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Abstract

Tensor networks capture large classes of ground states of phases of quantum matter
faithfully and efficiently. Their manipulation and contraction has remained a challenge
over the years, however. For most of the history, ground state simulations of two-
dimensional quantum lattice systems using (infinite) projected entangled pair states
have relied on what is called a time-evolving block decimation. In recent years, multiple
proposals for the variational optimization of the quantum state have been put forward,
overcoming accuracy and convergence problems of previously known methods. The in-
corporation of automatic differentiation in tensor networks algorithms has ultimately
enabled a new, flexible way for variational simulation of ground states and excited states.
In this work we review the state-of-the-art of the variational iPEPS framework, providing
a detailed introduction to automatic differentiation, a description of a general founda-
tion into which various two-dimensional lattices can be conveniently incorporated, and
demonstrative benchmarking results.
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1 Introduction

Tensor networks are at the basis of a wealth of methods that are able to efficiently capture
systems with many degrees of freedom, primarily in the context of interacting quantum sys-
tems, but also in a wide range of other fields. They have a long history: The beginnings can
be seen [1] as originating from work on transfer matrices [2] for two-dimensional classical
Ising models and methods of corner transfer matrices again in the context of classical spin
models [3]. In more recent times, the rise of tensor networks to describe interacting quan-
tum many-body systems can be traced back to at least two strands of research. On the one
hand, the now famous density matrix renormalization group (DMRG) approach [4, 5] can be
regarded as a variational principle over matrix product states [6–8], a particularly common
class of one-dimensional tensor network states. What are called finitely-correlated states [9]
have later been understood as a Heisenberg picture variant of essentially the same family of
states. These families of quantum states could further be interpreted as basically parametriz-
ing gapped phases of matter in one spatial dimension. In a separate development, tensor trains
became a useful tool in numerical mathematics [10]. These strands of research had been de-
veloping independently for quite a while before being unified in a common language of tensor
networks (TN) as it stands now as a pillar of research on numerical and mathematical quantum
many-body physics [11–15].

Two-dimensional tensor networks, now known as projected entangled pair states [16], again
have a long history. The intuition why they provide a good Ansatz class for describing ground
states of gapped quantum many-body Hamiltonians [17,18] – as well as other families of states
– is the same as for matrix product states: Such states are expected to be part of what is called
the “physical corner” of the Hilbert space. These states feature local entanglement compared
to the degrees of entanglement unstructured states would exhibit. Ground states of gapped
phases of matter are thought to satisfy area laws for the entanglement entropy [15]. Even
though some of the rigorous underpinning of this mindset is less developed in two spatial
dimensions compared to the situation in one spatial dimension, there is solid evidence that
projected entangled pair states provide an extraordinarily good and powerful Ansatz class for
meaningful states of two-dimensional quantum systems.

There is a new challenge arising in such two-dimensional tensor networks. In contrast to
matrix product states, they cannot be exactly efficiently contracted: On general grounds, there
are complexity theoretic obstructions against the efficient contraction of projected entangled
pair states in worst case [19] – and even in average case [20] – complexity. The burden
can be lessened by acknowledging that projected entangled pair states can be contracted in
quasi-polynomial time [21]. These more conceptual insights constitute an underpinning of a
quite practically minded question: This shows that to develop ways of efficiently and feasibly
approximating tensor network contractions in two spatial dimensions is at the heart of the
method development in the field.

Consequently, over the years, several numerical methods of approximately contracting pro-
jected entangled pair states have been developed. In fact, much of the method development
has been along these lines. In the focus of attention in this work are projected entangled pair
states directly in the thermodynamic limit, commonly referred to as infinite projected entan-
gled pair states (iPEPS) [22–24]. The contraction necessary to compute expectation values
of local observables gives rise to the challenge of approximately calculating effective environ-
ments. Over the years, several methods have been introduced and pursued, including methods
based on boundary matrix product states [22], corner transfer matrix methods [24–26] – par-
ticularly important for the method development presented here – and tensor coarse-graining
techniques [27–30].
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Variational optimization algorithms for uniform matrix product states have been developed
that combine density matrix renormalization group methods with matrix product state tangent
space concepts to find ground states of one dimensional quantum lattices in the thermody-
namic limit [31,32], building on earlier steps of devising geometrically motivated variational
principles for tensor network states [33,34]. The pursuit of such variational optimization has
been particularly fruitful in the two dimensional case of iPEPS. Initially proposed methods
constructed the gradient of the energy explicitly using specialized environments [35,36].

Recently, as an element of major method development, the programming technique called
automatic differentiation, widely used in the machine learning community, has been utilized for
the task of calculating the gradient [37] in tensor network optimization. This step drastically
simplifies the programming involved and allows one to use variational ground state search on,
e.g., more exotic lattice geometries with little additional effort. Such variational approaches
for iPEPS constitute the basis for this work. Automatic differentiation has also been employed
in further fashions in the tensor network context in several works recently [38–41, 41–49],
some of which are accompanied by publicly available code libraries [50–53]. Notably, even for
gapped local Hamiltonians with chiral topological ground states, for which the numerical appli-
cability of PEPS was unclear due to no-go theorems in related cases [54], the use of variational
optimization has proven successful [41,49,55]. As a novel programming paradigm, automatic
differentiation composes parameterized algorithmic components in such a way that the pro-
gram becomes differentiable and its components can be optimized using gradient search. It is
a sophisticated way to evaluate the derivative of a function specified by a computer program,
specifically by applying the chain rule to elementary arithmetic operations. Again, it has only
recently been appreciated how extremely powerful such tools are in the study of interacting
quantum matter by means of tensor networks.

In this review article, we elaborate on these developments and comprehensively present
ideas for a variational iPEPS method based on automatic differentiation. This includes a de-
tailed description of the methodology and practical insights for implementations, complement-
ing and extending the existing body of literature.

We further introduce a versatile framework, that allows arbitrary unit cells and different
two-dimensional lattices to be treated on a common footing.

At the same time, this work accompanies the publicly available numerical library variPEPS
– a versatile tensor network library for variational ground state simulations in two spatial
dimensions – which implements the methods described in this review [56–58].

The content of this work is organised in three main sections. In Sec. 2, we describe the
central methods that are being used in the variational iPEPS framework as well as practical
remarks regarding implementation. Furthermore, we explain in detail the basics of automatic
differentiation and its application in state-of-the-art ground-state search.

In Sec. 3, we then turn to explaining how to conveniently map generic lattice structures to
a square one, over which the variational iPEPS methods naturally operate. Following up on
this, in Sec. 4, we present numerical benchmarks obtained with the methods outlined in the
previous sections and implemented in the variPEPS library, in comparison to other customary
methods like exact diagonalization, iPEPS imaginary-time evolution and variational Monte
Carlo methods.
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2 Variational iPEPS

We seek to find the TN representation of the state vector |ψ〉TN that best approximates the true
ground state vector |ψ0〉 of an Hamilton operator of the form

H =
∑

j∈Λ
T j(h) , (1)

where T j is the translation operator on the lattice Λ, and h is a generic k-local Hamiltonian,
i.e., it includes an arbitrary number of operators acting on lattice sites at most at a (lattice)
distance k from a reference lattice point. Such a situation is very common in condensed matter
physics, to say the least. To this aim, we employ the variational principle

〈ψ|H|ψ〉
〈ψ|ψ〉

≥ E0 , ∀ |ψ〉 , (2)

and use an energy gradient with respect to the tensor coefficients to search for the minimum
– the precise optimization strategy being discussed later. Such an energy gradient is accessed
by means of tools from automatic differentiation (AD), a set of techniques to evaluate the
derivative of a function specified by a computer program that will be summarized below. Since
we directly target systems in the thermodynamic limit, a corner transfer matrix renormalization
group (CTMRG) procedure constitutes the backbone of the algorithm, and also will come in
handy for AD purposes. This is used to compute the approximate contraction of the infinite
lattice, which is crucial in order to compute accurate expectation values in the first place.
Importantly, the CTMRG routine is always performed on a regular square lattice, for which it
can be conveniently defined. Support for other lattices, also non-bipartite ones, is possible by
different lattice mappings, as we will demonstrate.

Besides the CTMRG procedure, other well-controlled numerical methods have been devel-
oped to contract the infinite PEPS network. These include boundary matrix product states [22,
59] and tensor coarse-graining techniques [27–30]. These methods can be equally success-
fully combined with the concept of automatic differentiation [37,47] and provide competitive
results. While other methods can be generalized to non-trivial unit cells [60] as well, in this
work we focus on the CTMRG method due to its straightforward generalization and flexibility
in handling arbitrary unit cells of size (Lx , L y). Furthermore, the CTMRG method provides a
robust agnosticism towards possible non-Hermitian transfer operators, which has to be treated
with more care in, e.g., boundary MPS methods.

The method we will present in this section gives rise to an upper bound of the ground
state energy in the sense of the variational principle as stated in Eq. (2). But we wish to point
out at this point that for that to be strictly true it would be necessary to choose the CTMRG
refinement parameter χE , introduced in detail in Sec. 2.2, to be χE →∞. However, in practice
we increase this refinement parameter χE until all observables are converged.

2.1 iPEPS setup

As introduced in the last section, we aim to simulate quantum many-body systems directly in
the thermodynamic limit. To this end, we consider a unit cell of lattice sites that is repeated
periodically over the infinite two-dimensional lattice. Reflecting this, the general configura-
tions of the iPEPS Ansatz are defined with an arbitrary unit cell of size (Lx , L y) on the square
lattice. The lattice setup, denoted by L, can be specified by a single matrix, which uniquely
determines the different lattice sites as well as their arrangement. Let us consider a concrete
example of an (Lx , L y) = (2, 2) state with only two and all four individual tensors, denoted by

L1 =

�

A B
B A

�

, L2 =

�

A C
B D

�

. (3)
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Figure 1: iPEPS ansätze with a unit cell of size (Lx , L y) = (2, 2) and only two (left)
and four (right) different tensors as defined in Eq. (3).

The corresponding iPEPS ansätze are visualized in Fig. 1. Here, the rows/columns of L cor-
respond to the x/y lattice directions. The unit cell L is repeated periodically to generate the
full two-dimensional system. As usual, the bulk bond dimension of the iPEPS tensors, denoted
by χB, controls the accuracy of the Ansatz. An iPEPS state with N different tensors in the unit
cell consists of N pχ4

B variational parameters, which we aim to optimize such that the iPEPS
wave function represents an approximation of the ground state of a specific Hamiltonian. The
parameter p denotes the dimension of the physical Hilbert space, e.g., p = 2 for a system of
spin-1/2 particles.

The right choice of the unit cell is crucial in order to capture the structure of the targeted
state. A mismatch of the Ansatz could not only lead to a bad estimate of the ground state, but
also to no convergence in the CTMRG routine at all. Different lattice configurations have to
be evaluated for specific problems to find the correct pattern.

To circumvent the problem of a fixed and a priori chosen unit cell structure, recently an
alternative description to the periodic structure has been proposed [61]. This approach is
applicable if the Hamiltonian has a certain global symmetry, where the additional degree of
freedom can be employed to reduce the description of the state to a subspace, e.g. SU(2) for
spin-1/2 systems. Here the state is described by the smallest possible unit cell, i.e. a single site
for a square lattice, as well as a product of local unitary operators parameterized by a wave
vector k = (kx , ky). A fixed choice of the wave vector then corresponds to the specification
of a unit cell structure in the common iPEPS setup. This approach allows for a variational
optimization of the wave vector along with the translationally invariant iPEPS tensor, removing
the need to choose a fixed unit cell structure altogether.

In this work we restrict the description of the method to the common iPEPS setup with
not only trivial unit cells. This enables the adaption of the framework to arbitrary, in general
non-symmetric Hamiltonian models.

2.2 CTMRG backbone

One major drawback of two-dimensional TNs such as iPEPS is that the contraction of the
full lattice can only be computed approximately. This is due to complexity theoretic obstruc-
tions [19,20] and – practically speaking – the lack of a canonical form, which can only be found
in loop-free tensor networks, for instance in matrix product states [8]. In order to circumvent
the unfeasible exact contraction of the infinite 2d lattice, we employ an approximation scheme,
the directional corner transfer matrix renormalization group (CTMRG) routine for iPEPS states
with arbitrary unit cells of size (Lx , L y). The CTMRG method approximates the calculation
of the norm 〈ψ|ψ〉 of the quantum state on the infinite square lattice by a set of effective
environment tensors. This is achieved by an iterative coarse-graining procedure, in which all
(local) iPEPS tensors in the unit cell L are successively absorbed into the environment ten-
sors towards all lattice directions, until the environment converges to a fixed-point. We will
present a summary of the directional CTMRG methods for an arbitrary unit cell, following
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Figure 2: The norm of an iPEPS (here with a single-site unit cell) at a bulk bond
dimension χB is approximated by a set of eight fixed-point environment tensors. The
environment bond dimension χE controls the approximations in the CTMRG routine.
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Figure 3: Main steps of a left CTMRG move. One column of tensors is inserted into
the network. Upon absorption of these tensors, the environment bond dimension
grows rapidly, requiring a renormalisation step.

the state-of-the-art procedure [62–64]. The effective environment is displayed in Fig. 2, here
for simplicity for a square lattice with a single-site unit cell L =

�

A
�

. It consists of a set of
eight fixed-point tensors, four corner tensors {C1, C2, C3, C4} as well as four transfer tensors
{T1, T2, T3, T4}, the latter sometimes also called edge tensors. In case of a larger unit cell, such
a set of eight environment tensors is computed for each individually specified iPEPS tensor in
the unit cell. The unavoidable approximations in the environment calculations are controlled
by a second refinement parameter, the environment bond dimension χE .

In one full CTMRG step, the complete iPEPS unit cell is absorbed into the four lattice di-
rections, such that the eight CTMRG tensors are updated for every iPEPS tensor. This is done
column-by-column or row-by-row, depending on the direction. In each absorption step the
environment bond dimension χE grows by a factor of χ2

B . To avoid an exponential increase
in memory consumption and computation time, we need a method to truncate the bond di-
mension back to χE . In order to do this, we calculate renormalization projectors for each row
or column. Projectors are computed from a suitable patch of the iPEPS state including the
effective environments, to find a best-possible truncation of the bond dimension. Different ap-
proaches for their calculations have been proposed in the literature, which we will discuss in
detail below, especially in the context of AD. In the following description of the CTMRG proce-
dure we focus on a left absorption move, which grows all left environment tensors {C4, T4, C1}.
The main steps of insertion, absorption and renormalization are shown in Fig. 3. In Sec. 2.2.1,

7

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.86


SciPost Phys. Lect. Notes 86 (2024)

C ′
1
[x,y+1]

=

P
[x−1,y]
LB

C
[x,y]
1 T

[x,y]
1

Figure 4: Update of the corner tensor C1 in a left CTMRG step.

T ′
4
[x,y+1] =

P
[x−1,y]
LT

P
[x,y]
LB

T
[x,y]
4

Figure 5: Update of the transfer matrix T4 in a left CTMRG step. Here the projectors
generally belong to different subspaces, unless the system is one-site translational
invariant.

we will explain the full absorption procedure including renormalization, as it is done in prac-
tise. Although projectors need to be calculated before the absorption, their motivation and the
calculation of different projects is discussed later in Sec. 2.2.2.

2.2.1 Absorption of iPEPS tensors

In order to generate the CTMRG environment tensors, such that they converge to a fixed-
point eventually, the iPEPS tensors are absorbed into them. To this end, we start with the
network of one iPEPS tensor in the unit cell and its accompanying environment tensors. This
is depicted in Fig. 3 in the top left. As shown on the top right of this figure, the network
is extended by inserting one column, consisting of an iPEPS tensor and the top and bottom
transfer tensors. While we depict the case of a single-site unit cell in Fig. 3, we note that
the column of tensors to be inserted is generally dictated by the unit cell structure of the
iPEPS Ansatz, i.e., the left neighbor with the corresponding environment tensors for a left
move. This crucial positional information for multi-site unit cells is specified by the coordinate
superscripts in the descriptions below. As indicated by the dashed line in Fig. 3, we absorb
the inserted column into the left environment tensors by contracting all left pointing edges.
This yields new environment tensors whose bond dimensions have grown by a factor χ2

B due
to the virtual iPEPS indices, thus we need a way to truncate the dimension back to the CTMRG
refinement parameter χE . This is done using the projectors we will discuss and compute in
the next section. For now we introduce them as abstract objects labeled P that implement
the dimensional reduction (i.e., the renormalization step) in an approximate but numerically
feasible way. The updated tensor C ′1 is then given by the contraction in Fig. 4. As discussed
before, the correct tensors and projectors have to be used in accordance with the periodicity
of the unit cell. The iPEPS tensor is now absorbed into the left transfer matrix T ′4, where two
projectors are needed to truncate the enlarged environment bond dimension. This is visualized
in Fig. 5. Finally, the lower corner tensor C ′4 is updated, by absorbing a transfer matrix T3 and
using another projector. The three absorption steps in Figs. 4, 5 and 6 are performed for all
rows x at a fixed column y , before moving to the next column y+1. The process of computing
projectors and growing the environment tensors is repeated for each column of the iPEPS unit
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C ′
4
[x,y+1]

=

P
[x,y]
LT

C
[x,y]
4 T

[x,y]
3

Figure 6: Update of the corner tensor C4 in a left CTM step.

ρT

ρB

Figure 7: Network of 2 × 2 iPEPS tensors and the corresponding CTMRG tensors,
used as a starting point to compute the truncation projectors. For a left CTMRG step
the top and bottom part is contracted into the matrices ρT and ρB with dimension
(χEχ

2
B)×(χEχ

2
B). The red dashed line indicates the bonds that are renormalized back

to a bond dimension χE .

cell, until the complete unit cell of Lx×L y tensors has been absorbed into the left environment.
This yields updated tensors C ′1, T ′4 and C ′4 for all [x , y].

The absorption of a full unit cell is then performed for the other three directions. In a top
move the tensors C1, T1 and C2 are grown, in a right move the tensors C2, T2 and C3 and in
a bottom move the tensors C3, T3 and C4. This completes a single CTMRG step, which is then
repeated in the directional procedure until convergence is reached. In Sec. 2.2.3 we discuss
appropriate convergence measures.

2.2.2 Calculation of projectors

In order to avoid an exponential increase of the bond dimension while growing the environ-
ment tensors, projectors are introduced to keep the bond dimension at a maximal value of χE .
Here, we will describe a common scheme to compute those projectors [63] and discuss some
properties of their use in combination with AD [42]. The task of finding good projectors es-
sentially comes down to finding a basis for the virtual space, whose bond dimension we aim
to reduce, that can be used to distinguish between “more and less important” sub-spaces. This
way, we can ideally reduce the dimension while keeping the most important sub-space. In
what follows, we consider the lattice environment of the virtual space that we aim to truncate
using the CTMRG environment tensors. To this end, we use a singular value decomposition
(SVD) to identify the basis, in which the bond is optimally truncated such that we keep the
most relevant information of this lattice environment. The lattice environment that we con-
sider is shown in Fig. 7, where the red dotted line identifies the bonds that we aim to optimally
truncate, illustrated for the example of a left absorption step. The arrangement of the tensors
in the network of Fig. 7 follows the unit cell definition L. For the trivial, single-site unit cell
L=
�

A
�

, all four iPEPS tensors are the same. We note that for a larger unit cell, cf. Fig. 1, the
iPEPS tensors and their adjacent environments have to be chosen according to its periodicity.
This setup for the arrangement is favorable, since it incorporates the (approximated) effect of
the infinite environment by including all CTM tensors for the different lattice directions.
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M =

ρT

ρB

Figure 8: Matrix M as defined by Eq. (4) in graphical TN notation. The red dashed
line indicates the bonds that are renormalized back to a bond dimension χE .

The projectors are used to renormalize the three left open tensor indices with combined
bond dimension χEχ

2
B back to the environment bond dimension χE in a left absorption step.

In order to compute them, we start by defining the matrix

M= ρB ·ρT , (4)

that represents the lattice environment of the virtual bond that we would like to truncate, as
visualized in Fig. 8.

The procedure outlined here aims to find projectors PLT and PLB, such that the truncated
matrix,

Mtrunc = ρB · PLT · PLB ·ρT , (5)

is an optimal approximation to M. To achieve this, we perform a singular value decomposition
on M, i.e.,

M= ULSLV †
L . (6)

This factorization introduces a basis which allows for a separation of more relevant and less
relevant sub-spaces. To this end, we choose the largest χE singular values and their corre-
sponding singular vectors for the construction of the projectors. Furthermore, we define

S+L = inv
�p

SL

�

, (7)

where a pseudo-inverse with a certain tolerance is used. To increase the numerical stability, a
threshold of typically 10−6 (corresponding to a threshold of 10−12 for the singular values) is
used. Smaller singular values are set to zero. The use of a pseudo-inverse in the generation
of the projectors is equivalent to the construction of a projector with lower environment bond
dimension. Finally, the projectors to renormalize the left absorption step are construced as

PLT = ρT · VL · S+L ,

PLB = S+L · U
†
L ·ρB .

(8)

Here ρT and ρB again denote the top and bottom part of M as introduced in Fig. 7. We
would like to point out the fact that without a truncation in the SVD above, the product of the
projectors we create in this way assembles the identity

PLT · PLB = ρT · VL · S−1
L · U

†
L ·ρB

= ρT · (ρB ·ρT)
−1 ·ρB = 1 .

(9)

We stress again, that the choice of truncation in the calculations of the projectors is optimal in
order to approximate the lattice environment M. A graphical representation of these projec-
tors is given in Fig. 9.

During a left-move, described in the previous section, we absorb the iPEPS tensors in the
unit cell column-by-column into the left environments. A renormalization step is required for
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P
[x,y]
LT =

S+
L

VL

ρT

P
[x,y]
LB

=

ρB

U†
L

S+
L

Figure 9: Calculation of top and bottom projectors for a left CTMRG absorption step.
The red dashed line indicates the bonds that are renormalized back to a bond dimen-
sion χE .

ρT

ρB

Figure 10: Network of 2 × 1 iPEPS tensor and the corresponding CTMRG tensors,
which is used as a reduced network to calculate the half projectors for a left CTMRG
step. The red dashed line indicates the bonds that are renormalized back to a bond
dimension χE .

each of those moves, resulting in projectors that are specific to every bond. We therefore label
them by the positions in the unit cell, i.e., P[x ,y]

LT and P[x ,y]
LB .

The process to generate the projectors described above uses the full lattice environment
M, and thus we call them full projectors. It should be noted that Fishman et al. have proposed
a scheme to calculate equivalent projectors in a fashion that is numerically more stable, at the
cost of being computationally more expensive [64]. Their method is particularly useful in the
case of a singular value spectrum of M that decays very fast.

Finally, different lattice environments of the virtual bond in question can be used to gener-
ate projectors. A very practical version are the so called half projectors. For those we choose a
lattice environment as illustrated in Fig. 10. These projectors are computationally less costly,
as they require a smaller network to be contracted. They only take into account correlation
within one half of the network, however this proves to be sufficient in many different applica-
tions. Lately, there have been proposals for even cheaper alternatives of lattice environments
and projector calculations [65], which yet have to be tested in the context of automatic differ-
entiation and variational iPEPS optimization.

2.2.3 Convergence and CTMRG fixed-points

The CTMRG routine as described above is a power-method that eventually converges to a
fixed-point. At this fixed-point, the set of environment tensors describes the contraction of
the infinite lattice with an approximation controlled by the environment bond dimension χE .
Convergence of the CTMRG tensors to the fixed-point can be monitored in different ways.
In regular applications (those that do not involve automatic differentiation and gradients) the
singular value spectrum of the corner tensors is typically a good quantity. Once the norm differ-
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Figure 11: Expectation values of a (horizontal) nearest-neighbour Hamiltonian term
〈ψ|hi, j|ψ〉/ 〈ψ|ψ〉 in tensor network notation, using the fixed-point CTMRG environ-
ments.

ence of the spectrum between two successive CTM steps converges below a certain threshold,
the environment tensors are assumed to be converged.

One peculiarity that is however not incorporated in this convergence check is sign or phase
fluctuation for real or complex tensor entries, respectively. This means that, while projectors
and hence the CTMRG tensors converge in absolute value, their entries can have different
signs/phases in consecutive CTM steps. For reasons that become clear in Sec. 2.5 it is however
required to reach element-wise convergence in the environment tensors for them to represent
an actual fixed-point [42]. Those fluctuations originate from the gauge freedom in the SVD
performed in Eq. (6). This is reflected in the freedom of introducing a unitary (block-)diagonal
matrix Γ in an SVD,

M= USV † = (UΓ )S
�

Γ †V †
�

, (10)

which leaves the expression invariant. The gauge freedom from the SVD directly affects the cal-
culation of the projectors, such that we aim to fix the phases while computing these projectors.
By eliminating this gauge freedom, at the true fixed-point, both projectors and environment
tensors should be converged element-wise.

To fix the gauge, we introduce a diagonal unitary matrix Γ that redefines the phase of
the largest entry (in absolute value) of every left singular vector to place it on the positive
real axis [42]. To avoid instabilities of this gauge-fixing procedure due to numerical quasi-
degeneracies, we always pick the first of such largest elements in basis order. Other choices,
like addressing the first element with magnitude above a fixed threshold, are also possible.
We further note that an alternative scheme to archive a fixed point in the CTMRG has recently
been proposed [66].

2.3 Energy expectation values

Computing the energy expectation value required for the energy minimization is straightfor-
ward using the CTMRG environment tensors. Assuming a Hamiltonian with only nearest-
neighbour interaction terms, individual bond energies can be computed as shown in Fig. 11.
The full energy expectation value, 〈ψ|H|ψ〉/ 〈ψ|ψ〉, is obtained by collecting all different en-
ergy contributions, i.e., all different terms in the Hamiltonian. Longer-range interaction can
be treated as well, by simply enlarging the diagrams of Fig. 11 and performing more expensive
contractions, which however occur only once per optimization step. In order to formulate a
variational optimization of the tensor coefficients parametrizing the wave function, a gradient
for the energy expectation value – including the foregone fixed-point CTMRG routine – is re-
quired. This is achieved by the concept of automatic differentiation, as we will describe next.
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Figure 12: Example of a computational graph for the function decomposition in
Eq. (11).

2.4 Automatic differentiation

Automatic differentiation (AD), sometimes also referred to as algorithmic differentiation or au-
tomated differentiation, is a method for taking the derivative of a complicated function which
is evaluated by some computer algorithm. It has been an important tool for optimization tasks
in machine learning for many years. An introduction can be found in e.g. Ref. [67]. After
its initial introduction in a foundational work [37], AD has found increasing applications in
numerical TN algorithms in recent years [38, 39, 41, 42, 44, 45]. For the sake of simplicity,
let us consider a function E : Rn −→ Rm for which we would like to evaluate the deriva-
tive. Noticeably, extensions to complex numbers are possible, and we provide some additional
comments in Appendix B. We have the particular use-case of the energy expectation value
E(|ψ〉) = 〈ψ|H|ψ〉/ 〈ψ|ψ〉 of an iPEPS in mind, in which case the co-domain of the function
E is R. As we explain below, this has some important consequences for the use of AD.

Automatic differentiation makes use of the fact that many functions and algorithms are
fundamentally built by concatenating elementary operations and functions like addition, mul-
tiplication, projection, exponentiation and taking powers, whose derivatives are known. The
central insight is now that we can build up the gradient of a more complicated function from
the derivatives of its elementary constituents by the chain rule of differentiation. In principle
this even allows for a computation of the gradient to machine precision. It should be noted
however, that it is neither necessary nor useful to deconstruct every function into its most
elementary parts. Rather it is advantageous to deconstruct the function at hand only into a
minimal amount of constituent-functions for which a derivative can be determined. These
functions are often referred to as the primitives of the function of interest E. Primitives might
themselves be a composition of many constituents but the derivative of the primitives them-
selves is known as a whole. An illustrative example for a primitive is a function that takes
two matrices as an input and outputs the multiplication of them. On an elementary level this
function is composed out of many multiplications and additions, but one can write down the
derivative w.r.t. its inputs immediately. The choice of primitives describes the level of coarse-
ness on which the AD process needs to know the details of the function E to compute the
desired gradient. Defining large primitives of a function can reduce memory consumption, as
well as increase performance and numerical stability of the AD process, e.g., by avoiding spuri-
ous divergences. Once the high-level function E has been decomposed into its minimal number
of primitives, we can represent this decomposition with a so called computational graph. The
computational graph is a directed, a-cyclic graph whose vertices represent the data generated
as intermediate results by the primitives and the edges represent the primitives themselves,
that transform the data from input to output.

As an example let us suppose we are able to decompose the function E into three primitives
f1, f2 and f3, such that E = f3 ◦ f2 ◦ f1. The primitives are maps between intermediate spaces

E : Rn1
f17−→ Rn2

f27−→ Rn3
f37−→ Rn4 , (11)

and we refer to the variables in theses spaces as x⃗ i ∈ Rni . The computation graph illustrating
this situation is shown in Fig. 12. AD can be performed in two distinct schemes, often called
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Figure 13: Illustration of forward-mode AD as described in Eq. (14) for the function
decomposition in Eq. (11).

forward- and backward-mode AD. In the following we will demonstrate the two AD modes with
the example of our previously introduced function E and its primitives. This will also serve to
illustrate the computational cost of these AD schemes for the iPEPS use-case. Since f1, f2 and
f3 are said to be primitives, their Jacobians

J i : Rni −→ Rni+1 ×Rni ,

J i( x⃗0
i ) =
�

∂ fi

∂ x⃗ i

�

�

�

�

�

x⃗ i= x⃗0
i

,
(12)

are known. An AD evaluation of the gradient of E at a specific point x⃗0
1 is then given by the

chain rule, the concatenation of the Jacobians of the primitives

∇E( x⃗0
1) = J3( x⃗0

3) · J
2( x⃗0

2) · J
1( x⃗0

1) , (13)

with fi( x⃗0
i ) = x⃗0

i+1. The difference between the forward- and backward-mode AD essentially
comes down to the question from which side we perform the multiplication of the Jacobians
above.

In the forward-mode AD scheme, the gradient is built up simultaneously with the evaluation
of the primitives f1, f2 and f3, according to the prescription

fi( x⃗
0
i ) = x⃗0

i+1 ,

Gi = J i( x⃗0
i ) · Gi−1 ,

(14)

for the i-th step, with the starting condition G0 := 1n1×n1
and with the final result that is given

by G3 = ∇E( x⃗0
1) ∈ R

n4×n1 . We see that in this case we build up Eq. (13) from right to left
or “along the computational graph” as illustrated in Fig. 13. At first sight, such a procedure
offers the potential advantage of not requiring to store intermediate results of the primitives
in memory. However, if the dimension of the input (domain of E) is much larger than the
dimension of the output (co-domain of E) – as it is the case in our use-case of iPEPS – this
procedure becomes computationally very heavy. Indeed, saving and multiplying the large
Jacobians in Eqs. (14) is often impractical. Thus, it is common to split up the starting condition
G0 := 1n1×n1

into the n1 canonical basis vectors {e⃗i}i=1,...,n1
. The procedure to generate the

gradient from Eq. (14) is then repeated n1 times, each iteration generating a single component
i. In this case, each step of the process of generating a component of the gradient is done by
calculating a Jacobian-vector product (JVP), so that only the resulting vector has to be stored.
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Figure 14: Illustration of backward-mode AD as described in Eq. (15) for the function
decomposition in Eq. (11).

In order to create the full gradient in this way we need to repeat the procedure n1 times, and
the cost of calculating the full gradient scales as O(n1) × O(E), where O(E) is the cost of
evaluating E.

The backward-mode AD scheme works instead by first evaluating the function E and storing
all intermediate results of the primitives along the way, and by then applying the iterative
prescription

Ḡi = Ḡi+1 · J i( x⃗0
i ) , (15)

with the starting condition Ḡ4 = 1n4×n4
and the final result Ḡ1 = ∇E( x⃗0

1) ∈ R
n4×n1 . In the

AD literature the objects Ḡi are called adjoint variables and the functions that map the ad-
joint variable on to each other, defined by Eq. (15), are called adjoint functions. We refer
to Appendix A for more details on the adjoint functions and adjoint variables. In some parts
of the literature the adjoint functions are also called pullbacks, which can be understood by
looking at AD in language of differential geometry, cf. Appendix D. We see that in this case we
build up Eq. (13) from left to right or as graphically illustrated in Fig. 14. This scheme has
the advantage of being computationally much cheaper if the output (co-domain) dimension is
smaller than the input (domain) dimension – precisely the situation of our iPEPS setup, with
n1 = N pχ4

B and n4 = 1. We indeed only need to compute vector-Jacobian products (VJP) when
evaluating the gradient, and, moreover, the full gradient is computed at once, instead of just
a single element at a time as in the forward-mode AD scheme. This is why the cost of calcu-
lating the gradient of the energy expectation value with backwards-mode AD is O(1)×O(E),
which is superior to the cost of forward-mode AD. However, since we need to save all inter-
mediate results of the primitives along the way in order to compute the gradient, the memory
requirement for this scheme is in principle unbounded. Fortunately, the fixed-point condition
for the iPEPS environments can be used to guarantee that the memory remains bounded in
our calculations, as we illustrate in the following section.

2.5 Calculation of the gradient at the CTMRG fixed-point

Computationally, the CTMRG routine represents the bottleneck of the full iPEPS energy func-
tion. It involves many expensive contractions and SVDs. Moreover, it requires an a priori
unknown number of CTMRG iterations to reach convergence of the environment tensors. This
would be especially disadvantageous for the gradient evaluation using plain-vanilla backward-
mode AD, since this would require unrolling all the performed CTMRG iterations and paying
a memory consumption linear in their number. However, this can be avoided by leveraging
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Figure 15: Computational graph of the CTMRG procedure for calculating the energy
density at fixed point.

that fact that the CTMRG iteration eventually converges to a fixed point, and this is precisely
the condition under which the energy evaluation is then performed. As soon this fixed point
is reached, all CTMRG iterations are identical, i.e., reproducing the converged environment
tensors. We can, in this situation, get away with only saving intermediate results from such a
converged CTMRG iteration. This reduces the memory requirements by a factor of the num-
ber of CTMRG iterations that we perform [37]. We stress here that, for this approach to work,
we must make sure that the CTMRG procedure reaches an actual fixed point, meaning that
all CTMRG environment tensors are converged element wise as discussed in Sec. 2.2.3. The
fixed-point equation can be written as

e∗(A) = c(A, e∗(A)) , (16)

where the function c is one full CTMRG iteration, A are the iPEPS tensors which are constant
during the CTMRG procedure and e∗(A) represents the CTMRG environment tensors at the
fixed-point. E is the function that maps the iPEPS tensors with the fixed point environment
tensors and the Hamiltonian operators to the energy expectation value. The computational
graph for the ground state energy is illustrated in Fig. 15. From it we can construct the form
of the gradient of the energy expectation value with respect to the parameters of the iPEPS
tensors A,

∂ 〈H〉
∂ A

=
∂ E
∂ A
+
∂ E
∂ e∗

∞
∑

n=0

�

∂ c
∂ e∗

�n ∂ c
∂ A

. (17)

In practice this infinite sum is evaluated to finite order until the resulting gradient is converged
to finite accuracy. An alternative viewpoint on the gradient at the fixed-point of the CTMRG
procedure is presented in the Appendix C.

It has recently been noted in Ref. [66] that the stability and accuracy of the SVD derivative
can be improved by including a previously neglected gradient contribution from the truncated
part of the singular value spectrum.
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2.6 Optimization

As discussed in the introduction of Sec. 2 we seek to find the iPEPS approximation |ψ〉TN of the
ground state vector |ψ0〉. Employing the methods discussed in the last sections we can describe
this energy calculation as function E(|ψ〉TN), consisting of the CTMRG power-method and the
expectation value approximation using the resulting CTMRG environment tensors. Since we
can calculate the gradient ∇E(|ψ〉TN) of this real scalar function it is straightforward to use
well-known optimization methods to find the energy minimum. We would like to stress that
the state vector |ψ〉TN, and thus the energy function, only depends on the tensors defining
the iPEPS Ansatz and not the environment tensors since they are implicitly calculated from
the Ansatz. In this discussion we focus on two types of methods based on the gradient: The
(nonlinear) conjugate gradient (CG) [68–72] and the quasi-Newton methods [73–78].

A naive approach to find the minimum of a function E(|ψi〉), of which the gradient
∇E(|ψi〉) is known, is to shift the input parameters |ψi〉 sufficiently along the negative gradi-
ent so that we find a new position |ψi+1〉 where the function value is reduced. At the end of
this section we discuss what a sufficient step size means in this context. Iterating this proce-
dure to a point where the gradient of the function vanishes (within a pre-defined tolerance)
yields a solution to the optimisation problem. Thus either a saddle point or a (local) minimum
is reached then. This method is called steepest gradient descent. Although it resembles one
of the simplest methods to find a descent direction, it is known to have a very slow conver-
gence for difficult problems, e.g., for functions with narrow valleys [79]. Therefore, we use in
practice more sophisticated methods to determine the descent direction.

The family of nonlinear conjugate gradient as generalization of the linear conjugate gra-
dient method modifies this approach. Instead of using the negative gradient as a direction in
each iteration step it uses a descent direction which is conjugated to the previous ones. For
the linear conjugate gradient method there is a known factor βi to calculate the new descent
direction di = gi + βidi−1 from the gradient gi of the current step and the descent direction
di−1 of last step. In the generalization for nonlinear functions this parameter is not uniquely
determined anymore, however there are different approaches to estimate this parameter in the
literature [69–71]. In our implementation we chose the nonlinear conjugate gradient method
in the formulation as has been suggested by Hager and Zhang [72],

β̃HZ
i =

1

dTi−1 yi

�

yi − 2di−1
∥yi∥

2

dTi−1 yi

�T

gi ,

ηi =
−1

∥di−1∥min(η,∥gi−1∥)
,

βHZ
i =max(β̃HZ

i ,ηi) ,

(18)

with ∥·∥ the Euclidian norm, yi = gi − gi−1 and η > 0 a numerical control parameter which
has been set to η = 0.01 in the work by Hager and Zhang. In our tests and benchmarks this
choice for βi has been proven to be numerically stable.

The other family of optimization methods we use in our implementation are the quasi-
Newton methods, concretely the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [75–
78] and its low-memory (L-BFGS) variant [74, 80]. These methods are based on the Newton
method where the descent direction is calculated using not only the gradient, but also the
second derivative (the Hessian matrix). Unfortunately, it is computationally expensive to cal-
culate the Hessian for large sets of input parameter, which makes this method only feasible
for small parameter sets (i.e., iPEPS ansätze with a small number of variational parameters).
Quasi-Newton methods solve this problem by not calculating the full Hessian, but an approx-
imation of it. To this end, the gradient information from successive iteration steps is used to
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update the approximation in each step. The BFGS algorithm stores the full approximated Hes-
sian matrix, including the information from all previous steps. In contrast, the L-BFGS method
calculates the effective descent direction in an iterative manner from the last N optimization
steps. This way not the full (approximated) Hessian has to be stored in memory but only the
gradients of the last N steps. This reduces the memory consumption by an order of magnitude.
The disadvantage is that not the full information of all previous steps is considered, but only
a fraction of it. Nevertheless, due to the memory requirements to store the full approximated
Hessian in the standard BFGS method for larger iPEPS bond dimensions we use L-BFGS as the
default quasi-Newton method.

As noted before, we would like to shift the variational parameters x i along the descent
direction di determined by the different algorithms discussed above. With this shift we aim to
find a new Ansatz x i+1 = x i + αidi with αi the step size along the descent direction. Ideally,
we would like to find the optimal step size αi = minα E(x i + αdi) minimizing the function
value along the descent direction. However, determining this optimal value is computationally
expensive and thus in practice, we stick to a sufficient step size fulfilling some conditions. The
procedure to find this step size is called line search [81–84]. In our implementation we use
the Wolfe conditions [82–84], since they guarantee properties which are feasible particularly
for the (L-)BFGS method and its iterative update of the effect of the approximate Hessian.

2.7 Handling of physical symmetries

One important property of tensor networks is their ability to incorporate physical symmetries,
such as global internal symmetries or spatial symmetries, into their structure exactly. This can
be achieved at the level of each individual tensor, ensuring that the entire many-body wave
function remains symmetry-invariant. On one hand, this approach allows for the targeting of
specific sectors of the Hamiltonian and facilitates a symmetry-resolved analysis of the model
under consideration. On the other hand, it restricts the number of remaining variational pa-
rameters and can lead to a substantial computational speed-up, which, in turn, enables access
to larger bond dimensions.

Global symmetries can be implemented by making the tensors quantum number-
preserving, with quantum numbers corresponding to the underlying symmetry group. This
results in a sparse tensor block structure, where linear algebra operations are performed on
a generally larger set of much smaller individual tensors, leading to more efficient manipula-
tions. Common symmetries exploited in tensor network simulations include Abelian symme-
tries such as ZN or U(1) [85, 86], non-Abelian symmetries such as SU(2) [87, 88], and also
fermionic symmetries [89, 90]. Moreover, lattice symmetries can be directly implemented as
well, e.g. by imposing reflection or rotation symmetry for the tensor entries.

By making the full set of algorithmic tensor operations, such as tensor initialization, con-
traction, factorization, index permutation, etc., aware of the block structure, symmetric tensors
can be treated analogously to non-symmetric ones on a conceptual level. This includes their
use in variational optimization based on automatic differentiation. There exist several open
source libraries that can handle internal (non)-Abelian and lattice symmetries in TNs [91–94],
some already within the scope of variational PEPS optimization [50].

2.8 Pitfalls and practical hints

2.8.1 Iterative SVD algorithm

We also advertise the use of iterative algorithms for the calculation of the SVD in the CTMRG
procedure. This can be quite advantageous computationally, since only χE singular values
are needed for a matrix of size (χEχ

2
B)× (χEχ

2
B) during the CTMRG. To this end, we use the
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Golub-Kahan-Lanczos (GKL) bidiagonalization algorithm with additional orthogonalization for
the Krylov vectors. This algorithm is available, e.g., in packages like KRYLOVKIT.JL [95] or
ITERATIVESOLVERS.JL [96] in the JULIA programming language. We highlight the utility of this
type of algorithm for the calculation of the SVD with the comparison of the computational
time of the different algorithms in the iPEPS use case in Fig. 16.

2.8.2 Stability of the CTMRG routine

One of the basic prerequisite for a stable variational iPEPS optimization is a robust CTMRG
routine fulfilling the convergence requirements discussed in Sec. 2.2.3. Obviously, there is
the environment bond dimension χE to control the accuracy of the approximation of the envi-
ronment. If the environment bond dimension is chosen too low, the approximation is invalid
and the CTMRG routine can yield an inaccurate result for the expectation value. This could
further lead to an unstable variational update. To check heuristically whether the refinement
parameter χE is chosen sufficiently high, one can check the singular value spectrum obtained
during the projector calculation as described in Sec. 2.2.2. As a reliable criteria for the amount
of information loss, we compute the truncation error ϵT given by the norm of the discarded
singular values of the normalized spectrum [97]. If the truncation error is larger than some
threshold (e.g., ϵT > 10−5), one can assume that the environment bond dimension is chosen
too low and has to be increased. Employing this procedure, the bond dimension can automat-
ically be increased during the variational optimization if necessary. A sufficiently large χE is
crucial as the AD optimization can otherwise exploit the inaccuracies of the CTMRG procedure,
leading to false ground states with artificially low energy.
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Figure 16: Comparison of the computational time for the calculation of the first
χE singular values/vectors of a matrix of dimension (χEχ

2
B) × (χEχ

2
B) obtained in

a CTMRG procedure with bond dimension χB = 6. The conventional SVD (blue),
which is truncated only after calculating the full SVD spectrum is substantially slower
than the iterative GKL methods. The GKL algorithm in the CTMRG use case was
showed comparable performance when constructing the χEχ

2
B matrix explicitly (or-

ange) or by just implementing its action of a vector (green). While the GKL algorithm
for the case at moderate d and χE constructing the matrix usually is faster, at larger
χB and χE it can become advantageous to only implement the action of the matrix.
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2.8.3 Prevention of local minima

An ideal iPEPS optimization finds the global energy minimum of the input Hamiltonian within
the iPEPS Ansatz class of fixed unit cell and bond dimension. In practice, however, it is possible
– and likely – that the algorithm gets stuck in local minima. In order to avoid local minima
and reach the global optimum, there are a number of possible tricks. The naive way is to start
several simulations with different random initial states. This is typically a practicable solution,
although it is not well controllable and requires large computational resources.

An optimization of a system with a tendency for local minima might still be successful, if a
suitable initial state is provided. One possibility are initial states obtained by imaginary-time
evolution methods (simple update, full update [22,23,98]). While this is typically a convenient
solution, it is sometimes necessary to perturb the input tensors with a small amount of noise
(e.g., 10−2 in relative amplitude) to actually avoid local minima. As an alternative, one can
input a converged state obtained from energy minimization of a different TN Ansatz, provided
there is a suitable mapping between the different structures. Examples for this technique are
provided for benchmarks on different lattices in Sec. 4.

Finally, the method of perturbing a suitable initial state with small amount of random
noise of course could also be applied to the result of one optimization run. As suggested in
the literature [99], this could help to escape possible local minima. Therefore, one could retry
this method a few times and keep the best result of all runs.

2.8.4 Recycling of environments

The calculation of the environment tensors with the CTMRG routine is expensive and time
consuming. During an optimization process one can reuse the environment tensors of the
previous optimization step as input for the next. This is advisable in the advanced stages of
the optimization, in which the gradient is already small. In this scenario the iPEPS tensors
usually only change minutely, such that starting the CTMRG routine from the environments
of the last PEPS tensor can reduce the number of CTMRG steps required for convergence
substantially.

2.8.5 Analysing iPEPS data at finite bond dimensions

Data generated with the variational iPEPS setup inevitably carries finite iPEPS bond dimension
χB (or even finite environment bond dimension χE) effects. Several schemes are available to
utilize the correlation length of the optimal tensors at a certain value of χB to extrapolate
the values of observables [100–102]. Additionally, a extrapolation scheme using data of an
optimized iPEPS state at finite χB and finite but suboptimal χE has been proposed and shown
useful [103].

2.8.6 Degenerate singular values

Although very rare, a degenerate singular value spectrum in the calculation of the projec-
tors can be an obstacle. The gradient of the SVD becomes ill-defined in this case, due to terms
Fi, j = 1/(s2

j − s2
i ) in the derivative [45], where si are the singular values. Naturally, it would be

desirable to remove the degeneracy by constraining the system to the correct physical symme-
try, thereby grouping the degenerate singular values to common multiplets of the underlying
symmetry group. If this is not possible or the degeneracies appear independently of a symme-
try (“accidental” degeneracy), workarounds have to be used. One possibility is to add a small
amount of noise in the form of a diagonal matrix X X−1 on the CTMRG environment links, with
the elements of X drawn from a tiny interval [1 − ϵ, 1 + ϵ]. This can space out the singular
value spectrum and stabilize the SVD derivative [104]. Recently an alternative procedure to
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Figure 17: Honeycomb and topologically equivalent brick-wall lattice.

eliminate divergences in the derivative of the SVD with degenerate spectrum has been pro-
posed in Ref. [66]. Here, for the case of a rotationally invariant CTMRG, the divergent term
is canceled out by a particular gauge fixing of the environment tensors.

3 Extension to other lattices

The directional CTMRG routine on the square lattice is very convenient for its orthogonal
lattice vectors and definition of the effective environments. It is therefore natural to exploit
the implemented routines for different kind of lattices that can be mapped back to the square
lattice. This can typically be achieved by a suitable coarse-graining, in which a collection of
lattice sites on the original lattice is mapped into an effective site on the square lattice. Energy
expectation values can then be directly evaluated in the coarse-grained picture as well. This is
even advantageous for the AD optimization procedure, since the energy can often be computed
with a smaller number of individual terms. In this section we will present the mapping for four
types of lattices frequently found in condensed matter systems – the honeycomb, kagome,
square-kagome and triangular lattice. Naturally, the framework can be extended by other
suitable two-dimensional lattices, such as dice, square-octagon, maple-leaf and others. As
an alternative to the coarse-graining approach, CTMRG methods that directly operate on the
original lattice structures can also be defined [46,105,106].

3.1 Honeycomb lattice

The honeycomb, hexagonal or brick-wall lattice is of broad interest in material science and of-
ten appears in the context of quantum many-body systems. For instance, the Kitaev honeycomb
model is a paradigmatic example hosting different kinds of phases supporting different types
of anyons, both Abelian and non-Abelian [107]. We will now describe the general technical
framework to simulate honeycomb lattices with the backbone CTMRG procedure described
in Sec. 2.2. To this end we consider an elementary unit cell of the honeycomb lattice. Here
we choose to define it along so-called x-links for reasons that become clear soon. Alterna-
tively and equivalently, it could as well be defined along y- or z-links. As an example with
eight different tensors on the honeycomb lattice, corresponding to four elementary unit cells
is shown in Fig. 18. Coarse-graining the two lattice sites along x-links of the honeycomb lat-
tice directly results in a square lattice, as shown in Fig. 19. Here, the (mapped) unit cell has
size (Lx , L y) = (2,2) with an arrangement as in Eq. (3) and Fig. 1. The green color is used
to highlight the coarse-graining along x-links. In contrast to the regular square lattice, each
coarse-grained tensor has two physical indices that can be reshaped to a single, combined index
before feeding it into the CTMRG procedure. A trivial unit cell on the square lattice, consisting
of only a single-site tensor, results in two different tensors on the honeycomb lattice.
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Figure 18: iPEPS Ansatz on the honeycomb lattice with four elementary unit cells,
resulting in eight different lattice sites. x-, y- and z-links denote the three types of
inequivalent links in the lattice. Coarse-graining this state to a square lattice results
in a (Lx , L y) = (2, 2) configuration, with an arrangement as in Eq. (3) / Fig. 1.

The CTMRG routine can then be run as described above, just with a larger physical di-
mension. This does not change anything in the contractions, it is just computationally more
expensive. Expectation values can now be evaluated accurately using the CTMRG environ-
ment tensors. Assuming nearest-neighbour terms again, expectation values along x-links can
be computed by a single-site TN, while y- and z-bonds remain two-site TNs similarly to Fig. 11.

3.2 Kagome lattice

Another important and often encountered lattice in condensed matter physics is the kagome
lattice. It is of special interest due to its corner-sharing triangles, which lead a strong geomet-
ric frustration for anti-ferromagnetic models. Using a simple mapping of the kagome lattice to
a square lattice, we can directly incorporate it into our variational PEPS library. The kagome
lattice is shown in Fig. 20a. Naturally, we can define a unit cell of tensors that is repeated
periodically over the whole two-dimensional lattice. In our setting we consider an upward tri-
angle on the kagome lattice as an elementary unit cell, highlighted by the gray dotted area in
Fig. 20a. By choosing a coarse-graining, we can represent the three lattice sites in the unit cell
by a single iPEPS tensor, which connects to its neighbours by four virtual indices. This direct
mapping is shown in Fig. 20b. Nearest-neighbour links in the kagome lattice get mapped to
nearest-neighbour or second-nearest-neighbour links in the square lattice. Every iPEPS site on
the square lattice has a physical dimension of p3. As an alternative mapping, which results in
the same coarse-grained TN structure, we move from the kagome lattice to its dual, the honey-
comb lattice. Here the spins live on the links instead of the vertices. The honeycomb mapping
presented in Sec. 3.1 is therefore not directly applicable and additional simplex tensors are nec-
essary to connect the lattices sites. This TN structure is shown in Fig. 21, which is commonly
known as the infinite projected entangled simplex state (iPESS) [108]. Due to this particular
mapping, three kagome lattice sites (along with two simplex tensors) are coarse-grained into

Figure 19: Using a mapping the brick-wall lattice is transformed to the square lattice.
The green color of the tensors is just to highlight the coarse-graining along x-links,
while y- and z- links remain in the network.
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(a) (b)
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y

Figure 20: (a) Regular kagome lattice with corner-sharing triangles and an elemen-
tary unit cell consisting of three lattice sites. (b) Regular kagome lattice mapped to
a square lattice by coarse-graining of the three spins in each unit cell.

x

y

Figure 21: Honeycomb lattice (dual to the kagome lattice) with spins residing on
the lattice links and additional simplex tensors on the lattice sites. Unit cells are
highlighted by the gray dotted areas. Upon coarse-graining of the unit cells, the dual
honeycomb lattice is mapped to the regular square lattice. Physical indices of the
corresponding TN states are not shown.

a single iPEPS site on the square lattice. While the mappings in Fig. 20b and Fig. 21 result in
the same square lattice TN, they differ in the number of variational parameters in the Ansatz.
In the direct iPEPS Ansatz, every unit cell tensor has p3χ4

B parameters, while there are only
(3pχ2

B + 2χ3
B) parameters for the iPESS Ansatz. Moreover, quantum correlations between lat-

tice sites are exactly captured within the coarse-grained cluster for the iPEPS, whereas they
are limited by the bulk bond dimension for the iPESS. In the ladder case, however, there is
no bias between lattice sites within one cluster and sites belonging to different clusters. The
nearest neighbor interactions on the kagome lattice are mapped to on-site, nearest neighbor
and next-nearest neighbor interactions on the square lattice. As a concrete mapping example
which has particular use in the study of the regular Heisenberg model in a magnetic field, we
consider the iPEPS configuration

L=





A B C
B C A
C A B



 , (19)

on the square lattice. This configuration results in the kagome lattice structure shown in
Fig. 22.
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Figure 22: Kagome lattice structure corresponding to a square lattice unit cell ac-
cording to Eq. (19).

Figure 23: Square-kagome lattice. Similarly to the regular kagome lattice, it features
corner-sharing triangles. The elementary unit cell consists of six sites, as shown in
Fig. 24.

3.3 Square-kagome lattice

As a third lattice that has gained a lot of interest in recent time is the square-kagome lattice.
Similar to the regular kagome lattice it features corner-sharing triangles and it is expected to
host exotic quantum phases due to the geometric frustration for antiferromagnetic spin models.
The square-kagome lattice structure is shown in Fig. 23. Naturally, a coarse-graining of the six
spins in the elementary unit cell can be used, which directly maps the square-kagome lattice
to a square lattice as depicted in Fig. 24. Following the same construction as for the regular
kagome lattice, we can generalize the iPESS Ansatz to the dual of the square-kagome lattice,
the so-called (4, 82) Archimedean lattice. This results in an Ansatz with four simplex tensors
and six lattice site tensors per elementary unit cell, as illustrated in Fig. 25. Counting the
number of variational parameters in both TN ansätze, we find a drastic reduction in the iPESS
Ansatz, again. Here the iPEPS has p6χ4

B parameters, while the iPESS only has (6pχ2
B + 4χ3

B)
parameters for each tensor in the unit cell. In Table 1, we reinforce the difference for usual
iPEPS bond dimensions, which has a strong influence on the expressivity and optimization
of the different TN structures. As in the case of the kagome lattice, the first coarse-graining
captures quantum correlations within the cluster exactly. While this is not the case for the
iPESS mapping, it does not introduce a bias for the different lattice sites within and across
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x

y

Figure 24: Regular square-kagome lattice mapped to a square lattice by coarse-
graining the six spins in each elementary unit cell.

x

y

Figure 25: Square-octagon lattice (dual to the square-kagome lattice) with spins
residing on the lattice links and additional simplex tensors on the lattice sites. Unit
cells are highlighted by the gray dotted areas. Upon coarse-graining of the unit cells,
the square-octagon lattice is mapped to the regular square lattice. Physical indices
of the corresponding TN states are not shown.

clusters. Both mappings result in a large physical bond dimension of p6, with p the Hilbert
space dimension of the original degrees of freedom (e.g., p = 2 for a spin-1/2). This makes
especially the CTMRG routine computationally expensive. As an example we consider a two-
site checkerboard pattern ((Lx , L y) = (2,2) with only two different tensors) on the square
lattice, given by

L=
�

A B
B A

�

. (20)

This results in a square-kagome state with twelve different lattice sites, as shown in Fig. 26.
Assuming nearest-neighbour interactions in the Hamiltonian, the ground state energy can

be computed by single-site as well as horizontal and vertical two-site expectation values.

3.4 Triangular lattice

The triangular lattice, shown in Fig. 27 is another two-dimensional lattice variant that appears
frequently in condensed matter systems. Due to its large connectivity to six nearest neighbours,
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Table 1: Number of variational parameters (per elementary unit cell) in the iPEPS
and iPESS TN Ansatz of the square-kagome lattice for p = 2, assuming real tensor
elements.

χB p6χ4
B (6pχ2

B + 4χ3
B) ratio

2 1024 80 12.8
3 5184 216 25.0
4 16384 448 36.6
5 40000 800 50.0
6 82944 1296 64.0
7 153664 1960 78.4
8 262144 2816 93.1

x

y

Figure 26: Square-kagome lattice structure for a square lattice unit cell according
to Eq. (20). The Ansatz has twelve different lattice sites with two-site translation
invariance in both x- and y-direction.

it is a typical playground for frustrated systems, hosting a variety of different quantum phases.
As a consequence of this, the large connectivity makes it more challenging for numerical sim-
ulations. The triangular lattice can be directly interpreted as a square lattice with additional
diagonal interactions. The entanglement between diagonal sites is then mediated by the reg-
ular virtual links in the square lattice tensor network. Nearest-neighbour interactions on the
triangular lattice are again mapped to nearest-neighbour and next-to-nearest-neighbour inter-
action on the coarse-grained square lattice.

An alternative TN representation of the triangular lattice can be constructed using again
the iPESS Ansatz. In contrast to the iPESS for kagome and square-kagome lattices, here the
lattice sites have three virtual indices, too. The mapping is visualized in Fig. 28 with the iPESS
Ansatz being a honeycomb lattice. Similarly to the first interpretation, this iPESS honeycomb
Ansatz can be mapped to a regular square lattice with additional next-to-nearest-neighbour in-
teractions. While the first approach as pχ4

B parameters per unit cell tensor, the iPESS mapping
only has (pχ3

B + χ
3
B) coefficients. Finally, and as an alternative to the previous mappings, a

reverse transformation could be used, which involves a fine-graining of the lattice sites [109].

3.5 Comments about different structures

In general there is no unique way to map a given lattice structure to the square lattice. The
different approaches mainly differ in the number of variational parameters. While the energy
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Figure 27: Regular triangular lattice with a connectivity of six, i.e., every lattice site
is connected to six nearest neighbours.

x

y

Figure 28: iPESS Ansatz for the triangular lattice consisting of only two tensors per
triangular lattice site. When one lattice site and one simplex tensor are combined,
the triangular lattice is directly mapped onto a regular square lattice.

for an Ansatz with fewer parameters can be optimized with fewer resources, an Ansatz with
a higher variational freedom might be able to capture the physical system more accurately.
At the same time the optimization becomes more complex due to the need to calculate big-
ger gradients. In practice, choosing the right Ansatz depends on the spatial structures of the
quantum state, the amount of entanglement present in the system and the required accuracy.
One strategy that works well is a step-wise optimization. In the first step one can choose, e.g.,
an iPESS Ansatz with fewer variational parameters. Once an optimized wave function has
been found, the iPESS Ansatz is coarse-grained into a TN with a higher number of variational
parameters, e.g., a direct iPEPS Ansatz. A second optimization of this more expressive Ansatz
might then result in lower ground state energies. In the following sections we will present
benchmarks, where several of the lowest data points have been obtained with such a two-step
procedure.

4 Benchmarks and discussions

In this section, we will present benchmarks for a challenging and paradigmatic models on
the different currently supported lattices. Due to its prominence and availability of bench-
marks to different numerical techniques, we generally focus on the spin-1/2 Heisenberg anti-
ferromagnet. The Heisenberg Hamiltonian is given by

H = J
∑

〈i, j〉

S⃗i · S⃗ j , (21)
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where 〈i, j〉 denotes nearest neighbours and S⃗i are the spin-1/2 operators on the lattice sites.
We consider isotropic anti-ferromagnetic interactions at J = 1.0 throughout the benchmark
section. Variational energies obtained with our implementation are denoted by “variational
update” (VU). Where applicable, we include different TN variants (e.g., iPESS and iPEPS) in
the numerical benchmarks, to highlight the effect of different numbers of variational param-
eters. Imaginary time-evolution in the form of a “simple update” (SU) on the different lattice
structures can provide initial states for the variational update as discussed in Sec. 2.8.3. When-
ever we use initial tensors from the SU, we add a small amount of random noise to the input
tensors prior to the variational update, in order to circumvent possible local minima in the
imaginary time evolution.

In the plots of this section we include the energies calculated by the mean-field environ-
ment (MF) used in the simple update. Using this approximation much larger iPEPS bond
dimensions are computationally feasable but we would like to point out that this method is
not guaranteed to be variational in the sense that the energy is an upper bound to the ground
state energy. Thus, it is only sensible to rigorously compare results for which energy expecta-
tion values are computed by CTMRG. We include the non-variational MF energies for higher
iPEPS bond dimensions for a rough comparison.

We add for each benchmark a table with the comparison of the results obtained by the
simple update simulations and the best result throughout all variational updates for a fixed
iPEPS bond dimension χB. Both expectation values have been calculated by CTMRG.

4.1 Comments on lower bounds in variational principles

As a further conceptual point, it is important to stress that variational principles can be bench-
marked as well by resorting to lower bounds to ground state energies. Such lower bounds can
be efficiently computed and hold in the thermodynamic limit up to a small constant error in
the energy density [110]. If the Hamiltonian H is seen as being written as a sum of terms

H =
∑

j

h j , (22)

where each h j is a patch that contains as many unit cells that can be accommodated in an
exact diagonalization, then

〈ψ|H|ψ〉
〈ψ|ψ〉

≥ E0 , ∀ |ψ〉 , E0 ≥ λmin(h j) , (23)

where λmin(h j) denotes the smallest eigenvalue of the patch h j with open boundary conditions.
In this way, the quality of the variational principle giving rise to upper bounds to the ground
state energy can be certified by lower bounds.

4.2 Honeycomb lattice

For the simulations of the Heisenberg on the honeycomb lattice we choose a single-site unit cell,
consisting of only two different tensors on the honeycomb lattice. A mapping to the square lat-
tice yields a fully translationally invariant iPEPS with a local Hilbert space dimension of p2 = 4.
We optimize the ground states on both TN structures with 2pχ3

B and p2χ4
B numbers of varia-

tional parameters, respectively (assuming real tensor coefficients). The model is known to be
in a gapless Néel ordered phase [113–115]. Therefore, high environment bond dimensions χE
are required to capture the large correlation lengths of the critical state. Ground state energies
are reported in Fig. 29. The critical property of the ground state is already nice reflected in the
significant difference between simple update MF and CTMRG expectation values. The CTMRG
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VU coarse-grained PEPS energies
Variational iPEPS value from [111]
Coupled cluster value from [112]

χB E0 (SU) E0 (VU)
2 -0.53533 -0.537600
3 -0.53969 -0.541145
4 -0.54346 -0.544159
5 -0.54398 -0.544474
6 -0.54409 -0.544536
7 -0.54412 -0.544543

Figure 29: Benchmarking results for the isotropic spin-1/2 Heisenberg model on the
honeycomb lattice. For comparison we include the variational result obtained by an
iPEPS study in Ref. [111]. Additionally, the result calculated by the coupled cluster
method in Ref. [112] is shown, which is due to extrapolation not variational either.

environments treat quantum correlations much more carefully, which leads to improved en-
ergies for the infinite TN state. The VU provides lower energies than the SU with CTMRG
and our results using the VU are compatible with previous results using variational iPEPS with
a different CTMRG procedure [111] as well as extrapolated and thus non-variational results
from the coupled cluster method [112].

4.3 Kagome lattice

The Heisenberg model on the kagome lattice can be considered one of the most enigmatic and
well studied models in the field of frustrated magnetism [117]. While a spin liquid ground
state is well established, the actual type of ground state is still under debate with different
methods supporting different states (e.g., Z2 gapped spin liquid [118,119], U(1) gapless spin
liquid [116,120]).

Since the ground state is known to be a spin liquid state, that does not form any magnetic
ordering down to zero temperature while preserving lattice translation and rotation symmetry,
we use the smallest unit cells of only three sites in our simulations. The SU then works on the
three-site iPESS Ansatz. The VU is performed both on the honeycomb iPESS and on a coarse-
grained, fully translationally invariant iPEPS state. The number of variational parameters are
hence (3pχ2

B + 2χ3
B) for the iPESS and p3χ4

B for the iPEPS. Again, the iPEPS state is more
expressive and produces lower variational energies, that follow a smoother convergence with
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χB E0 (SU) E0 (VU)
2 -0.38620 -0.40454
3 -0.41786 -0.42688
4 -0.42323 -0.43038
5 -0.42866 -0.43286
6 -0.43188 -0.43451
7 -0.43313 -0.43527
8 -0.43391 -0.43552

Figure 30: Benchmarking results for the isotropic spin-1/2 Heisenberg model on
the kagome lattice. For comparision, we show the outcome obtained by extrapolated
iPESS results in Ref. [116], which, to be strict, is not variational as the authors noted.
Additionally, we include the result computed by exact diagionalization in Ref. [117].

bond dimension χB, see Fig. 30. The ED energy provides a lower-bound for the energy, as
argued in Sec. 4.1. Our energies are compatible with other state-of-the-art numerical methods
as the extrapolated iPESS result from Ref. [116], but we would like to point out that the authors
noted that their results are not variational and hence the comparison is slightly tainted. Our
result showcases the purpose of variational iPEPS optimization for highly frustrated systems
to obtain a real upper bound to the ground state energy.

4.4 Square-kagome lattice

As a third benchmark model, we simulate the Heisenberg model on the square-kagome lattice,
a lattice that has gained attention as a class of promising quantum spin liquid materials [123].
It consists of corner-sharing triangles, that generate a high geometric frustration similar to the
kagome lattice. Its ground state has been found to be non-magnetic, however the existing
subtle competition between different types of valence bond crystal (VBC) states has only been
resolved recently in a TN study [122], in favor of a VBC with loop-six resonances. Simulations
of the model are performed for a twelve-site checkerboard unit cell, as shown in Fig. 26.
Results for the ground state energy are presented in Fig. 31. Due to the VBC ground state
with a small correlation length and an energy gap in the model, the simple update MF and
CTMRG energies are nearly identical. The variational update is performed on a so-called semi-
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χB E0 (SU) E0 (VU)
2 -0.42802 -0.43364
3 -0.43511 -0.43738
4 -0.43924 -0.43988
5 -0.43967 -0.44017
6 -0.44006 -0.44039
7 -0.44038 -0.44060

Figure 31: Benchmarking results for the isotropic spin-1/2 Heisenberg model on
the square-kagome lattice. For comparison, we include the variational Monte-Carlo
results presented in Ref. [121]. Additionally, we show the extrapolated iPEPS result
obtained in Ref. [122], which, to be strict, is not variational. We stress that the mean-
field energies also are not variational as discussed in Sec. 4.

PEPS structure as described in Ref. [122] and also on a coarse-grained iPEPS TN as introduced
in Fig. 24, a structure that is unfeasible for SU simulations due to the large imaginary time
evolution operators. Although the VU cannot significantly improve the ground state energy
for the semi-PEPS Ansatz, the VU on the full coarse-grained iPEPS structure improves the
energies at the same bond dimension χB. This is connected to the larger expressivity of the
coarse-grained structure.

Our results outperform variational Monte-Carlo simulations in Ref. [121] and are compa-
rable to state-of-the-art iPEPS results in Ref. [122]. We emphasize that the latter result is in
the extrapolation, strictly speaking, not variational so that a comparison is slightly tainted.

4.5 Triangular lattice

As a last benchmark model we consider the Heisenberg model on the triangular lattice. Due to
its connectivity of six, the triangular lattice exhibits a large amount of geometric frustration.
The ground state is believed to be a three-sublattice 120◦ magnetically ordered state [125,
126]. The ground state of the Heisenberg model on the triangular lattice is computed using
a three-sublattice unit cell arranged in an ABC-BCA-CAB structure. The simple update data
has been produced by an iPESS Ansatz with the simplices sitting in the upward triangles (see
Fig. 28). The VU is performed in two steps, using the converged iPESS state as input for second
coarse-grained optimization run.
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χB E0 (SU) E0 (VU)
2 -0.51202 -0.52675
3 -0.54181 -0.54503
4 -0.54679 -0.54867
5 -0.54756 -0.54990
6 -0.54957 -0.55147

Figure 32: Benchmarking results for the isotropic spin-1/2 Heisenberg model on the
triangular lattice with an ABC − BCA− CAB 3× 3 unit cell structure. For compari-
sion, we include the extrapolated, thus non-variational coupled cluster results pre-
sented in Ref. [112]. Additionally, we show the extrapolated iPESS result obtained
in Ref. [124], which, to be strict, is not variational.

The results of our benchmark are shown in Fig. 32. In the case of the triangular lattice
it generally helps to add some noise on the SU input state to reach better ground states and
energies. We compare against a recent iPESS study based on the simple update [124], that
predicts a zero-temperature magnetisation consistent with previous Monte Carlo studies [127]
and additionally against a result obtained by the extrapolated, thus non-variational coupled
cluster method [112]. We would like to point out that the iPESS result was extrapolated and
is, strictly speaking, not variational.

4.6 Comments on excited states

In this work, we have primarily focused on providing a comprehensive discussion of the use of
AD for the study of ground state properties of interacting quantum lattice models. It should go
without saying, however, that excited states can be included in a straightforward manner. The
study of excited states has first been initiated in the realm of matrix product states [128], but
has later been generalized to iPEPS [129–131], allowing for constructing variational Ansatzes
for elementary excitations on PEPS ground states that facilitate computing gaps, dispersion
relations, and spectral weights in the thermodynamic limit.

More recently, automatic differentiation has also found its way into the optimisation of ex-
cited states [42]. The central idea is to construct the excited state with momentum k⃗ = (kx , ky)
as a superposition of the ground state vector, perturbed by a single tensor B at position
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x⃗ = (x , y) and appropriate phase factors according to

|φ(B)k⃗〉=
∑

x⃗

eik⃗ x⃗ |φ(B) x⃗〉 . (24)

The coefficients of tensor B are then determined by energy minimisation of the excited state,
for which AD can again be used [42,132]. In contrast to the regular ground state optimisation,
here the CTMRG routine must be extended to include the appropriate phase factors in the
directional absorption. Moreover, instead of only eight environment tensors per iPEPS tensor
in the unit cell, the action of B, B† and the product of B and B† has to be tracked in three
additional sets of eight tensors.

The excited state approach can be directly extended to different lattice geometries. To
this end, we have to generalize the absorption of iPEPS tensors (growing the CTMRG transfer
tensors T1, T2, T3 and T4) to include the basis of the lattice, respecting relative phase factors
of the basis vectors. Depending on the actual structure of the basis, a separate tensor Bn is
chosen as a perturbation for each of the basis site. Our implementation already contains the
main building blocks of a robust and flexible CTMRG routine, calculation of gradients using AD
at the fixed-point and minimisation of an energy cost function. The extension of the framework
to include excited states is therefore natural. It is planned as a future feature.

4.7 Comments on fermionic systems

As a final comment we stress that for clarity and to be concise, we have focused in our pre-
sentation on quantum spin models. It should be clear, however, that the machinery developed
here readily carries over to the study of interacting fermionic systems, with little modifications.
Naively, one might think that the simulation of two-dimensional fermionic models is marred
by substantial overheads that emerge when invoking a spin-to-fermion mapping. This is, how-
ever, not the case, and the respective book-keeping of the signs can be done with negligible
overhead [133, 134]. On the formal level, such tensor networks involve a particular choice
of what is called a spin structure [135, 136]. Practically speaking, one can modify much of
the bosonic code for PEPS to the fermionic setting, readily incorporating the relevant signs
to capture interacting fermions, in what is called fermionic PEPS [133,137,138]. This insight
is important as some of the most compelling test cases of interacting quantum many-body
systems are of a fermionic nature.

5 Conclusion and prospects

In this review we present a comprehensive introduction into automatic differentiation in the
context of two-dimensional tensor networks, leading to the recently emerging variational
iPEPS framework for ground state optimization. We provide implementation details and dis-
cuss obstacles that arise in practice, as well as techniques to mitigate these. At the same time,
we coherently present ideas that have to date only been mentioned in a fragmented fashion
in the literature. We hope that the present work can serve as a useful reference and review in
the variational study of 2d tensor networks.

This work accompanies the variational iPEPS library variPEPS, a comprehensive and ver-
satile code base for optimizing iPEPS in a general setting. We expect this library to be a helpful
tool for performing state-of-the-art tensor network analyses for a wide range of physical mod-
els, featuring multiple two-dimensional lattices.

The library is designed to be extended with additional simulation techniques based on
automatic differentiation, such as excited states and structure factors.
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Table 2: Summary of the estimated lower bound of the carbon cost generated during
the development of this work. The estimations have been calculated using the exam-
ples of the Scientific CO2nduct project [139] and include the costs of the numerical
calculations and air travel for collaborations.

Numerical simulations
Total Kernel Hours [h] ≥ 255276
Thermal Design Power Per Kernel [W] 12
Total Energy Consumption Simulations [kWh] ≥ 3063
Average Emission Of CO2 In Germany [kg/kWh] 0.441
Total CO2-Emission For Numerical Simulations [kg] ≥ 1351
Were The Emissions Offset? Yes
Air Travel
Total CO2-Emission For Air Travel [kg] 924
Were The Emissions Offset? Yes
Total CO2-Emission [kg] ≥ 2275

The variPEPS library is publicly available in both a Julia and a Python version on
GitHub [56], with stable references in the corresponding Zenodo repositories [57,58].

5.1 CO2-emissions table

For the sake of completeness and for promoting carbon footprint awareness, we display an
estimated lower bound of the carbon emissions generated during the course of this work in
Table 2.
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A Adjoint functions and variables

In the literature it is common to use so called adjoint functions and adjoint variables when
using backwards-mode AD. These adjoint functions map the adjoint variables onto each other,
as in Eq. (15) when building up the gradient. In this section, we will briefly introduce the
basic notation of adjoint functions and variables following Ref. [145]. Explicit constructions
of adjoint functions, which are vector-Jacobian-products in the practical implementation, for
a large number of useful operations including those for the iPEPS use-case can be found in
Refs. [145–147].

As an example throughout this section, we consider the function h, composed out of two
primitive functions h1 and h2 which are concatenated as

h= h2 ◦ h1 ,

h1 : Mn×n ×Mn×n −→ Mn×n ,

h2 : Mn×n −→ R ,

(A.1)

with variables (A, B) ∈ Mn×n ×Mn×n, C ∈ Mn×n and x ∈ R. We start by examining the differ-
ential of the output variable x

d x =
∂ h2

∂ C
dC =:
∑

i, j

C̄i, jdCi, j = Tr(C̄TdC) . (A.2)

In the first equation, we have suppressed the sum over the indices of C . Eq. (A.2) defines the
adjoint variable C̄ of C . We see that the adjoint variable C̄ is the derivative of the scalar output
of the function h2 w.r.t. C . Thus, for the case of a scalar output the variable C and the adjoint
variable C̄ have the same dimension. Now, in order to get the gradient ∇h we are interested
in the derivative of the output w.r.t. the input variables (A, B). To this end we consider the
differential of the intermediate variable

dC =
∂ h1

∂ A
dA+

∂ h1

∂ B
dB . (A.3)

Inserting this into Eq. (A.2), we obtain

d x = Tr
�

C̄T ∂ h1

∂ A
︸ ︷︷ ︸

ĀT

dA
�

+ Tr
�

C̄T ∂ h1

∂ B
︸ ︷︷ ︸

B̄T

dB
�

. (A.4)

Here we have already implicitly used the adjoint function h̄1 that maps the adjoint variable C̄
to the adjoint variables Ā and B̄ according to

h̄1 : C̄T 7−→ (ĀT, B̄T)T =
�

C̄T ∂ h1

∂ A
, C̄T ∂ h1

∂ B

�T

. (A.5)
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Given the fact that we are dealing with a scalar output variable x , we recall that C̄ can be
considered a vector, such that the adjoint function is a vector-Jacobian-product (vJP). We can
see that the this maping of the adjoint variables with adjoint functions eventually produces
the gradient

∇h=
�

Ā, B̄
�

=
�

∂ h1

∂ A
C̄ ,
∂ h1

∂ B
C̄
�

=
�

∂ h1

∂ A
∂ h2

∂ C
,
∂ h1

∂ B
∂ h2

∂ C

�

.
(A.6)

B Automatic differentiation for complex variables

Some extra attention has to be given to the case in which the primitive functions are complex
valued. This is because not all functions one might want to consider are complex-differentiable
(holomorphic) and as such the derivative depends on the direction we move in the complex
plane when taking the limit for the derivative. In such a case one needs to resort to the calculus
of two sets of independent real variables. For a generic function f : C −→ C this can be done
by treating x and y in z = x + i y as independent variables or alternatively, by choosing z
and z∗ and making use of Wirtinger calculus. However we should also note that in the iPEPS
use case we deal with a function E : Cn −→ R, which removes the necessity to think about
holomorphism.

C The implicit function theorem and its use at the CTMRG fixed-
point

In this section, we are going to present an alternative approach to taking the derivative of the
energy function by utilizing the fixed point of the CTMRG procedure. To this end, we can
make use of the implicit function theorem [148] to calculate the derivative of the full fixed-
point routine. Our discussion will follow the description of Refs. [149, 150]. Differentiating
Eq. (16) on both sides we end up with

∂Ae∗(A) = ∂Ac(A, e∗) + ∂e∗ c(A, e∗)∂Ae∗(A) . (C.1)

Introducing the shorthand writing for the Jacobians L = ∂Ac(A, e∗(A)) and K = ∂e∗ c(A, e∗(A))
and rearranging the equation we find

∂Ae∗(A) =(L + K∂Ae∗(A))

=

�∞
∑

n=0

K

�

L = (1− K)−1 L .
(C.2)

As discussed in Appendix A, we aim at finding the adjoint function of the CTMRG iteration at
the fixed point, which is a vector-Jacobian product (vJP) vT∂Ae∗(A). Inserting Eq. (C.2) yields

vT∂ e∗(A) = vT(1− K)−1 L =wTL , (C.3)

where we have introduced wT := vT(1−K)−1. The second equality in the equation above can
be rearranged into another fixed-point equation

wT = vT +wTK . (C.4)
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Here wTK is another vJP but this time only dependent of the derivative of a single absorption
step evaluated at the fixed-point of the CTMRG routine. Solving Eq. (C.4) we can find wT

to calculate the vJP of the CTMRG routine from Eq. (C.3). In the end we reduced the naive
effort of unrolling the fixed-point iterations to just calculate the derivative of a single CTMRG
iteration and another fixed-point iteration which both are much less memory intensive.

D Automatic differentiation in the language of differential geom-
etry

In order to unify the different frameworks for thinking about forward- and backwards-mode
AD, we will briefly introduce a mathematical notation for AD. It also serves to give some
more precise meaning to the terms “push-forward” and “pullback”, that are sometimes used in
forward- and backwards-mode AD discussions, respectively. For this we first recall the general
concept of a push-forward and a pullback for the simple case of functions and distributions.
Imagine two functions f : M −→ N and g : N −→ R. The pullback of g along f allows us to
construct a function f ∗g : M −→ R for which the domain of the function g is “pulled back” to
the domain of the function f . This is done by a simple concatenation of f and g

f ∗g( m
︸︷︷︸

∈M

) = (g ◦ f )(m) = g( f (m)) . (D.1)

This construction can now be used to define a push-forward on the dual objects of the functions
under integration. These dual objects are distributions. With a distribution, we can integrate
a function

∫

M
• µ : F(M) −→ R ,

f 7−→
∫

M
f µ ,

(D.2)

where F(M) are just the functions on M and µ is the distribution. Given such a distribution
on M we can now integrate functions on M . The push-forward f∗µ of µ allows us to integrate
functions on N by defining a distribution that is “pushed forward” to N . This works as

∫

N
h( f∗µ) =:

∫

M
( f ∗h)µ , (D.3)

where h is a function on N .
This type of construction for the pullback and push-forward generalizes to many mathe-

matical objects that have a pairing dual. The relevant mathematical objects for AD are the
derivative ∂ /∂ x i and its pairing dual, the differential d x i .

It might be useful, beyond the conceptual clarity of this notation, to look at AD in this
way because one can easily imagine situations where the intermediate data of a function is
restricted by constraints such that the “data-space” becomes geometrically non-trivial. An
example could be vectors in Rn restricted to unit length or matrices in Mn,m restricted to be
unitary. We note that an optimisation in these situations requires some additional concepts,
like finding a path on the given space from a tangent vector. This requires some extra care and
is not discussed here.

We now introduce the mathematical notation that we need in order to talk about AD in
this language. We will not be particularly rigorous in this endeavour and leave out all details
that are not explicitly needed. We start with a manifold M on which we can consider points
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p ∈ M , as well as functions f : M −→ R. For each point p ∈ M we can define a vector space
TpM (call it the tangent-space at p) of tangent-vectors at that point. The elements in TpM act
like derivatives on functions on M

e.g.:
∂

∂ x i
= ei ∈ TpM ,

∂

∂ x i
( f ) =

∂ f
∂ x i

.

Here we have assumed that we have equipped the manifold M with coordinates via a chart
φ : M −→ Rm around the point p, where m= dim(M). Our tangent-space TpM has dimension
m and we can choose a canonical basis

§

∂

∂ x i
, . . . ,

∂

∂ xm

ª

= {e1, . . . , em} .

One further defines the dual vector space T ∗p M of the tangent vector space, called cotangent-

space. This cotangent-space contains the dual vectors to the derivatives ∂
∂ x i

. These cotangent
vectors from the cotangent-space are the differentials d x i . The cotangent-space also has di-
mension m and we can choose the canonical basis

{d x1, . . . , d xm} .

Obviously, given the canonical basis for the tangent-space and cotangent-space we can expand
arbitrary vectors in these spaces in the basis. Take v ∈ TpM and d f ∈ T ∗p M we can expand as

v =
∑

i

vi
∂

∂ x i
=
∑

i

viei , (D.4)

d f =
∑

i

∂ f
∂ x i

d x i . (D.5)

We have a pairing between the derivatives that live in the tangent-space TpM and the differ-
entials that live in T ∗p M as

d x j

�

∂

∂ x i

�

:=
∂ x j

∂ x i
= δi, j . (D.6)

Note that by this pairing relation we see that tangent and cotangent vectors are “pairing duals”
and we can use an analogous construction for pullbacks and push-forwards as we did for
functions and distribution above. Since TpM and T ∗p M are isomorphic, we can introduce a
correspondence transformation between the canonical basis of the two spaces

•♭ : TpM −→ T ∗p M , ei 7−→ d x i = e♭i , (D.7)

•♯ : T ∗p M −→ TpM , d x i 7−→ ei = d x ♯i . (D.8)

We now have assembled all nessessary tools to formulate what a “gradient” is in this language.
It is given by

∇ f := (d f )♯ , (D.9)

which matches the common formula

∇ f =

�

∑

i

∂ f
∂ x i

d x i

�♯

=
∑

i

∂ f
∂ x i

ei

=
�

∂ f
∂ x1

, . . . ,
∂ f
∂ xm

�

,

(D.10)

where we have taken ei just as the i-th unit vector of TpM .
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Now it is easy to construct the pullbacks and push-forwards in this context analogous to our
treatment of functions and distributions. For this we start from manifolds M and N with points
p ∈ M and q ∈ N , and with the two functions f : M −→ N and g : N −→ R. We can consider a
differential d g ∈ T ∗q N which we want to “pull back” along the function f and associate it with

and element of T ∗f −1(q)M , where f −1(q) ∈ M . We do this with the familiar definition

f ∗d g
︸︷︷︸

∈T ∗
f −1(q)

M

:= d(g ◦ f ) , (D.11)

which uses a concatenation of f and g just as in the first example. For a tangible example
consider g = x i to be a coordinate function. We then get f ∗d x i = d(x i ◦ f ) = d( fi). As
before the push-forward can be defined via the pullback just as we had done for functions and
distributions. In this case, we start with a tangent vector ∂

∂ x i
in TpM and want to “push it

forward” along f into T f (p)N . This works as

�

f∗

�

∈Tp M
︷︸︸︷

∂

∂ x i

�

︸ ︷︷ ︸

∈T f (p)N

�

(g) :=
∂

∂ x i
( f ∗g) =

∂

∂ x i
(g ◦ f ) . (D.12)

Now that we are equipped with the pullback and push-forward of differentials and derivatives
we see how the gradient is calculated in the forward- and backward-mode AD. For this we will
go back to our neat example from Sec. 2.4 and slightly generalize. Say, we would like to take
the gradient ∇E of a function that is composed of three primitive functions E = f3 ◦ f2 ◦ f1.
We say these primitive functions map between manifolds

E : M1
f17−→ M2

f27−→ M3
f37−→ R . (D.13)

Lets first look at what happens when we build the gradient using backwards-mode AD. In this
case we start with the differential d f3 of the last primary function of E. This differential lives
in T ∗k M3, where k ∈ M3 is a point in M3. We can now use the pullback along the functions f2
and then f1 to pull back this differential to M1

f ∗1 ( f
∗

2 (d f3))
pullback
←−−−− f ∗2 (d f3)

pullback
←−−−− d f3 . (D.14)

With the definitions above we see that in this way we construct the gradient

f ∗1 ( f
∗

2 (d f3)) = f ∗1 ((d( f3 ◦ f2))) = d( f3 ◦ f2 ◦ f1) = dE . (D.15)

With our identification between tangent and cotangent vectors we finalize to ∇E = (dE)♯. If
we express the differential that we start from d f3 in coordinates, we straightforwardly obtain
the product of Jacobians as a result for the gradient. This also establishes the connection to
the adjoint functions we talked about in the previous section and the vector-Jacobian product
as discussed in Sec. 2.4.

In the case of forward-mode AD we start from a tangent vector ∂
∂ x i

, which lives in Tl M1,
where l ∈ M1 is a point in M1. We can now push this tangent vector forward into a tangent
space of M3 with successive push-forwards along f1 followed by f2

∂

∂ x i

push-forward
−−−−−−−→ f1∗

�

∂

∂ x i

�

push-forward
−−−−−−−→ f2∗

�

f1∗

�

∂

∂ x i

��

. (D.16)
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With the definitions for the push-forward we see that the gradient we obtain in this way is
given by

∑

i

f2∗

�

f1∗

�

∂

∂ x i

��

( f3) ei =
∑

i

f1∗

�

∂

∂ x i

�

( f3 ◦ f2) ei

=
∑

i

∂

∂ x i
( f3 ◦ f2 ◦ f1
︸ ︷︷ ︸

=E

) ei

=∇E .

(D.17)
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