∑

j

Mij xj

!2


 , (98)

P({yi}) =
1

p

(2π)N
exp



−
1
2

lndet Ĉy −
1
2

∑

i,j

yi

�

Ĉ−1
y

�

ij
yj



 , (99)
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the covariance matrices are
�

Ĉx

�

ij = 〈xi xj〉 , (100)
�

Ĉy

�

ij = 〈yi yj〉= Mik

�

Ĉx

�

kl Mjl + 〈ζ2〉δij , (101)

⇒ Ĉy = M̂ Ĉ M̂ T + 〈ζ2〉1 . (102)

We can substitute into the mutual information

I ({yi}; {xi})≡
∫

dN x

∫

dN y P({yi}|{xi})P({xi}) log
�

P({yi}|{xi})
P({yi})

�

(103)

=
­

log
�

P({yi}|{xi})
P({yi})

�·

(104)

= −
N
2

ln〈ζ2〉 −
1

2〈ζ2〉

∑

i

­

 

yi −
∑

j

Mij xj

!2
·

+
1
2

ln det Ĉy +
1
2

∑

i,j

〈yi yj〉
�

Ĉ−1
y

�

ij
. (105)

Notice that, from Eq (95), we have

yi −
∑

j

Mij xj = ζi⇒
1

2〈ζ2〉

∑

i

­

 

yi −
∑

j

Mij xj

!2
·

=
1

2〈ζ2〉

∑

i

〈ζ2〉=
N
2

. (106)

Similarly

〈yi yj〉=
�

Ĉy

�

ij⇒
1
2

∑

i,j

〈yi yj〉
�

Ĉ−1
y

�

ij
=

1
2

∑

i,j

�

Ĉy

�

ij

�

Ĉ−1
y

�

ij
=

N
2

. (107)

Thus the complicated looking summations cancel and we have

I ({yi}; {xi}) = −
N
2

ln〈ζ2〉+
1
2

lndet Ĉy =
1
2

Tr ln
�

1+
1
〈ζ2〉

M̂ Ĉ M̂ T
�

. (108)

If the eigenvalues of M̂ Ĉ M̂ T are λn, then the optimization problem in Eq (96) becomes

max

�

1
2

∑

n

ln
�

1+λn/〈ζ2〉
�

−µ
∑

n

λn

�

. (109)

The optimum is reached where all the λn are equal.
The correlation structure of the inputs usually is non–trivial, so the eigenvalues of the

covariance matrix Ĉx are spread over some spectrum. Optimizing information transmission
in the class of problems defined by Eq (95) means rearranging these inputs to “whiten” this
spectrum.33 Notice that if all eigenvalues of M̂ Ĉx M̂ T are equal then Ĉy is proportional to the
unit matrix and hence different signals yi and yj ̸=i are independent of one another. Thus the
optimal M̂ diagonalizes the covariance matrix of the input signals, transforming to principal
components, and then rescales these so that they have equal variances.

A simple but important example of these ideas is color vision. Recall that in daylight our
vision is based on three kinds of cones, each tuned to a different range of photon energies. We
can think of these as sensitive approximately to red, green, and blue, though you should never
say this in front of someone who actually studies color vision—“red” is a percept, not the label
of a cell type; the convention is to describe the different cones as sensitive to long, medium, and

33The name comes from the fact that in truly white light all components of the spectrum have equal weight.
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short wavelengths. It is an old idea that the three cone signals are processed in well defined
combinations corresponding roughly to the percepts of luminance, red vs green, and blue vs
yellow. The history of these ideas is complicated, with all sorts of heroic figures shouting at
one another. Things were confusing in part because the “opponent process” theory seemed
to involve four color axes (red, green, blue, and yellow) while the alternative “trichromatic”
theory involved only three (which we now attach to the three types of cones). It seems to
have been Schrödinger who sorted this out in 1925 [174]. We now know that the three cone
signals indeed are grouped together in the three combinations already in the retina, and it is
these combined signals that are transmitted to the brain [175].

In 1983, Buchsbaum and Gottschalk suggested that the transformation into luminance,
red vs green, and blue vs yellow might be the solution to the optimization problem we are
discussing here [176]. In order to see if this makes sense, we need to know the covariance
matrix of the three cone signals. This depends strongly on the absorption spectra of the cone
pigments, with large positive correlations arising simply because these spectra overlap. But
the cone signal statistics also depend on the spectral composition of the images that the eye
is looking at. To get at these, Ruderman, Cronin, and Chiao used a hyperspectral camera to
take pictures in natural environments—woodlands, forests and rainforests, and a mangrove
swamp [177]. In effect this camera does spectroscopy in each pixel of a digital image, and then
these spectrally resolved images can be projected onto the known sensitivities of the individual
cone pigments to estimate the photon capture in each of the three cones looking at the same
point. In keeping with the discussion of adaptation above (§3.2) the cone signals xi were taken
as the log of the number of photon counts.34

The results obtained by Ruderman et al are remarkably simple and crisp. In our notation,
the optimal matrix M̂ takes the form

M̂ =







1p
3σℓ

0 0

0 1p
6σb y

0

0 0 1p
2σr g











1.004 1.005 0.991
1.014 0.968 −2.009
0.993 −1.007 0.016



 . (110)

We see that y1 is the sum of the signals in the three cones, and the weights are equal in the
second decimal place or better. Similarly y3 is the difference between the signals in long and
medium length cones, with almost no contribution from the short wavelength cones; this is
the “red minus green” opponent channel. Finally y2 combines the long and medium cone
signals and subtracts the short wavelength signal, corresponding to “yellow minus blue.” As
with the luminance channel y1, the combinations of cone signals in the two opponent channels
are in integer ratios, with one percent accuracy. The signals along the different channels have
standard deviations in the ratio σℓ : σb y : σr g ∼ 1 : 0.2 : 0.02. While we have a great
appreciation for the subtleties of color, most of the variance in the images that we see is in
the luminance channel.35 Embarrassingly, I don’t know if the combination of cone signals into
neural signals has been measured precisely enough to test these predictions of integer ratios.

Staying with the visual system, we can think of the {xi} as signals from cones at different
positions (now neglecting color). If the cones form a regular lattice, and the input visual signals
are translationally invariant, then everything will be diagonal after a Fourier transform. Let’s
call k the spatial Fourier variable, and then

ỹ(k) = M̃(k) x̃(k) + ζ̃(k) . (111)

34We use our cones in bright light, so there is no worry about zero counts.
35In fact this might be a cautionary tale about dimensionality reduction. We can capture ∼ 95% of the variance

in what we see with just one dimension, corresponding to a completely greyscale world.
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Further, the transformation M̃(k) that maximizes information transmission will obey

|M̃(k)| ∝
1

p

Sx(k)
, (112)

where Sx(k) is the power spectrum of the signals {xi} [178, 179]. We know that the spatial
power spectrum of natural images is scale invariant [180],

S(k) =
A
|k|2−η

, (113)

so the prediction is |M̃(k)| ∝ |k|1−η/2. The growth with |k| is cut off by the effects of noise in
the inputs xi, e.g. the random arrival of photons.

Given the statistical structure of natural images, optimization of information flow predicts
that there will be zero gain for zero spatial frequency, |M̃(k= 0)|= 0. The transformation Mij
thus serves roughly as a spatial differentiator, so that the output yi is large when the pattern
{xj} includes a sharp edge, and is small when the {xj} are nearly uniform. Qualitatively these
predictions are correct for neurons in the retina. The output cells, which carry information
from eye to brain, have long been known to have “center–surround” receptive fields [181,182]:
the response of these neurons is driven by the difference between the average light intensity
in a small central region and the average over a larger surrounding region, and in many cases
the two regions have equal weight so that the response is differentiating. Barlow understood
that this sort of spatial differencing, also called “lateral inhibition” [183], would remove the
redundancy between signals in neighboring photoreceptors, enhancing the transmission of
information by limited numbers of action potentials along limited numbers of neurons [172,
173]; the analysis here translates this qualitative observation into equations.

These arguments about whitening apply also in the time domain. In the simplest example

y(t) =

∫

dτM(τ)x(t −τ) +η(t) . (114)

If η is white noise, 〈η(t)η(t ′)〉 = N0δ(t − t ′), then the rate at which information about x(t)
is conveyed by y(t) is [57,148,184]

Rinfo =
1
2

∫

dω
2π

ln
�

1+
1
N0
|M̃(ω)|2Sx(ω)

�

, (115)

where Sx(ω) is the power spectrum of the input signal

〈x(t)x(t ′)〉=
∫

dω
2π

e−iω(t−t ′)Sx(ω) . (116)

If we optimize Rinfo while holding fixed the output dynamic range 〈y2〉, then we find an analog
of Eq (112),

|M̃(ω)| ∝
1

p

Sx(ω)
. (117)

If input signals have scale invariant dynamics, Sx(ω)∼ 1/|ω|, then we predict |M̃(ω)| ∼
p

|ω|.
This is weird, since it corresponds to the filter M taking half of a derivative.

Direct measurements of the transformation M between neurons are not so easy. Our linear
models make more sense if the cells have graded voltage responses, as in the first stages of
vision. In the fly retina, for example, both the photoreceptor cells and the next cells in line
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Figure 22: Filtering at the first synapse in fly vision. (A) Linear response of voltage
to temporal variations in light intensity, as in Eq (118), for photoreceptors and large
monopolar cells (LMC). (B) Effective transfer function between photoreceptors and
LMCs, from Eq (119). My thanks to SB Laughlin and RR de Ruyter van Steveninck
for sharing these data, from experiments described in Ref [185].

(large monopolar cells, LMCs from §3.2) have a large regime in which the average voltage
V (t) responds linearly to time variations in light intensity I(t) around a background I0,

〈V (t)〉 − V0 =
1
I0

∫

dτ T (τ)[I(t −τ)− I0] , (118)

defining a transfer function T (τ); it is more convenient to think about the Fourier transform
T̃ (ω). These transfer functions can be measured in both the receptors and LMCs, with results
in Fig 22A. Then we can take the ratio to estimate the filter across the synapse,

M̃(ω) =
T̃LMC(ω)

Treceptor(ω)
, (119)

with results in Fig 22B. Strikingly, we really do see |M̃(ω)| ∼
p

|ω| across a wide range of
frequencies. Such fractional differentiation is much more widespread, perhaps serving to
optimize the transmission of information about scale invariant signals throughout the brain
[186,187]. These ideas have distant but fascinating precursors [188].

4.2 Ingredients of a genetic network

The simplest example of a genetic network was shown schematically in Fig 3. To be more
consistent with the notation below, let’s describe this by saying that a single transcription
factor (TF) at concentration c controls the expression level g of a target gene. We’ll assume
for simplicity that the system is in steady state.

The information that g provides about the input concentration c is

I(g; c) =

∫

d g

∫

dcP(g|c)Pin(c) log
�

P(g|c)
Pout(g)

�

, (120)
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where the distribution of outputs

Pout(g) =

∫

dc P(g|c)Pin(c) . (121)

Consistent with the analysis of decoding in §2.3, we’ll assume that the noise in the response
of g to the input c is Gaussian, so that

P(g|c) =
1

q

2πσ2
g(c)

exp

�

−
(g − ḡ(c))2

2σ2
g(c)

�

. (122)

We expect that the mean expression level ḡ(c) has a sigmoidal dependence on the TF
concentration, as in Fig 3, which we can write as

ḡ(c) =
ch

Kh + ch
, (123)

h > 0 means that the TF activates expression and K is the concentration at which this effect
is half–maximal. More quantitatively h is a measure of sensitivity. We can rationalize this
form by imagining the h molecules of the TF bind cooperatively to sites along the DNA, and
this binding influences transcription. To complete our description, and the calculation of the
information transmission, we need to know the noise level σg(c).

The molecules whose concentration is measured by g ultimately are made one at a time,
and these are random events. So we expect

p
N fluctuations in making N molecules. We have

to be a bit careful, first because we have chosen units in which the maximum ḡ is unity, and
second because many proteins can be translated from a single mRNA molecule before it is
degraded. Thus we can write the contribution of this counting noise as

σ2
g,count(c) =

1
Nmax

ḡ(c) , (124)

where Nmax is the maximum number of independent molecules being made. Probably this is
the number of mRNAs, but we can be flexible.

In order to regulate gene expression, the TF molecules have to arrive at a small target
along the DNA, where they bind to specific sequences. We can thus think of the regulatory
mechanism as a small sensor of transcription factor concentration, with gene expression as the
readout. The physical limits to sensing concentrations were first discussed by Berg and Purcell
in the context of bacterial chemotaxis [56]. This remains one of the foundational papers of
our field, so it is worth taking a detour to review their arguments, and some of the subsequent
developments, leading up to Eq (136).

A sensor of linear dimension a sitting in a solution of molecules with concentration c will
count n̄ ∼ ca3 molecules on average, as shown in Fig 23. But as molecules diffuse in and out
of the sensitive volume, this molecule count will fluctuate by δn ∼

p
n̄. Since concentration

is proportional to molecule number, this means that estimates of concentration will have a
fractional fluctuation

δc
c

�

�

�

�

1
∼
δn
n̄
∼

1
p

ca3
, (125)

where the subscript reminds us that this is based on one snapshot of molecule counts. We
should be able to reduce the noise by averaging over time, but this works only if we make
multiple independent measurements; just counting the same molecules again doesn’t give a
better estimate of the surrounding concentration. It takes a time τc ∼ a2/D for molecules in
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n̄ = ca3

Figure 23: Understanding the physical limits to concentration measurements [56,
57]. A receptor of linear size a samples a volume ∼ a3 and thus counts a mean num-
ber of molecules n̄∼ ca3, where c is the concentration. Molecules move randomly in
and out of the sensitive volume with a diffusion constant D, setting the correlation
time τc ∼ a2/D. Figure adapted from Ref [57], with permission.

the sensitive volume to exchange with the bulk solution via diffusion, so if we average over
time τavg we can make τavg/τc independent measurements, and thus reduce the noise

δc
c
→
δc
c

�

�

�

�

1
·

1
Æ

τavg/τc

∼
1

Æ

Dacτavg
. (126)

We see that the different parameters of the problem combine in a very simple way. This is the
“Berg–Purcell limit” to concentration sensing.

It’s always good to check that the units work out:

Dacτavg =
�

ℓ2/t
�

[ℓ]
�

1/ℓ3
�

[t] = [] , (127)

so this is a dimensionless combination. Note that the 3 in [1/ℓ3] is from three dimensions, so
the answer must be different if we are trying to sense the concentration of molecules diffusing
in a membrane, or if there is a significant contribution from proteins sliding along the length
of the (one–dimensional) DNA molecule [189].

It is useful to note that ∼ Dac is the mean rate at which molecules arrive at a (three–
dimensional) target of size a via diffusion. For example, if we have the chemical reaction
A+ B→ AB, we write the dynamics of the concentration as

d[AB]
d t

= k2[A][B] , (128)

where k2 is a “second order rate constant.” This rate constant is bounded by the rate at which
A and B can find each other, and this is k2 ∼ Da, where a is the size of the molecules. One can
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make this precise by solving the diffusion equation with appropriate boundary conditions,36

and develop more precise models in which the molecules have to approach one another at
the correct orientation. Thus one can think of Dac as the rate at which molecules arrive at
the sensor, and Dacτavg as the mean number of molecules that our sensor counts. The Berg–
Purcell limit then is the statement that there are

p
n fluctuations in counting molecules, just

as with counting photons from a conventional light source.
In this discussion the linear dimensions of the sensor a is a rough concept. In their original

discussion, Berg and Purcell were thinking about a bacterium sensing the concentration of
attractive or repulsive molecules in its environment, and the initial guess is that a is just the
size of the bacterium itself. But this is weird, since what really happens is that molecules
bind to particular receptors on the cell surface. These receptors are themselves of molecular
dimensions—nanometers rather than the micron size of the whole cell—and receptors for any
particular molecules cover only a tiny fraction of the cell’s surface.

If there is just one receptor of linear dimension ar then the Berg–Purcell argument should
still work. If there are Nr of these receptors then it is plausible that noise is reduced by a factor
1/
p

Nr, which is equivalent to saying they act together as a single receptor with effective size
aeff ∼ Nrar. But if the number of receptors becomes large enough that the area occupied by
the receptors becomes comparable to the area of the cell surface, Nra

2
r ∼ a2

cell, then it seems
like the whole cell should act as one big receptor and aeff→ acell. How does this work?

In a fabulous bit of hand waving plus analogies, Berg and Purcell argued that the tendency
of random walk trajectories to bounce along a surface leads to correlations in the encounters
of individual molecules with nearby receptors. With Nr receptors scattered over the surface of
the cell, this leads to an effective size

aeff ∼ acell
Nr ar

Nr ar + acell
. (129)

Notice that this saturates when Nr ar ∼ acell, at which the fractional coverage of the surface
is Nr a2

r /a
2
cell ∼ ar/acell ∼ 10−3. This is a dramatic effect, and matters enormously in the life

of the cell, which can act as one big sensor even though only a small fraction of its surface is
covered by any single receptor type.

The goal of Berg and Purcell’s work was (in part) to compare the physical limits to con-
centration sensing with the performance of real bacteria as they navigate through chemical
gradients. The result was that it would be physically impossible for cells to make decisions
with the observed reliability if they were making spatial measurements, comparing concen-
trations at head vs. tail to see if they are moving in the right direction. Instead they must
measure changing concentrations in time along the path taken as they swim. They need to
average these time derivatives, effectively comparing the recent past with a longer term av-
erage, but the duration of this averaging is limited by the rotational Brownian motion of the
cell itself. The result is a semi-quantitative theory of what bacteria must do in order to achieve
their observed chemotactic performance, and all of these predictions proved to be correct.

One question is whether the Berg–Purcell arguments could be sharpened to give a more
quantitative theory of chemotactic strategies, and this continues to be an interesting direction.
More relevant to our discussion is whether these limits to concentration sensing are sufficiently
general that they can be applied, for example, to the problem of transcriptional control. This
matters because of a simple order–of–magnitude argument. Transcription factors function at
concentrations of tens of nanoMolar,

c ∼ 10 nM = 10× 10−9 × (6× 1023)
1

103 (cm)3
×
�

10−4 cm
µm

�3

∼ 6 (µm)−3 . (130)

36See Problem 54 in Ref [57].
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Diffusion constants for proteins in the cytoplasm are D ∼ 1µm2/s, and the target to which
these molecules bind has dimensions a ∼ 3nm. The result is that

Dac ∼ 2× 10−2 s−1⇒
δc
c
∼

1
Æ

Dacτavg
∼
�

1min
τavg

�1/2

. (131)

This suggests that reliable responses to ten percent differences in transcription factor concen-
tration will require more than an hour of temporal integration. Neighboring cells in the fly
embryo experience maternal inputs that differ by ∼ 10% in concentration, and they reliably
express different combinations of gap genes; this certainly takes less than one hour [125].

The conclusion from Eq (131) is not that transcriptional regulation definitely reaches the
physical limits to concentration sensing, but rather that it operates in a regime where these
limits are relevant. Even this more modest conclusion hinges on applying the Berg–Purcell
ideas far from their origins; this is made more uncertain by the beautifully intuitive but non–
rigorous nature of the original arguments.37 Some years ago my colleagues and I started to
worry about this [189–191], and by now the literature has grown substantially [192–199].
Here is what I think we know:

• One way to make the Berg–Purcell argument rigorous is to analyze the fluctuations in
occupancy of a receptor binding site as it comes to equilibrium with molecules diffusing
in the surrounding solution. These fluctuations are a form of thermal noise, subject to
the fluctuation–dissipation theorem.

• Using the fluctuation–dissipation theorem we can see explicitly how diffusion among
nearby receptors generates correlated noise and results with the flavor of Eq (129).

• Cooperativity among multiple binding events enhances sensitivity and reduces excess
noise, but never below the bound set by Berg and Purcell.

• Analytic results from the fluctuation dissipation theorem can be reproduced by careful
numerical simulation, though small discrepancies remain to be understood.

• Cells can push below the Berg–Purcell limit by factors ∼ 2 with signal processing strate-
gies that are more sophisticated than just averaging receptor occupancy.

• These strategies only work away from equilibrium, providing a path to connect energy
dissipation and signaling accuracy.

• There are interesting generalizations to sensing time dependent concentrations, or the
concentrations of multiple species by multiple receptors; results can be counterintuitive.

From all this work, the general conclusion is that Berg and Purcell got it right: Eq (126) defines
a minimal noise level for sensing concentrations, up to factors of order unity that could also
be seen as ambiguity in defining the size a of the detector.

What the Berg–Purcell limit tells us is that the random arrival of molecules at their target
site generates an effective concentration noise with variance

σ2
c =

�

δc
c

�2

c2 ∼
c

Daτavg
. (132)

37I never had the chance to discuss this with Purcell, but Berg was clear that their arguments were rough and
that it would be nice to have something more rigorous.
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This effective concentration noise will propagate through the genetic regulatory element, con-
tributing to the variance in the output as

σ2
g,BP(c)∼

�

�

�

�

d ḡ(c)
dc

�

�

�

�

2

σ2
c . (133)

Putting this together with the counting noise from Eq (124) we have

σ2
g(c) = σ

2
g,count(c) +σ

2
g,BP(c) =

1
Nmax

ḡ(c) +

�

�

�

�

d ḡ(c)
dc

�

�

�

�

2 c
Daτavg

(134)

=
1

Nmax

�

ḡ(c) + (c/c0)

�

�

�

�

d ḡ(c)
d(c/c0)

�

�

�

�

2
�

, (135)

where the natural units of concentration are c0 = Nmax/Daτavg. From the numbers above, we
see that real transcription factor concentrations are comparable to c0, which is part of why the
optimization of information transmission leads to interesting results.

Now we can make use of results from the previous lecture, §3.1. First we propagate the
output noise σg back through the input/output relation, as in Fig 17, to obtain an effective
input noise

σeff
c =

�

�

�

�

d ḡ(c)
dc

�

�

�

�

−1

σg(c) =
c0

h
p

Nmax

(c/c0)
ḡ(c)[1− ḡ(c)]

�

ḡ(c) +
h2

(c/c0)
ḡ(c)[1− ḡ(c)]

�1/2

. (136)

Then we can work in the small noise limit to estimate the maximum information, from Eqs (60)
and (61),

Imax = log2

�

1
p

2πe

∫ cmax

0

dc
σeff

c

�

bits , (137)

where we go back to conventional units and note explicitly that the transcription factor has
some maximum concentration cmax. Playing with this a bit one can see that

Imax =
1
2

log2

�

Nmaxp
2πe

�

+ F(h, K/c0; cmax/c0) . (138)

Thus we can optimize the two parameters h and K , and the answer will depend on the maxi-
mum concentration cmax; again it is natural to express concentrations in units of c0.

Figure 24A shows the results of this optimization at cmax/c0 = 1 [200]. Perhaps the most
important conclusion is that the optimal parameters are perfectly sensible, not driven off to
extreme values. This happens because of the interplay between the two components of the
noise, counting at the output and Berg–Purcell at the input.

A natural generalization is to the case where the single transcription factor controls multi-
ple genes, at expression levels {g1, g2, · · · , gK}, but to keep things simple these target genes
do not interact. In Figure 24B–G we see the results when there are K = 5 targets and cmax/c0
changes across a dynamic range of 30×. At small values of cmax/c0 the optimal solution is for
all K genes to have the same values of K and h, so that they are completely redundant copies
of one another (Fig 24B). I have always found this result fascinating because redundancy of-
ten is taken as prima facie evidence against any information theoretic optimization principle.
Here we see that redundancy actually is the result of such a principle, in the right regime. I
don’t know whether this is a path to understanding the appearance of redundancy in biological
signaling more broadly, but it surely is an object lesson.
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determined. Thus, it is not obvious that we have the freedom
to adjust the mean output levels. We return to this point in
Sec. III C.

III. ONE INPUT, ONE OUTPUT

To get a feeling for the structure of our optimization prob-
lem, we consider the case where the transcription factor
regulates the expression level of just one gene. If we con-
strain the maximum concentrations at the input and output,
then the information capacity is set by I=log2 Z1 !Eq. "25#$;
substituting our explicit expression for the noise !Eq. "19#$
we have

Z1 = %
0

cmax

dc&Nmax

2!e

"dḡ"c#/dc#2

ḡ"c# + c0c!dḡ"c#/dc$2'1/2

. "31#

The first point to note is that if the natural scale of concen-
tration, c0, is either very large or very small, then the opti-
mization problem loses all of its structure. Specifically, in
these two limits we have

Z1"c0 → "# = &D!#

2!e
'1/2%

0

cmax dc
(c

, "32#

=&2D!#cmax

!e
'1/2

, "33#

and

Z1"c0 → 0# = &Nmax

2!e
'1/2%

0

cmax dc
(ḡ"c#

)dḡ"c#
dc

) , "34#

=&2Nmax

!e
'1/2

*(ḡ"cmax# − (ḡ"0#* . "35#

In both cases, the magnitude of the information capacity be-
comes independent of the shape of the input/output relation
ḡ"c#. Thus, the possibility that real input/output relations are
determined by the optimization of information transmission
depends on the scale c0 being comparable to the range of
concentrations actually used in real cells. Although we have
only a rough estimate of c0+15–150 nM, Table I shows
that this is the case.

A. Numerical results with cmax

To proceed, we choose c0 as the unit of concentration, so
that

Z1 = &Nmax

2!e
'1/2

Z̃1, "36#

Z̃1"K/c0,n;C# = %
0

C

dx& "dḡ"x#/dx#2

ḡ"x# + x!dḡ"x#/dx$2'1/2

, "37#

where C=cmax /c0 and

ḡ"x# =
xn

"K/c0#n + xn "38#

in the case of an activator. It now is straightforward to
explore, numerically, the function Z̃1. An example, with
cmax /c0=1, is shown in Fig. 2.

We see that, with cmax=c0, there is a well defined but
broad optimum of the information transmission as a function

TABLE I. Concentration scales for transcription factors. We col-
lect absolute concentration measurements on transcription factors
from several different systems, sometimes indicating the maximum
observed concentration and in other cases the concentration that
achieves half-maximal activation or repression "midpoint#. Bcd is
the bicoid protein, a transcription factor involved in early embry-
onic pattern formation; GAGA is a transcription factor in Droso-
phila, crp is a transcription factor that acts on a wide range of
metabolic genes in bacteria; lac is the well studied operon that
encodes proteins needed for lactose metabolism in E. coli; lac is the
transcription factor that represses expression of the lac operon;
OR1–3 are binding sites for the lac repressor.

Concentration Scale System Ref.

55$10 nM Midpoint % repressor in E. coli !10$
55$3 nM Maximum Bcd in Drosophila embryo !17$
5.3$0.7 nM Midpoint GAGA !57$
+5 nM Midpoint crp to lac site !50$
+0.2 nM Midpoint lac to OR1 !50,58$
+3 nM Midpoint lac to OR2 !50,58$
+110 nM Midpoint lac to OR3 !50,58$
22$3 nM Midpoint lac to OR1 in vitro !59$
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FIG. 2. "Color online# Information capacity for one "activator#
input and one output. The information is I=log2 Z̃1+A, with A in-
dependent of the parameters; the map shows Z̃1 as computed from
Eq. "37#, here with C,cmax /c0=1. We see that there is a broad
optimum with cooperativity nopt=1.86 and Kopt=0.48c0=0.48cmax.

TKAČIK, WALCZAK, AND BIALEK PHYSICAL REVIEW E 80, 031920 "2009#

031920-6

<latexit sha1_base64="fDp9Q3Hu8/8EJL9Nk2n8BR7BLHU=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVh71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvqnJZvyhXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MH0TmM9g==</latexit>

h

results show clearly how the redundant !K1=K2" solutions at
low values of cmax bifurcate into asymmetric !K1!K2" solu-
tions at larger values of cmax; the critical value of cmax is
different for activators and repressors. This bifurcation struc-
ture is summarized in Fig. 8, where we also see that, for each
value of cmax, the three different kinds of solutions !AA, RR,
and AR" achieve information capacities that differ by less
than 0.1 bits.

The information capacity is an integral of the square root
of a sum of terms, one for each target gene #Eq. !60"$. Thus,
if we add redundant copies of a single gene, all with the
same values of K and n, the integral Z1 will scale as %M,
where M is the number of genes. In particular, as we go from
one to two target genes, Z would increase by a factor %2 and
hence the information capacity, log2 Z, would increase by
one half bit; more generally, with M redundant copies, we
have !1 /2"log2 M bits of extra information relative to having
just one gene. On the other hand, if we could arrange for two
target genes to make nonoverlapping contributions to the in-
tegral, then two genes could have a value of Z that is twice as
large as for one gene, generating an extra bit rather than an
extra half bit. In fact a full factor of 2 increase in Z is not
achievable because once the two target genes are sampling
different regions of concentration they are making different

tradeoffs between the input and output noise terms; since the
one gene had optimized this tradeoff, bifurcating into two
distinguishable targets necessarily reduces the contribution
from each target. Indeed, if the maximal concentration is too
low then there is no “space” along the c axis to fit two
distinct activation !or repression" curves, and this is why low
values of cmax favor the redundant solutions.

Figure 9!a" shows explicitly that when we increase the
number of target genes at low values of cmax, the optimal
solution is to use the genes redundantly and hence the gain in
information is !1 /2"log2 M. At larger values of cmax, going
from one target to two targets one can gain more than half a
bit, but this gain is bounded by 1 bit, and indeed over the
range of cmax that we explore here the full bit is never quite
reached.

We can take a different slice through the parameter space
of the problem by holding the number of target genes fixed
and varying cmax. With a single target gene, we have seen
!Fig. 3" that the information capacity saturates rapidly as
cmax is increased above c0. We might expect that, with mul-
tiple target genes, it is possible to make better use of the
increased dynamic range and this is what we see in Fig. 9!b".

For a system with many target genes, it is illustrative to
plot the optimal distribution of input levels, PTF

! !c"!"c
−1!c".

Figure 10 shows the results for the case of M =2,3 , . . . ,9
genes at low !C=0.3" and high !C=30" input dynamic range.
At low input dynamic range the distributions for various M
collapse onto each other !because the genes are redundant",
while at high C increasing the number of genes drives the
optimal distribution closer to !c−1/2. We recall that the input
noise is "c!%c, so this shows that, as the number of targets
becomes large, the input noise becomes dominant over a
wider and wider dynamic range.

Finally, one can ask how finely tuned the input/output
relations for the particular genes need to be in a maximally
informative system. To consider how the capacity of the sys-
tem changes when the parameters of the input/output rela-
tions change slightly, we analyzed the !Hessian" matrix of
second derivatives of the information with respect to frac-
tional changes in the various parameters; we also made more
explicit maps of the variations in information with respect to
the individual parameters and sampled the variations in in-
formation that result from random variations in the param-
eters within some range. Results for a two gene system are
illustrated in Fig. 11.

The first point concerns the scale of the variations—20%
changes in parameters away from the optimum result in only
&0.01 bits of information loss, and this is true both at low
cmax where the solutions are redundant and at high cmax
where they are not. Interestingly, the eigenmodes of the Hes-
sian reveal that in the asymmetric case the capacity is most
sensitive to variations in the larger K. The second most sen-
sitive !much weaker than the first" direction is a linear com-
bination of both of the parameters K and n for the gene
which is activated at lower concentrations. Perhaps surpris-
ingly, this means that genes which activate at higher K need
to have their input/output relations positioned with greater
accuracy along the c axis, even in fractional terms. If we
think of K&e−F/kBT, where F is the binding !free" energy of
the transcription factor to its specific target site along the
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FIG. 6. !Color online" Optimal input/output relations for the
case of five independent target genes activated by the TF at
concentration c. Successive panels #!a"–!e"$ correspond to different
values of the maximal input concentration as indicated
!C=0.3,1 ,3 ,5 ,10". Panel !f" summarizes the optimal values of the
Ki as a function of C=cmax /c0: as C is increased, the Ki of the fully
redundant input/output relations for C=0.3 bifurcate such that at
C=10 the genes tile the whole input range.
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Figure 24: Optimizing information about the concentration of a single transcription
factor. (A) A map of F from Eq (138) as a function of K and h, showing a single
clear optimum at reasonable parameters (cmax/c0 = 1). (B–F) Optimal input/output
relations ḡi(c) with five target genes, with increasing values of cmax/c0 indicated by
dashed vertical lines. At smaller cmax/c0 the optimal solutions are redundant, so
fewer distinct input/output relations are visible. (G) Optimal values of K/c0, show-
ing a sequence of bifurcations as cmax/c0 increases and responses become distinct.
Redrawn from Ref [200], with thanks to G Tkačik and AM Walczak.

As the maximum allowed concentration of the input transcription factor increases, the
optimal strategy for information transmission changes and more of the target genes come to
have distinguishable responses (Fig 24B–F). This happens through a series of bifurcations that
we can visualize in a plot of K/c0 vs cmax/c0 (Fig 24G). Successive bifurcations add distinct
target gene responses at higher concentration (larger K) and with steeper responses (larger
h), until the set of input/output relations “tile” the full dynamic range of inputs.

The results of Fig 24 are just in the case where a single transcription factor activates a set
of non–interacting target genes. I should admit that when we started thinking about these
problems my colleagues and I thought that the path from these simple examples to something
realistic would be quick, but we were wrong. We did learn about some pieces of the problem.

To begin, the pattern of responses from multiple targets in Fig 24 is redundant, because
activation of the genes with large K allows us to infer that the genes with smaller K also are
active. This redundancy can be reduced, and information transmission enhanced, by repressive
interactions among the targets, as shown in Fig 25 [201]. This parallels the discussion of
lateral inhibition in the retina, outlined in §4.1, and produces profiles of (mean) expression
level vs input concentration that remind us of those shown by the gap genes. These benefits
of repression in enhancing efficiency are seen even when there are no feedback loops.

The prototypical example of feedback is when a single target gene also can activate it-
self [202]. This system has a bistable regime at sufficiently strong self–activation, but the
optimal parameter values are on the monostable side of this bifurcation. As the bifurcation
is approached, however, there is critical slowing down. This emergent long time scale serves
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repress other genes by occlusion. We have analyzed these
mixed networks, and find that the optimal information trans-
mission in these cases is intermediate between the “pure”
networks considered thus far. Thus, considering these addi-
tional topologies does not change the global picture of the
problem, except to open the possibility of yet more local
optima.

B. Three target genes

The analysis of networks with three target genes confirms
and amplifies the lessons learned in the two gene case. Be-
cause the space of possible networks is much larger, we once
again restrict individual proteins to act only as activators or
repressors, and give explicit results only for the case of the
Hill function models of regulation, Eq. !19"; results are
shown in Figs. 6 and 7. As with two genes, having the target
genes activate one another cannot reduce the redundancy that
is generated in the noninteracting networks, and hence the
A1A2A3−A12A13A23 topology networks are driven back to the
noninteracting A1A2A3 when we solve the optimization prob-
lem, and similarly for R1R2R3−A12A13A23 Topologies that in-
clude some repressive interactions generate nontrivial solu-
tions, with progressively richer structure the more repression
we allow.

The signature of the repressive interactions in the case
of two targets was the emergence of nonmonotonic depen-
dencies of the expression levels on the input transcription

factor concentration. In the case of three targets, the param-
eters which maximize information transmission again lead to
nonmonotonicity. In the case where the input is an activator
!Fig. 6", allowing for one repressive interaction !A1A2A3
−A12A13R23" leads to one gene having a nonmonotonic re-
sponse. If we allow two repressive interactions !A1A2A3
−R12R13A23" then two genes have nonmonotonic responses.
Finally, with the maximum of three repressive interactions
!A1A2A3−R12R13R23" one of the two nonmonotonic re-
sponses becomes yet more complex, with two “stripes” of
expression in different ranges of the input concentration.
In the case of an input repressor, we see a similar pattern
!Fig. 7".

A striking feature of the networks with two target genes
was that local optima with different topologies were nearly
degenerate. This is less true for the case of three targets—the
spread in capacities associated with the different topologies
is larger, and the network A1A2A3−R12R13R23 is the clear
global optimum. Corresponding to the larger spread in ca-
pacities, the enhancement of information transmission by in-
teractions is larger, and in the difference in capacity between
the Hill and MWC models also is larger in the three gene
networks !Fig. 8". Including the possibility that individual
transcription factors could act as both activators and repres-
sors does not change these conclusions.

As a caveat, we note that we have assigned the same
maximal concentration to all the transcription factors in the
network. This is equivalent to assuming that all these mol-
ecules come at the same cost to the organism. One could
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mission in these cases is intermediate between the “pure”
networks considered thus far. Thus, considering these addi-
tional topologies does not change the global picture of the
problem, except to open the possibility of yet more local
optima.

B. Three target genes

The analysis of networks with three target genes confirms
and amplifies the lessons learned in the two gene case. Be-
cause the space of possible networks is much larger, we once
again restrict individual proteins to act only as activators or
repressors, and give explicit results only for the case of the
Hill function models of regulation, Eq. !19"; results are
shown in Figs. 6 and 7. As with two genes, having the target
genes activate one another cannot reduce the redundancy that
is generated in the noninteracting networks, and hence the
A1A2A3−A12A13A23 topology networks are driven back to the
noninteracting A1A2A3 when we solve the optimization prob-
lem, and similarly for R1R2R3−A12A13A23 Topologies that in-
clude some repressive interactions generate nontrivial solu-
tions, with progressively richer structure the more repression
we allow.

The signature of the repressive interactions in the case
of two targets was the emergence of nonmonotonic depen-
dencies of the expression levels on the input transcription

factor concentration. In the case of three targets, the param-
eters which maximize information transmission again lead to
nonmonotonicity. In the case where the input is an activator
!Fig. 6", allowing for one repressive interaction !A1A2A3
−A12A13R23" leads to one gene having a nonmonotonic re-
sponse. If we allow two repressive interactions !A1A2A3
−R12R13A23" then two genes have nonmonotonic responses.
Finally, with the maximum of three repressive interactions
!A1A2A3−R12R13R23" one of the two nonmonotonic re-
sponses becomes yet more complex, with two “stripes” of
expression in different ranges of the input concentration.
In the case of an input repressor, we see a similar pattern
!Fig. 7".

A striking feature of the networks with two target genes
was that local optima with different topologies were nearly
degenerate. This is less true for the case of three targets—the
spread in capacities associated with the different topologies
is larger, and the network A1A2A3−R12R13R23 is the clear
global optimum. Corresponding to the larger spread in ca-
pacities, the enhancement of information transmission by in-
teractions is larger, and in the difference in capacity between
the Hill and MWC models also is larger in the three gene
networks !Fig. 8". Including the possibility that individual
transcription factors could act as both activators and repres-
sors does not change these conclusions.

As a caveat, we note that we have assigned the same
maximal concentration to all the transcription factors in the
network. This is equivalent to assuming that all these mol-
ecules come at the same cost to the organism. One could
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Figure 25: Redundancy reduction. (A) A single transcription factor (concentration c)
activates multiple genes {g1, g2, g3} that repress one another. (B) Mean expression
levels that optimize information transmission, with cmax/c0 = 10. Redrawn from
Ref [201], with thanks to G Tkačik and AM Walczak.

to reduce noise, but near criticality there is also a strong path for noise in the output to be
injected back into the system. The closeness of the optimum to the critical point thus depends
on the maximal concentration of output molecules Nmax.

In many systems, including the fly embryo, multiple cells or nuclei can exchange proteins
or mRNA through diffusion. This generates a spatial averaging that can reduce noise, adding
to the effects of temporal averaging.38 Importantly, because diffusion itself is noisy, this effect
can’t push the final noise level below the Poisson level of counting noise. In the embryo,
meaningful variations in input and output are laid out in space, and of course sufficiently
strong diffusion will degrade these patterns. The result is that there is an optimal diffusion
constant that maximizes information transmission [204].

In Figures 24B–F we see that even as the different target genes acquire distinct in-
put/output relations, the optimal solutions still do not make much use of the lowest accessible
concentrations; this regime is simply too noisy to allow reliable information transmission. But
suppose that the cell makes many mRNA molecules of some intermediate protein y , and that
the protein c binds to these mRNA and represses translation, as in Fig 26; y can then act in-
directly as a transcriptional repressor so that the whole path c → g is activating. Then the
“measurement” of low concentrations is made in parallel at many sites, rather than at just
one site along the DNA, and the response is largest and most reliable at the lowest concen-
trations. This suggests that a molecule which functions both as a transcriptional activator
and a translational repressor could make better use of its full dynamic range. It requires a
careful calculation to show that information transmission really can be larger even when we
constrain the total number of molecules, but it works [205]. One of the primary maternal
morphogens in the fly embryo belongs to a whole class of proteins that function as such dual
transcription/translation regulators [206–209], and our best estimates put this system in the
regime where dual regulation enhances information transmission. I found it remarkable that
this almost baroque level of biological complexity can be derived as part of the solution to a
fundamental physics problem faced by the cell.

Each of these pieces—repression to reduce redundancy, feedback to average over time,
diffusion to average over space, and dual regulation—is an interesting problem by itself, and
it was possible to make progress with a combination of analytic and (modest) numerical ap-

38This combination of spatial and temporal averaging seems to be necessary to understand how high levels of
noise in the initiation of transcription yield low levels of noise in the concentration of the gap gene proteins [203].
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signaling and sensing [28–37], first studied in the context of
bacterial chemotaxis [2]. Changing the shape of input-output
relations, both through cooperativity and through feedback,
changes the balance between input and output noise, thus
rendering the optimization of information flow a well-posed
problem even with very simple physical constraints on the total
mean number of molecules [16–18].

Central to any account of noise reduction is the effect of
averaging. Several averaging strategies that make transcrip-
tional regulation more reliable have been identified: there is
averaging over time as molecules accumulate [2,28,31–34],
averaging over expression levels of multiple genes that are
regulated by the same TF [16,17,38,39], and averaging over
space as molecules diffuse between neighboring cells or nuclei,
e.g., in a developing embryo [19,40–43] or organoid [44]. In
the (typical) case where one TF targets multiple genes, there
is a regime where information transmission is optimized by
complete redundancy in the response of these targets, and
another regime in which the concentrations for activation or
repression of the targets are staggered so as to “tile” the
dynamic range of inputs [16,17]. But, even as we consider
networks with increasing numbers of targets, the theoretically
optimal strategy is to insert the additional genes into the
high-concentration end of the input range and to avoid the
lower part of the dynamic range altogether. It is the high input
noise at low concentrations that renders this regime suboptimal
for reliable signaling.

Here we explore a distinct averaging strategy which allows
transcription factors to access the low end of their input range
in a robust manner. Since these regulatory proteins bind to
DNA, it is plausible that they could also bind to mRNA,
thereby regulating translation; this is known to happen in
the large class of homeodomain proteins [45–47] and for the
Argonaute family proteins [48,49], for several other proteins
that fulfill important functions in the Drosophila embryo and
oocyte [50–57], but also in other eukaryotic species [58–60]
and in prokaryotes [61–67]. Intuitively, each mRNA molecule
could act as an independent sensor of the input concentration,
and averaging over these multiple sensors could reduce the
input noise and thereby allow for more effective information
transmission at low input concentrations.

To develop this intuition, we first consider a model of the
“direct transcriptional regulation” (DTR) scheme, in which a
TF concentration is read out and averaged by M binding sites
on the same promoter (Sec. II); we subsequently generalize
the model to a more complicated “indirect translational
regulation” (ITR) scheme, in which the averaging function
is served by M cytoplasmic mRNA molecules (Sec. III).
We compare the two regulation mechanisms, DTR and ITR,
by computing the maximum information flow in each as a
function of the input noise magnitude and other determinants
of the information flow (Sec. IV). We conclude by discussing
a biologically relevant example from early Drosophila devel-
opment (Sec. V).

II. AVERAGING OVER NEIGHBORING REGULATORY
REGIONS IN DIRECT TRANSCRIPTIONAL REGULATION

The intuition behind the arguments of this work is that a cell
can extract more information from low concentrations of TFs
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FIG. 1. Schematic comparison of direct transcriptional regulation
(DTR) and indirect translational regulation (ITR) schemes. (a) In
direct transcriptional regulation (DTR), activator (or repressor) TFs,
depicted as green squares and present at concentration c, interact
with (potentially multiple, not necessarily identical) TF binding
regions to activate (repress) expression of the regulated gene g. (b) In
the indirect translational regulation (ITR) scenario, input molecules
(green squares) bind to mRNAs m of protein y (red chain) to make
the mRNA unaccessible for translation (gray oval). Translation can
proceed from unbound mRNA molecules, giving rise to proteins y

(red stars). These proteins act as repressors (or activators) for gene
g; the overall mapping from c to g is thus activating (repressing) in
both scenarios.

by averaging over multiple binding regions. We expect that
this will be realized by having the multiple binding regions on
different mRNA molecules. As a motivating exercise, however,
we can imagine that there are many regions for binding of
the TF at a single target near the gene being regulated, and
that the expression of this gene depends on the average of the
occupancies of these regions [see schematic in Fig. 1(a)]; there
are hints that such noncooperative regulation by a cluster of
binding regions may be realized in some cases [68]. We expect
that, with averaging over M binding regions, we should find a√

M reduction in noise levels, and our goal here is to exhibit
this explicitly, as well as to understand the conditions for this
reduction to be achieved. These results will provide a guide to
the more complex case of “indirect translational regulation”
(ITR), introduced in Sec. III. The calculational framework we
use here is based on our previous work [4,16–18].

We write the expression level of the single target gene as
g, and if expression is controlled by the average of multiple
nearby regulatory regions then the dynamics are of the form

dg

dt
= r

[
1
M

M∑

i=1

fi(c)

]

− 1
τ

g + ξ, (1)

where r is the maximal rate of synthesis, 1/τ is the rate at
which the gene products are degraded, and ξ is a Langevin
noise source (zero-mean white noise). In this model there is a
single TF species, at concentration c, that controls expression.
We assume τ to be the longest time scale in the problem, thus
setting the averaging time for all noise sources in the regulatory
pathway. As described more fully in Refs. [8,15–19], we can
think of the regulatory mechanism as propagating information
from c to g, and this information transmission is a measure of
the control power achieved by the system.

In the simplest case, each region harbors just one binding
site, and the contribution of that site to the activation of
gene expression is determined by its equilibrium occupancy
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signaling and sensing [28–37], first studied in the context of
bacterial chemotaxis [2]. Changing the shape of input-output
relations, both through cooperativity and through feedback,
changes the balance between input and output noise, thus
rendering the optimization of information flow a well-posed
problem even with very simple physical constraints on the total
mean number of molecules [16–18].

Central to any account of noise reduction is the effect of
averaging. Several averaging strategies that make transcrip-
tional regulation more reliable have been identified: there is
averaging over time as molecules accumulate [2,28,31–34],
averaging over expression levels of multiple genes that are
regulated by the same TF [16,17,38,39], and averaging over
space as molecules diffuse between neighboring cells or nuclei,
e.g., in a developing embryo [19,40–43] or organoid [44]. In
the (typical) case where one TF targets multiple genes, there
is a regime where information transmission is optimized by
complete redundancy in the response of these targets, and
another regime in which the concentrations for activation or
repression of the targets are staggered so as to “tile” the
dynamic range of inputs [16,17]. But, even as we consider
networks with increasing numbers of targets, the theoretically
optimal strategy is to insert the additional genes into the
high-concentration end of the input range and to avoid the
lower part of the dynamic range altogether. It is the high input
noise at low concentrations that renders this regime suboptimal
for reliable signaling.

Here we explore a distinct averaging strategy which allows
transcription factors to access the low end of their input range
in a robust manner. Since these regulatory proteins bind to
DNA, it is plausible that they could also bind to mRNA,
thereby regulating translation; this is known to happen in
the large class of homeodomain proteins [45–47] and for the
Argonaute family proteins [48,49], for several other proteins
that fulfill important functions in the Drosophila embryo and
oocyte [50–57], but also in other eukaryotic species [58–60]
and in prokaryotes [61–67]. Intuitively, each mRNA molecule
could act as an independent sensor of the input concentration,
and averaging over these multiple sensors could reduce the
input noise and thereby allow for more effective information
transmission at low input concentrations.

To develop this intuition, we first consider a model of the
“direct transcriptional regulation” (DTR) scheme, in which a
TF concentration is read out and averaged by M binding sites
on the same promoter (Sec. II); we subsequently generalize
the model to a more complicated “indirect translational
regulation” (ITR) scheme, in which the averaging function
is served by M cytoplasmic mRNA molecules (Sec. III).
We compare the two regulation mechanisms, DTR and ITR,
by computing the maximum information flow in each as a
function of the input noise magnitude and other determinants
of the information flow (Sec. IV). We conclude by discussing
a biologically relevant example from early Drosophila devel-
opment (Sec. V).

II. AVERAGING OVER NEIGHBORING REGULATORY
REGIONS IN DIRECT TRANSCRIPTIONAL REGULATION

The intuition behind the arguments of this work is that a cell
can extract more information from low concentrations of TFs
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FIG. 1. Schematic comparison of direct transcriptional regulation
(DTR) and indirect translational regulation (ITR) schemes. (a) In
direct transcriptional regulation (DTR), activator (or repressor) TFs,
depicted as green squares and present at concentration c, interact
with (potentially multiple, not necessarily identical) TF binding
regions to activate (repress) expression of the regulated gene g. (b) In
the indirect translational regulation (ITR) scenario, input molecules
(green squares) bind to mRNAs m of protein y (red chain) to make
the mRNA unaccessible for translation (gray oval). Translation can
proceed from unbound mRNA molecules, giving rise to proteins y

(red stars). These proteins act as repressors (or activators) for gene
g; the overall mapping from c to g is thus activating (repressing) in
both scenarios.

by averaging over multiple binding regions. We expect that
this will be realized by having the multiple binding regions on
different mRNA molecules. As a motivating exercise, however,
we can imagine that there are many regions for binding of
the TF at a single target near the gene being regulated, and
that the expression of this gene depends on the average of the
occupancies of these regions [see schematic in Fig. 1(a)]; there
are hints that such noncooperative regulation by a cluster of
binding regions may be realized in some cases [68]. We expect
that, with averaging over M binding regions, we should find a√

M reduction in noise levels, and our goal here is to exhibit
this explicitly, as well as to understand the conditions for this
reduction to be achieved. These results will provide a guide to
the more complex case of “indirect translational regulation”
(ITR), introduced in Sec. III. The calculational framework we
use here is based on our previous work [4,16–18].

We write the expression level of the single target gene as
g, and if expression is controlled by the average of multiple
nearby regulatory regions then the dynamics are of the form

dg

dt
= r

[
1
M

M∑

i=1

fi(c)

]

− 1
τ

g + ξ, (1)

where r is the maximal rate of synthesis, 1/τ is the rate at
which the gene products are degraded, and ξ is a Langevin
noise source (zero-mean white noise). In this model there is a
single TF species, at concentration c, that controls expression.
We assume τ to be the longest time scale in the problem, thus
setting the averaging time for all noise sources in the regulatory
pathway. As described more fully in Refs. [8,15–19], we can
think of the regulatory mechanism as propagating information
from c to g, and this information transmission is a measure of
the control power achieved by the system.

In the simplest case, each region harbors just one binding
site, and the contribution of that site to the activation of
gene expression is determined by its equilibrium occupancy
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signaling and sensing [28–37], first studied in the context of
bacterial chemotaxis [2]. Changing the shape of input-output
relations, both through cooperativity and through feedback,
changes the balance between input and output noise, thus
rendering the optimization of information flow a well-posed
problem even with very simple physical constraints on the total
mean number of molecules [16–18].

Central to any account of noise reduction is the effect of
averaging. Several averaging strategies that make transcrip-
tional regulation more reliable have been identified: there is
averaging over time as molecules accumulate [2,28,31–34],
averaging over expression levels of multiple genes that are
regulated by the same TF [16,17,38,39], and averaging over
space as molecules diffuse between neighboring cells or nuclei,
e.g., in a developing embryo [19,40–43] or organoid [44]. In
the (typical) case where one TF targets multiple genes, there
is a regime where information transmission is optimized by
complete redundancy in the response of these targets, and
another regime in which the concentrations for activation or
repression of the targets are staggered so as to “tile” the
dynamic range of inputs [16,17]. But, even as we consider
networks with increasing numbers of targets, the theoretically
optimal strategy is to insert the additional genes into the
high-concentration end of the input range and to avoid the
lower part of the dynamic range altogether. It is the high input
noise at low concentrations that renders this regime suboptimal
for reliable signaling.

Here we explore a distinct averaging strategy which allows
transcription factors to access the low end of their input range
in a robust manner. Since these regulatory proteins bind to
DNA, it is plausible that they could also bind to mRNA,
thereby regulating translation; this is known to happen in
the large class of homeodomain proteins [45–47] and for the
Argonaute family proteins [48,49], for several other proteins
that fulfill important functions in the Drosophila embryo and
oocyte [50–57], but also in other eukaryotic species [58–60]
and in prokaryotes [61–67]. Intuitively, each mRNA molecule
could act as an independent sensor of the input concentration,
and averaging over these multiple sensors could reduce the
input noise and thereby allow for more effective information
transmission at low input concentrations.

To develop this intuition, we first consider a model of the
“direct transcriptional regulation” (DTR) scheme, in which a
TF concentration is read out and averaged by M binding sites
on the same promoter (Sec. II); we subsequently generalize
the model to a more complicated “indirect translational
regulation” (ITR) scheme, in which the averaging function
is served by M cytoplasmic mRNA molecules (Sec. III).
We compare the two regulation mechanisms, DTR and ITR,
by computing the maximum information flow in each as a
function of the input noise magnitude and other determinants
of the information flow (Sec. IV). We conclude by discussing
a biologically relevant example from early Drosophila devel-
opment (Sec. V).

II. AVERAGING OVER NEIGHBORING REGULATORY
REGIONS IN DIRECT TRANSCRIPTIONAL REGULATION

The intuition behind the arguments of this work is that a cell
can extract more information from low concentrations of TFs

gene g

input

c g
g

c g

Direct transcriptional 
regulation (DTR)

(a)

c
input

gene g

c
translational
repression

g
g

y

mRNA m

c gm y
Indirect translational regulation (ITR)(b)

FIG. 1. Schematic comparison of direct transcriptional regulation
(DTR) and indirect translational regulation (ITR) schemes. (a) In
direct transcriptional regulation (DTR), activator (or repressor) TFs,
depicted as green squares and present at concentration c, interact
with (potentially multiple, not necessarily identical) TF binding
regions to activate (repress) expression of the regulated gene g. (b) In
the indirect translational regulation (ITR) scenario, input molecules
(green squares) bind to mRNAs m of protein y (red chain) to make
the mRNA unaccessible for translation (gray oval). Translation can
proceed from unbound mRNA molecules, giving rise to proteins y

(red stars). These proteins act as repressors (or activators) for gene
g; the overall mapping from c to g is thus activating (repressing) in
both scenarios.

by averaging over multiple binding regions. We expect that
this will be realized by having the multiple binding regions on
different mRNA molecules. As a motivating exercise, however,
we can imagine that there are many regions for binding of
the TF at a single target near the gene being regulated, and
that the expression of this gene depends on the average of the
occupancies of these regions [see schematic in Fig. 1(a)]; there
are hints that such noncooperative regulation by a cluster of
binding regions may be realized in some cases [68]. We expect
that, with averaging over M binding regions, we should find a√

M reduction in noise levels, and our goal here is to exhibit
this explicitly, as well as to understand the conditions for this
reduction to be achieved. These results will provide a guide to
the more complex case of “indirect translational regulation”
(ITR), introduced in Sec. III. The calculational framework we
use here is based on our previous work [4,16–18].

We write the expression level of the single target gene as
g, and if expression is controlled by the average of multiple
nearby regulatory regions then the dynamics are of the form

dg

dt
= r

[
1
M

M∑

i=1

fi(c)

]

− 1
τ

g + ξ, (1)

where r is the maximal rate of synthesis, 1/τ is the rate at
which the gene products are degraded, and ξ is a Langevin
noise source (zero-mean white noise). In this model there is a
single TF species, at concentration c, that controls expression.
We assume τ to be the longest time scale in the problem, thus
setting the averaging time for all noise sources in the regulatory
pathway. As described more fully in Refs. [8,15–19], we can
think of the regulatory mechanism as propagating information
from c to g, and this information transmission is a measure of
the control power achieved by the system.

In the simplest case, each region harbors just one binding
site, and the contribution of that site to the activation of
gene expression is determined by its equilibrium occupancy
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Figure 26: Schematic of direct transcriptional regulation (DTR) and indirect trans-
lational regulation (ITR). (A) In DTR, as above, activator TFs (green squares at con-
centration c) interact with binding sites along the DNA to activate expression of the
regulated gene g. (B) In ITR scenario, input molecules (green squares) bind to mR-
NAs m of protein y (red chain) to make the mRNA inaccessible for translation (gray
oval). Translation proceeds from unbound mRNA molecules, giving rise to proteins
y (red stars). These proteins act as repressors for gene g; the overall mapping from
c → g is thus activating in both scenarios. Redrawn from Ref [205], with thanks to
TR Sokolowski, G Tkačik, and AM Walczak.

proaches. But all of these things are happening at once in the fly embryo, even just in the
gap gene network. To put (most of) these pieces together requires a more sophisticated ap-
proach [210].

4.3 The gap genes, once more

Let’s plunge right in. We have a collection of nuclei labeled n= 1, 2, · · · , N along the anterior–
posterior axis of the embryo, with a distance ∆ from one to the next. Associated with each
nucleus are the expression levels of the four gap genes {gi(n)}, and these molecules can diffuse
between neighbors with an effective diffusion constant D. As before we will keep track of
one concentration for each species, not worrying about the separate dynamics of mRNA and
proteins. We assume that each gap gene product has the same maximal synthesis rate rmax and
the same decay time τ; these are simplifications but also supported by experiment. The gap
genes are driven by maternal inputs {cα(n)} with α = 1, 2, 3, and we will assume that theese
inputs are constant in time, which we know to be correct over the relevant time window for
at least one of them [64]. With these assumptions, the dynamics of the gap gene expression
levels obey a generalization of the first equation that we wrote down in these lectures [Eq (1)]:

d gi(n, t)
d t

= rmax fi
�

{gj(n, t)}; {cα(n)}
�

−
1
τ

gi(n, t)

+
D
∆2
[gi(n+ 1, t)− 2gi(n, t) + gi(n− 1, t)] +ηi(n, t) , (139)

where fi is a separate regulation function for each gap gene, and ηi(n, t) are noise terms. Three
static inputs are driving four interacting genes, as in Fig 27, so there are (3×4)+(4×4) = 28
arrows, as noted in §1.1.

We take the maternal inputs {cα(n)} as known, and fixed as we try to optimize the gap
gene network itself. This certainly is fair for the input which is large at the anterior end,
where we have accurate measurements in both live and fixed embryos establishing the peak
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Figure 27: The network of four gap genes {gi} driven by three maternal inputs {cα}.
Regulatory interactions cα → gi are strictly feedforward (blue arrows). In contrast,
interactions gi → gj can form feeback loops. It is thought that cα → gi are largely
activating while gi→ gj̸=i are largely repressive (black blunt arrows), although there
is evidence for self–activation gi→ gi (curved black arrows). The schematic includes
this consensus, which proves to be a feature of the optimized network, though it is
not imposed.

absolute concentration and the approximate exponential decay with distance into the egg. We
will assume that the input which is large at the posterior end is just a mirror image, and that
the terminal inputs are symmetric with the same peak concentration but more rapid decays.

In order to proceed we need a model for the regulation functions. In particular we need
to describe what happens as multiple regulatory arrows converge on a single target gene. We
have taken a simple view inspired by allostery in proteins [211–214]. In a single large protein
molecule, binding of a small molecule at one point on the surface can influence the binding
of molecules far away; a classic example is the cooperative binding of four oxygen molecules
to hemoglobin in our blood. Monod, Wyman, and Changeux (MWC) proposed that this hap-
pens because the protein can exist in two structures, and the small molecules have different
binding energies to these two structures. In this picture there is no direct interaction between
the binding events; all interactions are mediated through the protein [215]. In the simplest
formulation these events occur at thermal equilibrium, even though one often is describing the
activity of enzymes, ion channels, and other systems that evidently are not in equilibrium. The
idea is that the rate of the events that we are interested in is proportional to the occupancy of
some state(s), and this occupancy is well approximated by estimates from equilibrium statis-
tical mechanics. There is a tradition of using such equilibrium arguments for transcriptional
control as well [216, 217], although the validity of this quasi–equilibrium view remains an
open question [218].
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Figure 28: The Monod–Wyman–Changeux (MWC) model for regulation. Here there
are two binding sites for the (blue) transcription factor (TF) protein, at concentration
c. Binding at the two sites are independent events, but the binding constants Kon and
Koff are different in the two states. If binding is stronger in the on state (Kon < Koff)
then the free energy difference between off and on states increases as TFs bind.

Figure 28 schematizes the MWC model for regulation of a gene by a single transcription
factor (TF). The system can be in “on” or “off” states, with transcription occurring in the on
state, and there are two binding sites for the TF, which is at concentration c. Assuming the
system is in equilibrium we can write the probability of being in the on state in terms of the
free energy differences as shown, to give

Pon =
e−F0/kB T (1+ c/Kon)2

(1+ c/Koff)2 + e−F0/kB T (1+ c/Kon)2
(140)

=
1

1+ exp[−F(c)] , (141)

F(c) = − F0

kB T
+ 2 ln

�

1+ c/Kon

1+ c/Koff

�

. (142)

Notice that if binding is very tight in the on state and very weak in the off state, we should
have Kon≪ c≪ Koff and we can rewrite

Pon =
c2

c2
1/2 + c2

, (143)

with c1/2 = KoneF0/2kB T . We identify the probability of being in the on state with the regulation
function f . Notice that factor of 2 in Eq (142) is counting the two binding sites.

One attractive feature of the MWC model is that it generalizes to having multiple TFs
converge to regulate a single gene. Consider that gene i has Hij binding sites for the pro-
tein encoded by gene j and Hiα sites for the maternal input α. Then if we follow the same
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equilibrium statistical mechanics arguments as above, we will find

fi
�

{gj}; {cα}
�

=
1

1+ exp
�

−Fi

�

{gj}; {cα}
�� , (144)

Fi

�

{gj}; {cα}
�

= −
Fi0

kB T
+
∑

j

Hij ln

�

1+
gj

Kij

�

+
∑

α

Hiα ln
�

1+
cα
Kiα

�

, (145)

where we work in the approximation that one of the two binding constants is large (very
weak binding). Note that by changing the sign of H we can have TFs act as both activators or
repressors. This gives us a parameterization for the regulation functions in Eq (139), and as
promised in the first lecture we have two parameters Kij and Hij for each pair of species that
can interact.

The noise in Eq (139) has contributions from the input (Berg–Purcell) and output (count-
ing) noise as in Eq (135).39 There is also noise attached to the diffusion terms, and one has
to be careful that there is independent noise in the fluxes n → n± 1, not independent noise
added to each site; this insures that diffusion noise does not violate conservation of molecules.
All of these noise sources are white, as can be seen for example from the fact that variances
in Eq (135) are inversely proportional to averaging times. Spectral densities are set by the
absolute numbers or concentrations of molecules, as above, and these are known quite well
from experiment; for details see Ref [210].

Now that we have all the ingredients in Eq (139), we could just simulate. But our goal is to
optimize the parameters so as to maximize the information that expression levels {gi} provide
about position or cellular identity n. It would not be enough to have a single solution of these
stochastic differential equations, we need to know about the whole distribution of solutions.
This quickly becomes intractable. Fortunately we know that in the real system noise levels are
small and fluctuations are approximately Gaussian. This means that we can linearize Eq (139)
in the small fluctuations around the mean, and find closed equations for the time evolution of
the means 〈gi(n, t)〉 and the covariance matrix 〈δgi(n, t)δgj(n, t)〉. Thus at a single setting of
all the parameters (H,K)we can do one (large) integration forward in time and find everything
we need in order to evaluate the positional information at t ∼ 45min into nuclear cycle 14.
We explore the 50+ dimensional parameter space by a version of simulated annealing [210].

The essential results of the optimization process are shown in Fig 29. We start with some
random setting of all the adjustable parameters, and typically this will leave some of the gap
genes fully on and some fully off, uniformly across the entire embryo, so that there is zero
positional information (point 1 in Fig 29). As we explore and anneal we find parameter settings
that allow first one then two, three, and all four gaps genes to be driven on and off by the
full dynamic range of the maternal inputs (points 2, 3, and 4). Much of the time spent in
optimization is required to converge from these patterns onto something richer and more
informative, finally arriving at an optimum (point 5). This optimal network has spatial patterns
of gene expression very similar to those of the real network, and the absolute magnitude of
the positional information is close as well.

I want to emphasize that in deriving the patterns of gap gene expression that we see in the
upper right of Fig 29, there are no free parameters—all are determined by the optimization
principle. In fact if we set this principle aside and try to fit the model to the mean profiles, we
don’t do any better in matching the data. More subtly, these best fits convey substantially less
than the maximum information because they correspond to parameter settings with excess
noise. Thus in some way the optimization principle is getting us closer to the real network
than standard model fitting. Also, the small differences between the optimum and the real

39To be fully realistic we can add a small extra noise with constant fractional variance, which seems to be
necessary to match the data [210,219].

61

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.84


SciPost Phys. Lect. Notes 84 (2024)

Figure 29: Maximizing positional information in the gap gene network. Random ini-
tial parameter settings produce zero positional information, with all gap genes fully
on or off across the length of the embryo (1). Across ∼20, 000 steps of optimization
we find parameter settings that allow first one then two, three, and finally all four
gap genes to be modulated by the dynamic range of maternal inputs (2→ 3→ 4).
The majority of the optimization run then tunes the parameters to maximize the posi-
tional information, arriving at a setting (5) that behaves much like the real network.
Redrawn from Ref [210], with thanks to T Gregor, TR Sokolowksi, and G Tkačik.

network must reflect a limitation in the class of models that we are considering, not a failure
of optimization. There are a few more interesting features of the solution(s):

• The positional information seen in real networks really is at the edge of what this class
of models can support, as seen by random sampling of the parameter space.

• Almost all of the possible interactions are realized in the optimal solution, and their signs
agree with available data.

• We have constrained the maximum molecule counts and concentrations; other local
optima differ in the mean utilization of these resources.

• We read out positional information at a moment in nuclear cycle 14 where the real
expression levels are maximally informative, and do not constrain the dynamics, but the
optimal networks have very slowly changing patterns, as with the real system.

We can also think of this as a “laboratory” in which to test alternative scenarios, making a
change and then re–optimizing all the remaining parameters:

• We have taken the diffusion constant D in Eq (139) as known, but there is a broad
maximum of information near this measured value.

• If we eliminate feedback loops we can still reach similar levels of positional information
but only with unphysically large values of the H parameters; within realistic settings
feedback is essential.

• If the same maximum number of molecules were spread across only three gap genes it
would be impossible to achieve the same level of positional information; benefits of a
fifth gap gene are minimal.

• Although cross–regulation within the gap gene network provides some resilience, elimi-
nating any one of the maternal inputs results in significantly less positional information.
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I suspect we are just scratching the surface. Perhaps the most intriguing observation is that
different local optima have broadly consistent gap gene expression patterns, but with shifts
and swaps similar to those seen in related species [220–222].

5 Conclusion

This Summer School celebrates a special moment in the long history of interactions between
physics and biology. Just one generation back, physicists and biologists couldn’t agree on
much, but they could agree that searching for a theoretical physics of life was a waste of time.
Physicists saw biology as too messy, and biologists saw the physicists’ search for simplicity and
universality as a poor match to the evident complexity and diversity of life. Much has changed.

I have emphasized that enormous progress in experiment has created new opportunities
for theory. In particular, experiments have revealed that many living systems exhibit behaviors
with a precision and reproducibility far beyond what once was imagined. In some cases this
precision corresponds to functional behavior close to the limits of what is allowed by the laws of
physics. Thus, aspects of early embryonic development can take their place alongside classical
examples such as photon counting in vision and molecule counting in bacterial chemotaxis.

It is an old idea that evidence for near–optimal performance could be turned around and
formulated as a theoretical principle from which aspects of mechanism and function can be
derived. This idea has a checkered history. Many people have used optimization principles
in the absence of any direct evidence for optimization, which is fine if the next experiments
provide those direct tests. More subtly, when we formulate an optimization principle we often
must search among a class of possible mechanisms in order to find the optimum, and too of-
ten this class has been woefully oversimplified. Again these simplifications are fine as starting
points, but sometimes the more realistic calculations never come. The message is that seem-
ingly simple and clear principles of physical optimization become challenging when we try to
use them in the realistic context of life’s complexity.

I don’t know if what I have described here will survive the next rounds of experiments.
But I am excited that we are implementing physical notions of optimization in realistic set-
tings. We have asked how the embryo can best decode positional information contained in the
actual expression levels of gap genes, and this makes detailed predictions for the distortion
of the body plan in mutants; theory and experiment agree quantitatively, with no adjustable
parameters (§2.3). We have asked how the embryo can match the statistics of maternal inputs
to the measured signal and noise characteristics of the gap gene network, and the surprising
uniformity of positional information along the anterior–posterior axis emerges as a prediction
of this optimization; the real embryo is within two percent of the optimum (§3.3). Finally,
we have asked how the architecture and parameters of a reasonably realistic model for the
gap gene network can be tuned to maximize information transmission, and we find networks
very much like the real network emerging as a result, with no free parameters; this optimiza-
tion principle predicts many features of the network that we did not constrain, and provides
a framework for exploring the interplay of chance and necessity (§4.3).

I want to end by saying a few words about what we are not doing. Much of the progress
described here, and in other lectures at the Summer School, takes a phenomenological view,
hoping to say something crisp about system level functions without digging into too much
microscopic detail. There is another community that is much more focused on molecules, and
the divide between these communities can be quite stark. To give one example, we probably
know more about the functional dynamics of individual ion channels than about any other class
of protein molecules, and we have a precise theoretical framework for how these molecular
dynamics shape the electrical dynamics of single neurons. There are 100+ different kinds
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of channels encoded in the genome, and single neurons express a cocktail of perhaps seven
different kinds. But all of this molecular richness disappears rather abruptly once we start to
talk about coding and computation in networks of neurons.

As physicists we are used to the idea that macroscopic phenomena are described by coarse–
grained models, and that in these models many microscopic details have disappeared (see Ap-
proach 3 in §1.2). But in the examples we understand, from the inanimate world, we can do
this coarse–graining explicitly to see which (relevant) elements of the model survive to influ-
ence macroscopic dynamics and which (irrelevant) details are erased. As far as I know nobody
knows how to start with a realistic description of ion channels and coarse–grain to arrive at
a model of neural networks. Further, we do know that some molecular details must matter,
because particular classes of cells in the brain will switch from using one kind of channel to
another at crucial moments in development, and different types of cells use different combi-
nations of channels. We also know that not all macroscopic quantities are universal, and there
is the danger that what is universal might not be relevant for the organism.

My concern about the gap between molecular and system level descriptions is not just the
vague feeling that we are missing something. In many cases, including the fly embryo, some
of the most powerful new experimental tools allow direct and reliable manipulation at the
molecular level. The parameters of our network description, attached to the arrows in Fig 27,
are themselves encoded (in part) in the DNA sequence of transcription factor binding sites.
It now is possible to edit these sequences with single base pair precision, but we don’t know
how these manipulations relate to the circles and arrows, so it is hard to see how our current
theories connect to an exploding set of new experiments. In truth we don’t even know if we
can start with sequences and do a systematic calculation to arrive at something like Eqs (139,
144, 145). A more complete physics of life will build these bridges.
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