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Abstract

We revisit the classifications of classical and quantum galilean particles: that is, we
fully classify homogeneous symplectic manifolds and unitary irreducible projective rep-
resentations of the Galilei group. Equivalently, these are coadjoint orbits and unitary
irreducible representations of the Bargmann group, the universal central extension of
the Galilei group. We provide an action principle in each case, discuss the nonrelativis-
tic limit, as well as exhibit, whenever possible, the unitary irreducible representations
in terms of fields on Galilei spacetime. Motivated by a forthcoming study of planons we
pay close attention to the mobility of the less familiar massless Galilei particles.
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1 Introduction

Galilei, Minkowski and Carroll spacetimes [1, 2] are distinguished Klein models for galilean,
lorentzian and carrollian Cartan geometries, respectively. They are affine spaces admitting a
transitive action of the Galilei, Poincaré and Carroll groups, respectively, which play the rôle
of relativity groups for these spacetimes. The latter are the arena for both particle dynamics
(classical and quantum) as well as quantum field theories: galilean, (the misnamed) relativistic
and carrollian, respectively. Despite the physical spacetimes being the arena for dynamics, the
actual degrees of freedom are often described by other homogeneous spaces of the groups in
question: homogeneous symplectic manifolds in the case of classical particle dynamics, and
momentum orbits in the case of quantum particles and fields.

These relativity groups are semidirect products G = K ⋉ T , where T is abelian (the trans-
lations) and K consists, roughly, of rotations and boosts. Of these relativity groups, the best
understood is arguably the Poincaré group, where K is the Lorentz group. The Poincaré group
has played a starring rôle in Physics for more than a century: it underlies Special Relativity and
Relativistic Quantum Field Theory, and its associated Cartan geometry (i.e., lorentzian geom-
etry) underlies General Relativity. Classical Poincaré particles correspond to coadjoint orbits
of the Poincaré group and they were first classified by Arens in [3]. Its unitary irreducible
representations were famously classified by Wigner [4], pioneering the method of induced
representations which would find its most general expression in Mackey’s theory [5].

By contrast, the Carroll group is more recent. Introduced by Lévy-Leblond in [6] and in-
dependently by Sen Gupta in [7], its coadjoint orbits were studied initially in the Appendix
of [8] and more recently also in [9] in the context of fractons. The unitary irreducible repre-
sentations of the Carroll group were recently determined in [10] using the method of induced
representations (see also [6,11]).

The Galilei group is of course the oldest of these relativity groups and it is the subject of
this paper. In contrast to both the Poincaré and Carroll groups, the Galilei group has nontriv-
ial symplectic cohomology in the language of Souriau [12]. This means that its homogeneous
symplectic manifolds are not all coadjoint orbits of the Galilei group, but of its one-dimensional
central extension: the eponymous group introduced by Bargmann in [13] in a quantum me-
chanical context. In that paper, Bargmann showed that the unitary irreducible ray represen-
tations of the Galilei group are honest unitary irreducible representations of the Bargmann
group, but stopped short of their classification. The coadjoint orbits of the Bargmann group
were initially studied by Souriau [12, §14] and are also discussed by Guillemin and Sternberg
in [14, §54], but to the best of our knowledge a full analysis of the resulting particle dynam-
ics has not been done before. The story of the unitary irreducible representations is more
tortuous. It was Inönü and Wigner [15] who first considered the unitary irreducible represen-
tations of the Galilei group. In that paper they consciously restricted to honest representations
of the connected Galilei group, thus missing massive representations, and moreover they did
not consider the simply-connected cover of the Galilei group, thus missing representations
with half-integer spin. Brennich [16] classified the unitary irreducible ray representations of
the simply-connected Galilei group and also of its extension by parity and time reversal au-
tomorphisms. His labeling of representations is somewhat redundant, as we shall see. The
unitary irreducible ray representations were also determined by Lévy-Leblond in [17] with
one minor omission, as we shall discuss below. These works pay no attention to identifying
the homogeneous vector bundles whose sections carry the representations.

In recent years novel quasiparticles with the distinctive property of having only restricted
mobility (see [18–20] for reviews) have challenged, and hence advanced, our understand-
ing of conventional quantum field theories [21, 22]. One way to understand them [23, 24] is
coming from theories with higher moment conservation laws like, e.g., dipole moment con-
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servation. These exotic symmetries can be studied systematically and it was observed [25]
that the symmetries of theories with conserved dipole and trace of the quadrupole moment
closely resemble the Bargmann algebra (similar to the relation between fractons and Carroll
particles [9,10,26,27]). It is then natural to ask if and how their particles are related, which
leads to study the classical and quantum elementary and composite systems. These particles
indeed play a rôle in applications (e.g., [28]) and to be able to contrast the planons with the
Galilei particles [29] we find it useful to review the Galilei particles independently.

We make no strong claims of originality, but we are unaware of a resource that uniformly
covers the topics of this article at the same level of completeness. We therefore think it may
be useful to collect these results in a uniform way, using contemporary language and paying
close attention to the geometrical nature of the representations. In addition we discuss the
particle dynamics associated to the different coadjoint orbits as well as, whenever possible, a
description of the unitary irreducible representations as fields in Galilei spacetime.

This paper is organised as follows. In Section 2 we introduce the Bargmann group. We
do not define it as a central extension of the Galilei group, but rather as the subgroup of the
Poincaré group in one dimension higher which stabilises a nonzero null translation generator
and only then show that its Lie algebra is a central extension of the Galilei algebra. In Section 3
we discuss the adjoint and coadjoint representations of the Bargmann group and in Section 4
we write explicit expressions for the left-invariant Maurer–Cartan one-form on the Bargmann
group, for later use in deriving action functionals for classical Galilei particles. Until this point
we have been working in generic dimension, but starting from Section 5 we restrict our atten-
tion to the case of four-dimensional Galilei spacetime. In Section 6 we determine for later use
the automorphisms of the Bargmann algebra which act trivially on the rotational subalgebra
and we give an expression for the group automorphisms which integrate them. In Section 7 we
determine the coadjoint orbits of the Bargmann group. They are summarised in Table 1, which
gives equations for each of the orbits. We then discuss how this classification changes when
we extend the Bargmann group by parity and time reversal. Finally, we discuss the geometric
structure of the coadjoint orbits as bundles over the momentum orbits, which is summarised
in Table 2. In Section 8 we study the particle actions associated to each of the coadjoint orbits
and determine the corresponding dynamics (with further details delegated to Appendix A).
In Section 9 we discuss a group-theoretical approach to particle dynamics and compare with
the results in Section 8. In Section 10 we contrast the energy-momentum orbits and the limit
from Poincaré to Galilei (see Figure 1). In Section 11 we classify the unitary irreducible rep-
resentations of the Bargmann group using the method of induced representations. The results
are summarised in Table 6. We compare our classification with those of Inönü–Wigner [15],
Brennich [16] and Lévy-Leblond [17]. Finally, in Section 12 we discuss some realisations of
these unitary irreducible representations in terms of fields in Galilei spacetime.

2 The Bargmann group and its Lie algebra

In this section we define the Bargmann group and work out its Lie algebra.
The (n + 1)-dimensional Bargmann group is the subgroup G of the (n + 2)-dimensional

Poincaré group which leaves invariant a null translation under the adjoint representation on
its Lie algebra. The Poincaré group sits inside the affine group, which in turn embeds inside
the linear group in one higher dimension. Therefore the (n+1)-dimensional Bargmann group
sits naturally inside GL(n+ 3,R).

The (n+2)-dimensional Poincaré group, by which we mean the subgroup of isometries of
(n+ 2)-dimensional Minkowski spacetime, is the subgroup of GL(n+ 3,R) given by the set of
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matrices
��

L a
0 1

� �

�

�

�

a ∈ Rn+2 , L ∈ GL(n+ 2,R) and LTηL = η

�

, (1)

where

η=





0 1 0T

1 0 0T

0 0 In



 , with In the identity matrix of size n. (2)

Notice that we have chosen a Witt frame (e+,e−,ea) for the lorentzian vector space (Rn+2,η),
in such a way that η(e+,e−) = 1, η(ea,eb) = δab and all other inner products vanish. The
Bargmann group is therefore given by the set of matrices
��

L a
0 1

� �

�

�

�

a ∈ Rn+2 , L ∈ GL(n+ 2,R) , LTηL = η and Le+ = e+

�

. (3)

The matrices L ∈ GL(n+ 2,R) in the Bargmann group can be seen to take the following form

L =





1 −1
2∥v∥

2 vT R
0 1 0T

0 −v R



 , where R ∈ O(n) and v ∈ Rn. (4)

The subgroup H ⊂ GL(n + 2,R) consisting of such matrices is isomorphic to the euclidean
group Rn ⋊ O(n). In other words, if is diffeomorphic to Rn × O(n) where the element of H
corresponding to (v, R) ∈ Rn ×O(n) is given by the matrix L in equation (4). That element,
which we denote1 by g(v, R), can be factorised as





1 −1
2∥v∥

2 vT R
0 1 0T

0 −v R



=





1 −1
2∥v∥

2 vT

0 1 0T

0 −v In









1 0 0T

0 1 0T

0 0 R



 , (5)

corresponding to the multiplication on Rn ×O(n) defined by

g(v1, R1)g(v2, R2) = g(v1 + R1v2, R1R2) . (6)

The Bargmann subgroup G ⊂ GL(n+ 3,R) thus consists of matrices of the form







1 −1
2∥v∥

2 vT R a+
0 1 0T a−
0 −v R a
0 0 0T 1






, (7)

which factorises as






1 −1
2∥v∥

2 vT R a+
0 1 0T a−
0 −v R a
0 0 0T 1






=







1 0 0T a+
0 1 0T a−
0 0 In a
0 0 0T 1













1 −1
2∥v∥

2 vT 0
0 1 0T 0
0 −v In 0
0 0 0T 1













1 0 0T 0
0 1 0T 0
0 0 R 0
0 0 0T 1






, (8)

corresponding to

g(a+, a−,a,v, R) = g(a+, a−,a,0, In)g(0, 0,0,v, In)g(0,0,0,0, R) . (9)

1We use the notation g(. . .), A(. . .) and M(. . .) to represent group elements, Lie algebra elements and elements
of the dual of the Lie algebra (“moments”) parametrised by the data inside the parentheses.
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The Bargmann group is thus diffeomorphic to R × R × Rn × Rn × O(n), with multiplication
defined by

g(a+, a−,a,v, R)g(α+,α−,α,β ,Σ) (10)

= g(a+ +α+ + v · Rα− 1
2α−∥v∥

2, a− +α−,a+ Rα−α−v,v+ Rβ , RΣ) ,

from where we see that the identity element corresponds to g(0,0,0,0, In). From here we can
work out the group inversion:

g(a+, a−,a,v, R)−1 = g(−a+ + a · v+ 1
2 a−∥v∥2,−a−,−RT (a+ a−v),−RT v, RT ) , (11)

where we have used that RT = R−1 in O(n).
The Lie algebra g of the Bargmann group embeds in gl(n+ 3,R) with image consisting of

matrices of the form

A(x+, x−,x,y, X ) :=







0 0 yT x+
0 0 0T x−
0 −y X x
0 0 0T 0






, where X T = −X , (12)

from where we can easily work out the Lie bracket:
�

A(x1
+, x1
−,x1,y1, X1),A(x

2
+, x2
−,x2,y2, X2)
�

(13)

= A(y1 · x2 − y1 · x1, 0, X1x2 − X2x1 + x1
−y2 − x2

−y1, X1y2 − X2y1, [X1, X2]) .

If we introduce a basis Lab, Ba, Pa, H, M for the Bargmann algebra in such a way that2

A(x+, x−,x,y, X ) = x+M − x−H + xaPa + yaBa +
1
2 X ab Lab , (14)

we read off the following nonzero Lie brackets:

[Lab, Lcd] = δbc Lad −δac Lbd −δbd Lac +δbd Lac ,

[Lab, Bc] = δbcBa −δacBb ,

[Lab, Pc] = δbc Pa −δac Pb ,

[Ba, H] = Pa ,

[Ba, Pb] = δabM ,

(15)

which exhibits the Bargmann algebra as a central extension of the Galilei algebra. Indeed,
the coadjoint orbits of the Bargmann group coincide, up to covering, with the homogeneous
symplectic manifolds of the Galilei group.

The other homogeneous space of the Galilei group we shall be interested in is Galilei space-
time itself. It admits an effective transitive action of the Galilei group and hence the Bargmann
group too acts transitively, but not effectively. It is simple to describe this action. Let M de-
note the Galilei spacetime: it is an affine space diffeomorphic to G/G0 with G0 = K × Z ,
where Z is the one-dimensional centre and K is the homogeneous Galilei group. Its Lie al-
gebra g0 is spanned by Lab, Ba, M . We choose a coset representative ζ : M → G defined by
ζ(t,x) = exp(tH + x · P). The action of G on M is induced by left-multiplication on G:

g(a+, a−,a,v, R)ζ(t,x) = ζ(t ′,x′)h , (16)

2The sign in the −x−H term is so that the Lie brackets are the ones we are familiar with.
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for some h ∈ G0, which depends in principle on a+, a−,a,v, R, t,x. One can calculate the above
product and arrives at

g(a+, a−,a,v, R) :

�

t
x

�

7→
�

t ′

x′

�

=

�

t + a−
Rx− tv+ a

�

, (17)

from where we see that the central subgroup Z acts trivially and hence the action factors
through the Galilei group G/Z . The action is via a sequence of affine transformations: rotation
followed by a galilean boost and followed by translations in both space and time.

3 The adjoint and coadjoint representations

The adjoint representation of G on g is the derivative of the conjugation action of G on itself at
the identity. Conjugation is easily worked out from the formulae for multiplication (10) and
inversion (11). We find that

g(a+, a−,a,v, R)g(α+,α−,α,β ,Σ)g(a+, a−,a,v, R)−1 = g(α′+,α′−,α′,β ′,Σ′) , (18)

where

α′+ = α+ + a · v− 1
2α−∥v∥

2 + 1
2 a−(∥v∥2 + ∥v+ Rβ∥2) + v · Rα− (v+ Rβ) · RΣRT (a+ a−v) ,

α′− = α− ,

α′ = Rα+ a−α−v+ a−v+ a−Rβ − RΣRT a− a−RΣRT v ,

β ′ = Rβ + v− RΣRT v ,

Σ′ = RΣRT . (19)

Differentiating at the identity, we obtain the adjoint action of G on g. We promote
(α+,α−,α,β ,Σ) to a curve via the identity and simply compute the velocity at the identity
of the curve obtained after conjugation. Doing so, we find

Adg(a+,a−,a,v,R)A(x+, x−,x,y, X ) = A(x ′+, x ′−,x′,y′, X ′) , (20)

where

x ′+ = x+ −
1
2 x−∥v∥2 + v · Rx− a · Ry+ v · RXRT a ,

x ′− = x− ,

x′ = Rx− x−v− RXRT (a+ a−v) + a−Ry ,

y′ = Ry− RXRT v ,

X ′ = RXRT .

(21)

Let us introduce a basis λab,βa,πa,η,µ for g∗ canonically dual to Lab, Ba, Pa, H, M . We
now parametrise the dual g∗ of the Bargmann Lie algebra by3

M(m, E,p,k, J) = mµ+ Eη− paπ
a + kaβ

a + 1
2 Jabλ

ab . (22)

It follows that if α = M(m, E,p,k, J), then the linear function on g∗ defined by H takes the
value E on α. The dual pairing is given by

〈M(m, E,p,k, J),A(x+, x−,x,y, X )〉= mx+ − Ex− − p · x+ k · y+ 1
2 Tr(J T X ) . (23)

3The choice of sign is such that later the momentum of a particle of mass m moving with velocity v is given by
the familiar p= mv.
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We then define the coadjoint representation as the dual representation to the adjoint repre-
sentation:

¬

Ad∗g(a+,a−,a,v,R)M(m, E,p,k, J),A(x+, x−,x,y, X )
¶

(24)

=



M(m, E,p,k, J), Adg(a+,a−,a,v,R)−1 A(x+, x−,x,y, X )
�

.

We calculate

Adg(a+,a−,a,v,R)−1 A(x+, x−,x,y, X ) (25)

= Ad
g(−a++a·v+1

2 a−∥v∥2,−a−,−RT (a+a−v),−RT v,RT )
A(x+, x−,x,y, X ) ,

to give
Adg(a+,a−,a,v,R)−1 A(x+, x−,x,y, X ) = A(x ′+, x ′−,x′,y′, X ′) , (26)

where

x ′+ = x+ −
1
2 x−∥v∥2 − v · x+ a · y+ a−v · y+ v · Xa ,

x ′− = x− ,

x′ = RT (x+ Xa+ x−v− a−y) ,

y′ = RT (y+ Xv) ,

X ′ = RT XR .

(27)

The dual pairing then gives

Ad∗g(a+,a−,a,v,R)M(m, E,p,k, J) =M(m′, E′,p′,k′, J ′) , (28)

where

m′ = m ,

E′ = E + Rp · v+ 1
2 m∥v∥2 ,

p′ = Rp+mv ,

k′ = Rk+ma+ a−(Rp+mv) ,

J ′ = RJRT + a(Rp)T − (Rp)aT + (Rk)vT − v(Rk)T −mvaT +mavT .

(29)

4 Maurer–Cartan one-form

In this section we let g = g(a+, a−,a,v, R) be a generic element of the Bargmann group and
we will compute the pull-back of the left-invariant Maurer–Cartan one-form to the parameter
space:

g−1d g =







1 −1
2∥v∥

2 −vT −a+ + a · v+ 1
2 a−∥v∥2

0 1 0T −a−
0 RT v RT −RT (a+ a−v)
0 0 0T 1













0 −v · dv dvT R+ vT dR da+
0 0 0T da−
0 −dv dR da
0 0 0T 0







=







0 0 dvT R da+ − vT da− 1
2∥v∥

2da−
0 0 0T da−
0 −RT dv RT dR RT vda− + RT da
0 0 0T 0







= A(da+ − vT da− 1
2∥v∥

2da−, da−, RT vda− + RT da, RT dv, RT dR) .
(30)
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Pairing with α=M(m, E,p,k, J), we find



α, g−1d g
�

= mda+ − (E +
1
2 m∥v∥2 + (Rp)T v)da− − (Rp+mv)T da+ (Rk)T dv+ 1

2 Tr J T RT dR .
(31)

5 The case of n = 3

When n = 3, the vector and adjoint representations of SO(3) are isomorphic. As de-
scribed in [9], the isomorphism ϵ : R3 → so(3) is given by ϵ(a)b = a × b, which obeys
[ϵ(a),ϵ(b)] = ϵ(a × b) and also ϵ(Ra) = Rϵ(a)RT and hence abT − baT = ϵ(b × a). It also
relates the inner products so that 1

2 Trϵ(a)Tϵ(b) = a · b.
It follows that in this dimension, letting J = ϵ(j), equation (29) becomes

m′ = m ,

E′ = E + Rp · v+ 1
2 m∥v∥2 ,

p′ = Rp+mv ,

k′ = Rk+ma+ a−(Rp+mv) ,

j′ = Rj− a× (Rp+mv) + v× Rk ,

(32)

and equation (31) becomes



α, g−1d g
�

= mda+−(E+Rp ·v+ 1
2 m∥v∥2)da−−(Rp+mv) ·da+Rk ·dv+j ·ϵ−1(R−1dR) . (33)

6 Automorphisms

Let A denote the group of automorphisms of the Bargmann Lie algebra g which act trivially
on the rotational subalgebra. An easy calculation shows that any ϕ ∈ A is parametrised by
α,β ∈ R× and λ,µ ∈ R and acts on the generators via

M 7→ α2βM , H 7→ βH +λM , Ba 7→ αBa +µPa , and Pa 7→ αβPa . (34)

It is not hard to determine the dual action of ϕ on g∗: ϕ ·M(m, E,p,k, j) =M(m′, E′,p′,k′, j′)
where

m′ = α−2β−1m ,

E′ = β−1E −α−2β−2λm ,

p′ = α−1β−1p ,

k′ = α−1k+α−2β−1µp ,

j′ = j .

(35)

The Lie algebra automorphism ϕ integrates to an automorphism Φ of the Bargmann Lie
group G via Φ(eX ) = eϕ(X ) for X ∈ g, which is well defined because the exponential map on the
nilpotent subgroup generated by B,P, H, M is a diffeomorphism. A simple calculation yields

Φ(g(a+, a−,a,v, R)) = g(α2βa+ −λa− +
1
2αµv2,βa−,αβa+µv,αv, R) . (36)

Unlike the case of the Carroll group treated in [9], Bargmann automorphisms do not relate
different types of coadjoint orbits nor can they be used to relate different classes of unitary
irreducible representations. We only list them here for completeness.
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7 Coadjoint orbits for n = 3

From now on we will let G denote the identity component of the Bargmann group. As such,
G is diffeomorphic to R×R×R3 ×R3 × SO(3) and at the group level all that happens is that
the orthogonal transformation R now has determinant 1.

There are some obvious Casimirs of the Bargmann algebra. Clearly M is one, which defines
an invariant linear function on g∗. It is therefore constant on coadjoint orbits, as we see from
equation (32). There is also a quadratic Casimir δabPaPb−2HM , which says that ∥p∥2−2Em
is a constant on the orbits. This provides a check of equation (32):

∥p′∥2 − 2E′m′ = ∥Rp+mv∥2 − 2(E + Rp · v+ 1
2 m∥v∥2)m

= ∥p∥2 +m2∥v∥2 + 2mRp · v− 2Em− 2mRp · v−m2∥v∥2

= ∥p∥2 − 2Em .

(37)

Similarly, there is a quartic Casimir δabWaWb, where Wa = JaM + εabc PbBc , which says that
∥mj+ p× k∥2 is constant on the orbits. Again this provides another check of equation (32):

m′j′ − p′ × k′ = m(Rj− a× (Rp+mv) + v× Rk)− (Rp+mv)× (Rk+ma+ a−(Rp+mv))

= mRj−ma× (Rp+mv) +mv× Rk− Rp× Rk−mv× Rk−m(Rp+mv)× a

= R(mj− p× k) , (38)

where we have used that for R ∈ SO(3), Rp× Rk = R(p× k). Since the vectors are related by
a rotation, their norms agree.

We separate orbits into two kinds depending on the value of the linear Casimir.

7.1 Coadjoint orbits with m ̸= 0

In this case, we may choose a = − 1
mRk and v = − 1

mRp in order to set p′ = k′ = 0. Doing so,
we bring M(m, E,p,k, j) to

M(m, 1
2m(∥p∥

2 − 2Em),0,0, 1
mR(mj− p× k)) , (39)

where we recognise the values of the quadratic Casimir and the vector whose norm is the
quartic Casimir. For each pair (E0, w) consisting of a real number E0 and non-negative number
w we have a coadjoint orbit with representative covector

M(m, E0,0,0,
w
m

e3) ∈ g∗ , (40)

where (e1,e2,e3) is the standard orthonormal basis for R3, and where E0 =
1

2m∥p∥
2 − E and

w2 = ∥mj+ p× k∥2 are the values of the quadratic and quartic Casimirs, respectively.

7.2 Coadjoint orbits with m = 0

In this case, the coadjoint action simplifies:

E′ = E + Rp · v ,

p′ = Rp ,

k′ = R(k+ a−p) ,

j′ = Rj− a× Rp+ v× Rk .

(41)

The squared norm ∥p∥2 is now invariant and we have two cases, depending on whether it
is zero or nonzero.
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7.2.1 The case p = 0

In this case both E and ∥k∥2 are invariant and we must distinguish between two cases:

1. If k= 0, then either j= 0 or else we may rotate it to any desired direction and we have
orbits with representatives M(0, E,0,0, je3), where j ≥ 0 and E ∈ R.

2. If k ̸= 0, we may rotate it so that it points in the direction e3 we can then use v to make j′

collinear to e3. In other words, we have orbits with representatives M(0, E,0, ke3, je3),
where k > 0 and E, j ∈ R.

7.2.2 The case p ̸= 0

If p ̸= 0, we may use v to set E′ = 0 and a− to make k′ perpendicular to p. We may use a in
order to make j′ collinear with p but then we may use the component of v perpendicular to p
to bring j′ to 0. Finally, using the rotations which fix p we can bring k to any desired direction
perpendicular to e3. In other words, we have orbits with representatives M(0,0, pe3, ke2,0),
for p > 0 and k ≥ 0.

7.3 Summary

We summarise the above discussion in Table 1, which lists the orbits together with the dimen-
sion and a set of equations which determine the orbit as an algebraic submanifold of g∗.

Table 1: Coadjoint orbits of the Bargmann group. This table lists the different coad-
joint orbits by exhibiting an orbit representative α ∈ g∗, its stabiliser subgroup Gα
inside the Bargmann group, the dimension dimOα of the orbit and the equations
defining the orbit. In the last case, the second invariant is ∥p × k∥, which takes
the value p0k0 only in the chosen representative. In all cases one can check that
dimOα = dim G −#{equations}.

# Orbit representative Stabiliser dimOα Equations for orbits

α=M(m, E,p,k, j) Gα

1 M(m0, E0,0,0,0) {g(a+, a−,0,0, R)} 6 m= m0 ̸= 0, 1
2m(∥p∥

2 − 2Em) = E0, mj− p× k= 0

2 M(m0, E0,0,0, se3) {g(a+, a−,0,0, R) | Re3 = e3} 8 m= m0 ̸= 0, 1
2m(∥p∥

2 − 2Em) = E0,∥mj− p× k∥= s > 0

3 M(0, E0,0,0,0) G 0 m= 0, E = E0,p= k= j= 0

4 M(0, E0,0,0, se3) {g(a+, a−,a,v, R) | Re3 = e3} 2 m= 0, E = E0,p= k= 0,∥j∥= s > 0

5 M(0, E0,0, k0e3, he3) {g(a+, a−,a, ve3, R) | Re3 = e3} 4 m= 0, E = E0,p= 0,∥k∥= k0 > 0, j · k= hk0

6 M(0,0, p0e3,0,0) {g(a+, 0, ae3,v, R) | Re3 = e3,v · e3 = 0} 6 m= 0,∥p∥= p0 > 0,p× k= 0

7 M(0,0, p0e3, k0e2,0) {g(a+, 0, ae3, ve2, I)} 8 m= 0,∥p∥= p0 > 0,∥p× k∥= p0k0 > 0

7.4 Coadjoint orbits of the full Bargmann group

The full Bargmann group has two connected components since now R ∈ O(3). As a Lie
group, O(3) = SO(3) ∪ SO(3)P, where the parity P can be thought of as space inversion,
sending x 7→ −x in R3. However it follows from the explicit form of the orbit representa-
tives, that their image under space inversion, which sends M(m, E,p,k, j) 7→M(m, E,−p,−k, j)
lies in the SO(3)-orbit. Therefore the coadjoint orbits in Table 1 are also the coadjoint or-
bits of the full Bargmann group. We may also extend the Bargmann group by time re-
versal. As shown, e.g., in [17, Section II.D], time reversal acts on the Galilei generators
as (H, Pa, Ba, La) 7→ (−H, Pa,−Ba, La), which extends by M 7→ −M to an automorphism
of the Bargmann Lie algebra. This integrates to an automorphism of the Bargmann Lie
group and we can ask how it acts on its coadjoint orbits. As shown, e.g., in [9, App. A.6],
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it maps coadjoint orbits symplectomorphically into coadjoint orbits. Under time reversal,
M(m, E,p,k, j) 7→M(−m,−E,p,−k, j). It is then a simple matter to use the equations charac-
terising the coadjoint orbits in Table 1 to see that time reversal leaves invariant the orbits of
types #6, 7 and pairs up two orbits of the other types:

M(m0, E0,0,0, j) , and M(−m0,−E0,0,0, j) ,

M(0, E0,0,0, j) , and M(0,−E0,0,0, j) ,

M(0, E0,0,k, j) , and M(0,−E0,0,k,−j) .
(42)

It is natural to ask whether galilean field theories obey the CPT theorem and the answer is
negative [30].

7.5 Structure of the orbits

The Bargmann group is isomorphic to a semidirect product (SO(3) ⋉ R3) ⋉ R5, where the
normal subgroup R5 is abelian and generated by M , H, Pa. We can therefore use the results
in, e.g., Oblak’s thesis [31], to describe the coadjoint orbits geometrically.

As described in [9], the coadjoint orbit Oα of α = (κ,τ) ∈ k∗ ⊕ t∗ = g∗ under G = K ⋉ T
with T abelian are fibred products

Oα T ∗Oτ

K ×Kτ Oκτ Oτ
(43)

where

• Oτ is the K-orbit of τ ∈ t∗;

• Kτ ⊂ K is the stabiliser of τ, so that Oτ ∼= K/Kτ;

• Oκτ is the Kτ-coadjoint orbit of the restriction κτ ∈ k∗τ of κ ∈ k∗ to the Lie algebra kτ of
Kτ.

The standard notation for such fibred products is

Oα = T ∗Oτ ×Oτ
�

K ×KτOκτ
�

, (44)

whose dimension can be read off as follows:

dimOα = dim T ∗Oτ − dimOτ + dim K − dim Kτ + dimOκτ = 2dimOτ + dimOκτ , (45)

which is of course even dimensional since Oκτ is itself a coadjoint orbit of Kτ. In Table 2 we
deconstruct the coadjoint orbits in Table 1.

8 Actions of Galilei particles

In this section we discuss the actions for Galilei particles. As expected, we will recover the
well-known particle action for massive Galilei particles, but we will also cover the possible
less familiar massless case in full generality. These actions provide information concerning the
mobility of the particles and are the starting point for many applications, e.g., for path integral
quantisation [32].
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Table 2: Deconstructing the coadjoint orbits. The manifold R3 in cases #1,2 is em-
bedded in t∗ ∼= R5 as the paraboloid

�

M(m, E + 1
2m∥p∥

2,p) | p ∈ R3
	

. The stabiliser
Kτ in cases #6,7 consists of elements g(v, R) ∈ K where v ⊥ p and Rp = p. Since
p ̸= 0, these are rotations about the axis defined by p and hence isomorphic to SO(2),
so that the stabiliser is isomorphic to R2 ⋊ SO(2). The Kτ-coadjoint orbits should be
self-explanatory. In cases #3,4,5, the stabiliser is K ∼= ISO(3), whose coadjoint orbits
can be read off from [9, App. B.5.2]: in case #3 we have the point-like orbit {(0,0)},
in case #4 we have the 2-sphere of radius ∥j∥, and in case #5 we have the cotangent
bundle of the sphere of radius ∥k∥. In cases #6,7, the stabiliser Kτ is isomorphic to
ISO(2) and the coadjoint orbits again can be read off from [9, App. B.5.2]. In case
#6 we have the point-like orbit {(0,0)} and in case #7 we have the cylinder T ∗S1

∥k⊥∥,

where k⊥ is the component of k perpendicular to p – that being the restriction of κ
to kτ.

# α ∈ g∗ τ ∈ t∗ Oτ Kτ κ ∈ k∗ κτ ∈ k∗τ Oκτ Oα

1 M(m, E,0,0,0)m ̸=0,E∈R (m, E,0) R3 SO(3) (0,0) 0 {0} T ∗R3

2 M(m, E,0,0, j)m ̸=0,E∈R,j̸=0 (m, E,0) R3 SO(3) (0, j) j S2
∥ j∥ T ∗R3 ×R3 (K ×Kτ S2)

3 M(0, E,0,0,0) (0, E,0) {(0, E,0)} K (0,0) (0,0) {(0,0)} {(0, E,0,0,0)}

4 M(0, E,0,0, j)E∈R,j̸=0 (0, E,0) {(0, E,0)} K (0, j) (0, j) S2
∥j∥ S2

5 M(0, E,0,k, j)E∈R,k×j=0,k̸=0 (0, E,0) {(0, E,0)} K (k, j) (k, j) T ∗S2
∥k∥ T ∗S2

6 M(0, 0,p,0,0)p ̸=0 (0, 0,p) R× S2
∥p∥ R2 ⋊ SO(2) (0,0) (0,0) {(0,0)} T ∗(R× S2)

7 M(0,0,p,k,0)k·p=0,k×p ̸=0 (0, 0,p) R× S2
∥p∥ R2 ⋊ SO(2) (k,0) (k⊥,0) T ∗S1

∥k⊥∥ T ∗(R× S2)×R×S2 (K ×Kτ T ∗S1)

As discussed above, classical Galilei particles correspond to homogeneous symplectic man-
ifolds of the Galilei group and these in turn correspond to coadjoint orbits of the Bargmann
group. Hence they can also be thought of as classical Bargmann particles. We view the
Bargmann group as an auxiliary concept we are forced to introduce for mathematical con-
sistency, but from a spacetime perspective it is the Galilei group which is the relativity group
and hence we prefer to use the term Galilei particle, but in so doing we allow them to have a
non-zero mass.

Let α ∈ g∗ be an element in the dual of the Bargmann algebra and let Oα ⊂ g∗ denote its
coadjoint orbit. It is G-equivariantly diffeomorphic to G/Gα, with Gα the stabiliser subgroup of
α. Let πα : G→ Oα denote the orbit map: πα(g) = Ad∗g α. The G-invariant Kirillov–Kostant–
Souriau symplectic structureωKKS onOα pulls back via the orbit map to a left-invariant presym-
plectic form π∗αωKKS ∈ Ω2(G) on G, which is moreover exact:

π∗αωKKS = −d 〈α,ϑ〉 , (46)

where ϑ ∈ Ω1(G;g) is the left-invariant Maurer–Cartan one-form on G. The primitive one-form
〈α,ϑ〉 defines a variational problem for curves g : I → G in the group:

S[g] :=

∫

I
〈α, g∗ϑ〉=
∫

I




α, g(τ)−1 ġ(τ)
�

dτ , (47)

where τ ∈ I is the parameter along the curve and should not be confused with the element of
t∗ used in the previous section. This is the point of departure in this section for the study of
the dynamical systems associated to each of the coadjoint orbits. Some of these actions have
been discussed, e.g., in [33, §5.2].

We will now construct actions S =
∫

Ldτ for the Galilei particles in 3 + 1 dimensions.
Using (33) with the replacements a− 7→ t and a 7→ −x leads to the general Lagrangian

L[a+, t,x,v, R(ϕ)] = m(ȧ+ + v · ẋ− 1
2∥v∥

2 ṫ)− E ṫ + Rp · (ẋ− v ṫ) + Rk · v̇+ j · ϵ−1(R−1Ṙ) (48a)

= mȧ+ − (E + Rp · v+ m
2 ∥v∥

2) ṫ + (Rp+mv) · ẋ+ Rk · v̇+ j · ϵ−1(R−1Ṙ) , (48b)
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where the dot denotes derivatives with respect to the parameter τ. We parametrise the orbits
by α = M(m, E,p,k, J) which means they are not varied, while we vary with respect to the
quantities in the square brackets of the Lagrangian. Since the action does not depend on the
specific point α, but only on the coadjoint orbit itself, we are free to make a convenient choice.
We will use the representatives in Table 1. Since the physics and degrees of freedom depend
on the specific particle we will analyse them case by case, but first we discuss the global and
gauge symmetries for the generic Lagrangian (48).

8.1 Symmetries

The action (48) has global Galilei symmetry since g−1 ġ is invariant under the τ-independent
left action g 7→ hg. Consequentially, the infinitesimal symmetries lead to Noether charges
d

dτXQ = 0 which are given by

δc+a+ = c+ mQ = m , (49a)

δct
t = ct EQ = E + Rp · v+ 1

2 m∥v∥2 , (49b)

δcx
x= cx ⇒ pQ = Rp+mv , (49c)

δcv
v= cv , δcv

a+ = −x · cv , δcv
x= tcv , kQ = Rk−mx+ t(Rp+mv) , (49d)

δωR=ωR , δωx=ωx , δωv=ωv jQ = Rj+ x× (Rp+mv) + v× Rk , (49e)

whereωT = −ω. This shows that the charges are given by the coadjoint action on α, cf., (32).
This action also has gauge freedom parametrised by the right action g 7→ gh(τ), where

h is now τ dependent and has to be in the stabiliser of α. The general infinitesimal gauge
transformations for the case at hand are given by

δλ+a+ = λ+ , (50a)

δλt
t = λt , δλt

a+ = −
1
2∥v∥

2λt , δλt
x= vλt , (50b)

δλx
x= Rλx , δλx

a+ = −v · Rλx , (50c)

δλv
v= Rλv , (50d)

δλωR= Rλω , (50e)

where all λ are τ-dependent and λT
ω = −λω.

8.2 Massive Galilei particles

In this subsection, we construct Lagrangians associated with massive orbits, both without spin
(orbit #1) and with spin (orbit #2).

8.2.1 Orbit #1 (massive spinless)

The massive orbit without spin describes the most familiar type of galilean particle commonly
encountered in textbooks. We will use this section to illustrate some known properties of these
geometric actions (see, e.g., [9,31,34,35] and references therein) and provide further details
in Appendix A.

According to Table 1, massive spinless Galilei particles can be characterised by the follow-
ing representative

α=M(m, E0,0,0,0) . (51)

Using this representative in (48) leads to the following action for the massive galilean particle

L[a+, t,x,v, R(ϕ)] = mȧ+ − (E0 +
1
2 m∥v∥2) ṫ +mv · ẋ . (52)
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The first term in (52) is a boundary term that ensures the existence of a non-vanishing con-
served quantity m. This term and the variation with respect to R(ϕ) do not contribute to
the equations of motion and we will therefore omit it in the following and concentrate our
discussion on the following Lagrangian

L[t,x,v] = −(E0 +
1
2 m∥v∥2) ṫ +mv · ẋ . (53)

To express the Lagrangian in canonical form we introduce the canonical momenta

pt =
∂ L
∂ ṫ
= −(E0 +

1
2 m∥v∥2) , (54a)

p =
∂ L
∂ ẋ
= mv , (54b)

pv =
∂ L
∂ v̇
= 0 , (54c)

which lead to the following constraints

φ = pt + E0 +
1
2 m∥v∥2 ≈ 0 , (55a)

φ1 = p −mv≈ 0 , (55b)

φ2 = pv ≈ 0 . (55c)

We can use them to construct an action in Hamiltonian form, which is generically of the form
∫

Lcan[q, p, u,φ]dτ=

∫

(pq̇−Hcan − uφ)dτ , (56)

with Poisson brackets given by {q, p}= 1. For the case at hand this leads to

Lcan[t, pt ,x, p,v, pv , u, u1, u2] = pt ṫ + p · ẋ+ pv · v̇ − uφ − uiφ
i , (57)

where we observe the vanishing of the canonical Hamiltonian Hcan and the enforcement of
constraints through the variation of the Lagrange multipliers u and ui . The set of constraints
�

φ1,φ2
�

are of second-class. Indeed, they obey the following non-vanishing Poisson brackets
�

φ1
a ,φ2

b

	

= −mδab . (58)

The second class constraints can be imposed to be strongly equal to zero. In particular, the
constraint φ1 = 0 can be conveniently solved as v= p/m. Thus, plugging it back in the action
one obtains

Lcan[t, pt ,x, p, u] = pt ṫ + p · ẋ− u
�

pt +
1

2m
∥p∥2 + E0

�

. (59)

We could have circumvented the analysis of the second class constraints by realising that this
part of the action (52) is already in first order form, i.e., we could have just redefined v= p/m
in (52).

On the other hand, the constraint φ is of first-class and generates the gauge symmetry of
time reparametrisations. By solving this first-class constraint and applying the gauge-fixing
condition t = τ, the action can be written as

Lcan[x, p] = p · ẋ−
�

1
2m
∥p∥2 + E0

�

, (60)

where the derivatives are now with respect to t. To write this action in configuration space we
can use the equation of motion obtained from the variation of p to obtain

L[x]red =
m
2
∥ẋ∥2 − E0 . (61)
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This is the standard action for a free (nonrelativistic) Galilei particle with mass m.
The dimension of the orbit #2 in Table 1 indeed agrees with the number of independent

canonical variables of our actions. From (57) we obtain that they are 14 − 2 × 1 − 6 = 6,
where we have taken all canonical variables (14) and subtracted the constraints (first-class
constraints count twice, e.g., Section 1.4.2. in [36]). This also agrees with the 6 canonical
variables in (60), where all constraints have been resolved.

8.2.2 Orbit #2 (massive spinning)

The representative of this orbit is given by

α=M(m, E0,0,0, j) . (62)

From (48) one obtains the following Lagrangian

L[t,x,v, R (ϕ)] = −
�

E0 +
1
2 m∥v∥2
�

ṫ +mv · ẋ+ j · ϵ−1(R−1Ṙ) . (63)

An important property is that the last term, that describes the spin part of the particle, “decou-
ples” from the rest of the action. This can be seen as a consequence of the fact that there is no
Thomas precession for galilean particles (the same is true for carrollian particles [9]). On the
other hand, the first two terms at the right-hand side are identical to those discussed in orbit
#1.

Following [9], it is convenient to parametrise the rotation matrix as follows

R (ϕ) = eϕ1ε1 eϕ2ε2 eϕ3ε3 , (64)

where (εa)bc = −εabc . Furthermore, if we choose the angular momentum to be aligned with
the z-axis, i.e. j= (0,0, s) with s > 0, then the Lagrangian can be written as

L[t,x,v,ϕ] = −
�

E0 +
1
2 m∥v∥2
�

ṫ +mv · ẋ+ s (ϕ̇3 + sin (ϕ2) ϕ̇1) . (65)

To express the Lagrangian in canonical form, we can use the momenta defined in (54a) and
the momenta associated with the spin part, which are given by

Π1 =
∂ L
∂ ϕ̇1

= s sinϕ2 , Π2 =
∂ L
∂ ϕ̇2

= 0 , Π3 =
∂ L
∂ ϕ̇3

= s , (66)

Following the same approach as for orbit #1 for the non-spinning part, the Lagrangian in
canonical form can be written as

Lcan[t, pt ,x, p,ϕ,Π, u, u2, u3] = pt ṫ + p · ẋ+Π · ϕ̇ − u
�

pt +
1

2m
∥p∥2 + E0

�

− u2Π2 − u3 (Π3 − s) .

(67)

To emphasise the relevant physical degrees of freedom, we can solve the constraint and impose
the gauge fixing condition t = τ. Then, after eliminating some boundary terms, the Lagrangian
in the reduced phase space takes the form

Lred[x, p,ϕ1,Π1] = p · ẋ+Π1ϕ̇1 −
�

1
2m
∥p∥2 + E0

�

. (68)

Alternatively, by eliminating the linear momentum using its equation of motion, we can express
the Lagrangian for the spinning massive Galilei particle as follows:

L[x,ϕ1,Π1] =
m
2
∥ẋ∥2 +Π1ϕ̇1 − E0 . (69)

Comparing our actions (68) or (69) with Section 8.2 we see that they have two additional
canonical variables and hence in total 8 independent canonical variables, which agrees with
Table 1.
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8.3 Massless Galilei particles

In this subsection, we construct the Lagrangians and study dynamics of massless Galilei par-
ticles. The foundational aspects for the analysis were provided in [12, 14], and the dynamics
associated with the orbit #6 was discussed in [12, 33, 37]. Here, we present a self-contained
discussion of this case, while also extending our analysis to include those orbits that have not
been explored previously.

From a galilean perspective, although massless Galilei particles may not seem to describe
any known particle, they are however connected to geometrical optics [38] and they emerge
as the most relevant entities in the context of their application to planons. In this scenario,
they represent elementary dipoles with restricted motion. A comprehensive discussion of this
approach will be presented in our forthcoming work [29].

8.3.1 Orbit #3 (vacuum)

According to Table 1 the representative of this orbit is given by

α=M(0, E0,0,0,0) . (70)

The corresponding Lagrangian can then be directly obtained using the orbit representative
in (48). It is given by

L[t] = −E0 ṫ ,

and is a pure boundary term. Considering the trivial dynamics and the fact that the stabiliser
is the entire Bargmann group, one can interpret this orbit as the vacuum configuration.

8.3.2 Orbit #4 (spinning vacuum)

The orbit representative for this case is given by

α=M(0, E0,0,0, j) . (71)

Thus, using (48) one finds

L [t, R (ϕ)] = −E0 ṫ + j · ϵ−1(R−1Ṙ) . (72)

The first term at the right-hand side is a boundary term that can be neglected, while the second
one describes the spin degrees of freedom. Thus, if the angular momentum is aligned with
the z-axis, i.e., j = (0,0, s), and if one employs the same parameterisation for the rotations as
introduced in Eq. (64), then the Lagrangian becomes

L [ϕ] = s (ϕ̇3 + sin (ϕ2) ϕ̇1) . (73)

Therefore, this configuration may be interpreted as a spinning vacuum.

8.3.3 Orbit #5

This orbit is determined by the following representative:

α=M(0, E0,0,k, j) , (74)

where ∥k∥= k0 > 0 and j · k= hk0. Using (48) one finds the following Lagrangian

L [t,v, R (ϕ)] = −E0 ṫ + Rk · v̇+ j · ϵ−1(R−1Ṙ) . (75)
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It is convenient to consider the parametrisation in Eq. (64) for the rotation matrix, and to write
k= k0n̂, where n̂ is the unit vector defined by

n̂= (sinϕ2,− sinϕ1 cosϕ2,− cosϕ1 cosϕ2) . (76)

Therefore, when the angular momentum aligns with the z-axis (j = (0, 0, h)), the Lagrangian
becomes

L [ϕ,v, t] = −E0 ṫ + k0n̂ · v̇+ h (ϕ̇3 + sin (ϕ2) ϕ̇1) . (77)

Indeed, up to boundary terms and the renaming k→ p and v→ x, this action is identical to
the one found in the study of coadjoint orbits of the Carroll group, referred to as “massless
Carrollion” in Ref. [9]. The reason is that the space defining the orbits are the same in both
cases.

The canonical form of the action is obtained by introducing the canonical momenta

pt =
∂ L
∂ ṫ
= −E0 , pv =

∂ L
∂ v̇
= k0n̂ ,

Π1 =
∂ L
∂ ϕ̇1

= h sinϕ2 , Π2 =
∂ L
∂ ϕ̇2

= 0 , Π3 =
∂ L
∂ ϕ̇3

= h , (78)

which satisfy the following constraints

∥pv∥
2 − k2

0 = 0 , k0Π1 − hp1
v = 0 , Π2 = 0 , Π3 − h= 0 . (79)

These constraints are of first class. Therefore, neglecting boundary terms, the Lagrangian in
canonical form can be written as

Lcan

�

ϕ,Π,v,pv, t, E, u, u1,η
�

= −E ṫ +Π · ϕ̇ + pv · v̇− u (E − E0)− u1

�

∥pv∥
2 − k2

0

�

−η1

�

k0Π1 − hp1
v

�

−η2Π2 −η3 (Π3 − h) . (80)

For simplicity, let us restrict to the case with vanishing spin (h = 0) and let us fix the gauge
t = τ. Then, the Lagrangian becomes

Lcan [v,pv, u1] = pv · v̇− u1

�

∥pv∥
2 − k2

0

�

− E0 , (81)

where a dot now stands for derivative with respect to the physical time t.
Next, we can solve for pv . By varying with respect to pv and u1, we find

∥pv∥2 = k2
0 , 2u1pv = v̇ . (82)

These equations are solved by writing pv = k0n̂, and u1 =
1

2k0
∥v∥. Plugging back in the

Lagrangian we obtain
Lred[v] = −E0 + k0∥v̇∥ . (83)

As a final remark, the counting of independent variables from the Hamiltonian analysis
14− 2× 5= 4 coincides with the dimension of this orbit.

8.3.4 Orbit #6

The representative of this orbit is given by

α=M(0, 0,p,0,0) , (84)

where ∥p∥= p0 > 0. From (48) one finds the following Lagrangian:

L [ϕ,v,x, t] = (Rp · v) ṫ + (Rp) · ẋ . (85)
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It can be written in canonical form as follows

Lcan[t, pt ,x,π,v,pv , u, u1, u2] = pt ṫ +π · ẋ+ pv · v̇− uφ − u1φ
1 − u2 ·φ2 , (86)

with constraints of the form

φ = pt −π · v , φ1 = ∥π∥2 − p2
0 , φ2 = pv . (87)

The Lagrangian (86) gives the following dynamical equations of motion:

ṫ = u , ṗt = 0 , ẋ= 2u1π− uv , (88a)

π̇= 0 , v̇= u2 , ṗv = uπ . (88b)

The preservation in time of the constraints does not result in secondary constraints. However,
it fixes some of the Lagrange multipliers, indicating the presence of second-class constraints.
From the preservation ofφ andφ2 one finds that (the conservation ofφ1 does not yield further
equations)

u2 ·π= 0 , (89a)

u= 0 . (89b)

There are two interesting properties that can be derived from the previous equations. From
(88b) and (89a) one finds the following restriction on the dynamics

π · v̇= 0 . (90)

Consequently, the acceleration v̇ in the direction of the momentum π must vanish, and the
acceleration in the direction of the plane orthogonal to the momentum will be part of the
gauge freedom (since v̇ = u2, where the transverse component of u2 with respect to π is
arbitrary). This property will play a key role in the mobility restriction of planons that will be
studied in [29].

The second important property that can be derived from (89b) is that the equation de-
scribing the evolution of the time variable becomes

ṫ = 0 . (91)

This means that this type of galilean particle does not evolve in the physical time t, and the
orbit is instantaneously defined at a certain fixed value of t. Indeed, it is not possible to choose
a “gauge fixing” of the form t = τ as in the previous cases.

Let us now examine the structure of the constraints in more detail. The second-class con-
straints are given by

φ = pt −π · v , χ := π · pv . (92)

In particular, its Poisson bracket yields

{φ,χ}= −∥π∥2 = −p2
0 . (93)

On the other hand, the first-class constraints are given by

∥π∥2 − p2
0 ≈ 0 , pv

⊥ := pv −
1

p2
0

(π · pv)π≈ 0 . (94)

Note that there are 14 canonical variables, 3 first-class constraints and 2 second-class con-
straints. Thus, the number of independent variables is 14 − 2 × 3 − 2 = 6, which precisely
coincides with the dimension of the orbit.

If we impose the second-class constraints to be strongly equal to zero, φ = χ = 0, and if in
addition we solve the first-class constraint πv

⊥ = 0, together with the gauge fixing condition
v⊥ = 0, then the Lagrangian takes the form

L = p0vL ṫ +π · ẋ−η1

�

∥π∥2 − p2
0

�

, (95)

where vL := π
p0
· v is the longitudinal component of the velocity.
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8.3.5 Orbit #7

The orbit representative for this case is given by

α=M(0,0,p,k,0) , (96)

where ∥p∥ = p0 > 0, ∥k∥ = k0 > 0 and ∥p× k∥ = p0k0 > 0. The Lagrangian is obtained by
using the representative (96) in (48)

L = (Rp · v) ṫ + (Rp) · ẋ+ (Rk) · v̇ . (97)

The Lagrangian in canonical form can then be written as

Lcan[t, pt ,x,π,v,pv , u, u1, u2, u3] = pt ṫ +π · ẋ+ pv · v̇− uφ − uiφ
i , (98)

with

φ = pt −π · v , φ1 = ∥π∥2 − p2
0 , φ2 = ∥pv∥2 − k2

0 , φ3 = π · pv . (99)

The corresponding dynamical equations of motion are given by

ṫ = u , ṗt = 0 , π̇= 0 , (100)

ẋ= −uv+ 2u1π+ u3pv , v̇= 2u2pv + u3π , ṗv = uπ . (101)

The preservation of the constraints under time evolution does not generate secondary con-
straints. Nevertheless, some of the Lagrange multipliers are determined by the equations of
motion, indicating the presence of second-class constraints. In particular, the preservation in
time of φ and φ3 implies that

u= u3 = 0 . (102)

Indeed, it is straightforward to show that the set (φ,φ3) defines second-class constraints with
a non-vanishing Poisson bracket given by

{φ,φ3}= −p2
0 . (103)

On the other hand, the first-class constraints are given by

∥π∥2 − p2
0 ≈ 0 , ∥pv∥

2 − k2
0 ≈ 0 . (104)

There are 14 canonical variables, 2 first-class constraints and 2 second-class constraints. Con-
sequently a direct counting of the degrees of freedom gives 14− 2× 2− 2 = 8 independent
variables. This is precisely the dimension of the orbit.

Using (102) the dynamical equations of motion can be rewritten as follows

ṫ = 0 , ṗt = 0 , π̇= 0 , (105a)

ẋ= 2u1π , v̇= 2u2pv , ṗv = 0 . (105b)

In particular, like in orbit #6, the condition ṫ = 0 implies that this specific type of galilean
particle does not evolve in the physical time t. It is defined at a given instant of time and
relates simultaneous events.

Additionally, one finds the following conditions:

π · v̇= 0 , pv · ẋ= 0 . (106)

Alongside the equations of motion, these conditions imply that the component of the acceler-
ation v̇ parallel to the momentum π vanishes, the component of the acceleration orthogonal
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to π and pv also vanishes, while the component perpendicular to π and parallel to pv is pure
gauge. Additionally, the component of ẋ parallel to pv vanishes, the one orthogonal to pv and
π also vanishes, while the component orthogonal to pv and parallel to π is pure gauge. This
type of restriction in the dynamics plays a crucial role in the study of planons [29].

To solve the second-class constraint φ3 = 0 one can decompose pv into its longitudinal
and transverse components relative to π

pv = pL
v + p⊥v , (107)

where
pL

v = n̂ · pv , pv
⊥ := pv − (n̂ · pv) n̂ , (108)

with
n̂=

π

p0
. (109)

Hence, the second-class constraints (φ,φ3) in Eq. (99) are solved by imposing that

pt = p0vL , pL
v = 0 . (110)

where vL = n̂ · v. Therefore, the Lagrangian reduces to

L [t,x,π,v,pv , u1, u2] = p0vL ṫ +π · ẋ+ p⊥v · v̇− u1

�

∥π∥2 − p2
0

�

− u2

�


p⊥v




2 − k2
0

�

. (111)

9 A geometrical approach to Galilei particle dynamics

In the previous section we have analysed the dynamics described by the action (47) associated
to the coadjoint orbits Oα. In this section we will briefly outline a geometrical approach to
studying the dynamics. The starting point is the action (47), which we can analyse for general
α. As shown, e.g., in [9, Appendix A.4], its extrema are given by curves g(τ) = g0c(τ), where
g0 ∈ G and c : I → Gα is an arbitrary curve in the stabiliser of α. Under the orbit map
πα : G→Oα, the curve is sent to the constant Ad∗g0

α, which defines a point in Oα.
We may interpret Ad∗g0

α as the momentum of a particle moving in any homogeneous space-
time of G whose trajectory is given by composing the curve g(τ) with the orbit map associated
to the spacetime. Let M denote a homogeneous spacetime and let o ∈ M be a choice of origin.
Then M is G-equivariantly diffeomorphic to G/Go, with Go the stabiliser subgroup of o. We
let πo : G → M denote the associated orbit map. Let K := Gα ∩ Go and consider the homo-
geneous space G/K . The following commutative diagram summarises the relations between
these spaces:

G

G/K

Oα M

π
πα πo

(112)

In particular, the identity coset in G/K maps to both α ∈ Oα and o ∈ M . Let π : G → G/K
denote the orbit map relative to the identity coset. Let g(τ) be a curve in G which extremises
the action (47). We have seen that it maps to a point in Oα, which can be interpreted as the
momentum of the particle trajectory πo(g(τ)) in M . We can work this out by first considering
π(g(τ)) as a trajectory in G/K and then mapping that trajectory to M . This amounts to writing

g(τ) = g0γ(τ)k(τ) , (113)
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Table 3: Stabilisers associated to Galilei particle dynamics.

# α=M(m, E,p,k, j) ∈ g∗ gα gα ∩ go m

1 M(m0, E0,0,0,0) 〈M , H, La〉 〈M , La〉 〈H〉
2 M(m0, E0,0,0, se3) 〈M , H, L3〉 〈M , L3〉 〈H〉
3 M(0, E0,0,0,0) g 〈M , Ba, La〉 〈H, Pa〉
4 M(0, E0,0,0, se3) 〈M , H, Pa, Ba, L3〉 〈M , Ba, L3〉 〈H, Pa〉
5 M(0, E0,0, k0e3, he3) 〈M , H, Pa, B3, L3〉 〈M , B3, L3〉 〈H, Pa〉
6 M(0, 0, p0e3,0,0) 〈M , P3, B1, B2, L3〉 〈M , B1, B2, L3〉 〈P3〉
7 M(0, 0, p0e3, k0e2,0) 〈M , P3, B2〉 〈M , B2〉 〈P3〉

where τ 7→ k(τ) is a curve in K and τ 7→ γ(τ) depends on a choice of coset representative
for Gα/K . Then the particle trajectory on M is simply g0γ(τ) · o. The action of g0 is a global
G-transformation which amounts to a change of “inertial frame” (G is the relativity group,
after all), so that to understand the particle trajectory on M all we need to do is to understand
γ(τ) · o.

Table 1 lists the stabiliser subgroups Gα for each coadjoint orbit. Galilei spacetime is de-
scribed by a Klein pair (g,go) with go = 〈Lab, Ba, M〉.

It is a simple matter to list generators of gα and gα∩go, as well as its complementary space
m in gα; that is, gα = m⊕ (gα ∩ go). These results are summarised in Table 3.

From this table and in particular from m, we can deduce the following, which are in agree-
ment with the analysis in Section 8:

• For the massive orbits (those of types #1, 2), Galilei particles can be chosen not to move
in space. This may sound surprising, but remember that all statements here are modulo
the action of the relativity group. In this case, this simply means that any motion in
space is an artefact of the choice of inertial frame; or in other words, that we can always
boost to the rest frame.

• For massless orbits of types #3, 4,5, there is no rest frame and motion in both space and
time is physical.

• Finally, for massless orbits of type #6, 7, Galilei particles do not evolve in time: their
trajectories instead relate simultaneous events.

It may be worth comparing this with the case of Carroll particles treated in [9]. We let
c= 〈La, Ba, Pa, H〉 denote the Carroll algebra, co = 〈La, Ba〉 the stabiliser Lie algebra of a point
in Carroll spacetime and cα the stabiliser Lie algebra of α ∈ c∗. We again let m denote a choice
of complement of cα ∩ co in cα. The results are summarised in Table 4. We see that Carroll
particles with nonzero energy do have a rest frame, which explains why they were referred to
as “massive” in [9]. They always evolve in time. Since ad∗H = 0 in the Carroll algebra, H ∈ cα
for all α and thus also H ∈ m in all cases, hence any coadjoint orbit Oα contains momenta of
Carroll particles which evolve in time, but orbits with zero energy also contain momenta of
Carroll particles which do not.

10 From Poincaré to Galilei particles

Let us show how to recover a Galilei particle from the c→∞ limit of a relativistic one. As a
first step, we will show how to recover the Bargmann algebra from a one-dimensional extended
Poincaré algebra. Let us start with the generators of the Poincaré algebra Lab, Ka, Ta and T
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Table 4: Stabilisers associated to particle dynamics for Carroll particles.

# α=M(j,k,p, E) ∈ c∗ cα cα ∩ co m

1 M(0,0,0, E0 ̸= 0) 〈H, La〉 〈La〉 〈H〉

2 M(se3,0,0, E0 ̸= 0) 〈H, L3〉 〈L3〉 〈H〉

3 M(0,0,0, 0) c co 〈Pa, H〉

4 M( je3,0,0, 0) 〈L3, Ba, Pa, H〉 〈L3, Ba〉 〈Pa, H〉

5 M(he3, ke3,0, 0) 〈L3, B3, Pa, H〉 〈L3, B3〉 〈Pa, H〉

6 M(he3,0, pe3, 0) 〈L3, Ba, P3, H〉 〈L3, Ba〉 〈P3, H〉

7± M(he3,±ke3, pe3, 0)



L3, B3, Pa −
p
k Ba, H
�

〈L3, B3〉



Pa −
p
k Ba, H
�

8 M(0, k cosθe3 + k sinθe2, pe3, 0)
¬

B2 −
k
p cosθ P2, B3 +

k
p sinθ P2, P3, H
¶

〈sinθB2 + cosθB3〉



P2 −
p
k (cosθB2 − sinθB3), P3, H

�

verifying

[Lab, Lcd] = δbc Lad −δac Lbd −δbd Lac +δbd Lac ,

[Lab, Kc] = δbcKa −δacKb ,

[Lab, Tc] = δbc Ta −δac Tb ,

[Ka, Kb] = Lab ,

[Ka, Tb] = δabT ,

[Ka, T] = Ta .

(114)

Since the Bargmann algebra has one additional dimension and since contractions leave the Lie
algebra dimension invariant we need to add an additional element to the Poincaré algebra.
We will call this trivial central extension M and define the new generators from the relativistic
ones

Ka = cBa , Ta = cPa , T = c2M +H . (115)

We will assume that all powers of c appear explicitly. In terms of the new generators, the Lie
brackets of the Poincaré algebra become

[Lab, Lcd] = δbc Lad −δac Lbd −δbd Lac +δbd Lac ,

[Lab, Bc] = δbcBa −δacBb ,

[Lab, Pc] = δbc Pa −δac Pb ,

[Ba, Bb] =
1
c2

Lab ,

[Ba, Pb] = δabM +
1
c2
δabH ,

[Ba, H] = Pa ,

(116)

where in the last bracket, we used the fact that M is a central element. It is easy to see that
the c→∞ limit reproduces the Bargmann algebra (15) where M is now a nontrivial central
extension.

Let us now analyse the implications for the Casimir elements of the centrally extended
Poincaré algebra. First, the quadratic mass-squared Casimir of Poincaré now reads

TµTµ = TaT a− T2 = c2PaPa− (c2M +H)(c2M +H) = c2PaPa− c4M2−2c2MH −H2 . (117)

Upon rescaling by the appropriate power of c, the limit c→∞ yields

lim
c→∞

1
c4

TµTµ = −M2 , (118)
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which we already know to be a Galilei Casimir, since M is central. To gain additional informa-
tion, one can subtract this contribution of M2 and go to the sub-leading order in 1

c . Considering
the following limit

lim
c→∞

1
c2

�

TµTµ + c4M2
�

= PaPa − 2HM , (119)

we recognise the expression of the quadratic Casimir of the Bargmann algebra, cf., Section 5.
The interpretation of this in terms of the non-relativistic limit of the Poincaré momentum orbit
is that the quadratic Casimir of the Bargmann algebra sits at sub-leading order in the quadratic
Casimir of the Poincaré algebra (extended by M), and can be attained once the divergent mass
contribution is properly removed. Finally, the relativistic Pauli-Lubanski vector gives, in the
c→∞ limit

lim
c→∞

1
c2

Wa = εabc(P
bBc + Lbc M) , lim

c→∞

1
c2

W0 = 0 , (120)

which is a spatial vector affected by spatial rotations only. Its norm is a conserved quantity

lim
c→∞

1
c4

WµWµ = εabc(P
bBc + Lbc M)εade(Pd Be + LdeM) , (121)

in agreement with the purely bargmannian analysis of Section 7.
One should thus be able to obtain all Galilei from Poincaré orbits, at the expense of adding

a central generator to the Poincaré algebra from the get-go. Let us illustrate how this works at
the level of the momentum orbit. Expanding the Poincaré energy in the same fashion as the
generator of time translations in (115), we obtain EP = mc2 + E and the mass-shell condition
becomes

−m2
0c2 =

1
c2

pµpµ = −
1
c2

EP + ∥p∥2 = −c2m2 − 2Em−
E2

c2
+ ∥p∥2 , (122)

where m2
0 labels orbits in the one-dimensional extension of Poincaré. Since M is a Casimir, the

associated moment m is conserved along the orbit, and the c→∞ limit of TµTµ identifies m2

with m2
0 . Turning now to the sub-leading contribution

lim
c→∞

1
c2

�

pµpµ +m2
0c4
�

= ∥p∥2 − 2Em0 := µ0 , (123)

we obtain the second constant along the orbit, which we will denote by µ0 and which is
identified as the value of the quadratic Casimir of the Bargmann algebra, PaPa − 2HM . It
can assume any real value. Finally, the spin part gives rise to the eigenvalue of the last, quartic
Casimir

lim
c→∞

1
c4

wµwµ = ∥m0j+ p× k∥2 := S0 , (124)

where wµ is the Pauli-Lubanski vector. Note that the right-hand side is always a non-negative
number for unitary representations of the Galilei group, while in the usual parameterisation
for the norm of the Pauli-Lubanski vector for UIRs of Poincaré, this number is non-positive
for massless and massive orbits, and is given by −m2

0c4s0(s0 + 1) with s0 ∈ N. Nevertheless,
starting from irreducible (not necessarily unitary) representations of the Poincaré group with
central extension, we can choose to write wµwµ as c4S0 where S0 is any real number, yielding
(124).

In order to have a matching between the coadjoint orbits of the Poincaré and the Galilei
groups, at least at the level of momentum orbit, one should study the contractions of massless
or massive orbits of the extended Poincaré group. Tachyonic orbits are problematic, because
in (118) the eigenvalue of the Casimir of the right-hand side is always a non-positive number
for unitary representations, as was already noticed by Souriau.

24

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.93


SciPost Phys. Lect. Notes 93 (2025)

Poincaré Galilei

m> 0

m= 0

m< 0

E

Figure 1: This figure contrasts the energy-momentum orbits (E,p) of the Poincaré
(left) and Galilei (right) group. For further details we refer to Section 9, cf., also
with Table 1.
The Poincaré orbits are foliated by hypersurfaces of the form E2 − ∥p∥2 = m2. For
m2 > 0 this leads to the massive orbits with positive and negative energy (green),
for m= 0 to the massless orbits (yellow) and for m2 < 0 to tachyonic orbits (gray).
For the case of Galilei the energy-momentum orbits depend on the mass m and we
picture three plots for fixed positive, vanishing and negative mass. For positive and

negative m the energy-momentum orbits are hypersurfaces E − ∥p∥
2

2m = E0, where E0
shifts the parabolas along the energy axis. For vanishing mass m= 0 the Galilei orbits
are foliated by cylinders ∥p∥= p0 > 0 and when ∥p∥= 0 the orbits consist of disjoint
points E = E0 (pictured as a black line).

Starting from a massive orbit of extended Poincaré, we obtain massive orbits #1 or #2 of
Galilei, depending on whether S0 is zero or positive. Starting from a massless Poincaré orbit,
we obtain Galilei orbits #3, #4 and #5 when µ0 is zero (note that in that case, p is itself zero
and therefore S0 as well, these orbits corresponding to different types of Galilei vacua), and
orbits #6 or #7 when µ0 is non-zero (the difference between these last two orbits is that S0
is zero in the former and non-zero in the latter). This is depicted in Figure 1, where massive
orbits are depicted in green, and massless ones in yellow. Note that this Figure shows the
correspondence between momentum orbits of Poincaré (without the one-dimensional exten-
sion) to momentum orbits of Bargmann, therefore a single orbit of the former corresponds to
a family of orbits of the latter.
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Table 5: K-orbits in t∗.

τ= (m, E,p) ∈ t∗ Oτ Kτ

(m, E,0)m ̸=0,E∈R {(m, E − 1
2 m∥v∥2,−mv) | v ∈ R3} ∼= R3 Spin(3)

(0, E,0)E∈R {(0, E,0)} K

(0,0,p)p ̸=0 {(0, Rp · v, Rp) | v ∈ R3, R ∈ Spin(3)} ∼= S2
∥p∥ ×R {(v, R) | Rp= p,v⊥ p} ∼= Spin(2)⋉R2

11 Unitary irreducible representations of the Bargmann group

In this section we classify the unitary irreducible representations (UIRs) of (the universal cover
of) the Bargmann group via the method of induced representations. We are certainly not the
first to do this. Earlier papers providing (partial) classifications are those of Inönü–Wigner
[15], Bargmann [13], Lévy-Leblond [39], Brennich [17], who extended to representations of
the full Bargmann group (including parity and time-reversal), culminating in the summary of
Lévy-Leblond [16]. We will be able to compare these prior classifications with ours in the end.

11.1 K -orbits in t∗

We let G denote the universal cover of the identity component of the Bargmann group. It is
isomorphic to K ⋉ T where K ∼= Spin(3)⋉R3 is the subgroup generated by the rotations and
the boosts and T ∼= R5 is the abelian normal subgroup generated by the translations and the
central element. The action of K on T , via conjugation in G, differentiates at the identity to an
action of K on t and this induces a dual action of K on t∗. We start by choosing τ ∈ t∗ and let
Oτ denote its K-orbit. Letting Kτ ⊂ K denote the stabiliser, we have that Oτ ∼= K/Kτ, where
the diffeomorphism is K-equivariant. We may also describe the orbit somewhat redundantly
as G/(Kτ ⋉ T ), where we have introduced a non-effective action of G on Oτ which shall
nevertheless prove to be very useful.

There are three classes of orbits Oτ of K on t∗ and these are summarised in Table 5, where
we describe the orbit and also list the stabiliser of an orbit representative.

11.2 Invariant measures

Ignoring the point-like orbits, we now show that both types of three-dimensional orbits admit
K-invariant measures. A K-invariant measure is given by integrating a K-invariant nowhere-
vanishing 3-form. By the holonomy principle, K-invariant nowhere-vanishing 3-forms on Oτ
are in one-to-one correspondence with nonzero Kτ-invariant elements in ∧3k0

τ, where k0
τ ⊂ k∗

is the annihilator of kτ.
Let Li , Bi denote a basis for k and let λi ,β i denote the canonical dual basis for k∗. From

the Lie brackets of k in this basis

[Li , L j] = εi jk Lk , [Li , B j] = εi jkBk , and [Bi , B j] = 0 , (125)

we can work out the action of k on k∗:

Li ·λ j = εi jkλ
k ,

Li · β j = εi jkβ
k ,

Bi ·λ j = 0 ,

Bi · β j = εi jkλ
k .

(126)

For the orbit with representative τ = (m, 1
2m E,0), with m ̸= 0, the stabiliser Lie algebra

kτ is spanned by the La, so that its annihilator k0
τ is spanned by the βa. It follows from equa-

tion (126) that 1
6εi jkβ

i∧β j∧β k = β1∧β2∧β3 ∈ ∧3k0
τ is kτ-invariant, but since Kτ is connected,

it is also Kτ-invariant. We can determine the corresponding K-invariant volume form on the
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orbit relative to a chart, by choosing a coset representative σ : Oτ → K , with σ(p) ∈ K such
that σ(p) ·τ= (m, 1

2m(E −∥p∥
2),p). A possible choice is σ(p) = exp(− 1

mp ·B). The pull-back
via σ of the the left-invariant Maurer–Cartan one-form on K is given by

σ−1dσ = 1
mp ·B , (127)

and hence evaluating β1 ∧ β2 ∧ β3 on σ−1dσ gives the volume form

dvol= 1
m3 dp1 ∧ dp2 ∧ dp3 . (128)

The action of ev·BR ∈ K on these coordinates is calculated by acting on the coset representative
σ(p):

ev·BRσ(p) = ev·Bσ(Rp)R= σ(Rp−mv)R , (129)

so that p 7→ Rp−mv. This is a euclidean transformation under which the volume form dvol is
clearly invariant.

For the orbit with representative τ = (0, 0,p) with p = (0,0, p), say, the Lie algebra kτ
of the stabiliser Kτ is spanned by L3, B1, B2, so that its annihilator is spanned by λ1,λ2,β3.
From equation (126) we see that λ1 ∧ λ2 ∧ β3 is Kτ-invariant. Under the diffeomorphism
Oτ ∼= S2 × R, we will see below that the invariant measure is the product of the measure
defined by the area form of the round metric on S2 and the translationally invariant measure
on R.

11.3 Inducing representations

We induce UIRs of G from UIRs of Kτ as (square-integrable) sections of homogeneous vector
bundles over Oτ. Square-integrability is defined relative to a K-invariant measure on the orbit,
as described in the previous section.

For the three-dimensional orbits with stabiliser Spin(3), every UIR is isomorphic to some
Vs, the complex spin-s representation of Spin(3), for 2s ∈ {0,1, 2, . . . }.

For the point-like orbits, the inducing representations are representations of the euclidean
group K , which is itself isomorphic to the semidirect product Spin(3) ⋉ R3 with an abelian
normal subgroup. We may apply the method of induced representations to the euclidean
group itself. This was done in [10, Section 3.3.1], for instance, in the context of the UIRs of
the Carroll group. There are two kinds of UIRs of Spin(3)⋉R3:

• the complex spin-s representation Vs of Spin(3), for 2s ∈ {0, 1,2, . . . } with the abelian
normal subgroup acting trivially;

• and the square-integrable sections of the line bundle O (n) over CP1 for any n ∈ Z.

Finally, for the three-dimensional orbits with Spin(2)⋉R2 stabilisers, the possible UIRs can
be read off from [10, Section 3.3.2], which considers a trivial central extension of this group,
by ignoring the central extension. We find that there are two possible UIRs of Spin(2)⋉R2:

• one-dimensional representations Cn of U(1) ∼= Spin(2) with the normal subgroup R2

acting trivially;

• and the square-integrable spinor fields on the circle L2(S1,Σ±) with Σ+ (resp. Σ−) the
spinor bundle corresponding to the Ramond (resp. Neveu–Schwarz) spin structure on
the circle.
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Table 6: Coadjoint orbits and UIRs of the Bargmann group. The table lists a repre-
sentative α of each class of coadjoint orbit Oα, the base Oτ of the fibration which
describes Oα and the little groups Kτ ⊂ K from which we induce the UIRs of the
Bargmann group. In each row we also list the inducing representation of Kτ as well
as the induced representation. The notation CE denotes the copy of C on which the
one-parameter subgroup generated by H acts via the character χ(etH) = eiE t and
also the trivial line bundle associated to that one-dimensional representation. Simi-
larly the notation Cp,k⊥ is the copy of C on which the nilpotent subgroup generated
by B,P, M acts as in equation (145) below. The notation L2(X , V ) means either L2

functions X → V , when V is a vector space, or L2 sections of a vector bundle V over
X . The notation eO (n) denotes the homogeneous line bundle over R×S2 obtained by
pulling back the line bundle O (n) over S2 via the cartesian projection R× S2 → S2.
Finally, in the last row, k⊥ > 0 is defined by ∥p× k∥ = pk⊥, so that it is the norm of
the component of k perpendicular to p.

Class # α ∈ g∗ Oτ Kτ inducing representation of Kτ UIR of G

II(s = 0, m, E) 1 (m, E,0,0,0)m ̸=0,E∈R R3 Spin(3) C L2(R3,CE)

II(s ̸= 0, m, E) 2 (m, E,0,0, j)m ̸=0,E∈R,j ̸=0 R3 Spin(3) Vs ̸=0 L2(R3, Vs ⊗CE)

I(s = 0, E) 3 (0, E,0,0,0)E∈R {(0, E,0)} K C CE

I(s ̸= 0, E) 4 (0, E,0,0, j)E∈R,j ̸=0 {(0, E,0)} K Vs ̸=0 Vs ⊗CE

III(n, k, E) 5 (0, E,0,k, j)E∈R,k×j=0,k ̸=0 {(0, E,0)} K L2(S2,O (n)) L2(S2,O (n)⊗CE)

IV(n, p) 6 (0, 0,p,0,0)p ̸=0 R× S2
∥p∥ Spin(2)⋉R2 Cn L2(R× S2, eO (−n))

V±(p, k⊥) 7 (0,0,p,k,0)k×p ̸=0 R× S2
∥p∥ Spin(2)⋉R2 H± := L2(S1,Σ±) L2

±(R× S3,Cp,k⊥)

11.4 Induced representations

The induced representations are carried by square-integrable (with respect to a K-invariant
measure) sections of homogeneous vector bundles over Oτ associated to the inducing repre-
sentations just described. Presumably, the induced representations are obtained by geometri-
cally quantising the coadjoint orbits of the Bargmann group and one can hazard a correspon-
dence between the class of orbits and the induced representations, which we summarise in
Table 6 and upon which we elaborate below.

11.4.1 UIRs of class I(s , E) associated to orbits of types #3 and 4

These are what we could call the vacuum UIRs. They are induced from the finite-dimensional
UIRs of K ∼= Spin(3)⋉R3. They are labelled by a non-negative half-integer spin s and a real
number E. The underlying Hilbert space H is the complex (2s+ 1)-dimensional spin-s UIR of
Spin(3)where H acts via the characterχ(e−a−H) = e−ia−E . In other words, g = g(a+, a−,a,v, R)
acts on ψ ∈H as

g ·ψ= eiEa−ρ(R)ψ , (130)

with ρ the spin-s representation of Spin(3). The inner product is any Spin(3)-invariant hermi-
tian inner product on H, which is unique up to scale. We label these representations I(s, E),
with E ∈ R and 2s ∈ {0,1, 2, . . . }. They are the galilean analogue of the similarly labelled UIRs
of the Carroll group in [10].

11.4.2 UIRs of class II(s , m, E) associated to orbits of types #1 and 2

These are the massive UIRs. They are induced from the UIRs Vs of Spin(3), which are labelled
by their non-negative half-integer spin s and the underlying Hilbert space H = L2(R3, Vs) are
the square-integrable functions R3 → Vs relative to the standard euclidean measure on R3.
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We take σ(p) = e−
1
m p·B as coset representative and define ψ(p) = F(σ(p)) with F : G→ Vs a

Mackey function equivariant under Kτ ⋉ T . The action of g = g(a+, a−,a,v, R) on ψ ∈H can
be worked out as in the case of massive Carroll UIRs in [10] and one finds that

(g ·ψ)(p) = ei(ma++Ea−+a·p)ρ(R)ψ(R−1(p+mv)) , (131)

which is unitary relative to the inner product

(ψ1,ψ2) =

∫

R3

d3p 〈ψ1(p),ψ2(p)〉Vs
, (132)

with 〈−,−〉Vs
any Spin(3)-invariant hermitian inner product on Vs. These UIRs are labelled

by m ̸= 0, E ∈ R and s with 2s ∈ {0,1, 2, . . . } and denoted II(s, m, E) and are the galilean
analogue of the similarly-labelled massive Carroll UIRs in [10].

11.4.3 UIRs of class III(n, k, E) associated to orbits of type #5

Since the K-orbit is point-like, the induced representation shares the underlying Hilbert space
with the inducing representation: L2(S2,O (−n)) as in the Carroll UIRs of class III′(n, k) in [10].
We can read off the results from the Carroll case and we find that g = g(a+, a−,a,v, R) acts
on ψ ∈ H, which we describe a complex-valued smooth function on the complex plane ψ(z)
with z a stereographic coordinate for the sphere, via

(g ·ψ)(z) = ei(Ea−+v·κ(z))
�

η+ ξz

|η+ ξz|

�−n

ψ

�

ηz − ξ
η+ ξz

�

, (133)

which is unitary under the inner product

(ψ1,ψ2) =

∫

C

2idz ∧ dz
(1+ |z|2)2

ψ1(z)ψ2(z) . (134)

Here κ(z) = (κ1(z),κ2(z),κ3(z)) with

κ1(z) =
2k Re(z)
1+ |z|2

, κ2(z) =
2k Im(z)
1+ |z|2

, and κ3(z) =
(|z|2 − 1)k

1+ |z|2
, (135)

with k = ∥k∥, and where R ∈ Spin(3) is given under the isomorphism SU(2)∼= Spin(3) by

R=

�

η ξ

−ξ η

�

∈ SU(2) . (136)

These UIRs are labelled by n ∈ Z, k > 0 and E ∈ R and denoted III(n, k, E). They are analogous
to the Carroll UIRs of class III′(n, k) in [10].

11.4.4 UIRs of class IV(n, p) associated to orbits of type #6

These UIRs are the analogue of the Carroll UIRs of class III(n, p) in [10], with one main dif-
ference. Here they are carried by square-integrable sections of a line bundle over the cylinder
R×S2 and not over the sphere as in the Carroll case. Nevertheless we can re-use many of the
calculations in [10]. Here τ = (0,0,p) where p = (0,0, p) with p = ∥p∥ > 0. The stabiliser
subgroup is Kτ ∼= Spin(2)⋉R2 or, more invariantly, Spin(p⊥)⋉ p⊥ and the orbit is given by

Oτ =
¦

(0, s,p) | s ∈ R,p ∈ S2
p

©

∼= R× S2
p . (137)
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We define a coset representative σ : Oτ → K so that σ(s, z) · (0,p) = (s,π(z)), where z is a
stereographic coordinate on S2

p; that is,

π(z) =
p

1+ |z|2
�

2Re z, 2 Im z, |z|2 − 1
�

, (138)

which lies in S2
p ⊂ R

3. A possible choice for σ(s, z) is given by

σ(s, z) = es/p2π(z)·BS(z) , where S(z) =
1
p

1+ |z|2

�

z −1
1 z

�

. (139)

Notice that we could also write it as

σ(s, z) = S(z)es/p2p·B , (140)

using that π(z) = S(z) · p. Let χ : T → U(1) be the character associated to τ = (0, 0,p) and
let Cn denote the UIR of Kτ where Spin(2) acts with weight n and the translations in p⊥ act
trivially. We make Cn into a UIR of Kτ⋉ T with T acting via χ. Let F : G→ Cn be a (Kτ⋉ T)-
equivariant Mackey function. We defineψ(s, z) = F(σ(s, z)) and we define the action of g ∈ G
on ψ via (g ·ψ)(s, z) = F(g−1σ(s, z)), which we re-express in terms of ψ using equivariance.

Write g = g(a+, a−,a,v, R) = ea+M−a−H+a·Pev·BR, with R ∈ SU(2) given as in equa-
tion (136), and let us calculate

g−1σ(s, z) = R−1e−v·Be−a+M+a−H−a·PS(z)es/p2p·B

= R−1S(z)S(z)−1e−v·Be−a+M+a−H−a·PS(z)
︸ ︷︷ ︸

e−S(z)−1v·Be−a+M+a−H−S(z)−1a·P

es/p2p·B

= R−1S(z)e−(S(z)
−1v−s/p2p)·B e−s/p2p·Be−a+M+a−H−S(z)−1a·Pes/p2p·B
︸ ︷︷ ︸

e−(a+−s/p2S(z)−1a·p−
1
2 a−s2/p2)M+a−H−(S(z)−1a+s/p2a−p)·P

= R−1S(z)e−(S(z)
−1v−s/p2p)·Be−(a+−s/p2S(z)−1a·p−1

2 a−s2/p2)M+a−H−(S(z)−1a+s/p2a−p)·P .

Therefore, using that S(z)−1a · p= a · S(z)p= a ·π(z), we have that

F(g−1σ(s, z))= F(R−1S(z)e−(S(z)
−1v−s/p2p)·Be−(a+−s/p2S(z)−1a·p−1

2 a−s2/p2)M+a−H−(S(z)−1a+s/p2a−p)·P)

= ei(a·π(z)+sa−)F(R−1S(z)e−(S(z)
−1v−s/p2p)·B) ,

where we used the equivariance of F . Using equation (3.42) in [10]we have that for R ∈ SU(2)
given by equation (136),

R−1S(z) = S

�

η− ξ
η+ ξz

�

︸ ︷︷ ︸

S(R−1z)

η+ ξz

|η+ ξz|
︸ ︷︷ ︸

λ(S−1,z)∈U(1)

, (141)

where we identify U(1) with the diagonal matrices in SU(2), since those matrices stabilise p.
Therefore,

F(R−1S(z)e−(S(z)
−1v−s/p2p)·B) = F(S(R−1z)λ(S−1, z)e−(S(z)

−1v−s/p2p)·B)

= F(S(R−1z)e−((S(z)
−1v)∥−s/p2p)·Bλ(S−1, z)e−(S(z)

−1v)⊥·B
︸ ︷︷ ︸

∈Kτ

) ,
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where we have used that U(1) preserves p and have broken up S(z)−1v into a component along
p (and hence preserved by U(1)) and a component perpendicular to p. Using equivariance
again, and the fact that (S(z)−1v)∥ = S(z)−1v · p/p2p= v ·π(z)p/p2, we find

F(g−1σ(s, z)) = ei(a·π(z)+sa−)λ(S−1, z)−nF(σ(s− v ·π(z), R−1z)) . (142)

In summary, the action of g on ψ(s, z) is given by

(g ·ψ)(s, z) = e−i(a·π(z)+sa−)

�

η+ ξz

|η+ ξz|

�−n

ψ

�

s− v ·π(z),
ηz − ξ
η+ ξz

�

. (143)

This representation is unitary relative to the inner product

(ψ1,ψ2) =

∫

R×C

2ids ∧ dz ∧ dz
(1+ |z|2)2

ψ1(s, z)ψ2(s, z) . (144)

More invariantly, and as shown in [10, Section 3.3.1] for the case of Carroll UIRs, one can
describe the Hilbert space H as the square-integrable sections of the line bundle eO (−n) over
the cylinder R × S2

p obtain by pulling back the line bundle O (−n) over S2
p via the cartesian

projection R× S2
p → S2

p . We denote these UIRs by IV(n, p) where n ∈ Z and p > 0.

11.4.5 UIRs of class V±(p, k⊥) associated to orbits of type #7

These UIRs are the analogue of the Carroll UIRs of class V±(p, k,θ ) in [10]. Their description
is as sections of an infinite-dimensional Hilbert bundle over the K-orbit, but following similar
steps as those in [10, Section 3.4.3], they can be seen to admit a simpler description.

Let N be the nilpotent subgroup of the Bargmann group generated by B,P, M . If m = 0,
N acts like an abelian group and its UIRs are therefore one-dimensional. We will consider the
one-dimensional UIR Cp,k⊥ with character χ : N → U(1) given by

χ(ea+M+a·P+v·B) = ei(a · p+ v · k) , (145)

with p= (0, 0, p) , and k= (0, k⊥, 0) , with both p, k⊥ > 0 .

The homogeneous space G/N is diffeomorphic to R×S3 and χ defines a trivial homogeneous
line bundle Lχ over G/N , whose sections can be identified with functions R× S3→ Cp,k⊥ .

Let us choose a coset representative σ : R× S3 → G for G/N defined by σ(s, S) = esHS,
where S ∈ SU(2) and where we have identified S3 with SU(2). The UIR of the Bargmann
group is carried by H = L2(R× S3,Cχ) relative to the inner product

(ψ1,ψ2) =

∫

R×S3

dsdµ(S)ψ1(s, S)ψ2(s, S) , (146)

where dµ is a bi-invariant Haar measure on SU(2).
Let g = g(a+, a−,a,v, R) and let us calculate its action on ψ ∈ H. As usual

ψ(s, S) = F(σ(s, S)), with F : G→ Cχ a (Kτ ⋉ T)-equivariant Mackey function. Then

(g ·ψ)(s, S) = F(g−1σ(s, S)) , (147)

which we must rewrite in terms of ψ using equivariance. We calculate

g−1σ(s, S) = R−1e−v·Be−a+M+a−H−a·PesHS

= R−1e−v·Be(a−+s)H e−a+M−a·PS

= R−1e(a−+s)H e−(a−+s)H e−v·Be(a−+s)H
︸ ︷︷ ︸

e−v·B−(a−+s)v·P

e−a+M−a·PS

= e(a−+s)HR−1Se−S−1v·B−(a−+s)S−1v·Pe−a+M−S−1a·P .
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Table 7: Comparison with Carroll UIRs. This table provides a sort of dictionary
between the UIRs of the Carroll group as determined in [10] and the UIRs of the
Bargmann group we have just described. The correspondence is not perfect: there
are labels in the Bargmann case which simply do not exist in the Carroll case and there
are Carroll UIRs which have not counterpart among the Bargmann UIRs; namely, the
(anti)parallel helicity representations of Carroll.

Carroll UIR in [10] UIR in Table 6

I(s) I+(s, E)
II(s, m) II(s, m, E)
III′(n, k) III(n, k, E)
III(n, p) IV(n, p)
IV±(n, p, k)
V±(p, k,θ ) V±(p, k sinθ )

Therefore, using equivariance, we see that

(g ·ψ)(s, S) = ei(v·Sk+(a+(a−+s)v)·Sp)ψ(s+ a−, R−1S) , (148)

where we have used that, say, S−1v ·k= v ·Sk. As in the case of the similar UIRs of the Carroll
group, these representations are not irreducible, because of the action of the centre of SU(2).
We define idempotents Π± : H→H by

(Π±ψ)(s, S) = 1
2 (ψ(s, S)±ψ(s,−S)) . (149)

Then H = H+ ⊕H−, with H± the image of Π±, is an orthogonal decomposition into UIRs of
the Bargmann group. These UIRs are characterised by p, k⊥ > 0 and the action of the centre
of SU(2), which is a sign. We will denote them by V±(p, k⊥) by analogy with the Carroll UIRs
in [10].

11.5 Comparison with Carroll UIRs

As we have been mentioning during the description of the Bargmann UIRs in the previous
section, there are certain similarities between the Bargmann and Carroll UIRs that are worth
highlighting. Table 7 summarises these similarities.

11.6 Comparison with prior classifications

The earliest classification of Galilei UIRs is that of Inönü–Wigner [15] who restricted them-
selves to honest (not ray) UIRs of the Galilei group, despite being aware (citing a private
communication with none other than Bargmann himself!) of the need to consider projec-
tive representations. Moreover they classify UIRs of the connected component of the Galilei
group, but not of its simply-connected double cover. Therefore their list should be compared
with those UIRs with m= 0 and with integer spin and helicity.

Restricting to the Galilei group has the technical advantage that the maximal abelian sub-
group is now of larger dimension than in the Bargmann case. Letting G′ denote the Galilei
group, we can write G′ = K ′⋉ T ′, where K ′ ∼= R×SO(3) is the connected subgroup generated
by Ji , H, whereas T ′ ∼= R6 is the abelian subgroup generated by Bi , Pi . The UIRs of T ′ are
one-dimensional and defined by characters χ : T ′→ U(1) with

χ(ev·B+a·P) = ei(v·k+a·p) , (150)
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Table 8: Comparison with Inönü–Wigner [15]. This table provides a dictionary be-
tween the representations of the Galilei group classified in [15] and the ones in our
Table 6. The notation in the first column is the one adopted in [15]. In particular,
their m is not the mass, but an integer helicity. Besides the massive representations,
also missing are any Bargmann UIRs where the centre of SU(2) acts nontrivially. We
reiterate that the missing UIRs were consciously and explicitly excluded in [15].

UIR in [15] UIR in Table 6

I(p, s) V+(p, s/p)
II(m, p) IV(2m, p)
III(m, k, e) III(2m, k, e)
IV(ℓ, e) I(2ℓ, e)

for some (k,p) ∈ R6. The K ′-action on the characters is such that

ResH · (k,p) = (Rk+ sRp, Rp) . (151)

There are four types of orbits depending on τ′ = (k,p), in increasing dimension of the stabiliser
K ′τ′ ⊂ K ′ with the labels as in [15]:

(I) τ′ = (k,p), with k× p ̸= 0. Let p = ∥p∥ > 0 and h = ∥p× k∥ > 0, which are the two
invariants of the orbit. The stabiliser is trivial and hence the orbit is R× SO(3).

(II) τ′ = (k,p), with p ̸= 0 and k× p = 0. Letting p = ∥p∥ > 0, the orbit is now R× S2
p and

the stabiliser is K ′τ′ = {R | Rp= p} ∼= SO(2).

(III) τ′ = (k,0), with k ̸= 0. The orbit is the sphere of radius k = ∥k∥ > 0. The stabiliser is
K ′τ′ =
�

eaHR | a ∈ R, Rk= k
	∼= R× SO(2).

(IV) τ′ = (0,0). This is a point-like orbit with stabiliser all of K ′.

The inducing UIRs of the stabilisers are easy to determine in all cases:

(I) The stabiliser is trivial, so there is the only UIR is the trivial one-dimensional represen-
tation C.

(II) The stabiliser is SO(2) whose UIRs are one-dimensional and denoted Cn with n ∈ Z,
which we may identify with the helicity.

(III) The stabiliser is R× SO(2), whose UIRs are one-dimensional Cn ⊗Ce, with n ∈ Z and
e ∈ R.

(IV) The stabiliser is R× SO(3), whose UIRs are Vℓ ⊗Ce, with the spin ℓ ∈ Z and e ∈ R.

It is then easy to compare their classification with ours and we give the dictionary in Table 8.
The UIRs classified in Lévy-Leblond [39] and Brennich [16], although expressed in the lan-

guage of ray representations of the Galilei group instead of representations of the Bargmann
group, are induced from characters of the abelian subgroup T generated by M , H, Pi together
with a UIR of the stabiliser of the character, as we have done. This allows for an easier com-
parison than in the case of Inönü–Wigner. We give the dictionary in Tables 9 and 10.
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Table 9: Comparison with Brennich [16]. This table provides a dictionary between
the unitary irreducible ray representations of the Galilei group classified in [16] and
the UIRs of the Bargmann group in Table 6. The labels p and e in the UIRs of classes I
and III, respectively, in [16] are spurious, since they are not actually invariants. They
correspond to a choice of inducing character. Also, the label s in Brennich’s III(s, k, e)
takes two possible values: s = 0, corresponding to our V+, and s = 1

2 , corresponding
to our V−. Other than those comments, there is a bijective correspondence between
the UIRs in [16] and the ones in Table 6. Of course, Brennich also discusses the UIRs
of the full Bargmann group, including inversion and time-reversal.

UIR in [16] UIR in Table 6

I(s, m, e,p) II(s, m, e)
II(s, p) IV(2s, p)
III(s, p, k, e) V±(s)(p, k)
IV(s, e) I(s, e)
V(s, k, e) III(2s, k, e)

Table 10: Comparison with Lévy-Leblond [17]. This table provides a dictionary
between the unitary irreducible ray representations of the Galilei group classified
in [17] and the UIRs of the Bargmann group in Table 6. The UIR V−(p, k⊥) in Ta-
ble 6 is missing from the list in [17], but otherwise we are in agreement. This can
be explained by the fact that the euclidean group from which one induces the repre-
sentation is actually the double cover of the euclidean group in [17] and hence the
“little group” mentioned after equation (4.14) there is not actually the identity but
the order-2 Galois group of the double cover.

UIR in [17] UIR in Table 6

I(p, v) V+(p, v)
II(p,σ) IV(σ, p)
III(E, k,ξ) III(2ξ, k, E)
IV(E,ℓ) I(ℓ, E)
m(U , s) II(s, m, U)

12 Galilean field-theoretical realisations

In this section we will realise some of the UIRs of the Bargmann group in terms of fields in
Galilei spacetime. This follows the method explained in [10, Appendix A].

Of the UIRs of the Bargmann group, there are some which admit a description in terms of
(finite-component) fields on Galilei spacetime. Galilei spacetime is a homogeneous space of
the Bargmann group diffeomorphic to the space of cosets G/G0, where G0 = K × Z with Z the
central subgroup generated by M . As explained, for example in [10, Appendix A], the first step
in obtaining such a description is to embed the inducing representation of Kτ into a (finite-
dimensional) representation of G0. This is possible for all inducing representations except
those associated with the coadjoint orbits of classes #5,7. Those representations associated
to coadjoint orbits of classes #3,4 are finite-dimensional, so presumably they do not admit a
nontrivial description as fields on Galilei spacetime. Thus we remain with the UIRs of classes
II(s, m, E) associated with coadjoint orbits of types #1 and 2 and IV(n, p) associated with
coadjoint orbits of type # 6.

34

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.93


SciPost Phys. Lect. Notes 93 (2025)

12.1 Massive galilean fields

In Section 11.4.2 we described the momentum-space description of the UIRs of type II(s, m, E)
and in this section we will realise these representations as fields in Galilei spacetime.

Galilei spacetime is diffeomorphic to the coset space G/G0 with G0 = K × Z . Fields on
Galilei spacetime are sections of homogeneous vector bundles associated to representations of
G0, so the first order of business is to choose a finite-dimensional representation of G0 which
embeds the inducing representation V of Kτ. Extending the representation Vs from Kτ to K is
simply a matter of letting the boosts act trivially. We may also extend it to a representation of
G0 via

g(a+, 0,0,v, R) ·ψ= eima+R ·ψ . (152)

Let V denote this representation of G0, sharing the same vector space with the representation
Vs of Kτ. The action of G0 on Oτ is such that the central subgroup Z acts trivially and K acts
via euclidean transformations, as seen above.

Next we “Fourier transform”. We define bF : G→ V by4

bF(g) :=

∫

R3

d3p σ(p) · F(gσ(p)) =
∫

R3

d3p F(gσ(p)) , (153)

since the boost σ(p) = e−
1
m p·B acts trivially on V . As shown, for example, in [10, Appendix A],

bF is G0-equivariant and hence it defines a section of the homogeneous vector bundle over
Galilei spacetime associated with the representation V .

Let ζ : G/G0 → G be a coset representative for Galilei spacetime, where
ζ(t,x) = exp(tH + x · P) and define φ : G/G0→ V by

φ(t,x) = bF(ζ(t,x)) =

∫

R3

d3p F(ζ(t,x)σ(p)) . (154)

We now calculate
ζ(t,x)σ(p) = σ(p)σ(p)−1ζ(t,x)σ(p)

︸ ︷︷ ︸

∈T

, (155)

where, after a quick calculation, we find that

σ(p)−1ζ(t,x)σ(p) = ζ(t,x+ 1
mpt)e

1
m (x·p+

1
2m ∥p∥

2)M . (156)

By equivariance,

F(ζ(t,x)σ(p)) = F(σ(p)ζ(t,x+ 1
mpt)e

1
m (x·p+

1
2m ∥p∥

2)M )

= e−i(x·p+(Et+ 1
2m ∥p∥

2))F(σ(p)) ,
(157)

and hence, integrating,

φ(t,x) = e−iE t

∫

R3

d3p e−i(x·p+ 1
2m ∥p∥

2)ψ(p) , (158)

which is up to the t-dependent phase in front of the integral, essentially the Fourier transform
of the rescaled function e−

i
2m ∥p∥

2
ψ(p).

As shown in [10, Appendix A], the action of the Bargmann group on such a field φ is given
by

(g ·φ)(t,x) = h−1 ·φ(t ′,x′) , (159)

4We tacitly restrict to Mackey functions F for which this integral converges.
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where t ′, x′ and h ∈ G0 are defined by

g−1ζ(t,x) = ζ(t ′,x′)h . (160)

Letting g = g(a+, a−,a,v, R), we calculate

t ′ = t − a− ,

x′ = R−1(x− a+ (t − a−)v) ,

h= g(−a+ − v · (x− a)− 1
2(t − a−)∥v∥2, 0,0,−R−1v, R−1) ,

(161)

so that
h−1 = g(a+ + v · (x− a) + 1

2(t − a−)∥v∥2, 0,0,v, R) , (162)

and hence

h−1 ·φ(t ′,x′) = eim(a++v·(x−a)+
1
2 (t−a−)∥v∥2)R ·φ(t − a−, R−1(x− a+ (t − a−)v)) . (163)

In summary,

(g ·φ)(t,x) = eim(a++v·(x−a)+
1
2 (t−a−)∥v∥2)R ·φ(t − a−, R−1(x− a+ (t − a−)v)) . (164)

Breaking this transformation into its different components, we find that

• under translations,
(g ·φ)(t,x) = φ(t − a−,x− a) ; (165)

• under rotations,
(g ·φ)(t,x) = R ·φ(t, R−1x) ; (166)

• under boosts,

(g ·φ)(t,x) = eim(v·x+1
2 t∥v∥2)φ(t,x+ tv) ; (167)

• and under the action of the Bargmann central element it transforms with a constant
phase:

(g ·φ)(t,x) = eima+φ(t,x) . (168)

12.2 Massless galilean fields

Now we will describe the massless UIRs of type IV(n, p) as galilean fields. These are honest
(as opposed to projective) UIRs of the Galilei group. As described in Section 11.4.4, they are
carried by square-integrable sections of a complex line bundle over R×S2 obtained by pulling
back the bundle O (−n) over S2. They can be described locally by complex-valued functions
ψ(s, z) on R×C with z a stereographic coordinate on S2. The treatment here is very similar
to that of [10, Section 4.3] to which we will refer for the pertinent calculations. The inducing
representation is a complex one-dimensional representation of Kτ ⋉ T , with T acting via the
unitary character associated to τ= (0, 0,p) and Kτ ∼= Spin(p⊥)⋉p⊥ acting in such a way that
p⊥ acts trivially and Spin(p⊥) acts with weight n ∈ Z. To describe the UIR as fields on Galilei
spacetime, we need to embed this one-dimensional representation into an irreducible (without
loss of generality) representation of K . We demand that the boosts act trivially, but must embed
the weigh-n representation of Spin(2) into an irreducible representation of Spin(3). As was
done in [10] for the Carroll particles, we may choose any complex irreducible representation
of Spin(3) of spin j ≥ |n/2|. The smallest such representation is that of spin j = |n/2| into
which the inducing representation embeds as the subspace with highest (if n ≥ 0) or lowest
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(if n ≤ 0) weight. Let us denote by V this complex (|n|+ 1)-dimensional representation with
T acting via the character

χτ(e
a+M−a−H+a·P) = e−ia·p . (169)

Let F : G → V be a Kτ ⋉ T -equivariant Mackey function and let ζ : G/G0 → G be the coset
representative ζ(t,x) = etH+x·P. Then the galilean field is given by

φ(t,x) = bF(ζ(t,x)) , (170)

where bF is the group-theoretical Fourier transform

bF(g) =

∫

R×C

2ids ∧ dz ∧ dz
(1+ |z|2)2

σ(s, z) · F(gσ(s, z)) , (171)

where σ(s, z) is given by equation (140). We calculate

ζ(t,x)σ(s, z) = etH+x·PS(z)es/p2p·B = σ(s, z)etH+(S(z)−1x−st/p2p)·P, (172)

where we have ignored terms multiplying M since they act trivially on massless representations
and we can essentially pretend that we are dealing with the Galilei group, where B and P
commute. Using equivariance of F and the fact that ψ(s, z) = F(σ(s, z)) we arrive at

φ(t,x) =

∫

R×C

2ids ∧ dz ∧ dz
(1+ |z|2)2

ei(ts−x·π(z))ρ(S(z))ψ(s, z) , (173)

where ρ : Spin(3)→ GL(V ) is the representation of Spin(3).
To describe the action of G on such fields, we let g = g(a+, a−,a,v, R) and we calculate

g−1ζ(t,x) = R−1e−v·Be−a+M+(a−+t)H+(x−a)·P (174)

= ζ(t + a−, R−1(x− a− (a− + t)v))R−1e−v·B , (175)

where we once again have ignored terms in M in the final calculation. Using equivariance of
the Fourier-transformed Mackey function (171), we find that

(g ·φ)(t,x) = bF(g−1ζ(t,x)) (176)

= R ·φ(t + a−, R−1(x− a− (t + a−)v)) . (177)

Since ∥π(z)∥2 = p2, we may insert zero in the form ∥π(z)∥2 − p2 in the integrand of equa-
tion (173) and using that any π(z) in the integrand is the result of differentiating with i∇, we
see that φ(t,x) obeys the Helmholtz equation

(△+ p2)φ(t,x) = 0 , (178)

with △ the laplacian in three-dimensional euclidean space. This is the only equation for the
inducing representation with n = 0, but for n ̸= 0, we have additional equations. This is
because the field φ is V -valued and in order to recover the UIR, we need to project to the
inducing one-dimensional representation, which corresponds to the kernel of J+ (if n > 0) or
J− (if n< 0), where

J+ =

�

0 1
0 0

�

, and J+ =

�

0 0
1 0

�

. (179)

Of course J± live in the complexification of so(3) and we extend the representation complex-
linearly. We proceed as in [10, Section 4.3].
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Let n> 0 for definiteness and consider

0=

∫

R×C

2ids ∧ dz ∧ dz
(1+ |z|2)2

ei(ts−x·π(z))ρ(S(z))ρ(J+)ψ(s, z) (180)

=

∫

R×C

2ids ∧ dz ∧ dz
(1+ |z|2)2

ei(ts−x·π(z))ρ(J+(z))ρ(S(z))ψ(s, z) , (181)

where

J+(z) = S(z)J+S(z)−1 =
1

1+ |z|2

�

−z z2

−1 z

�

. (182)

This is formally the same expression as in [10, Section 4.3] and we may borrow the results from
that paper. For helicity ±1

2 the equations are the massive Dirac equation in three-dimensional
euclidean space:

(/∂ ± ip)φ = 0 , (183)

where /∂ = γi∂i with γi the representation of Cℓ(0, 3) given by

γ1 =

�

0 −1
−1 0

�

, γ2 =

�

0 −i
i 0

�

, and γ3 =

�

1 0
0 −1

�

. (184)

Notice that either of these equations imply the Helmholtz equation (178). Similarly, as in [10,
Section 4.3], for helicity ±1 we obtain the field equation for topologically massive Maxwell
theory [40,41]

±pφi = εi jk∂ jφk , (185)

which again implies the Helmholtz equation (178).
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A Symmetries of the massive spinless Galilei particle

In this appendix we provide further details concerning the symmetries of the massive spinless
Galilei particle in Section 8.2. The starting point of our analysis was the following action

L[a+, t,x,v, R(ϕ)] = mȧ+ −
�

E0 +
1
2 m∥v∥2
�

ṫ +mv · ẋ . (A.1)

To obtain the global symmetries we restrict our generic symmetries (49) to the representative
at hand, i.e., we set p= k= j= 0 to obtain

δc+a+ = c+ , mQ = m , (A.2a)

δct
t = ct , EQ =

1
2 m∥v∥2 + E0 , (A.2b)

δcx
x= cx , ⇒ pQ = mv , (A.2c)

δcv
v= cv , δcv

a+ = −x · cv , δcv
x= tcv , kQ = mvt −mx , (A.2d)

δωR=ωR , δωx=ωx , δωv=ωv jQ = mx× v . (A.2e)
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The gauge symmetries are given by the stabiliser of α which for the massive spinless particles
is given by g(a+, a−,0,0, R). Infinitesimally they are given by the following transformations
(taken from (50))

δλ+a+ = λ+ , (A.3a)

δλt
t = λt , δλt

a+ = −
1
2∥v∥

2λt , δλt
x= vλt , (A.3b)

δλωR= Rλω . (A.3c)

One can explicitly show that they are indeed symmetries (up to boundary terms) of the ac-
tion (A.1).

The global transformation of a+ with parameter c+ are the time-independent part of a
gauge transformation. This piece of the action can also be written as L[p+, a+, u] = p+ȧ+−uφ
where u enforces the constraint φ = p+ −m. This action has no physical degrees of freedom,
but the equations of motion ȧ+ = u, ṗ+ = 0 and p+ = m, show that there exists a canonical
variable p+ that is constant along the trajectory and equal to m. Since p+ commutes with the
first-class constraint it is an observable.

After the canonical analysis we obtained the following action

Lcan[t, pt ,x, p, u] = pt ṫ + p · ẋ− u
�

pt +
1

2m
∥p∥2 + E0

�

, (A.4)

with variation

δLcan = ( ṫ − u)δpt + ṗtδt +
�

ẋ− 1
mup
�

·δx− ṗ ·δx

−
�

pt +
1

2m
∥p∥2 + E0

�

δu+
d

dτ
(ptδt + p ·δx) , (A.5)

and global symmetries

δct
t = ct , EQ = −pt ≈

1
2m
∥p∥2 + E0 , (A.6a)

δcx
x= cx , ⇒ pQ = p , (A.6b)

δcp
p= mcp , δcp

pt = −
1
mp ·δcp

p , δcp
x= tcp , kQ = tp−mx , (A.6c)

δωx=ωx , δωp=ωp jQ = x× p . (A.6d)

The Poisson brackets are given by {t, pt}= 1 and {x i , p j}= δi j and the gauge transformations
generated by the gauge constraint via δλF = λ{F,φ} are given by

δλt
t = λt , δλt

x=
p
m
λt , δλt

u= λ̇t . (A.7)

This is the remaining reparametrisation freedom in τ and we accompanied it by a transfor-
mation of the Lagrange multiplier u such that it is a symmetry of the action (A.6). A more
geometric way to write these gauge transformations is by transforming all canonical variable
as δλz = żλ and the Lagrange multiplier as δλu = d

dτ(uλ), where we see that the canonical
variables transform as scalars while the u is a scalar density (see, e.g., Section 4.3.1. in [36]).

After gauge fixing the action has the following form

Lcan[x, p] = p · ẋ−
�

1
2m
∥p∥2 + E0

�

, (A.8)

where the Hamiltonian is given by E = 1
2m∥p∥

2 + E0 and symmetries are now given by

δcx
x= cx , pQ = p , (A.9a)

δcp
p= mcp , δcp

x= tcp , ⇒ kQ = tp−mx , (A.9b)

δωx=ωx , δωp=ωp jQ = x× p . (A.9c)
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We used p= mẋ to write the action in configuration space

Lred[x] =
m
2
∥ẋ∥2 − E0 , (A.10)

where it has the following symmetries

δcx
x= cx , pQ = mẋ , (A.11a)

δcp
x= tcp , ⇒ kQ = tmẋ−mx , (A.11b)

δωx=ωx , δωp=ωp jQ = x×mẋ . (A.11c)
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