
SciPost Phys. Lect. Notes 88 (2024)

The Higgs mechanism with diagrams: A didactic approach
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Abstract

We present a pædagogical treatment of the electroweak Higgs mechanism based solely
on Feynman diagrams and S-matrix elements, without recourse to (gauge) symmetry
arguments. Throughout, the emphasis is on Feynman rules and the Schwinger-Dyson
equations; it is pointed out that particular care is needed in the treatment of tadpole
diagrams and their symmetry factors.
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1 Introduction

1.1 The diagrammatic approach

In particle theory there exist two lines of thought that are well known, but are minority view-
points. The first is that Feynman diagrams and their Feynman rules are a more fundamental
description of the physics than are Lagrangians and actions [1]. The second is that physical
requirements like that of unitarity are more fundamental as restrictions on the form of a the-
ory than symmetries that are imposed a priori [2, 3]. In this light, it becomes interesting to
see how the Higgs mechanism (based on spontaneous symmetry breaking (SSB), although we
will not explicitly use any symmetry arguments) can be cast into a diagrammatic form without
recourse to either Lagrangians or principles of gauge symmetry. This is what we shall explore.

What we shall ultimately derive is the electroweak standard model, so no new results are
obtained. Rather, it is the way in which they are obtained that interests us here: therefore we
adopt a pædagogical approach. We shall only consider either scattering amplitudes (S-matrix
elements) formed from Feynman diagrams with all external lines on-shell, or off-shell ampli-
tudes in which one line is kept off-shell.1 The particular vertices of our models are dictated
by the requirement of unitarity, which in the case of massless vector particles means current
conservation. The ‘fields’ of the theory are considered to be labels for bookkeeping of off-shell
amplitudes, and particles take on their identity only upon LSZ truncation of external lines [4].
Feynman rules are proposed, not as following from an a priori gauge symmetry, but simply in
order to make the theory unitary.2

1Connecting two off-shell amplitude results in (a contribution to) an S-matrix element.
2That is, we postulate Feynman rules instead of postulating a gauge theory. Inasmuch as physics is the business

of proposing rules, and then confront these with experiment, the two approaches are methodologically equivalent.
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Since we want to proceed didactically we shall move from simple to more complicated
models: therefore the layout of the paper is as follows. We start with a set of self-interacting
tachyons (the Higgs sector) that end up as a single massive scalar and a number of massless
scalars. We then couple the tachyons to a massless vector boson (the Abelian Higgs model)
and see how the vector picks up a mass. Subsequently we extend the model to contain three
self-interacting vectors (the Apollo model and the Higgs-Kibble model), and then we add a
single extra vector to arrive at the electroweak model. Finally, we discuss the inclusion of
fermions. A number of technical points are discussed in the appendices.

1.2 On unitarity

We have to specify what is meant by ‘unitarity’ in this paper: we use that term for partial-wave
unitarity. That is, if in a given n-particle scattering amplitude we keep all angles fixed and let
the overall energy scale E grow much larger than all masses, the amplitude should asymptot-
ically decrease as E4−n or faster. Loop corrections can modify this behaviour by logarithmic
terms at most, but such terms ought to come from exceptional values of the loop momenta,
for instance when these become very large, or very collinear with other momenta. Should we
restrict also the loop momenta to have magnitude of order E and some fixed direction, then
the asymptotic E4−n limit must be respected rigorously.

In a theory with scalar and vector propagators scaling as E−2, with minimal coupling be-
tween the scalars and the vectors, and with the usual self-interactions between the vectors,3

unitarity can be proven by simple power counting as long as the external-line factors for the
particles go as E0. Problems arise if the vectors are massive: then the appropriate, physical,
‘unitary-gauge’ propagators4 for the vectors scale asymptotically as E0, and an external vector’s
longitudinal polarization vector grows as E1 since at large momentum p it approaches p/M ,
where M is the mass. By showing that such a theory is identical to one in which only mass-
less vectors and tachyons occur, we thus prove that all our models, including the electroweak
model in the unitary gauge, satisfy the unitarity requirement.

2 Interacting tachyons

2.1 Higgs and Goldstones

We define a tachyon to have a bare scalar propagator with the ‘wrong’ mass term. Free tachyons
may be physically unacceptable for reasons of causality, but as far as the Schwinger-Dyson
equations (SDe) are concerned their diagrammatic description is valid as long as the iε term
has the proper sign [5]. Self-interacting tachyons can be physically acceptable as we shall see.
We start with Nt (≥ 2) tachyons (labelled by k, ℓ, n, . . .) with the following Feynman rules:5

n

q

=
i

q2 +m2/2
,

k n

p r
= −i

m2

v2
Tknpr , Tknpr = δknδpr +δkpδrn +δkrδnp . (1)

3Three-vector vertices going as E1, and four-vector vertices independent of E.
4The unitary gauge is sometimes, erroneously, described as non-renormalizable.
5We shall not explicitly write either iε or ħh in what follows.
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The term +m2/2 shows the tachyonic character, and v parametrizes the strength of the self-
interaction. The tachyons may develop tree-level tadpoles τn,6 described by the SDe7

n = n , (2)

which we can write out as

τn =
2i
m2

 

−3im2

v2

τ3
n

3!
+
∑

ℓ̸=n

−im2

v2

τnτ
2
ℓ

2!

!

=
τn

v2

∑

ℓ

τ2
ℓ , (3)

so that either all τn vanish (the physically unacceptable solution), or τn = xnv with xn the
components of a unit vector in Nt -dimensional tachyon label space (tl-space):

|τ〉= v |x〉 , 〈x |x〉= 1 . (4)

The tadpoles will dress the various propagators and mix them, since

n k =
−im2

v2

 

δnk

 

3τ2
n

2!
+
∑

ℓ̸=n

τ2
ℓ

2!

!

+ (1−δkn)τnτk

!

= −im2
�

1
2δnk + xn xk

�

. (5)

The dressed propagators have their own SDe:

Π= = + . (6)

Throughout this paper, hatched blobs stand for connected diagrams. We give the following
steps in detail, since we shall employ them again later on. Multiplying by the denominator
(q2 + 1

2 m2) we find

Πnk(q
2 + 1

2 m2) = iδnk +m2
�

1
2δnℓ + xn xℓ

�

Πℓk . (7)

Here and in the following, we employ the summation convention: all paired labels (in this
case, ℓ) are to be summed over their appropriate range, unless specified otherwise.8 The
terms with 1

2 m2 on either side cancel, so that

Πnk q2 = iδnk +m2 xn xℓΠℓk . (8)

Multiplying both sides by xn and summing over n, we find

xℓΠℓk =
i xk

q2 −m2
, (9)

and we arrive at

Πnk =
i

q2 −m2
xn xk +

i
q2
(δnk − xn xk) . (10)

We can choose a complete orthonormal basis in tl-space:

〈x |x〉= 1 ,



y j
�

�yk
�

= δ jk , 〈x |y j
�

= 0 , j, k ∈ {2, . . . , Nt} , (11)

so that
δnk − xn xk = (y

j)n(y
j)k . (12)

6Since Lorentz invariance forbids tadpoles for non-zero spin, SSB requires the presence of scalar particles.
7In Lagrangian-speak, this is the Euler-Lagrange equation for vanishing momentum.
8It is under-appreciated that the summation convention is naturally connected with the diagrammatic approach,

since a line has precisely two endpoints.
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We now introduce the concept of active and passive vertices. The active vertices are those in
which at least two of the momenta involved are linearly independent; the vertex of Eq.(5) is
passive, not active. In every diagram that contributes to a scattering amplitude any internal
line must end in active vertices somewhere;9 therefore, concentrating on a particular internal
line, we can write an amplitude as

M=
B

n k

A

= AnΠnkBk . (13)

An is the active off-shell amplitude emitting n, and Bk is the one absorbing k.10 The active
vertices are indicated by dots. We see that we can write

M= Ah Rh(q)Bh + A j R0(q)B j , (14)

where

Rh(q) =
i

q2 −m2
, R0(q) =

i
q2

, Ah = An xn , A j = An(y
j)n , (15)

and similarly for B: the internal line therefore represents one massive propagator and a bunch
of Nt−1 massless ones, the so-called Goldstone bosons. By letting A and B move very far apart
in spacetime, so that the internal line is truncated [5], we identify Ah as the source emitting a
Higgs scalar of mass m. We can also determine the active vertices of the reformulated theory.
For instance,

h

h h

h

= −i
m2

v2
Tknpr xk xn xp xr = −3i

m2

v2
,

h

h
h =

h
h

h
= −3i

m2

v
, (16)

and in a similar way we find

k

y

y

y

y

j

j

k

= −i
m2

v2

�

1+ 2δ jk

�

,

j
h

hy

y

j = −i
m2

v2
, h

y

y j

j = −i
m2

v
. (17)

A few observations are important at this point. In the first place, the identity (2) is precisely
that, an identity. Therefore we must use

either or but not both.

This counter-intuitive-seeming prescription is the basis for the diagrammatic description of the
Higgs mechanism. Not taking Eq.(2) as an actual physical identity leads to incorrect handling
of the symmetry factors, and possible mis-counting of diagrams. For example, iterating one
leg of the SDe (2) would give

n = n =
n

, (18)

with the incorrect implication that
∑

n
τ2

n = v2/3. Only if we iterate all legs,

n = n , (19)

do we again find the correct result.

9This excludes vacuum diagrams; see below.
10The blobs A and B may be connected by other lines, in which case we have a loop diagram.
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Secondly, if we treat the tadpoles diagrammatically we have to admit that they are zero
modes, i.e. they are constant. If we let τn depend on position, the tadpoles act as sources of
momentum that will needlessly tangle our treatment. We therefore take |x〉 to be a constant
unit vector.

Finally, the very idea of SSB is that |x〉 is also a random unit vector, outside of our control:
we are therefore forbidden from making any further assumptions on |x〉. Of course, a good
model ought to yield physics that is, as much as possible, independent of |x〉.

2.2 A Goldstone infrared problem

In the foregoing we have derived a consistent set of Feynman rules containing one massive
scalar and at least one massless Goldstone scalar. Once we try to truncate the massless internal
lines, however, we run into problems for Nt > 2, since it is not clear how we can disentangle
the various massless propagators so as to identify the various Goldstones. Worse, the model
contains infrared phenomena. Let us imagine a process in which a massless Goldstone is
emitted with momentum p:

M0(p) = p . (20)

The (differential) cross section is given by

dσ0 ∼ |M0(p)|2 d4pδ(p2)θ (p0) . (21)

We may let the Goldstone go very slightly off-shell and decay into three. Assuming that M0(p)
does not depend too drastically on p, we can write this as

M1 =
3

q
q

q

1

2 ≈M0(q1 + q2 + q3)
1

(q1 + q2 + q3)2
m2 k
v2

, (22)

where k = 3 if the three Goldstones are identical, otherwise 1. The cross section, which is
dominated by the diagram of Eq.(22), can then be written as

dσ1 ∼ |M1|2
3
∏

j=1

d4q j δ(q
2
j )θ (q

0
j )δ

4(q1 + q2 + q3 − p) d4pδ(p2 − u) du

≈ |M0(p)|2d4pδ(p2 − u)θ (p0)
m4 k
2v4

π2

8
du
u
≈ dσ0

m4 k
2v4

π2

8
du
u

, (23)

where we have used the result [5]

∫

 

3
∏

j=1

d4q j δ(q
2
j )θ (q

0
j )

!

δ4(q1 + q2 + q3 − p) =
π2

8
p2 . (24)

We see that the u integral in Eq.(23) diverges for u→ 0: an infrared divergence.11 Physically,
this means that an external massless Goldstone in any process will unavoidably emerge as a
cloud of low-energy Goldstones, all moving collinearly with the speed of light. This makes
the LSZ truncation for such particles extremely problematic. It would seem that if we want to
end up with a model in which particles can be unambiguously identified, massless Goldstone
bosons are to be avoided.12

11In a good theory such as QED, the actual IR divergences are cancelled by corresponding IR divergences from
virtual corrections. Even if this happens here, the fact remains that for very small u a three-body-decaying Gold-
stone wins out over a non-decaying one.

12One might also worry about internal lines carrying vanishing momentum, for instance in the vacuum dia-
gram . However, some reflection shows that such zero-momentum lines can only be the massive Higgs
propagators.
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3 The Abelian Higgs model

3.1 Feynman rules and current conservation

We may couple the tachyons to a massless vector (called ‘photon’ for now), with a propagator
given by

α β

q

= −
i

q2
kαβ , kαβ = gαβ + Fαqβ + qαFβ + G qαqβ . (25)

The quantities Fµ and G are related to the gauge choice: in this model, they are quite imma-
terial as we shall see. We shall assume two interaction vertices between photon and tachyons:

µ

p

q

n

k

= f n
k (p− q)µ ,

n

k

α

β

= i tn
k gαβ . (26)

Because the tachyons are bosons, the real matrices f and t must of necessity be antisymmetric
and symmetric, respectively.13

Since the photon is massless, its observable polarization must be purely transverse in any
Lorentz frame. That is only possible if its current is conserved [5]. As before, we shall give
the following steps in some detail since we will employ them again later on. Let M(q)µ be
the complete set of connected diagrams that emit or absorb a photon with momentum q (not
necessarily on-shell):

M(q)µ = µ

q

. (27)

The requirement of current conservation means that

M(q)µ qµ =
↓
= 0 . (28)

The symbol
↓
=means that we demand the zero result: we have to construct our theory so as to

arrange it. The ‘handlebar’ denotes multiplication with the momentum, considered outgoing.
We have to prove Eq.(28) in full generality, and we shall do this using the SDe. Let us denote
by a lightly shaded semi-connected blob a complete set of diagrams that are not necessarily
connected but do not contain vacuum bubbles. Now consider

µ
n
k

q

p

=
i

p2 +m2/2
f n
k (p− q)µ

i
q2 +m2/2

, (29)

where we have left out the expression for the semi-connected blob. Applying the handlebar
gives us

p
n
k

q

=
i

p2 +m2/2
f n
k (p− q · −p− q)

i
q2 +m2/2

=
i

p2 +m2/2
f n
k i + i f k

n
i

q2 +m2/2
. (30)

13If current conservation (see further on) is to have any chance at all, the combination (p− q)µ is unavoidable,
as is therefore the antisymmetry of f .
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Note that this works as long as the mass terms (the +m2/2) are the same in both tachyon
propagators: their sign is irrelevant. We can represent Eq.(30) diagrammatically by auxiliary
Feynman rules, as follows:

= ,
n

k
= f n

k , = i . (31)

It is important to note that, unless we specify them explicitly, equivalent lines entering the
semiconnected blob have to be symmetrized over, and therefore Eq.(31) includes both terms
of Eq.(30). In addition, if a slashed line happens to be an external one, it will not survive LSZ
truncation since it has no pole: therefore such diagrams can be neglected.14 Next, we consider
the following tree-level amplitude:15

α

p

q

r
n

k

=

k

n

+
n

k

+
n

k

↓
= 0 . (32)

Applying the Feynman rules we find

−i

�

2( f 2)nk + tn
k

�

(p+ q+ r)α
↓
= 0 , (33)

so that we require

tn
k
↓
= −2 f n

ℓ f ℓk = 2 f n
ℓ kk
ℓ . (34)

We then have

= − . (35)

The proof of general current conservation proceeds as follows, where we leave the semi-
connected blobs on the right to be understood. The SDe reads

= + . (36)

We now apply the handlebar. Since slashed external lines do not contribute, we can SDe-iterate
the slashed propagators by letting them enter a vertex, so that

= − ,

= + + + . (37)

Let n, k and r be distinct tachyon labels. Then, dropping unimportant overall factors (denoted
by ∼), we have

=
n

k

+
k

n

∼ ( f 3)nk + ( f
3)kn = 0 , (38)

=
n

k
n

n

n

+
k

n

n

k

n

+
r

k

n

k
r
+

k

r
r

n

n

∼
�

3
3!

f k
n +

1
2!

f n
k

�

+
∑

r ̸=k,n

�

1
2!

f n
k +

1
2!

f k
n

�

= 0 . (39)

14This is because we consider S-matrix elements rather than Green’s functions.
15Written like this, the process is kinematically impossible. By moving tachyon n, say, to the initial state (replacing

p by −p) we can repair this. The conclusion remains the same.
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This finishes the proof of current conservation, Eq.(28): the only condition on f is that it
be antisymmetric. The presence of tadpoles does not change the argument, since the semi-
connected blob may contain tadpoles at will. We simply must adhere to the convention of

never using but always . (40)

That is, in the SDe iteration the tadpole does not count as a vertex.

3.2 Dressed propagators and masquerading

Next, we turn to the dressed propagators, the analogues of Πnk of the previous section. We
encounter two additional passive vertices, in addition to that of Eq.(5): introducing another
vector in tl-space,

en = xℓ f ℓn , |e〉= f |x〉 , 〈e|e〉 ≡ e2 , 〈e|x〉= 0 , (41)

we have
q

n α
= τℓ f ℓn qα = v en qα ,

α β =
1
2!
τk τn tn

k gαβ = iv2 〈e|e〉 gαβ = i e2v2 gαβ . (42)

There are now three types of dressed propagators, with the momentum q assumed to be mov-
ing from left to right:

Πnk = n k = + + ,

Ψk = k = + ,

Ω= = + + .16 (43)

Following the steps described in section 2.1 we can write17

Πnk q2 = iδnk +m2 xn xℓΠℓk + iv en qµΨµk ,

Ψαk q2 = m2Ψαℓ xℓ xk − ivΩαµqµ ek ,

Ωαβ q2 = −ikαβ + e2v2Ωαµkµβ − ivΨαℓ eℓ qµkµβ , (44)

so that

xℓΠℓk =
i xk

q2 −m2
, Ψαℓ xℓ = 0 . (45)

Introducing an orthonormal basis in tl-space (and ignoring the possible interpretational prob-
lem raised in section 2.2):

|x〉 ,
1
e
|e〉 ,

�

�y j
�

( j = 3, . . . , Nt) ⇒ δnk − xn xk =
1
e2

enek + (y
j)n(y

j)k , (46)

we arrive at the forms

Πnk =
i

q2 −m2
xn xk +

i
q2

�

1
e2

enek + y j
n y j

k

�

+
v2

q4
en qλΩλσ qσ ek ,

Ψαk = −
iv
q2
Ωαλqλ ek , (47)

Ωαβ q2 = −ikαβ +M2Ωαµ Tµν kνβ , (48)

16Π and Ω are even in q, but Ψ is odd in q.
17For typographical reasons we shall always write Lorentz indices as upper indices, and the Minkowski metric is

understood.
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with
M = ev , Tαβ = gαβ − Lαβ , Lαβ = qαqβ/q2 . (49)

We cannot solve Eq.(48) for Ω, but as it will turn out that does not matter. Another point
worthy of note follows from the expression for Πnk. As we can see from its diagrammatic SDe,
the result for xℓΠℓk is the same as in Eq.(9). This is because the scalar-vector mixing tadpole
contains a vector |e〉 = f |x〉, which is orthogonal to |x〉. Introducing several vector particles
will lead to different vectors |e〉, but these are also orthogonal to |x〉 (see later on). Thus, the
propagator Πnk will always contain the term i xn xk/(q2−m2), in other words there will always
be a distinct Higgs particle; this is the original assertion made in [6].

A final ingredient is the following. Again using active vertices, we have two SDe’s:

= + + ,

= + + . (50)

Current conservation can now be expressed by the handlebar diagrams:

0 = = − + + , (51)

= + + . (52)

Everything except the active-vertex diagrams cancels.18 Denoting by Aµγ the amplitude emitting
the photon and by An the one emitting tachyon n, we see that current conservation implies

+ = 0 ⇒ An en =
i
v

Aµγ qµ , (53)

again with the momentum q counted outgoing. In this way a combination of tachyonic tad-
poles can masquerade as a handlebarred vector boson.

3.3 Amplitudes

We are now ready to consider an amplitude, as in the previous section:

M= + + +

= AnΠnk Bk + AαγΨ
α
k Bk + An(−Ψβn )B

β
γ + AαγΩ

αβBβγ . (54)

Using the results (47) and Eq.(53) we can write this as

M= Ah Rh(q)Bh + A j R0(q)B j + Aαγ RαβM (q)B
β
γ , (55)

where

RαβM (q) =
i

M2
Lαβ + Dαβ , Dαβ = TαµΩµνTνβ . (56)

Since TαµkµνTνβ = Tαβ , Eq.(48) implies

Dαβ q2 = −i Tαβ +M2 Dαβ , (57)

18To appreciate this, it may help to recast diagrams:

+ = + = 0 ,

where we can recognize simply a special case of Eq.(39). Notice the importance of rule (40)!
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and so we find for the vector propagator

RαβM (q) =
i

M2
Lαβ −

i
q2 −M2

Tαβ =
i

q2 −M2

�

−gαβ +
qαqβ

M2

�

, (58)

the unitary-gauge propagator. As announced, the quantities Fµ and G of Eq.(25) drop out
because qαTαβ = 0. Upon LSZ truncation, the massive vector has precisely its three physical
polarization degrees of freedom, including the longitudinal one.

3.4 Vertices

The vertices of Eq.(17) are unchanged, but we have to find the scalar-vector interactions. We
see immediately that

h

h

∼ 〈x | f |x〉= 0 ,
h

y j
∼



x | f |y j
�

∼ 〈e|y j
�

= 0 . (59)

The two-photon vertices19 require more care. First, we find

h

h
α

β
= −2i 〈x |t|x〉 gαβ = 2i e2 gαβ = 2i

M2

v2
gαβ ,

α

β

h = 2i
M2

v
gαβ . (60)

However,

j

hα

β y
∼



x |t|y j
�

∼



e| f |y j
�

. (61)

If we want this to vanish we need f |e〉 ∼ |x〉. As can be seen from appendix A, that is only
possible if |x〉 is an eigenvector of f 2: but |x〉 is random! The only reasonable solution is to
require that |x〉 is always an eigenvector, i.e. f 2 must be −e2 times the unit matrix, and the
number of tachyons must be even. In that case, the vectors

�

�y j
�

can be chosen such that

f
�

�y2s−1
�

= e
�

�y2s
�

, f
�

�y2s
�

= −e
�

�y2s−1
�

, s = 2, . . . , Nt/2 , (62)

so that they can be interpreted as the real and imaginary part of charged scalars, with

µ

y

y 2sp

q
2s−1
= e (p− q)µ ,

jα

β y j

y

= 2ie2 gαβ . (63)

If f 2 is not proportional to unity, we have a model that is consistent and unitary, but lacks an
interpretation in terms of simple charged scalars. Admittedly, since the physics in that case
depends on |x〉, it is not a ‘good’ model in the sense discussed above.

For Nt = 2, the ‘original’ AH model, the Feynman rules found are precisely those of the sec-
tor of the Standard Electroweak Model that contains only Z0 and Higgs particles. Since the lon-
gitudinal polarization vector of a Z0 with momentum p has the form εµL = pµ/M −O

�

M/p0
�

,
the application of Eq.(53) shows that the longitudinal degree of freedom is essentially scalar
tachyons in masquerade,20 and so unitarity of this sector is proven.

19For reasons lost in the mists of time, these are also called seagull vertices.
20The fact that longitudinally polarized vector bosons may be replaced by appropriate (combinations of) scalars

is referred to as the Equivalence Theorem [7].
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4 Interacting vectors: General structure

4.1 Feynman rules and current conservation

We now turn to models containing several massless vectors (labelled by w, x , y, . . .), that may
be interacting with each other. It becomes necessary to postulate their propagator in more
detail:21

w

q

βα = Rαβn (q) = −i
kαβ(q)

q2
, kαβ(q) = gαβ −

qαnβ

(q · n)
−

nαqβ

(q · n)
+

n2 qαqβ

(q · n)2
, (64)

where nα is a fixed vector. This is the axial gauge, with nαkαβ = 0. We assume a three-vector
coupling, defined by

y

p

q

α

β

λ
w x

= hwx y Y (p,α; q,β;−p− q,λ) , 22 (65)

with
Y (p,α; q,β; r,λ) = (p− q)λgαβ + (q− r)αgβλ + (r − p)β gλα . (66)

Since the vectors are bosons, the real numbers hwx y are necessarily totally antisymmetric. We
also propose a four-vector interaction:

ν

w

x

y
z

α β

µ

= i X (w,α; x ,β; y,µ; z,ν) , (67)

with

X (w,α; x ,β; y,µ; z,ν) = gαβ gµν{wyzx}+ gαµgβν{wxz y}+ gανgβµ{wx yz} ,
{wx yz}= hwx thyzt + hwy thxzt . (68)

We need to work out what the handlebar does here:

y

p

q

w x

∼ Rµαn (p)h
wx y Y (p,α; q,β;−p− q,λ)(−p− q)λ Rβνn (q) . (69)

Using the two results

Y (p,α; q,β;−p− q,λ)(−p− q)λ =
�

pαpβ − p2 gαβ
�

−
�

qαqβ − q2 gαβ
�

,

Rµαn (p)
�

pαpβ − p2 gαβ
�

= i
�

gµα −
pµnα

(p · n)

�

gαβ , (70)

we find immediately the rule

= ,
β

w x

y

α

= hwx y gαβ , α β = i gαβ .23 (71)

21We do not have to ‘derive’ this propagator by ‘gauge fixing’ in some action, since we do not use actions. The
only requirement is that our resulting theory be current-conserving: recall footnote 2.

22This is just the tachyon-tachyon-vector vertex, adapted to three vectors, that have to be treated on the same
footing (being bosons). It is therefore essentially the simplest possible choice.

23There is a subtlety if one of the vectors is external. Appendix B shows that this does not lead to problems.
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In addition, we have

= − , (72)

which is the raison d’être of the cumbersome expression (68). For the interactions with the
tachyons, we simply generalize those of the AH model:

w
p

q

n

k

µ = ( f w)nk (p− q)µ ,
w

n

k

α

β x

= i (twx)nk gαβ , (73)

with again f w antisymmetric and twx = t xw symmetric in tl-space. By examing the tree-level
handlebar condition

xw
k

n

=
x

w

n

k

+
n

w x

k

+
n

w

x

k +
n

w x
k

↓
= 0 , (74)

we find the analogue to Eq.(28):

[ f w, f x]
↓
= hwx y f y , { f w, f x} ↓= −twx . (75)

With these rules and tools we can prove current conservation for this type of model. Again
leaving out the semi-connected blobs, we write the SDe as

= + + + , (76)

and we have

= − − ,

= + + + ,

= − ,

= + + + + . (77)

By methods similar to those leading to Eq.(39) we can straightforwardly show that

= 0 , + = 0 , (78)

admittedly with extensive use of Eq.(75). We see that the currents for the massless vectors are
strictly conserved.
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4.2 Dressed propagators, masquerading and the amplitude

The passive vertices of the model are generalizations of those of the AH model: in addition to
Eq.(5) we have

w
n α

q

= τℓ ( f
w)ℓn qα = v (ew)n qα ,

x
α β

w
=

1
2!
τnτk (t

wx)nk gαβ = i v2 〈ew|ex〉 gαβ , (79)

with |ew〉= f w |x〉, or more explicitly (ew)n = ( f w)kn xk. The SDe’s for the dressed propagators:

Πnk = n k = + + ,

Ψwk = k
w

= + ,

Ωwx = w x
= + + , (80)

can be treated in the same way as before, to yield

Πnk =
i

q2 −m2
xn xk +

i
q2
(δnk − xn xk) +

v2

q4
(ew)n qµΩµνwxqν(ex)k ,

Ψαwk = −
iv
q2
Ωαµwyqµ(e y)k ,

Ωαβwx q2 = −ikαβδwx + v2Ωαµwy Tµνkνβ 〈e y |ex〉 . (81)

If we denote by Aµw the active-vertex source emitting vector w, we can perform the same
steps as for Eq.(53) and find the masquerading identities

An(e
w)n =

i
v

Aµwqµ , (82)

that we shall use extensively. We do have to note the appearance of an extra term on the
right-hand side in Eq.(51):

−

but since the tadpoles carry no momentum this diagram vanishes by itself.
The amplitude, with dressed propagators running between active vertices, is also treated

as before, and we find

M= AhRh(q)Bh + An
1
q2
(δnk − xn xk)Bk + AαwDαβwx Bβx , (83)

with
Dαβwx = TαµΩµνwx Tνβ = −iTαβ Kwx , Kwx q2 = δwx + v2 Kwy 〈e y |ex〉 . (84)

Further evaluation depends on the details of the model: in the following we shall examine
several such models. It may be interesting to point out that the choice of the axial propagator
of Eq.(64) is necessary to make Eq.(71) work, but that is the only place in the whole discussion
where it plays a rôle: in particular the propagators Dαβ are independent of the gauge choice.24

24And the axial-gauge vector nµ disappears completely from our discussion, as it ought to.
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5 Interacting vectors: Example models

5.1 The Apollo model

The minimum number Nv of vector fields that can be self-interacting is 3, in which case hwx y

must be proportional to the Levi-Civita symbol ϵwx y . Since the f matrices are antisymmetric,
the minimum number Nt of tachyons is also 3.25 Therefore the Apollo model (first discussed
in [8]), with Nt = Nv = 3, is the ‘smallest’ model with vector self-interactions. Let us define
the 3× 3 matrices f w for this model by

( f w)nk = −e Ow
y ϵ

ynk , (85)

where O is an arbitrary but fixed orthogonal 3× 3 matrix. It can be checked that, indeed,

[ f w, f x] = hwx y f y , hwx y = e ϵwx y . (86)

Since 〈ew|x〉= 0, the three vectors |ew〉,

(ew)k = e Ow
y ϵ

ykn xn , w= 1,2, 3 , (87)

cannot be linearly independent. If we define

γw = On
w xn , 〈γ|γ〉= 1 , (88)

then we can easily verify that

γw |ew〉= 0 , 〈ew|ex〉= e2(δwx − γwγx) . (89)

Eq.(84) now takes the form

Kwx q2 = δwx +M2Kwx −M2Kwyγyγx , (90)

from which we readily derive

Kwx =
1
q2
γwγx +

1
q2 −M2

(δwx − γwγx) =
1
q2
γwγx +

1
q2 −M2

(ρwρx +τwτx) , (91)

where the three unit vectors γ⃗, ρ⃗ and τ⃗ form a complete orthonormal set,26 with
γwρxτyϵ

wx y = 1.
Defining

Aµγ = Aµwγw , Aµρ = Aµwρw , Aµτ = Aµwτw , (92)

we find immediately that Aµγ is strictly conserved since

qµAµγ = (q
µAµw)γw = −iv An(e

w)nγw = 0 . (93)

Moreover, again using completeness we can derive, with |er〉= rw |ew〉:

(eρ)n(e
ρ)k + (e

τ)n(e
τ)k = e2(ρuρy +τuτy + γuγy)(e

u)n(e
y)k

= e2(eu)n(e
u)k = e2Ou

a Ou
b ϵ

anℓϵbkr xℓxr = e2ϵanℓϵakr xℓxr

= e2(δnk − xn xk) . (94)

25For Nt = 2 all the f matrices would commute.
26The vector τ⃗ is not to be confused with the tachyonic tadpoles τn.
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The amplitude can therefore be written as

M= AhRh(q)Bh + AαγR
αβ
γ (q)B

β
γ +

∑

σ=ρ,τ

AασRαβM (q)B
β
σ . (95)

with

Rαβγ (q) = −i
gαβ

q2
; (96)

and we recognize one Higgs, one massless vector (a ‘photon’) and two massive vectors. 27

We now turn to the vertices: Eq.(16) still holds. Because of the form of 〈ew|ex〉 we see that
γ does not couple to the scalars, while

ρ h

h
α

β

ρ

=
τ

h

h
α

β τ
= 2i

M2

v2
gαβ ,

τ h

h
α

β

ρ

= 0 .28 (97)

The three-vector coupling can be written as

γ
p

q

α

β

λ
ρ

τ
= γwρxτyhwx y Y (p,α; q,β;−p− q,λ) = e Y (p,α; q,β;−p− q,λ) . (98)

For the four-vector coupling we have

{aabb}= {abab}= e2 , {abba}= −2e2 , (a, b) = (γ,ρ), (γ,τ) or (ρ,τ) , (99)

all other combinations vanishing. Therefore,

b

α β

µν

aa

b

= −ie2
�

2gαβ gµν − gαµgβν − gανgβµ
�

. (100)

At this point we can start talking about charged vectors, denoted by W+ and W− (or +
and −). We define

Aµ± =
1
p

2
(Aµρ ± iAµτ) , Bµ± =

1
p

2
(Bµρ ∓ iBµτ) .

29 (101)

Then,
AαρRαβM (q)B

β
ρ + AατR

αβ
M (q)B

β
τ = Aα+RαβM (q)B

β
+ + Aα−RαβM (q)B

β
− . (102)

Note that which one of the two terms (W+ or W−) actually survives depends on what happens
after the active vertices. We therefore have to symmetrize over the lines ρ,τ and also over the
W+, W− lines. For once replacing wavy lines by smooth lines for readability, and using ± for
W±, we therefore write

τ

p
q

ρ

+

τ

p
q

ρ

=
_

p
q

+

+

_

p
q

+

,

ρ
ρ

τ
τ

+

ρ

τ

τ
ρ + (4 others)=

+

+
_

_

+

+

_

_

+ + (4 others) . (103)

27In [8] this was employed to arrive at an ‘electroweak’ model without Z bosons.
28We leave the effect of replacing one h by the tadpole, turning the four-point vertex into a three-point one and

giving an extra factor v, as understood.
29The difference in definition for A± and B± is that A emits, and B absorbs the charged vector.
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For the W+W−γγ and W+W−-Higgs couplings we can follow the same argument. This gives
us the Feynman rules

_

p

q

α

β

λ
γ W

W

+
= ie Y (p,α; q,β;−p− q,λ) ,

W

α β

µν γ γ

+
W

_

= −ie2
�

2gαβ gµν − gαµgβν − gανgβµ
�

,

+

α β

µν

+
W W

W W
__ = ie2

�

2gαβ gµν − gαµgβν − gανgβµ
�

,

_
h

h
α

β

W
+

W

= 2i
M2

v2
gαβ . (104)

5.2 The Higgs-Kibble model

The HK model arises if we enlarge the tachyon space of the Apollo model to Nt = 4. The
general form of the f w matrices is now given by

( f w)nk = e Ow
z (g

z)nk , (105)

where the orthogonal matrix O is as in the previous section,30 and, in block notation

g1 =

�

S 0
0 S

�

, g2 =

�

0 σ1
−σ1 0

�

, g3 =

�

0 σ3
−σ3 0

�

, (106)

where σ1,2,3 are the Pauli matrices, and S = iσ2.31 The matrices f have the following prop-
erties:

[ f w, f x] = 2e ϵwx y f y , { f w, f x}nk = −2e2δwx δnk . (107)

Since this implies 〈ew|ex〉= e2δwx , we find immediately that

Kwx =
δwx

q2 −M2
. (108)

Next, from
�

|ew〉 〈ew|
�

|x〉= 0 ,
�

|ew〉 〈ew|
�

|ex〉= |ex〉 , (109)

it follows that

δnk − xn xk =
1
e2
(ew)n(e

w)k . (110)

We find the amplitude in a straightforward manner:

M= AhRh(q)Bh +
∑

w

AαwRαβM (q)B
β
w , (111)

so that we have three mass-M vectors and one Higgs scalar. Since the three vectors are all on
an equal footing, not much would be gained by trying to introduce the notion of ‘charge’ in
the HK model at this point.32

30The three vector bosons are mixed in an arbitrary way.
31A derivation is given in appendix C.
32This changes once we introduce fermions, see later on.
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5.3 The electroweak model

We can extend the HK model in the following way. It is possible to choose, in addition to the
matrices f j ( j = 1, 2,3) of Eq.(105), a single matrix f 0 that commutes with each f j , that is,
we can add a single vector boson that has no interactions with the other three.33 Consistently,
we can choose h0wx = 0, and the proof of current conservation then goes precisely as before.
We also define the vector

�

�e0
�

= f 0 |x〉. This must be a linear combination of the |ew〉, and we
write

〈ew|ex〉= e2δwx ,



e0
�

�e0
�

= e′2 , 〈ew|e0
�

= ee′zw , zwzw = 1 . (112)

Application of Eq.(84) then gives, with M = ev and M ′ = e′v,

Kwx(q
2 −M2) = δwx +M M ′Kw0zx ,

Kw0(q
2 −M ′2) = M M ′Kwxzx ,

K00(q
2 −M ′2) = 1+M M ′Kw0zw . (113)

After a little algebra34 we find

Kwx =
zwzx c2

θ

q2 − N2
+

zwzx s2
θ

q2
+
δwx − zwzx

q2 −M2
,

Kw0 =
zwcθ sθ
q2 − N2

−
zwcθ sθ

q2
,

K00 =
s2
θ

q2 − N2
+

c2
θ

q2
, (114)

where we have introduced

N2 = M2 +M ′2 , M = cθN , M ′ = sθN , c2
θ + s2

θ = 1 . (115)

We are therefore naturally led to define

AµZ = cθAµwzw + sθAµ0 , Aµγ = −sθAµwzw + cθAµ0 . (116)

From Eq.(110) we derive

(ew)nzw =
1

ee′
(ew)n 〈ew|e0

�

=
e
e′
(e0)n =

cθ
sθ
(e0)n , (117)

and we see that Aγ is strictly conserved:

qµAµγ ∼ −sθAn(e
w)nzw + cθAn(e

0)n = 0 . (118)

We can complement the vector z⃗ by two unit vectors r⃗ and t⃗ into an orthonormal set, so that

δwx − zwzx = rwrx + tw t x , (119)

and define Aµs = Aµwsw and |es〉= sw |ew〉 (s = r, t), so that we can write

δnk − xn xk =
1
e2

�

(er)n(e
r)k + (e

t)n(e
t)k + zw(e

w)nzx(e
x)k
�

. (120)

Finally, realizing that

An(e
w)nzw =

i
v

qµAµwzw =
i
v

qµ
�

cθAµZ − sθAµγ
�

= i
cθ
v

qµAµZ , (121)

33Only one such matrix f 0 can be chosen, see appendix C.
34Helped by first working out Kwx zx and then Kw0.
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we find that the amplitude can be written as

M= AhRh(q)Bh +
∑

s=r,t

Aαs RαβM (q)B
β
s + AαZRαβN (q)B

β
Z + AαγR

αβ
γ (q)B

β
γ . (122)

We recognize a Higgs scalar, two ‘W ’ particles of mass M , a Z particle of mass N , and a massless
photon.

Turning to the vertices, we first note that

|eγ〉= cθ
�

�e0
�

− sθ zw |ew〉= 0 ,
�

�eZ
�

= cθ zw |ew〉+ sθ
�

�e0
�

=
1
sθ

�

�e0
�

,




eZ
�

�eZ
�

=
N2

v2
,



eZ
�

�es〉 ∼ zw 〈ew|ex〉 sx = 0 , 〈es|es〉=
M2

v2
. (123)

Introducing W± as in section 5.1, the nonzero vector-Higgs couplings are

_
h

h
α

β

W
+

W

= 2i gαβ
M2

v2
,

Z

h

h
α

β Z

= 2i gαβ
N2

v2
. (124)

The vector self-interactions are simply obtained by using a factor cθ for each Z leg and a factor
−sθ for each γ leg, and remembering that hwx y is now 2eϵwx y rather than eϵwx y : the weak
coupling is g = 2e.

6 Inclusion of fermions: General structure

6.1 Feynman rules and current conservation

We shall now describe how Dirac fermions can be included in our treatment. We start with
massless, chiral fermions, that can be left- or right-handed (L or R):

q

L
=

iω−/q
q2

,
q

R
=

iω+/q
q2

. (125)

Of these fermions (labelled by a, b, c, . . .) there may be any number. The chirality projection
operators are

ω± =
1
2

�

1± γ5
�

. (126)

The fermions couple to the vectors and to the tachyons with the following Feynman rules:

w
µ

= iQwγµ ,
n

= −iKn . (127)

The objects Qw and Kn are matrices in fermion-label space (fl-space), and they have to be
Hermitian (see appendix D). Note that Qw couples LL fermion pairs and RR fermion pairs,
while Kn couples to LR and RL pairs. Splitting fl-space into L and R sectors, we therefore have

Qw =

�

Qw
L 0

0 Qw
R

�

, Kn =

�

0 κn
κ†

n 0

�

. (128)

Furthermore, it will be handy to distinguish R labels and L labels by dotting the R labels, so
that for instance we have (Qw

L )
a
b, (Qw

R )
ȧ
ḃ
, and (κn)aḃ. The handlebar rule with fermions is now

seen to be [5]

w

= w − w , w = w = iQw , = i . (129)
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This rule is only valid for massless chiral fermions. Further information can be gleaned from
the tree-level four-point amplitudes:

xw = x
w −

x

w +
x

w ↓
= 0 ,

n
w = nw − n

w +
nw ↓
= 0 , (130)

from which
[Qw,Qx]

↓
= −ihwx yQ y , [Qw, Kn]

↓
= i( f w)nℓK

ℓ . (131)

From the block notation we can write this also as

[Qw
J ,Qx

J ]
↓
= −ihwx yQ y

J (J = L, R) , Qw
Lκn − κnQw

R
↓
= i( f w)nℓκℓ . (132)

The Jacobi identity [Qw, [Qx , Kn]] − [Qx , [Qw, Kn]] = [[Qw,Qx], Kn] provides a consistency
check on Eq.(131). While the Kn have to be hermitian, Eq.(131) shows that the κn cannot all
be real.

The equations (130) also allow us to prove current conservation for our models with
fermions in an almost trivial manner, by including the fermions appropriately in the SDe:

= + + + + ,

= − − − ,

= + + + + ,

= − ,

= + + + + + ,

= + + − − . (133)

6.2 Dressed propagators, amplitudes and vertices

There are two passive vertices involving fermions:

R
ab

L
= −i(Y )a

ḃ
,

R
ab

L
= −i(Y †)ȧb , Y = τnκn . (134)

The matrices κn are not necessarily square, since we do not have to have equal numbers
of L and R fermions.35 This can be remedied by adding an appropriate number of barren
fermions,36 that have no interactions whatsoever (zero entries in the Qw and Kn matrices)
and therefore cannot influence the physics. Having done that we can employ singular value
decomposition; that is, we can find unitary matrices Ua

b and V ȧ
ḃ

in fl-space such that

(Y Y †)ab = (U
†)ac Dc

ḋ
(D†)ḋe U e

b , (Y †Y )ȧ
ḃ
= (V †)ȧċ (D

†)ċd Dd
ė V ė

ḃ
, (135)

35As in the Weinberg-Salam model without right-handed neutrinos.
36Not to be confused with sterile ones, that have vanishing Q entries but nonzero K ones.
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with
Da

ḃ
= ma δaḃ , (D†)ȧb = ma δȧb (no summation) , (136)

where the ma are nonnegative and real.37 We can then write

Y a
ḃ
= (U†)ac Dc

ḋ
V ḋ

ḃ
, Da

ḃ
= Ua

c Y c
ḋ
(V †)ḋ

ḃ
. (137)

There are four dressed fermion propagators. We can define

ΣLL =
LL
=

L
+

LL LR

. (138)

Again letting the momentum q run from left to right, we find

(ΣLL)
a
b q2 = iω−/qδab +ω−(Y Y †)ac (ΣLL)

c
b , (139)

so that

(UΣLLU†)ab =
iω−/q

q2 −m2
a
δab . (140)

Similarly, we have

ΣRR =
RR
⇒ (VΣRRV †)ȧ

ḃ
=

iω+/q
q2 −m2

a
δȧ ḃ . (141)

For one of the mixing propagators,

ΣLR =
R L

=
R L R

, (142)

we find

(UΣLRV †)a
ḃ
=

iω−ma

q2 −m2
a
δaḃ , (143)

and for the other mixing propagator we finally have

(VΣRLU†)ȧb =
iω+ma

q2 −m2
a
δȧb . (144)

A general amplitude involving a fermion line between active vertices has the form

M= L

L

+
R

R + R

L

+ L

R

= BLΣLLAL + BRΣRRAR + BLΣLRAR + BRΣRLAL . (145)

We now introduce unitarily transformed amplitudes:38

ÂL = UAL , B̂L = BLU† , ÂR = VAR , B̂R = BRV † . (146)

The amplitude then becomes (summing over a, ȧ)

M= (B̂L)a
iω−/q

q2 −m2
a
(ÂL)

a + (B̂R)ȧ
iω+/q

q2 −m2
a
(ÂR)

ȧ

+ (B̂L)a
iω−ma

q2 −m2
a
(ÂR)

ȧ + (B̂R)ȧ
iω+ma

q2 −m2
a
(ÂL)

a

= Ba
i(/q+ma)
q2 −m2

a
Aa , (147)

37Strictly speaking, singular value decomposition also works if the matrix Y is not square. However, in that case
U and V have different dimension, and the matrix D is not diagonal. By employing barren fermions we can use
the diagonal form (136).

38This convention is consistent since A is a spinor, and B is a conjugate spinor.
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where we have collected the various chiral amplitudes:

A=ω+ÂL +ω−ÂR =ω+UAL +ω−VAR ,

B = B̂Lω− + B̂Rω+ = BLU†ω− + BRV †ω+ . (148)

We have now combined pairs of massless chiral fermions into massive39 Dirac fermions, and
we have also found how to rewrite active vertices, for instance

b

w
µ

a

→ i
�

ω+(UQw
L U†)ab +ω−(VQw

R V †)ȧ
ḃ

�

γµ ,

ab

h

→−
i
v

�

ω+(UY V †)a
ḃ
+ω−(V Y †U†)ḃa

�

= −i
ma

v
δab , (149)

the latter result coming from the singular-value decomposition, Eq.(135). This proves that
the Higgs is indeed purely scalar, with no pseudoscalar component. The resultant form of
the fermion-vector coupling depends, of course, on the model, whereas the fermion-Higgs
coupling is universal.

7 Inclusion of fermions: Example models

7.1 The Abelian Higgs model

In the AH model, we restrict ourselves to Nt = 2, in view of the discussion in (3.4). We
can dispense with the superscript w, and we have f n

k = eSn
k . Since Q is hermitian, we can

diagonalize it, so that we use

(QL)
a
b = qa

Lδab , (QR)
ȧ
ḃ
= qȧ

Rδȧ ḃ (no summation) . (150)

Eq.(131) can then be cast in the form

[Q, [Q, Kn]] = e2Kn ⇒ (qa
L − q ḃ

R)
2(κn)

a
ḃ
= e2(κn)

a
ḃ

(no summation) . (151)

We can simply deduce that for all values a and ḃ for which (κn)a ḃ does not vanish, all qa
L must

be equal, or all q ḃ
R must be equal, or both;40 we choose the latter option. Sectors in fl-space that

are not connected by nonzero κn entries are independent.41 Let us concentrate on one such
sector. Here, the QL,R matrices are proportional to the unit matrix, and we find immediately
that

b

w
µ

a

=
i
2

�

(qa
L + qa

R) + (q
a
L − qa

R)γ
5
�

γµδab . (152)

This form of the AH model is unavoidably parity-violating, since qa
L − qa

R cannot vanish. Fur-
thermore, since (qa − qḃ)(κ1)aḃ = ie(κ2)aḃ, the matrix Y is equal to vκ1 up to a complex phase,

which is taken care of by absorbing it into U†. The fermion masses are therefore independent
of |x〉, as desired.

A discussion of the next-simplest model, the Apollo model, involves a considerable amount
of detail special to that model alone, and we therefore defer it to appendix E.

39It is of course possible that ma = 0 for some a, especially if barren fermions have to be used.
40If the R sector, say, contains barren fermions we must have qR = 0. That is indeed the case in the Weinberg-

Salam model, where the barren fermions are neutrinos.
41Think of the lepton and quark sectors of the Standard Model. The quark sector has no barren fermions.
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7.2 The Higgs-Kibble model

7.2.1 One fermion doublet

We first restrict n f , the number of fermions, to 2, so that Qw
L , Qw

R , and κn are 2× 2 matrices.
Since now we have hwx y = 2eϵwx y , we can choose

Qw
J = −e (OJ )

w
z σ

z λJ (J = L, R) , (153)

with OJ an arbitrary but fixed orthogonal matrix as before, and λL,R either zero or one; we
then have (Qw

J )
2 = e2λ2

J . By applying Eq.(131) twice, we find

(Qw
L )

2κn + κn(Q
w
R )

2 − 2(Qw
L )κn(Q

w
R ) = e2κn , (154)

in other words,
2(Qw

L )κn(Q
w
R ) = e2(λ2

L +λ
2
R − 1)κn , (155)

and applying this twice we see that λL = λR = 1 is not possible. We therefore take λL = 1,
λR = 0, so that the right-handed fermions have no vector interactions, and for simplicity we
take OL = 1. We can again bring Y into diagonal form via UY V † = D. The fermion-vector
vertex then has the form

b

w
µ

a

= −ieω+γ
µ (UσwU†)ab . (156)

We can further streamline the model by transforming the W amplitudes:

Aµw → Aµj = Rw
j Aµw , Rw

j =
1
2 Tr

�

UσwU†σ j
�

( j = 1,2, 3) . (157)

Using the Fierz relations for the 2× 2 Pauli matrices:

Tr (Aσw)Tr (Bσw) = 2Tr (AB)− Tr (A)Tr (B) ,

Tr (AσwBσw) = 2Tr (A)Tr (B)− Tr (AB) , (158)

we can show that R is an orthogonal matrix, whose application does not change the Feynman
rules of the vector/scalar sector of the model; and Rw

j (Uσ
wU†) = σ j . We then have the

Feynman rule for the fermion-vector interactions:

j
µ

ab

= −ieω+γ
µ (σ j)ab . (159)

The vertex with j = 3 is flavour-conserving, and we thus recognise the corresponding vector
boson as the neutral one. Furthermore one fermion (the ‘up’) only emits a W+, and the other
one (the ‘down’) can only emit a W−:

+
µ

ab

= −ie
p

2ω+γ
µ

�

0 1
0 0

�a

b
,

−
µ

ab

= −ie
p

2ω+γ
µ

�

0 0
1 0

�a

b
. (160)

7.2.2 More fermion doublets

We can increase the number of fermions to nd ‘up’ and nd ‘down’ fermions, so that n f = 2nd .
We choose Qw

L = −eσw ⊗ 1, explicitly:

Q1
L =

�

0 −e1
−e1 0

�

, Q2
L =

�

0 ie1
−ie1 0

�

, Q3
L =

�

−e1 0
0 e1

�

. (161)
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The block form refers to the ‘up’ and ‘down’ sectors, and 1 is the nd × nd unit matrix. Using
the representation (106), we then have

κ2 = −iQ1
Lκ1 , κ3 = −iQ3

Lκ1 , κ4 = −iQ2
Lκ1 . (162)

Therefore,
Y = vΣ( x⃗)κ1 , Σ( x⃗) = x1 − i x2Q1

L − i x3Q3
L − i x4Q2

L , (163)

and Σ is unitary. That means that the singular-value decomposition will automatically remove
all x dependence in diagonalising Y (because Σ will form part of U): the fermion masses (and
mixings) are independent of |x〉. There is an important restriction, however: we want the
vacuum to be flavour-conserving.42 Therefore the Y matrix should not mix u and d fermions:
it must have a block-diagonal form. We must therefore choose κ1 to be (a transformation of)
a block-diagonal matrix in fl-space:

vκ1 = Σ(z⃗)

�

Ku 0
0 Kd

�

, (164)

with z⃗ an arbitrary unit vector. This kind of restriction of the form of κ1 is, in fact, also
present in the canonical derivation of the Standard Model, since also there flavour-changing
vacuum terms are explicitly excluded, thus forbidding precisely one-half of all possible Yukawa
interactions. The matrices U and V are now chosen as

U = CΣ( x⃗)†Σ(z⃗)† , C =

�

Cu 0
0 Cd

�

, V =

�

Vu 0
0 Vd

�

, (165)

where
C jK jV

†
j ( j = u, d) , (166)

is precisely the singular-value decomposition of the (n f ×n f ) K submatrices. Finally, we define
the Rw

j as in Eq.(157), only in the ‘tensored’ form, using C rather than U and σw ⊗ 1. Again

considering W± rather than W 1,2, we arrive at the following vertices:

+
µ

ab

= −ie
p

2ω+γ
µ

�

0 CuC†
d

0 0

�a

b
,

−
µ

ab

= −ie
p

2ω+γ
µ

�

0 0
Cd C†

u 0

�a

b
,

3 µ

ab

= −ieω+γ
µ

�

1 0
0 −1

�a

b
. (167)

The matrix CuC†
d is, of course, the CKM matrix in the case of quarks, or the PMNS matrix if we

consider leptons.43

7.3 The electroweak model

For simplicity, we shall use f w = gw (cf Eq.(106)), and consider only, say, the quark sector of
the EW model. Extending the HK model with an additional vector boson, we let the additional
vector couple to the fermions, with Q0

L and Q0
R. Since we have demanded that h0wx = 0, Q0

L
must be proportional to the unit matrix. The only way for the commutation relations

[Q0,Qw] = 0 , Qw
Lκ

n −κnQw
R = i ( f w)nℓ κ

ℓ , w= 0, 1,2, 3 , (168)

42Since there is no photon, there is no notion of an electrically neutral vacuum.
43Which implies, of course, the existence of right-handed neutrinos.
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to be consistent is to have

f 0 = e′







0 0 1 0
0 0 0 1
-1 0 0 0
0 -1 0 0






, (169)

which provides a stronger constraint on f 0 than in the scenario where only vector bosons were
included; furthermore, the ‘up-down’ block form of Q0

L,R must read

Q0
L = −e′

�

aL ⊗ 1 0
0 aL ⊗ 1

�

, Q0
R = −e′

�

aR ⊗ 1 0
0 bR ⊗ 1

�

, (170)

with aL − aR = −1 and aL − bR = +1.44 As in the model containing solely vector bosons,
we take the combinations Aµγ = cθAµ0 − sθAµwzw, AµZ = cθAµwzw + sθAµ0, and AµW = swAµw with
sw = tw, rw.45 Since the vector zw contains the information in which A1,2,3 are mixed, we need
to perform the same mixing in the Qw

L matrices. We do so by constructing a rotation matrix G,
whose rows are the orthonormal vectors zw, tw and rw, and taking the product R̃w

x = Rw
y G y

x .
Performing this rotation leaves us with the Feynman rules:

f

µγ

f
= −iQ f γ

µ ,
Z µ

ff
= i(v f + a f )γ

µ , (171)

with

Qu = sθ e (aL + aR + 1) , Qd = sθ e (aL + bR − 1) ,

vu =
e
cθ

�

−c2
θ + s2

θ (aL + aR)
�

, au = −
e
cθ

,

vd =
e
cθ

�

c2
θ + s2

θ (aL + bR)
�

, ad =
e
cθ

. (172)

Taking into account that the f f W coupling constant gW, defined by GF/
p

2= gW
2/M2, is given

by gW = e
p

2 (from Eq.(167)), it is easily checked that these vertices are, again, precisely those
of the standard electroweak model.

8 Conclusions

We have shown how to implement the Higgs mechanism in a purely diagrammatic way, work-
ing up from the simplest self-interacting tachyon system to the complete electroweak model.
In doing so we found that special care has to taken with tadpole-containing diagrams in order
to avoid miscounting. We also proved that all theories of the type we studied must contain a
Higgs particle [6], and proved the equivalence theorem [7]. The symmetry structure of the-
ories with vector particles arises naturally from the requirement of unitarity, rather than as
preordained.

Acknowledgments
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44The lepton sector of the EW is treated the same way, only with different assignments of aL,R and bR.
45It is unnecessary to check again strict current conservation for the amplitude A0, since in the proof of section 5.3

the identity of the active vertex does not enter.
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A Antihermitian matrices

A hermitian matrix has an orthonormal basis of eigenvectors. The following discussion
(included here since the result is less well-known) describes the analogous result for anti-
hermitian matrices, that subsume antisymmetric real matrices such as the f w. Let M be an
antihermitian matrix; M†M , being by construction hermitian, has an orthonormal basis of
eigenvectors. Let |a1〉 be such an eigenvector, normalized to unity, with eigenvalue λ.

If λ= 0 then



a1

�

�M†M
�

�a1

�

= ∥M |a1〉∥2= 0 , (A.1)

so that M |a1〉 = 0. Any other value of λ must be positive, so that we can write λ = z2 with
z real. For that case we define |b1〉 = (1/z)M |a1〉. We immediately find that |b1〉 is also
normalized to unity, and orthogonal to |a1〉; furthermore, M |b1〉 = −M† |b1〉 = −z |a1〉. In
the complement of the span of |a1〉 and |b1〉, M†M is again hermitian, and we can repeat
the process, to find an |a2〉 or a pair |a2〉 , |b2〉, and so on. We find that the vectors

�

�a j

�

,
�

�b j

�

( j = 1, 2, . . .) are an orthonormal basis, and that M can be written as

M =
∑

j

z j

�

�

�b j

� 


a j

�

�−
�

�a j

� 


b j

�

�

�

, (A.2)

where the sum runs over all nonzero eigenvalue-square-roots z j and their
�

�a j

�

,
�

�b j

�

pairs. If
the dimension of M is odd, there must be at least one zero eigenvalue.

B Current conservation with external vector particles

In the derivation of Eq.(71) we have used the fact that both the x and y lines are axial-
gauge propagators, transverse to n. That assumption fails if, say, y is an on-shell line, with
polarization vector ε(q), for which q ·q = q ·ε(q) = 0 but n ·ε(q) does not necessarily vanish.46

In that case we must write

Rµαn (p)h
wx y

�

�

pαpβ − p2 gαβ
�

−
�

qαqβ − q2 gαβ
�

�

εβ(q) = i hwx yεµ(q)− ihwx y (n · ε(q))
(p · n)

pµ ,

(B.1)
and the handlebar rule becomes

w

y

x

=
y

x

w − ihwx y (n · ε(q))
(p · n) x

. (B.2)

The first diagram on the right fits in with the proof of current conservation for w, while the
second term is the handlebar for the ‘reduced’ process, where w and y are stripped away. We
can repeat this process until no external vector particles are left. Therefore the proof of current
conservation still holds if a finite number of external vector particles is present.

C The g matrices of the HK model and the EW model

Let σ j be the Pauli matrices, and let us denote by S the 2× 2 matrix

S = iσ2 =

�

0 1
-1 0

�

. (C.1)

46If both x and y are external, the amplitude vanishes under the handlebar.
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The discussion in appendix A shows that we can always write, in block notation,

g1 = e

�

S 0
0 S

�

, g2 =

�

a2S B
−BT b2S

�

, g3 =

�

a3S C
−C T b3S

�

, (C.2)

with a2,3, b2,3, B and C to be determined. Let us also write hwx y = ek ϵwx y , with also k to be
determined. The commutator identity of Eq.(75) then implies

a2,3 = b2,3 = 0 , [S, B] = kC , [S, C] = −kB . (C.3)

Thus we have

[S, [S, B]] = −k2B ⇒ σ2Bσ2 = −rB , r = −1+ k2/2 . (C.4)

Therefore B must be a linear combination of σ1 and σ3, and r = 1. If we choose B = eσ1,
then C = eσ3, and we arrive at the representation of Eq.(106), with k = 2.

For the electroweak model, the matrix f 0 that commutes with g1,2,3 (and consequently
with f 1,2,3) has the general form

f 0 =

�

e1S e2 + e3S
−e2 + e3S −e1S

�

, ( f 0)2 = e2
1 + e2

2 + e2
3 ≡ e′2 .47 (C.5)

The numbers e1,2,3 can be chosen freely, but f 0 matrices with different e1,2,3 do not commute
with one another. There is therefore room for only one extra vector besides the three self-
interacting ones in the electroweak model.

D Hermiticity from cutting rules

Since we do not use Lagrangians or actions, the hermiticity of the Q and K matrices must be
argued diagrammatically. To this end we may use the Cutkosky cutting rules [9], that embody
the unitarity of a theory. Consider a particular diagram in Quantum Electrodynamics,

c ab
(D.1)

where for now the labels a, b and c are just for telling the fermion lines apart. The Cutkosky
rule for this diagram reads

b ac + c ab
+

b ac = 0 , 48 (D.2)

where the convention is that propagators that are cut by the shaded line are on shell, while
all momentum integrations remain. On the left of the shaded line we have the amplitude as
it stands, and on the right we have the complex conjugate of the time-reversed amplitude [5].
Eq.(D.2) can therefore also be written as

�

c ab

�

+

�

b c

��

ca

�∗

+

�

bca

�∗

= 0 . (D.3)

For QED, the Cutkosky rule holds for this diagram, but the cancellation is far from trivial [1].
Let us now replace the internal photon line in the diagram (D.1) by the vector particle w, and
let the electron be replaced by the fermions a, b, c of our model. The terms in Eq.(D.3) then
pick up, respectively, the factors

(Qw)ac (Q
w)cb , (Qw†)ac (Q

w)cb , (Qw†)ac (Q
w†)cb .

47By explicit calculation of the commutators.
48If the quantum numbers of a and b are equal, this is also called the Optical Theorem.
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The only reasonable way to still have the null result is to have these three factors equal.
By putting b = a and summing, we therefore have

Tr (QwQw) = Tr
�

Qw†Qw†�= Tr
�

QwQw†� ⇒ Tr
�

(Qw −Qw†)2
�

= 0 , (D.4)

which shows that Qw must be hermitian.49 Replacing the internal photon by a scalar in diagram
(D.1) does also yields a correct cutting rule; this shows that also Kn must be hermitian.

E Fermions in the Apollo model

Let us define, in L, R-block notation,

H = τnKn =

�

0 Y
Y † 0

�

, R=

�

U 0
0 V

�

⇒ RHR† =

�

0 D
D 0

�

. (E.1)

Furthermore, let

Qγ = γwQw =

�

QγL 0
0 QγR

�

, Q̂γ = RQγR† =

�

Q̂γL 0
0 Q̂γR

�

. (E.2)

Eq.(131) then implies

[Qγ, H] = iv γw xn ( f
w)nℓK

ℓ = iv γw(e
w)ℓK

ℓ = 0 . (E.3)

Therefore Q̂γ commutes with RHR†, so

Q̂γL D = DQ̂γR , Q̂γRD = DQ̂γL . (E.4)

This means that both Q̂γL and Q̂γR commute with D2. If all the fermions masses are different,
this means that the Q̂γL,R are also diagonal in fl-space; if several masses are equal, we can make
the Q̂γL,R diagonal by an appropriate orthogonal transformation in fl-space. It is then easily
seen that

(Q̂γL)
a
a = (Q̂

γ
R)

a
a , if ma ̸= 0 (no summation) , (E.5)

the left- and right-handed couplings are the same for massive fermions. This gives us the
fermion-fermion-photon vertex:

γ µ

ab

= i(Q̂γL)
a
a γ
µδab , if ma > 0 (no summation) ,

= i
�

ω+(Q̂
γ
L)

a
a +ω−(Q̂

γ
R)

ȧ
ȧ

�

γµδab , if ma = 0 (no summation) . (E.6)

The photon’s interaction with massive fermions conserves parity as it should; massless fermions
can interact with parity violation without endangering the photon’s current conservation.50

The two other fermion-vector couplings,

Q̂ρ = ρw RQwR† , Q̂τ = τw RQwR† , (E.7)

are not automatically current-conserving under this construction, but since these couple to
massive vector bosons that is not required anyway.

49For an antihermitian matrix A, we have Tr
�

A2
�

= −
∑

a,b |A
a
b|

2.
50This sidesteps the question of the physical viability of a massless fermion coupling to massless photons: to

avoid it the κn must be chosen with some care.
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E.1 Two fermions

It may be helpful to study a simple example. We can assume two massless fermions of both L
and R type, and define

( f w)nk = −e εwnk , Qw
L,R = −

e
2
σw , κn = λσ

n . (E.8)

In this case, γw = xw, and we have

QγL,R = −
e
2
(xwσ

w) , Y = λ v (xnσ
n) . (E.9)

We adopt polar coordinates and write {γ⃗, ρ⃗, τ⃗} as

γ⃗= (sin(θ ) cos(φ) , sin(θ ) sin(φ) , cos(θ )) ,

ρ⃗ = (cos(θ ) cos(φ) , cos(θ ) sin(φ) , − sin(θ )) ,

τ⃗= (− sin(φ) , cos(φ) , 0) , (E.10)

which provides a right-handed orthonormal base,51 and further we introduce

σ⃗± =
1
p

2

�

ρ⃗ ± i τ⃗
�

. (E.11)

Now, we choose the unitary matrices U and V as follows:

U =

�

eiφ/2 cos(θ/2) e−iφ/2 sin(θ/2)
eiφ/2 sin(θ/2) −e−iφ/2 cos(θ/2)

�

,

V =

�

eiφ/2 cos(θ/2) e−iφ/2 sin(θ/2)
−eiφ/2 sin(θ/2) e−iφ/2 cos(θ/2)

�

. (E.12)

This gives us

UY V † = V Y U† = λ v 1 , UQγLU† = VQγRV † =

�

−e/2 0
0 e/2

�

. (E.13)

We end up with two massive Dirac fermion of mass λv (independent of |x〉), one with electric
charge −e/2 and the other with +e/2. Turning to charged W bosons, we find

(Q̂+L )
a
b = (U(σ+wQw

L )U
†)ab =

�

0 e/
p

2
0 0

�

= −(V (σ+wQw
R )V

†)ȧ
ḃ
= −(Q̂+R)

ȧ
ḃ

,

(Q̂−L )
a
b = (U(σ−wQw

L )U
†)ab =

�

0 0
e/
p

2 0

�

= −(V (σ−wQw
R )V

†)ȧ
ḃ
= −(Q̂−R)

ȧ
ḃ

. (E.14)

As expected, only one of the fermions can emit a W+, and the other can only emit a W−. To
recover the Feynman rules, we consider the emission of a W+ from a fermion line:

/2

+
µ

+ /2 −
= i

�

Baω+γ
µ(Q̂+L )

a
bAb + Bȧω−γ

µ(Q̂+R)
ȧ
ḃ
Aḃ
�

. (E.15)

The couplings of the W± are seen to be purely axial in this model; A2 refers to the emission of
a fermion of charge +e/2, and B1 to the absorption of a charge −e/2 fermion; and of course
A1 emits the negative, while B2 absorbs the positive fermion. The Feynman rules are seen to
be

/2

+
µ

+ /2 −
= i

e
p

2
γ5γµ =

−

µ

/2 /2

−

+ 
. (E.16)

51In the sense that (x .σ)(ρ.σ)(τ.σ) = σ1σ2σ3 = i.
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These charge assignments then also automatically lead to the fermion-photon Feynman rules

+

µ

/2 /2−

γ

+
= i

e
2
γµ ,

γ µ

/2 /2−−
= −i

e
2
γµ . (E.17)

E.2 Three fermions

As another example,52 we choose a model with three massless fermions of both L and R type,
and define

( f w)ab = −e ϵwab , (Qw
J )

a
b = ie ϵwab , (κn)

a
ḃ
= λϵnab , (E.18)

with J = L, R as before; it is easy to verify that these satisfy Eqs.(130) with hwx y = e ϵwx y .
Now γw = xw, and we again choose the vectors g⃗ = x⃗ , ρ⃗, and τ⃗ according to

τa = ϵ
abc xb ρc , (E.19)

and define σ± as in the previous section. We find

Y a
ḃ
= v xn(κn)

a
ḃ
= λv(ρaτḃ −τ

aρḃ) , (QγJ )
a
b = xw(Q

w
J )

a
b = ie(ρaτb −τaρb) ,

(QρJ )
a
b = ρw(Q

w
J )

a
b = ie(τa xb − xaτb) , (QτJ )

a
b = τw(Q

w
J )

a
b = ie(xaρb −ρa xb) .

(E.20)

The appropriate choices for U and V are

Ua
b = xa xb +ρ

aρb −τaτb ,

V ȧ
ḃ
= iνx ȧ x ḃ +ρ

ȧτḃ +τ
ȧρḃ , ν= ± . (E.21)

Note that two alternative forms for V are available. The matrix D now takes the form

Da
ḃ
= (UY V †)a

ḃ
= λv(ρaρḃ +τ

aτḃ) = λv(σa
+σ−ḃ +σ

a
−σ+ḃ) . (E.22)

We have two fermions of mass λv, plus one massless fermion. The fermion-photon interactions
are

(Q̂γL)
a
b = (UQγLU†)ab = e(σa

+σ−b −σa
−σ+b) ,

(Q̂γR)
ȧ
ḃ
= (VQγLV†)ȧ

ḃ
= e(σȧ

+σ−ḃ −σ
ȧ
−σ+ḃ) . (E.23)

We are led to define the off-shell amplitudes for a neutral, a positively charged, and a negatively
charged fermion as follows:

0

= (x · A) ,
+

= (σ− · A) ,
_

= (σ+ · A) ,
0

= (B · x) ,
+

= (B ·σ+) ,
_

= (B ·σ−) . (E.24)

From

γ
µ

= i
�

Baω+γ
µ(Q̂γL)

a
bAb + Bȧω−γ

µ(Q̂γR)
ȧ
ḃ
Aḃ
�

= ie ((B.σ+)γ
µ(σ−.A)− (B.σ−)γ

µ(σ+.A)) , (E.25)

we derive the Feynman rules

+

µ
γ

+ = ieγµ , −

µ
γ

− = −ieγµ . (E.26)

52In this section, the dotted-undotted index distinction becomes really useful.
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The massless fermion is also the neutral one. For the fermion-W± vertices we have to take

(Q̂+L )
a
b = (U(σ+wQw

L )U
†)ab = −e(xaσ−b −σa

−xb) ,

(Q̂+R)
ȧ
ḃ
= (V (σ+wQw

R )V
†)ȧ

ḃ
= νe(x ȧσ−ḃ +σ

ȧ
−x ḃ) ,

(Q̂−L )
a
b = (U(σ−wQw

L )U
†)ab = e(xaσ+b −σa

+xb) ,

(Q̂−R)
ȧ
ḃ
= (V (σ−wQw

R )V
†)ȧ

ḃ
= νe(x ȧσ+ḃ +σ

ȧ
+x ḃ) , (E.27)

and in the same way as above we then arrive at the following Feynman rules:53

+ µ

0+ = −ieΓ−νγ
µ , −

µ+
0 = ieΓνγ

µ ,

−
µ

− 0 = ieΓνγ
µ , +

µ
−

0 = −ieΓ−νγ
µ , (E.28)

where
Γ+ = 1 , Γ− = γ

5 . (E.29)

These couplings are purely vector and axial-vector in character, but they depend on the choice
of ν in Eq.(E.21): two seemingly different models that, however, are based on the same under-
lying physics. Note that the two alternatives are simply related by simultaneously performing
ν→−ν and e→−e.
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