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Abstract

The field of quantum computing has grown fast in recent years, both in theoretical ad-
vancements and the practical construction of quantum computers. These computers
were initially proposed, among other reasons, to efficiently simulate and comprehend
the complexities of quantum physics. In this paper, we present a comprehensive scheme
for the exact simulation of the 1-D XY model on a quantum computer. We successfully
diagonalize the proposed Hamiltonian, enabling access to the complete energy spec-
trum. Furthermore, we propose a novel approach to design a quantum circuit to perform
exact time evolution. Among all the possibilities this opens, we compute the ground
and excited state energies for the symmetric XY model with spin chains of n = 4 and
n = 8 spins. Further, we calculate the expected value of transverse magnetization for
the ground state in the transverse Ising model. Both studies allow the observation of
a quantum phase transition from an antiferromagnetic to a paramagnetic state. Addi-
tionally, we have simulated the time evolution of the state all spins up in the transverse
Ising model. The scalability and high performance of our algorithm make it an ideal
candidate for benchmarking purposes, while also laying the foundation for simulating
other integrable models on quantum computers.
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1 Introduction

In the first decade of the XXI century, we witnessed an explosion of the quantum computing
field driven by the incredible potential that quantum computing exhibits to solve some in-
tractable classical problems [1]. Among these challenges, one of the enduring objectives of
quantum computing is the simulation of quantum systems. Although several classical strate-
gies exist for simulating such systems [2, 3], they often prove to be inefficient when dealing
with complex quantum systems. Consequently, the simulation of quantum systems demands
alternative methods for efficient execution. Here, quantum computers emerge as a promising
solution, since due to their quantum nature the simulation of strongly correlated systems is the
natural arena where quantum computers are expected to show a clear advantage over classical
ones, as Feynman stated in Ref. [4].

Despite having undergone considerable development during the last decade, quantum
computing is still in an early stage. The current state of quantum computing is known as
the Noisy Intermediate-Scale Quantum (NISQ) era [5]. The NISQ era has been characterized
by constrained-size quantum processors (containing 100 qubits approximately) with imperfect
control over them; they are sensitive to their environment and prone to quantum decoherence
and other sources of errors. Despite these challenges, researchers have successfully pushed
the boundaries of current quantum technology, particularly in the simulation of physical sys-
tems [6]. This progress has been largely enabled by the development of error mitigation tech-
niques and the optimization of quantum circuits [7, 8], where more hardware-faithful imple-
mentations have been prioritized over error-prone alternatives. Nevertheless, these methods
require thorough characterization of the underlying quantum hardware, making it essential to
develop scalable and standardized benchmarking techniques. Such benchmarks are crucial for
both companies and researchers to evaluate and compare the efficiency of emerging quantum
devices.

This paper presents a circuit suitable for the NISQ era, offering the capability to explore
intriguing phenomena such as quantum phase transitions. Our work consists of implementing
a quantum circuit that performs the exact simulation of a 1-D spin chain with an XY -type inter-
action. We programmed a set of Python libraries that allows the implementation of the circuit
for systems with a power of 2 number of qubits using Qibo [9], an open-source framework
for quantum computing. Moreover, Qibo is the native language of the Barcelona Supercom-
puting Center quantum computer, which will allow the users to directly test this algorithm
with real machines. The foundation of our work is based on Ref. [10, 11], where the steps
followed to design the quantum circuit rest upon tracing and implementing the well-known
transformations that solve the model analytically [12]. As a result, this technique can access
the whole spectrum, enabling us to simulate any excited or thermal state and its dynamical
evolution. In addition, this framework can be easily extended to other integrable models, in-
cluding the Kitaev-honeycomb model [13], or to systems whose effective low-energy behavior
can be suitably described by quasi-particles [14].
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This paper is organized as follows: In Sec.2 we describe the characteristics of the XY model
and solve it analytically. Moving to Sec.3, we revisit the method introduced in Ref. [10] to
construct an efficient circuit that diagonalizes the XY Hamiltonian. We then present the circuit
employed for simulating spin chains of n = 4 and n = 8 qubits. Next, in Sec.4 we design
a quantum circuit tailored for exact time evolution. Our simulations, utilizing the proposed
quantum circuit, are detailed in Sec.5. Finally, the conclusions are exposed in Sec.6 and the
code is available in Ref. [15].

2 The 1—D XY model

The XY model is derived from the Heisenberg model [16] by introducing an easy-plane
anisotropy. Those models are widely used to study critical points and phase transitions of
magnetic systems within the condensed matter field. The 1 — D XY Hamiltonian can be writ-

ten as . .

Hxy =J(Z 1%0?01?11 +1Tyofof+1)+k20f, D
i=1 '

where n is the number of spins in the 1-D spin chain, O'; with i = x, y,z are the Pauli matrix

acting on the site j, J determine the behavior of the ordered phase, ferromagnetic for J < 0

and antiferromagnetic J > 0, y is the anisotropic parameter and A represents the strength of

the transverse magnetic field.

One important feature for which the XY model stands out is that it exhibits a quantum
phase transition [17,18]. These transitions occur at zero temperature and stem from the
competition of the different terms within the Hamiltonian, regulated by a non-thermal physical
parameter of the system. At zero temperature, each term presents a specific ground state, and
the properties of these ground states dictate the phase of the system.

Specifically for the 1—D XY model, the Hamiltonian presents three terms with ground states
that exhibit different phases. The first two terms parametrized by J and y are o} o7, and
al?' O'ZV +1- Both by themselves correspond to the well-known Ising model, in which the ground
state is ferromagnetic or antiferromagnetic, depending on the sign of J, and points respectively
to the x or y axis. Contrarily, the ground state of the third term o7, parametrized by A is
paramagnetic and points to the z axis. As a result, the ground state will show ferromagnetic
or antiferromagnetic behavior when |J| > A and the direction of the spin will be mediated by
y. However, the ground state will show paramagnetic behavior for |J| < A. In Fig.1 there is
shown the phase diagram at T = 0 of the 1-D XY model for J = —1.

In the next subsections, we derive the analytical solution of the XY model. However, be-
fore starting is convenient to rewrite Eq.(1) it in terms of spin ladder operators o*(™) which
increase(decrease) the projection of the third component of the spin S, by 1. The o and o”
operators then can be written as

c*=0"+0",

oY =—i (a+ + (7_) s

c?=20T0" —1. (2)
Hence, the Hamiltonian from Eq.(1) becomes

n—1 n
Hxy=J (Z ofo ool +y(ofol + O'i_O'l.__H)) + )\Z (20t0™=1). (3
i=1 i=1
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Figure 1: Phase diagram of the quantum XY model.

Furthermore, it is worth remembering some properties from the Spin %, which will be used
later on in the next steps.

ot (—o*)=o0o", o (—o¥)=—-0", @
—ofct=—0", —ofc  =0".

2.1 Jordan-Wigner transformation

Generally, quantum spin objects are notoriously difficult to deal with in many-body physics
because they neither fulfill fermionic nor bosonic algebra. For this reason, the first step to
diagonalize XY Hamiltonian consists of applying the Jordan-Wigner transformation [ 19] which
maps the spin operators ¢ into spinless fermionic modes c.

The Jordan-Wigner transformation takes advantage of the similarities between fermions
and spin operators. The existence of the stated similarity can be noticed by how both operators
act on their respective basis, where fermionic basis |1) and |0) respectively corresponds to
having one or no fermion in the state (no fermion state is also called void), while |+) and |—)
means having a spin pointing up or down in the z axis. As shown in Table 1, there is a clear
equivalence between |0) and |—), and the same with |1) and |+).

Table 1: Fermionic and spin operator’s behavior when acting in their respective basis.

A T 1
Fermions Spin 3

"oy =11) | o*|-) =1+)
c'y=0 | of|+)=0

cl0)=0 o |—-)=0

cl)=10) [o"[+) =)
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However, there is also an important difference between them, their commutation relation-
ships. The commutation relationship followed by c*(™) and o~ operators are

[o].,071=0, i#7,
{of,07}=1, i=j,

(5)

while the operators ¢ and ¢’ obey the fermionic algebra {c;r, ¢j} =6
To solve this problem, Jordan and Wigner introduced an operator, called the string operator

™ T This operator counts the number of |+) states or fermionic particles in the system
and ensures the addition of a minus sign whenever two fermions are interchanged, thereby
enabling the correct mapping between spin and fermionic operators.

Thus, the Jordan-Wigner transformation is defined as

i —T o'
¢l =0e Y= ,
R I
C; :eTEIZj:lGj gj O-j_’ (6)
T — =
¢ =070},

where the ¢ and clT are the new spinless fermionic operators. Note that cr;raj_ and 0:’0;
commute

[ofo7, o 1==6;07, [of07, 0;’] = 5ijo;.L, [afai_,o;foj_] =0. @)
Therefore,
e:l:inz;n:n ofo; _ l—[e:tma (8)
j=n
The next step is to develop the exponential operator
(O] SN -\ -
ZZ_ (£im) (a;“oj) =1—20}L0j z—oj. 9)

=0

In consequence, sometimes the Wigner-Jordan transformation is also written as

i-1 i—1
T_ o+ _ .z o _ -z — T =
¢; =0 || o7 |> i = || oy 05 CCi=0;0;. (10)
=1 =1

For practical reasons, it is interesting to write down the inverse transformation

i—1 (11)
O-i_ = l_[—()"lz c;=e mZ],la] I; Ci,
1=1
— 9T
o; =2c/¢;—1
Now the transformed spin operators obey the canonical fermion algebra
{CIJ ]} l] > {ClJ ]} - {Cl > ] (12)

as it is shown in Ref. [20].
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Subsequently, let’s derive some useful relations. Using Eq.(12) we can to compute the
following commutator

[ Cis J ]] = (13)
Additional useful commutator relations are
[c/ci el =—6c, [c/ci, c}-] =5;c,, (c/c)?=clc;. (14)

Applying the different properties derived from the expressions before and c;c; = 0, one can
compute '
{1—-2c/c;,¢;} =0, {1— 2c Cis l}— (15)

Now, using the properties from Eq.(14) and Eq.(15), one can compute the commutation rela-
tionship between the string operator described in Eq.(8) and the new fermionic operators

. oom i T N b
[eilnzj:ncjcj,cl'] _ [eianj:nchj’Cif] =0, i ¢ [Tl, m] ,

IR g1 (] ? ? ’

Jordan-Wigner transformation in the XY model

Here, we apply the Jordan-Wigner transformation into the elements that appear in the XY
Hamiltonian, from Eq.(3). For the o/ o7, | term,

it
of ‘71+1 ¢iCiv1o (17)

where we have taken in count that C; ¢ = 0. Likewise, one can calculate the o; o ; term

001 =Cit1Ci- (18)
Lastly, the 0o, and o 0}, can be transformed
+ - T T
O Tip1 =€ Civ1s 07 01 = CiaCi- (19)

Boundary conditions

Until now, we have not mentioned anything about what happens in the boundary terms o, ;.
Given the finite nature of our simulations, it becomes imperative to establish certain bound-
ary conditions for our system. Specifically, we’ve implemented periodic boundary conditions
(PBC). However, it’s worth noting that we've opted for a direct application of PBC within
the fermionic space. This choice translates to the relationship between fermionic operators,
namely, ¢,,Cp41 = CuC1-

To add this term to our XY Hamiltonian, first, it has to be mapped into the spin space using
the Jordan-Wigner transformation. Unfortunately, this transformation maps the PBC to PBC
or antiperiodic boundary condition (APBC) depending on whether the system has an odd or
even number of particles or |+) states. Consequently, the boundary term of our Hamiltonian
must present this parity dependence to correctly be mapped into PBC in the fermionic space,
this can be achieved using the 07 0% ---0%_ 0, and 0y 0% ---0%_, 0¥ terms from Eq.(1). Then

n—1 n—1
the Hamiltonian simulated in this work reads

14y 11—y Y
_ ¥y E:
Hxy —J( E S 0 0t 5 Y O'i+1) 12,0
i=1 =1
1+ 1-
+1—Lolo3- 0% o +1=—Tofos-0h o} (20)
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The first two terms correspond to the 1—D XY Hamiltonian, whereas the last two terms belong
to the boundary conditions. These boundary terms can be substituted with the conventional
periodic terms o, o7 and oy 0{ for states with an even number of spins pointing up, and the
same terms with a negative sign for states with an odd number of spins pointing up. It is worth
keeping in mind that even the Hamiltonian we are working on is not strictly the same as the
XY model, in the thermodynamic limit the boundary conditions do not play any role and we
recover the same results.

Now we will demonstrate that when the Jordan-Wigner transformation is applied to
this term, the PBC is recovered for the fermionic operators. First, we need to write the

Y <2 ... 2 y X 2 ... 2 X : + -
0,050, 10y and 07075 -+-0_,0, using the o™ and o~ operators
Y % ... 2 Y — _ st ~2... 52 + + <2 ... 2 —
01090, 10, =—0,0,°:0,_ 10, +0,0,°:0,_,0,
- .z z +_ =2 2 -
+0,0500, 40, 0,050, 10,, (21)
X .z Z X _ 2, 2 + + 2, 2 -
010370, 40, =0,0,:0, 10, +0,05:0,_,0,
— 32 4 + - 2 4 —
+o0j05 0% O +0[05 05 0.

Next, the Jordan-Wigner transformation is applied to the different terms that appear in
the above expression using the properties shown in Eq.(4), 0*c* = 1 and we will restrict our

system to have an even number of qubits (n). First let’s compute the term O'I—O'z eoi o,
n—1
+ -z, .. 3 +_ T2, .. 2 ozt T T
0,050, 10, =050, | | o] |cp=¢¢,- (22)

=1

The rest of the terms can be computed following the same steps, the results are summarized
in the following expressions

+ 2. ., 3 + _ T + .z ..z - T

01050, 10, =66 0105°°0,10, =¢6ns (23)
— <% ... 52 + _ T — 5% . z -

005 "0, 10, =clcq, 005 "0, 10, =CnCy

Subsequently, the boundary term reads
1+y -y
Y <z z y X 2 z X
Hpe = 5 9192777919 + 0703°°0p 10, (24)

_ T T it _ t Tt
=cicptcicty (cnc1 + clcn) =Cpp1Cn T CCns1 T Y (cnanrl + ancn) ,

where now is easy to see that this Hamiltonian fulfills the PBC in the fermionic space.

2.2 Fermionic Fourier transform (fFT)

Combining all the solutions outlined in the previous sections yields the Hamiltonian corre-
sponding to the XY model but now is quadratic in fermionic annihilation and creation operators
c and ¢' instead of quadratic in spin operator ™ and o~

n n
Hyw =J Z (c;rciﬂ + cg;rlci +y (c;rclrl + ci+1cl~)) + AZ (2c§ci - 1) . (25)
i=1 i=1

Hamiltonians that are quadratic in fermionic creation and annihilation operators are ubiqui-
tous in condensed matter physics. They describe systems of non-interacting fermions and also
arise in the mean-field treatment of more complex interacting systems. Diagonalizing such
Hamiltonians is a well-established procedure, typically accomplished using spatially depen-
dent couplings and techniques such as the Bogoliubov transformation [21,22] and fermionic
Gaussian states [23]. In translationally invariant models, such as the XY model, the Fourier
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transform is particularly useful, as it partially diagonalizes the Hamiltonian by making it local
in momentum space. However, this transformation often introduces anomalous terms that
couple different momentum modes, thus requiring a subsequent Bogoliubov transformation
to achieve full diagonalization.

In the second quantization, the Fourier transform is defined as

. 21k . .27k .

1 2 & 1 2 &
Cj=—= bret ™/, ¢l =— be T/, (26)
’ m k:gﬂ ’ m k:;:H ¢

where b;; and by, are the creation and annihilation operators of the fermionic Fourier modes.
The discrete k values are acquired establishing the translational invariance of the system
by PBC

lx+n)=1x),
- 21k - 2nk’ 27)
Zel T (x+n)|k):Zel o (x)|k/>. (
k K

Then, we multiply at both sides by (k|, and applying (k|k’) = & s

- 21k
elT

. 21tk . 21kn
(x+n) — 15 (x) i

i e

(28)
2mkn =27m - k=m,

n

where m is an integer. Because the number of qubits (n) is even,as mentioned in Section 2.1,
we can choose our k values to be

n

k=—D41,-2492....-101,.... 212, (29)
2 5 5

n
2
In the case where the number of qubits is odd, from Eq.(22) it can be seen that an extra “—”
sign appears in the final result obtaining APBC —CICZ. Then applying translational invariance
we get that the k possible values are the same as in the previous case. As surprising as it may
seem, one can expect this result if one thinks in terms of sinusoidal functions. If the period of
the sinusoidal function is L we will recover in x = 0 the same result as in x = L, hence we
have PBC. Nonetheless, if our lattice ends in x = % then we will have the same absolute value
inx=0and x = % but with a different sign. As a result, we have APBC. In the end, the n odd
case for APBC must have the same k values as 2n with PBC.

Even though we will be only focusing on the even number of qubits case, the procedure
followed for the odd case will be equivalent to the one we will describe for the even case. One
can find more information about the general case and boundary conditions in Ref. [24].

Fermionic Fourier transform in the XY model

Before computing the new terms of the XY Hamiltonian, let us first recall the fundamental
properties of the FT

1 L2nk (L s/ 1 . 2n(k—q) .
ﬁZe’"(’ ]):51,1” NZel =6, (30)
k J

wherle 6; j and & 4 are Kronecker deltas, which are 0 when j # j' or k # q and 1 when are
equals.
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By applying Eq.(30) to each term appearing in Eq.(25), we obtain the FT of our Hamilto-
nian,

n n % /

: 2k 1 omk s , -2k
Don =2 = Z ble™ T | 75 24 b U =D b, @D
j=1 j=1 k'=—3+1 k

: (1 ; 25k 1 2k’ 2mk

CipqCi = — bye' SO — bueln i |= isin(—)b b_;, 32

Z j+1%j ( '\/H; k Z n k k ( )

k k

27'ck Zﬂtk/ . 27Tk +
bJr ===+ | — P ol (_) bTb' , (33
)( E = E 1SIn - Ok (33)

k

e 2R+ 1 b,eiz’;k/i =N b e i (34)
)(,Z ‘ 2T

nk “k ¥
Z Bl (1))(\/_2 byei s ):Zb;(bk. (35)
k

The transformed Hamiltonian becomes

%FT:Z[z(A—FJCOS(#))b bk+lJysm(2 )(bTb' + bib k)] (36)

k

-]
S
o

= 3

. .
i M: i
I
o
-
RN
+
+
Il

H
‘NO.'
t
QII
M= 1M
~
5l
1

\Aq~
)
Il
M=
~/
Bl

~
Il
-
~
Il
-

As a result of working in momentum space, the XY-Hamiltonian does not contain mixed
terms between first neighbors, however, it is not diagonal yet because it contains terms with
opposite momentum k and —k coupled.

For future calculations, it is beneficial to rewrite the Eq.(36) making use of the cosine
function parity (cos(a) = cos(—a)), acknowledging that the summation takes over positive
and negative k values and without carrying the constant term An. Thereafter, the Hamiltonian
is expressed as follows

H’FT=Z[(A+Jcos(2 ))(b‘bk+b bk)+lJysm(2 )(b b+ byb k)]
k

| (37)
= [ex (bibe—b_yb’, +1) +iA(bjb’, +bib_)] .
k

The last term can be rewritten in matrix-vector form, then the expression becomes

+ (5% lAk bk
so oo 2T o

k

Here, the definitions of ¢, = A +Jcos(2—:fk) and A, =Jy sin(%) serve the purpose of en-
hancing the clarity of the upcoming mathematical development.

2.3 Bogoliubov transformation

The last step to diagonalize the Hamiltonian completely is the Bogoliubov transformation.
This transformation is used to diagonalize quadratic Hamiltonians, for instance, it is used in
the Superconductivity BSC theory or solid-state physics in Hamiltonians described by phononic
interactions [25]. It can be understood as a change of basis, where the new base decouples
the opposite momentum terms.
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Specifically, the transformation will have a form such as

a = Uy bk + Vi blk 5 a_jp =U_j b—k + V_k bli 5 (39)

T T * Tk g T *
a, =ugb, +vib_y, a, =u, b, +vi b,

where a, and qy are the Bogoulibov fermionic annihilation and creation operators associated
with pseudo-momentum k, while aik and a_; are the Bogoulibov fermionic annihilation and
creation operators associated with pseudo-momentum —k.

Because we are working in a fermionic system, we have to impose the anticommutation
relationship of these new operators

{ak,a;i}=1 - g + v =1, (40)
{ag,a_}=0 — WV +viu_, =0.
To fulfill the second relationship, we use the condition v_; = —v. This last condition along

with Eq.(39) could be used to reverse the fermionic operator transformation. The old fermionic
operators as a linear combination of the new fermionic operators are

— T _ T
by =upap—via, b_i = uga_; +va,, 1)
R . o «
b, =wa, —via_y, b, =wa’, +via.

For our purposes, it is useful to arrange the last expression in the vector-matrix form

bk _ ui —Vi ag
-3 )

The next step consists of passing from a non-diagonal Hamiltonian H ¢ to a diagonal one
by applying a change of basis matrix, which transforms the b, to a; operators.

. ¥ U Vi € AR\ (W —Ve || %
HBog—Zk:(ak a—k)(—v;ﬁ u;i)(_mk —ek) (VZ we J\al ) )

The Hamiltonian matrix written in terms of a; operators becomes

ek(luk|2—|vk|2)+iAk (ukv,’:—uivk) —26kukvk+iAk (ukuk—l—vkvk) (44)
—2€ U vy — 1A (uiui +vivg —(ek (|uk|2 — |vk|2) +iA, (ukvz - uivk)) )

The Bogoliubov modes that diagonalize the Hamiltonian are found by vanishing the non-
diagonal terms. For this purpose, it is convenient to express u; and vy as

u = e cos(%), v =e®2 sin(%). (45)

Substituting the last expression in the non-diagonal term of Eq.(44) and making it vanish, one
gets the expression

6 0
— 2€ke¢1+¢2 CcoS (Ek) sin (?k) + iAkukuk — (_lAk) Vkvk =0 —

0 0 . (0 . (0 (46
—2e et cos( k ) sin (Ek) + Are?172 cos? (?k) — Age??272 gin? (Ek) =0.

2

10
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If one wishes to vanish the phase term in the expression, the relation ¢ +¢,=2¢+5 =2¢,—%
must be fulfilled. Without loss of generality, the relative phase can be chosen as ¢, = 0 and
$1 = 5. Accordingly, the new fermionic operators alz and q,, are

Qk . . ek 1 Gk - Qk .
a; = COS(E)bk +1 sm(;)bik, a_j = Cos (E)b_k —lSII'l(E)b;< ,
O, + 0 0 0
i k .. k i T\t .. k
si=eos( 5 Jimisin( G Jos el meos( 5ol isin( 5 Jo

In addition, using the expressions sin(20)=2 cos(8)sin(0) and cos(26)=cos?(0)—sin?(),
the Eq.(46) becomes

(47)

tan(6;) = ?—: ) (48)

It is now possible to obtain the required expressions to compute the diagonal energy terms
(Ex)

0 0
gl — [vi|? =C052(—k)—sin2 (—k) =cos(6;) = ! = €k ,
2 2 Vitan(6) fe+a2

i A

2 \Je+ Al (49)

v = U ve = ésin(@k) - %tan(@k)cos(Qk) -

* K % L Ak
UV, =W v, =—-——,
2 Ver+ Az
Ep=4/er+ A2,

Therefore, Eq.(43) has the diagonal form

- Ek 0 ak .-
/H/Bog = Z (ali Cl_k) ( 0 _Ek) (a-'r ) = ZEkalak — Eka_ka'_k
k - k

k

%
=ZEk(azak+aT_ka_k—1): Z 2Ek(aZak—%).
k

k==+1

(50)

Finally, the diagonal Hamiltonian has the form

H= Z [ZEk(azak—%)+ek—l], (51)

k==+1

[N

2 2
where E;, = \/ (7L+J cos(%)) +(J Y sin(z—ﬁk)) are the energies related to having one
fermion in the Bogoulibov mode k or —k. As a result, we have diagonalized the XY Hamilto-
nian.

3 Quantum circuit to diagonalize the XY model
In this section, we introduce a circuit U,;; designed to convert the XY Hamiltonian Hyy into its

diagonal form Hsyy, by i
HXY - Z/{diSHXYuC'liS . (52)
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Usw Urr UBog

Figure 2: Schematic representation of the disentangling quantum circuit Uy;, for
n = 8 qubits.

Using this transformation, we can obtain all eigenstates and any superposition of them in

the spin basis, by preparing a product state in the computational basis and applying L{;i o

|XY eigenstate) = M;S |Comp. basis) . (53)

Furthermore, we can reverse this process. Applying U;s to states in the computational
basis allows us to obtain any spin state represented in the diagonal basis.

Unfortunately, constructing these disentangling circuits U;;, for an arbitrary Hamiltonian
is a challenging task. However, for models that present analytical solutions, we can try to
map each step into a quantum operation. For the case it concerns us, the XY Hamiltonian
needs three operations: i) Jordan-Wigner transformation, ii) Fourier transform, iii) Bogoli-
ubov transformation. In the end, the disentangling circuit will exhibit the structure

Ugis = UBog.UFTUJW . (54)

In the following section, we detail the construction of each Uy, operation using basic
quantum gates.

3.1 Jordan-Wigner circuit

The Jordan-Wigner transformation maps the spin states to a fermionic spinless mode. In terms
of the wave function,

|¥) = Z Wi i e in) = Z Wi i (CDH "‘(C,Di" 0), (55)
0,1

1)0in =0, i1,00ip=0,1

where i; represent the state i of the qubit at position j, with j going from 1 to the number of
qubits n. In spin and fermionic space, the i can take values 0 or 1. In spin space, |0) = |+) and
|1) = |-), while in fermionic space |0); means the j-th position is not occupied by a fermion,
and |1); means having one fermion.

Notice that the coefficients ¥; _; remain unchanged under the transformation. Thus, in
theory, no additional gate is required to implement the Jordan-Wigner transformation. How-
ever, two important caveats must be addressed here.

The first one arises when two-qubit states are exchanged using a SWAP operation. Since
we are dealing with fermions, exchanging two fermions requires introducing a minus sign to

12


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.95

SC|| SciPost Phys. Lect. Notes 95 (2025)

account for their antisymmetric nature. This adjustment is implemented using the fermionic
SWAP operation (fSWAP). In matrix form, the fSWAP is represented as

1 00 O
001 O

fSWAP = o010 ol (56)
0 0 0 -1

which can be decomposed into a standard SWAP gate followed by a controlled-Z gate.

A second issue concerns a discrepancy in notation. In quantum computing, the spin states
that are eigenstates of o, with positive and negative eigenvalues are conventionally denoted
as |T) = |0) and |]) = |1), respectively. In contrast, in many-body physics, the symbol |0) (or
sometimes |Q2)) typically denotes the vacuum state. Since the Jordan-Wigner maps ||) into [£2),
an X gate has been introduced to keep the standard convention and avoid potential confusion.
As a result, the circuit is initialized with a layer of X gates applied to each qubit.

We want to stress that this decision is primarily for consistency with established conven-
tions. Choosing not to apply X gates is a valid alternative. In such a case, the unitary transfor-
mation required to disentangle the XY model will differ slightly from the approach described
in this work. However, the final result should remain unchanged.

3.2 Fermionic Fourier transform circuit

The next step involves transforming the fermionic modes into momentum space using the
Fourier transform. When the number of particles is a power of two, meaning n = 2™ where
m is a natural number, the fermionic Fourier transform can be implemented by following the
classical fast Fourier transform scheme [26].

The idea is based on the work of Andrew J. Ferrys in Ref. [27]. First, we decompose the
n-qubit Fourier transform in two parallel 5-qubit Fourier transforms, one acting upon odd and
even modes respectively

—1 1 n/2—1 n/2—1
+ .2 . "
ORGP WL T WL
22 4 E ]+1
j=0 2< j'=0 j'=
57
n/2—1 1 n/2—1 ) 57)
2 T/
E elnai’ke r ek — E elanl kel
\/— \/f 2j/+1
j’=0 2 j’=0

To avoid confusion with the operators defined earlier, we have chosen to use the tilde
symbol to denote the operators derived from the FT in this section. In this context, b, is

equivalent to the operator bz defined in Sec.2.2.
We can now define a new set of fermionic operators for even and odd sites a; = ¢, and

d; = cyj41. The fermionic Fourier transform of those operators using 5 points will be

1— ]k v Ejk g7
e , Z dl. (58)
2 j=0 z j=0
If we now insert the prior definition in Eq.(57)

- 1 0 S 2T 7~ 1 - 2277, ~

T =T B 31 [ P BN £ 3 1
b=~ lat+e v dl], by, 7 [a) — ek ], (59)
where in the last equality we have used the periodicity of the Fourier transform. In the case

of 5 Fourier transform the period for k values is 3, so &;+ﬂ = &;; and exactly the same for cNill
operator. ’
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Equation (59) shows us that we can obtain the values of the n qubit Fourier transform
(by) from a 5 (ay, dy) qubit Fourier transform. In the case of systems with n = 2™ qubits, this
process of division can continue iteratively until the Fourier transform is reduced to a 2-qubit
operation. Notably, the 2-qubit Fourier transform has the same expression as Eq.(59) with
k=0.

At this stage, we have established the interplay between b, and their counterparts a; and
di. Nevertheless, our primary goal is to derive the matrix that defines the relationship be-
tween |k), |k +5), and |k), |k)4 states. This matrix can be determined by recognizing that
the vacuum state remains unchanged under the transformation, as the Fourier transform does
not mix annihilation and creation operators in its definition. Hence, the remaining states can
be attained by applying the creation operators to the void state, explicitly

* void vector (0 fermions) [0)y, [0)x, 2 = |0); 10),
R o+ . _ L _ ZTT[k

apply b, to obtain [0}y, [L)i,+3 = 7 [ 1)k, [0}, =€ ¥ [0), 1)y, ]
. i : _ 1 ik

apply b, to obtain |1}, [0)y,+1 = 75 [|1>ka [0)y, +e" < [0), |1>kb] ,

* apply be]'<+§ to obtain [1)y, (1), 11 = —ei Tk |k, 1)k, -
Here, the subscript k; means that this vector belongs to the n-qubit Fourier space, k, indicates
that the vector is associated with the n even-qubit Fourier space, and k; denotes that the vector
belongs to the n odd-qubit Fourier space.

Deriving the matrix that performs the mentioned operation is a straightforward process.
For the remainder of this work, we will refer to this matrix as the “General FT 2-qubit gate” or
F/. It takes the following form

—e i 1
0 =5— & 0
Fi= , (60)
et Ak 1
0 7 7 0

\0 0 0 —ei¥kJ

where the F}' matrix transforms the |k), |k), vectors into |k). |k + 5) . Additionally, the 2-qubit
Fourier transform is recovered whenever k = 0, which is represented as F,.

It is key to bear in mind that there is a gap between the gates that can be applied theoret-
ically in a quantum computer and those that can currently be implemented on real devices.
Therefore, all gates must be decomposed into basic gates that can be implemented in a quan-
tum computer. In certain cases, analytical schemes exist for such decompositions [28]. For
the case F', the decomposition into basic gates is shown in Fig.3.

Up to this point, we have found the 2-qubit gate transform. Now we will describe the circuit
needed to perform the FT of n qubits. The approach involves decomposing the n qubits into
the even and odd sectors, followed by applying the fermionic Fourier transform of 5 qubits.

Once the 5 Fourier transform is complete, the F,! gate is applied to the i qubit and the
i+ 5 qubit. This process is repeated iteratively until the FT is reduced to 2-qubit operations,
which will be performed by F,. Nevertheless, depending on the connectivity of the qubits,
additional fSWAP operations may be required. In this work, we assume a linear connectivity
model, where qubits are arranged in a 1D configuration.
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Figure 3: The diagram illustrates the decomposition of the building block of F
(Eq.(60)), where ¢} = %ﬂk

lx = 0)— — — — |k=0)pr
F, Fy
lx = 1)— — —  — |k=1)pr
n=4 Sort. n =4 Reor.
lx = 2)— — — —  |k=2)pr
F, F}
|X:3>— 1 1 ] —— |k:3>FT

Figure 4: Scheme followed to perform the fermionic Fourier transform (fFT) for the
case of n = 4 qubits. The first step of the algorithm corresponds to the qubit sorting
(Sort.), then the fermionic Fourier transform for n = 2 (F,) qubits is applied and
performed into the even and odd sectors. The next step is the Fourier states reor-
ganization (Reor.) and finally, the General Fourier transform 2-qubit gate (F,’:) to
recover the k and k + 2 states.

Next, we will describe the algorithm used to construct the fermionic Fourier transform
circuit for n qubits assuming linear connectivity and that the first qubit is numbered as 0. This
circuit is decomposed into four phases:

1. Qubit sorting (Sort.): In the initial step, we categorize the qubits into even and odd
sectors using fermionic SWAP gates whenever we exchange two qubits.

2. % Fermionic Fourier transform (fFT): The second phase entails the application of the
Fermionic Fourier Transform circuit for 5 qubits into the even and odd sectors.

3. Fourier states reorganization (Reor.): Subsequently, we undertake the reordering of
the resulting states to group the k,,., and k44 states.

4. General Fourier transform gate application (Fl?): The final phase involves the appli-
cation of the general Fourier transform gate F;' to the k.., and k,qq states. This step is
performed to recover the k and k + 3 states.

Figure 4 and Fig.5 represent the diagram of the fermionic Fourier transform for the case of
n = 4 and n = 8 qubits respectively. Both pictures show the different parts of the algorithm
described above.

Qubit sorting

The initial step involves the segregation of qubits into even and odd sectors through a series
of fermionic SWAP operations, a process that occurs throughout 5 —1 layers. In the first layer,
precisely 5 — 1 fermionic gates come into play, each consecutively applied, starting with qubit
1. Subsequently, in each successive layer, one fewer gate is used than in the previous layer,
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lx = 0)— — — —  —lk=0)pr
Fg
lx = 1)— — — — —lk=1)pr
n=4 fFT
lx = 2)— — — —  —lk=2)pr
F}
lx = 3)— — — — 1k =3)pr
n=8 Sort. n =8 Reor.
lx = 4)— — — —  —lk=4)pr
Fy
|x = 5)— ] ] ] —lk =5)pr
n=4 fFT
lx = 6>— 1 ] ] —lk = 6)FT
Fy
lx = 7>— 1 ] ] —lk = 7)FT

Figure 5: Scheme followed to perform the fermionic Fourier transform (fFT) for the
case of n = 8 qubits. The first step of the algorithm corresponds to the qubit sorting
(Sort.), then the fermionic Fourier transform for n = 4 (fFT) qubits is applied and
performed into the even and odd sectors. The next step is the Fourier states reorga-
nization (Reor.) and finally the general Fourier transform to recover the k and k + 4
states.

following a sequential progression starting with the next qubit after the initial qubit of the
preceding layer. Moreover, in Algorithm 1, we presented the algorithm in pseudocode:

Algorithm 1 Qubit sorting circuit

Require: num_qubit =2™
Ensure: gc_sorting — Quantum circuit which separates the qubits in even and odd sectors.
num_label = 5 —1
num_gates = 5 —1
qubit _init =1
for i =1 to num_label do
count_qubit = qubit_init
for j=num_gates to 1 do
add fSWAP into count_qubit and count_qubit +1
count_qubit = count_qubit +2
end for
qubit_init = qubit_init+1
num_gates = num_gates —1

end for

To enhance the accessibility and comprehensibility of the algorithm lecture, we have illus-
trated the circuit for the scenario where n = 8 in Fig.6. This visualization aims to make the
algorithm more user-friendly and easier to use.
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|x =0) |x =0)
|x =1) |x =2)
|x = 2) $ lx = 4)
|x =3) |x = 6)
|x = 4) JA, $ lx=1)
|x =5) |x =3)
|x =6) |x =5)
lx =7) lx =7)

Figure 6: Qubit sorting circuit for the case of n = 8 qubits. Here, the fermionic SWAP
gate has been represented using the same diagrammatic symbol as the SWAP gate.

|X=0)54 *|k=0)e
|X = )e_ _ *lk = 1)6
=2 — "I L k=g,
|X = )e_ *lk = 3)6
|X:0)04 *lk:(»o
|X = 1)0_ *lk = 1>o
= FT
|X:2)0_ ! 4f *lk:2>o
|X:3)0— *lk:?’)o

Figure 7: The 5 fermionic Fourier transform circuit for the case of n = 8 qubits, the e
subindex stands for even while o stands for odd. We use the periodicity of the Fourier
transform, where the k = 3 state is equivalent to k = —1 state.

n . . .
5 fermionic Fourier transform

The next step involves applying two fermionic Fourier transforms to 5 qubits, separately for
the odd and even sectors. As a result, the transformed vector states correspond to momentum
states labeled by k, ranging from —7 + 1 to 7 included.

It is important to highlight that Fourier space is periodic, specifically with a period of 3.
This periodicity allows the k states to also be labeled from 0 to 5. In the specific case where
5 = 2, the fermionic Fourier transform reduced to the application of F2, as described by

Eq.(60). Figure 7 illustrates the circuit scheme for the case of n = 8.

Fourier states reorganization

The reorganization phase is designed to group the newly obtained 5-qubit Fourier states by
pairing together the k states from the even sector with the corresponding k states from the
odd sector. This is achieved by the inverse circuit developed in the qubit sorting step. Figure
7 illustrates the resulting circuit for the n = 8 case.

General Fourier transform gate application

At this stage, although we have obtained k states resulting from the 5-qubit fermionic Fourier
transform, we still need to recover the k states for the full n-qubit fermionic Fourier transform.
To achieve this final step, the F;' gate must be applied to the |k,) and |k,) states. This operation
recovers the |k) and |k + ) states associated with the n-qubit Fourier transform.

17


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.95

SC|| SciPost Phys. Lect. Notes 95 (2025)

|k = 0), |k = 0),
|k =1), |k =0),
|k:2e $ |k: e
k=0 k=2

Figure 8: The Fourier states reorganization circuit for the case of n = 8 qubits, the e
subindex stands for even while o stands for odd. Additionally, the SWAPs represented
are fermionic SWAPs.

|k =0), |k =0)pr = |k =0)pr
Fy

|k =0), |k =4)pr = |k =4)pr

lk=1), . lk=1)pr =k =1)pr
Fy

lk=1), |k =5)pr = |k =—=3)pr

k= 2), |k =2)pr = |k =2)pr
Fy

|k =2), |k =6)pr = |k =—2)pr

|k =3), |k =3)pr = |k =3)pr
F3

|k =3), |k =7)pr = lk=—1)pr

Figure 9: The General Fourier transform gate application circuit for the case of n =8
qubits. Furthermore, we have illustrated the equivalence between the Fourier states,
denoted by the k labels ranging from —5 + 1 to 5 or from 0 to n—1.

Algorithm 2 General Fourier transform gate application circuit

Require: num_qubit =2™
Ensure: qc_general FT — Quantum circuit which recovers the n Fourier transform states |k)
and |k + 5) from the 5 Fourier transform states |k,) and |k,).
num_qubit =0
for k_values=0to 5 —1 do
Add the F}! gate to qubit num_qubit and num_qubit + 1 with k = k_values.
num_qubit = num_qubit + 2

end for

We have illustrated the circuit for the scenario where n = 8 in Fig.9, to clarify the algorithm
described.
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3.3 Bogoulibov transformation gate

The Bogoliubov transformation described in Eq.(47) mixes creation and annihilation operators
from k and —k Fourier modes. Consequently, the vacuum changes after implementing the
Bogoliubov transformation. The new vacuum state |£2,) can be found in relation to the Fourier
basis |0), |k), |—k) and |—k, k) imposing

O O\ ot o (O et e (O Lt o

ag Q)= (cos(;)a—cos (E)yb'_k +151n(3)5b'_k +151n(3)ab'_kbl'<) |0) =0
Gk 9k T Gk . . Gk R

a_; |Qo)= (cos(?)ﬁ +cos(?)yb;< —lsm(?)Sb;{ —151n(?)/3b;<bik) |0) =

From the last equation, notice that a =0, # = 0 and i sin (%) 0 —cos (%)y = 0. Using these
constraints, the ground state is determined as
Ok
COS(f)

(61)

20) = 610) + a|1) + B 1) + 71 1) =7 | BT bf + —== |10),
lSln(7")
cosz(%)
Q%) =Ir*| 1+ —75< | (62)
sinz(j")

o -z(%)_
lyl = 1+C052(%)—QSm 5 )=

Here, we have the freedom to choose the global phase of y, we choose y = isin (7") Then
the ground state is

Q) = 1s1n(9 )Il_klk) +cos(9 )IO) (63)

Note that the new vacuum vector only depends on the vacuum of the FT and the |1,1_;) Once
the new vacuum is acquired, the remaining vectors can be derived by applying the creation
operators a and a'

a;; Q) =(c052(%) b}i |O)+0)+(0+sm ( )b ) 1),
i Q) = (cos2 (%) bik |0) + O) + ( —sin ( ) bkb' ) =11_4), (64)
aT |QO)—cos(92 )ll_klk)+151n(9 )IO)

Consider that the calculations have been done assuming the order |—k, k). However, for
our purposes, it is more advantageous to rephrase this sequence as |k, —k), which entails in-
corporating a —1 whenever the state |11) is interchanged. The ultimate expressions are

O O
|0k0—k)30g—005( )|0k k)T lSlH( )Ilk KYFT 5

|1k0—k>Bog = |1k0—k>FT H
0k 1 1) Bog = 10k1 ) pr

0 O
|1k1—k>Bog lSll‘l( k)|0k0 )FT+COS( )|1k KET >

(65)
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-1 Ry (—6y)
pr| =
i T S B

Figure 10: Decomposition of the building block of B’ shown in Eq.(66), where 6 is
defined in Eq.(48).

where we have used a different notation. The |k, —k)p,, corresponds to the Bogoulibov states,
and the |k, —k)pr corresponds to the Fourier states.

Once we have the Bogoulibov states written in terms of Fourier states, deriving the matrix
that performs this operation is straightforward. Through the remainder of this work, we will
refer to this matrix as the “Bogoulibov 2-qubit gate” or By'. It takes the following form

cos(%) isin(%)

0 0

0 0
isin(%) cos(%)
where the B} matrix transforms the |k,—k)py vectors into |k, —k)p,, and 6y is described in
Eq.(48).

The basic gate decomposition of B} is shown in Fig.10.

The circuit is designed to decouple the k and —k Fourier modes using the 2-qubit Bo-
goliubov gate, denoted as B;;. Although this task might initially seem straightforward, its
complexity increases considerably when linear connectivity is taken into account.

This added complexity stems from the requirement of additional fermionic SWAP oper-
ations to rearrange the output states produced by the fermionic Fourier transform. Initially,
these states are grouped as k and k + 5. However, for the Bogoliubov gates to work, the states
must be reorganized into pairs of k and —k states.

Next, we will describe the algorithm used to build the Bogoulibov transformation circuit

assuming linear connectivity and that the first qubit is numbered 0. This circuit is decomposed
into two subcircuits:

Bl = , (66)

o = O O

0
1
0
0

1. Bogoulibov qubit sorting: The circuit consists of a series of fermionic SWAPS gates
with the aim of grouping k and —k states.

2. Bogoulibov gate application: The circuit performs the Bogoulibov transformation ap-
plying the Bogoulibov gate into the modes k and —k.

Bogoulibov qubit sorting

The initial step involves segregating qubits into k and —k modes. This can be optimally
achieved by employing 7 — 1 cascades of fermionic SWAP gates, arranged according to a spe-
cific geometric pattern.

The first cascade begins at qubit 3, followed by the next cascade, which starts at the suc-
ceeding qubit after the first four gates of the previous cascade have been applied. This se-
quencing is crucial for optimizing the circuit’s depth. If the second cascade is initiated before
the completion of the fourth gate in the previous one, it would result in an incorrect sorting of
states. While there are other, more straightforward geometries that can be programmed, such
as applying cascades sequentially, they do increase the overall circuit depth.
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|k_0>FT |k_0)FT

=4)pr =4)pr
|k = >FT |k = )FT
|k =—3)pr lk=—1)pr
|k =2)pr |k =2)pr
|k =—=2)pr |k =—=2)pr
|k = 3)FT 3 |k = 3)FT
|k =—1)pr |k ==3)pr

Figure 11: Bogoulibov qubit sorting circuit for the case of n = 8 qubits. Here, the
fermionic SWAP gate has been represented using the same diagrammatic symbol as
the SWAP gate.

Each cascade initially consists of n — 4 consecutive fermionic SWAP gates, each starting
where the previous one left off. Subsequently, an additional n — 5 fermionic SWAP gates are
applied sequentially, with each gate being applied one level above the previous one.

In Algorithm 3, we presented the algorithm in pseudocode:

Algorithm 3 Qubit Sorting circuit

Require: num_qubit =2™
Ensure: qc_Bog sorting — Quantum circuit which groups the k and —k Fourier states.
num_cascade = 7 — 1
qubit init=3
if num_cascade = 2 then
stop
else
for i = num_cascade to 1 do
count_qubit = qubit_init
down_cascade =i-4
up_cascade = (i-4)—1
for j =1 to down_cascade do
Add fSWAP into count_qubit and count_qubit +1
count_qubit = count_qubit +1
end for
for j =1 toup _cascade do
Add fSWAP into count_qubit —1 and count_qubit
count_qubit = count_qubit—1
end for
qubit_init = qubit_init+1
Start after the 4th fSWAP of the previous cascade
end for
end if

To enhance the accessibility and comprehensibility of the algorithm lecture, we have illus-
trated the circuit for the scenario where n = 8 in Fig.11. This visualization aims to make the
algorithm more user-friendly and easier to use.
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|k =0)pr
|k =4)pr
lk=1)pr
|k =—=3)pr
|k =2)pr
|k =—=2)pr
|k =3)pr
lk=—1)pr

|k = 0>Bog
|k = 4>Bog
|k = 1)Bog
|k =—3)pog
|k = 2>Bog
k= _2>Bog
lk = 3)Bog
|k = _1>Bog

Figure 12: In the diagram is shown the Bogoulibov gate application circuit for the

case of n = 8 qubits.

Bogoulibov gate application

Finally, we have arrived at the last step to obtain our diagonalizing circuit. To disentangle
the k and —k states, the Bogoulibov gate B} is applied. Hence, the new circuit will be simply
a layer of Bogoulibov gates, where each gate will act on the corresponding k and —k states,

starting from k =0to k = 5 — 1.

Algorithm 4 Bogoulibov gate application circuit

Require: num_qubit =2™

Ensure: qc_generalBog — Quantum circuit which disentangles the |k) and |—k).

num_qubit =0
for k_values=0to 5 —1 do

Add the B} gate to qubit num_qubit and num_qubit + 1 with k = k_values.

num_qubit = num_qubit + 2
end for

We have illustrated the circuit for the scenario where n = 8 in Fig.12, where can be stated

the similarity with the general Fourier transform circuit.

3.4 Example: n =4 and n = 8 spin chain

The explicit circuit Uy, for spin chains with n = 4 and n = 8 is illustrated in Fig.13, Fig.14, and
Fig.15. As an example of the many applications facilitated by Uy;,, we performed simulations
to evaluate the ground state and first excited state energies of the symmetric XY model (J =1
and y = 0) for spin chains of n = 4 and n = 8, considering various values of A. Computing the
energy of the ground and first excited state enables us to observe the quantum phase transition
from an antiferromagnetic to a paramagnetic state, as mentioned in Sec.2. In the symmetric
XY model, the diagonalized Hamiltonian becomes

: 21k )
H= > 2(A+Jcos(%))b£bk—ln, 67)

k==+1
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bl . I
F, F} B}
—[x] -
—x] L
Fy F; B
—[x] -

Figure 13: Quantum circuit Uy;, designed to diagonalize the XY Hamiltonian for
n = 4 qubits. The initial layer consists of X gates, executing the Jordan-Wigner trans-
formation. Subsequently, F, and F,' implement the fermionic Fourier transform. The
circuit concludes with the Bogoliubov transformation achieved by B, Additionally,
the swaps represented in the diagram correspond to fermionic SWAPs.

where bek is the number occupation of the Fourier states k. Notice from Eq.(48), that in the
case y = 0 the Fourier and Bogoulibov modes are equivalents. For the case n = 4, the ground
and the first excited state written in the diagonal basis are

|O)1JO)0>) AS]—: |O:050:0>) AS]-:
|gs) = = (68)
|0202020>J 7('217 |0,1,0,0), AZ]-'
For the case n = 8, the ground and the first excited state are
0,1,0,0,0,0,0,0), A<1, 0,0,0,0,0,0,0,0), A<1,
|gs) = = (69)
|0,0,0,0,0,0,0,0), A>1, |0,1,0,0,0,0,0,0), A>1.

Additionally, we have simulated the ground state for the transverse field Ising model (J =1
and y = 1) in the n = 4 spin chain followed by the computation of the corresponding transverse
magnetization. We have chosen magnetization because is one of the physical parameters which
enable us to observe the phase transition discussed before. Analytically, the (M,) = Z?:l o}
in the ground state is

A
- 5 AS 13
(gsIM,|gs) = { WAz, o1 (70)
T2 /iR =

Notice that M, is not the conventional order parameter for the XY model [17,18]. Nev-
ertheless, we choose to compute its expectation value for several reasons. First, it enables
direct comparison with previous studies on the topic [10,11]. Second, although not the stan-
dard order parameter, (M,) still captures the qualitative change in the ground state across
the quantum phase transition. Finally, the Hamiltonian used in this work includes non-trivial
boundary conditions which, while negligible in the thermodynamic limit, significantly affect
the physics in finite-size systems. For small spin chains, such as those considered here, it is
not evident that M, remains a valid order parameter, and a more detailed analysis would be
required to justify its use in this context.

4 Time evolution
We have introduced the disentangling circuit Ug;, for the 1-D XY model, which enables us

to obtain the complete spectrum of the Hamiltonian. This means that we can access the full
physics of the system by applying the disentangling circuit to the computational basis. This
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Figure 14: Quantum circuit Uy;, designed to diagonalize the XY Hamiltonian for
n = 8 qubits. The initial layer consists of X gates, executing the Jordan-Wigner trans-
formation. Subsequently, the fermionic Fourier transform is applied by the circuit
f FTg, described in Fig.15. The circuit concludes with the Bogoliubov transforma-
tion achieved by B . Additionally, the swaps represented in the diagram correspond
to fermionic SWAPs.

approach also simplifies the calculation of various system properties, such as the expectation
values of energy and magnetization, as discussed in the preceding section.

However, there are instances where our focus is on computing dynamic properties. In
such cases, we need to calculate the time evolution of the state, which can be a challenging
task. Nonetheless, a quantum circuit can be constructed to achieve exact time evolution for
fermionic Hamiltonians that can be decomposed as the sum of the energies of each particle
independently,

N
H= Z €40 a,, (71)
a=1
where €, is the energy associated with having a particle in the state a, a;rl and a, are the
fermionic creation and annihilation operator of the particle in the given state.

The reason for constructing the time evolution gate in this case is straightforward: for such
Hamiltonians, the general time evolution operator U (t) can be decomposed into a product
state of the time evolution operator for each qubit. To illustrate this, let’s express the general
time evolution of a given state |1 (t)) driven by a non-time-dependent Hamiltonian #. The
evolution is accomplished by the unitary time-evolution operator I/ (t)

U(t)=e T,
[ (6)) =U(E) o) = Y e B |Ey) (Eyl npo) 72)

l

where |¢),) is the initial state, |E;) are the eigenstates of the given Hamiltonian, and E; are the
corresponding energies or eigenvalues of each state |E;).
Due to the decomposable form of Hamiltonian in Eq.(71), eigenstates can be expressed as
a product state of N states, each representing the presence or absence of a fermion in the a
state
|E)) =la=1)|la=2)---la=N), (73)
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Figure 15: Fermionic Fourier transform circuit for the case n = 8. The swaps repre-
sented in the diagram correspond to fermionic SWAPs.

where |a) can be represented by the qubits |0) or |1). Consequently, the time evolution oper-
ator becomes

UDE) =e M a=1)|a=2)|a=N)=e i Zu1% g = 1) [g = 2) ---|a = N)

(74)
=Ula=1)Uyla=2)---U,|la=N),

where U; is the time evolution operator for the i,;, qubit.

The procedure described above, tells us that to build the time evolution circuit we just need
to perform time evolution for each qubit independently. Specifically for the XY 1-D model, the
time evolution for the qubit representing a fermionic particle with momentum k is

Z/{k — e—iszkaiake—if[—Ek-i-Gk—l] — Ul U2, (75)

2 2
where ¢, = A + JCOS(%) and E, = \/(A +Jcos(%)) + (J)/ sin(zT"k)) are the energies
associated to having one fermion in the Bogoulibov mode k.
The unitary operators U; and U, can be written in matrix form

— 7 1 0 1 0
Up = e /2Rt = (0 e—itZEk) = (0 eiwk) ,

e—if[—EkJrEk—)L] 0 elZd>k 0
U2 = 0 e—it[—Ek+6k—7L] = 0 eiZfbk s

whereby E, = \/(A +.J cos (%))2 + (Jy sin(@))2 and €, = A+ J cos (2—’;1‘) Additionally,
we have renamed the exponential arguments by ¢, = —2tEy, and &, = —2t[—E; + €, —A].
The gate decomposition of U, is shown in Fig.16.

As an example of the many possibilities this gate opens, let’s compute the time evolu-
tion of the expected value of transverse magnetization for the n = 4 qubits case, with J =1
and y = 1. Specifically, our initial state has all the spins aligned in the positive z direction
[yY(t=0)) =T T 1 1), which in the computational basis is written as |0000) state. The first

step to compute the time evolution consists of expressing the initial state in the eigenbasis of

(76)
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Figure 16: In the diagram is shown the decomposition of the building block of U4}
shown in Eq.(76), where ¢, = —2tE, and &, = —2t[—E; + €, —A].

the XY Hamiltonian. This is achieved by precisely applying the Uy;, gate
— 0 — (¢ : ¢
[y (t =0)) =Uy; |0 0 0 0) =sin 5 |1 100)—icos By 1111), (77)

where ¢ = arctg(%). Subsequently, we apply the time evolution operator U(t) to obtain
|y (t)). Then, the time-dependent state is

(b)) = e~it2(A—V142%) sin(%)ll 10 0)—ie it2(A+V142%) cos(%)ﬁ 111)

= ¢ l2Api2VIHA (e“‘““”z sin(%)ll 10 0)—icos(%)|1 11 1)),

(78)

where the global phases are not physically relevant. After applying the time operator, we now
apply the circuit U to obtain the state in the spin representation. Lastly, we compute ana-
lytically the expected value of the transverse magnetization (M, ), which yields the analytical

result
1+2A% + cos (4tv1+ A2)
2 = 2+ 272 '

(79)

5 Results and discussion

In this section, we delve into the outcomes and insights derived from the application of our
quantum circuit, Uy;,, across various scenarios. The results show the classical simulation using
the quantum computing library Qibo [9], for the spin chain n = 4 and n = 8 using the circuits
represented in Figs. 13, 14, and 15.

Figure 17 presents the outcomes of the expected energy for the ground and first excited
states in the symmetric XY model (J = 1. and y = 0) for spin chains with n = 4 and n = 8.
Given the nature of quantum simulations, subject to inherent probabilistic uncertainties, each
data point carries a statistical error proportional to LN, where N represents the number of
shots—indicating the executions on a quantum processing unit (QPU). Here, N was set to
1000. Notably, the results showcase the circuit’s effectiveness in recovering analytical values
for both cases. Moreover, a structural change in the ground state is evident at A = 1, where
the more stable state becomes the one without particles in the Bogoliubov modes k instead of
having a fermion in the —k mode.

For the transverse field Ising model (J = 1 and vy = 1) in the n = 4 spin chain, the results of
the ground state’s expected value of transverse magnetization (M,) are shown in Fig. 18. The
circuit successfully reproduces analytical values, and at A = 1, a magnetization discontinuity
occurs due to a phase transition from an antiferromagnetic state to a paramagnetic state.

Moreover, we have also used the transverse field Ising model (J =1 and y = 1) to explore
the time evolution of the expected value of transverse magnetization (M,(t)). The quantum
circuit /(t) is applied to evolve the initial state |1,T,7,7) with the magnetic field strength
fixed at A = 0.5. After, we apply U;rl.s to obtain the evolved spin state. The results are shown
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(a) n=4 spin chain. (b) n=8 spin chain.

Figure 17: Study of the ground and first excited state energy for the symmetric XY
model (J =1 and y = 0) as a function of the transverse field strength parameter A.
The solid (dashed) line represents the analytical values of the energy E, while the
scatter points correspond to results obtained from a quantum computer simulation
conducted in Qibo. (a) shows results for an n = 4 spin chain, and (b) for an n = 8
spin chain.

in Fig.19, showcasing successful agreement between the quantum simulation and analytical
values.

The circuit presented scales efficiently with the number of qubits. The Jordan-Wigner
transformation is a simple layer of X gate, as a result, escalates linearly with the number
of qubits and the depth is constant. Similarly, the Bogoulibov transformation only combines
k and —k modes, resulting in a constant circuit depth while the number of gates escalates
proportionally to ~ 5, where n represents the number of qubits. In Ref. [27], it is shown that
the circuit depth of the Fourier transforms follows a logarithmic scaling of ~ log,(n), with the
number of gates increasing as ~ nlog,(n). The time evolution circuit scales linearly with the
number of qubits n and presents a constant depth.

6 Conclusion

This paper presents a comprehensive implementation of the exact simulation of a 1-D XY spin
chain using a digital quantum computer. Our approach encompasses the entire solution pro-
cess for this exactly solvable model, involving key transformations such as the Jordan-Wigner
transformation, fermionic Fourier transform, and Bogoliubov transformation. Additionally,
we developed an algorithm to construct an efficient quantum circuit for powers of two qubits,
capable of diagonalizing the XY Hamiltonian and executing its exact time evolution. The ex-
plicit code to reproduce these circuits is presented in Ref. [15] and uses Qibo, an open-source
framework for quantum computing.

The presented quantum circuit is a powerful tool, facilitating the calculation of all eigen-
state vectors by initializing qubits on a computational basis and subsequently applying the
detailed circuit. This feature enables access to the complete spectrum of the Hamiltonian,
providing novel approaches for exploring various system properties, including energy, magne-
tization, and time evolution.

Our introduced quantum circuit serves as a benchmark for quantum computing devices.
It presents efficient growth and scalability with the number of qubits n, making it suitable to
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Figure 18: The ground state’s expected value of transverse magnetization (M,) for
the transverse field Ising model (J = 1 and y = 1) in a spin chain with n = 4 spins, as
a function of the transverse field strength parameter A. The solid line represents the
analytical value of (M,), while the scatter points correspond to the results obtained
from a quantum computer simulation conducted in Qibo, utilizing the quantum cir-
cuit developed in this paper.

be used in devices of diverse sizes. Furthermore, the 1-D XY model’s exact solvability not only
allows us to test the efficiency of real quantum computers but it offers an avenue to study and
model errors inherent in quantum computations, establishing a bridge between theoretical
predictions and real-world outcomes.

Beyond its utility as a benchmark, the presented quantum circuit holds intriguing applica-
tions in condensed matter physics. The methods highlighted in this work can be extended to
explore other integrable models, such as the Kitaev Honeycomb model [ 13], or with alternative
Ansatz, as seen in the Heisenberg model [16].

1.0 —— Analit.
$ Qc
0.8
e}
5
0.6
=
g
=
0.4
0.2
0.0 0.5 1.0 1.5 2.0
time (ad.)

Figure 19: Time evolution simulation of transverse magnetization (M, ) for the trans-
verse field Ising model (J =1 and y = 1) in a spin chain with n = 4 spins. The initial
spin state is |1,7,7,1), evolved using the quantum circuit 2/(t) with the magnetic
strength fixed at A = 0.5. The solid line represents the analytical value of (M,),
while the scatter points correspond to the results obtained from a quantum com-
puter simulation conducted in Qibo, utilizing the quantum circuit developed in this

paper.
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Moreover, different strategies for simulating thermal evolution [11] could be employed,
paving the way for new approaches to studying quantum phase transitions. Notably, the XY
Hamiltonian lacks an analytical solution in two dimensions, making it particularly interesting
to use the circuit to simulate the 1D case as a foundation for constructing more sophisticated
methods. For instance, this could serve as a stepping stone toward approximating the ground
state of the 2D system. One potential avenue to achieve this would be introducing variational
interactions within the circuit to capture the effects of the 2D Hamiltonian that are absent in
the 1D case.

In conclusion, our work contributes to the advancement of quantum computing algorithms
and establishes a foundation for exploring quantum solutions to complex problems in con-
densed matter physics.
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