
SciPost Phys. Lect. Notes 96 (2025)

Introduction to the usage of open data from the
Large Hadron Collider for computer scientists

in the context of machine learning

Timo Saala⋆ and Matthias Schott

Institute of Physics, University of Bonn, Germany

⋆ tsaala@uni-bonn.de

Abstract

Deep learning techniques have evolved rapidly in recent years, significantly impacting
various scientific fields, including experimental particle physics. To effectively leverage
the latest developments in computer science for particle physics, a strengthened collab-
oration between computer scientists and physicists is essential. As all machine learning
techniques depend on the availability and comprehensibility of extensive data, clear data
descriptions and commonly used data formats are prerequisites for successful collabo-
ration. In this study, we converted open data from the Large Hadron Collider, recorded
in the ROOT data format commonly used in high-energy physics, to pandas DataFrames,
a well-known format in computer science. Additionally, we provide a brief introduction
to the data’s content and interpretation. This paper aims to serve as a starting point
for future interdisciplinary collaborations between computer scientists and physicists,
fostering closer ties and facilitating efficient knowledge exchange.
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1 Introduction

Particle physics aims to uncover the fundamental particles and forces that constitute our uni-
verse, addressing deep questions about the nature of matter, energy, space, and time. Mod-
ern experiments, like those at the Large Hadron Collider (LHC), generate enormous volumes
of data—both real and simulated—that are highly complex, high-dimensional, and feature
intricate correlations. These unique characteristics make high-energy physics (HEP) data a
compelling and challenging domain for machine learning.

Machine learning has played a crucial role in particle physics for decades, particularly in
tasks that involve distinguishing rare signals from overwhelming background noise. Follow-
ing the breakthrough of deep learning techniques around the 2010s, physicists at the LHC
quickly began applying neural networks across many aspects of their experiments. These ap-
plications include tasks such as identifying and measuring the properties of particles produced
in collisions, classifying entire collision events, and searching for unusual patterns in the data
that might hint at previously unknown physical phenomena. In particular, machine learn-
ing models are increasingly being used to spot subtle, unexpected features in the data that
could reveal new physics beyond the current theoretical framework, the Standard Model - a
well-established theory that describes all known fundamental particles and their interactions,
except for gravity.

2

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.96


SciPost Phys. Lect. Notes 96 (2025)

Despite rapid advancements in neural network techniques, it often takes a significant
amount of time for the latest developments in the context of computer science to be ported to
particle physics applications. One of the main reasons is the complexity of the data structure
as well as the availability and access to training data of particle physics experiments for sci-
entists without a background in particle physics. Moreover, for computer scientists, HEP data
presents a real-world scenario to test and push the limits of advanced machine learning meth-
ods, offering the chance to tackle problems involving massive datasets, noise filtering, and the
discovery of rare signals—opportunities that are hard to match in many other domains.

In our lab, we have observed that introducing computer science students to the usage of
particle physics data takes a significant amount of time and effort before they can conduct their
own research in this - for them unfamiliar - terrain. These notes are intended for computer
scientists and researchers interested in developing novel algorithms or testing new approaches
using machine learning on Large Hadron Collider (LHC) data. The large general purpose par-
ticle detectors at the LHC, ATLAS and CMS, published parts of their data on the CERN Open
Data Portal, however, there are two major barriers: first, the LHC data format is based on the
ROOT framework, which is largely unknown in the field of computer science. Second, under-
standing the data structure typically requires a professional background in particle physics.

In this work, we seek to address both barriers. First, we provide a brief explanation for
scientists without a dedicated background of particle physics, introducing the observables and
the data recorded and analysed at the LHC. Second, we have transformed a substantial portion
of the CMS Open Data from the ROOT format to pandas DataFrames, a data format commonly
used within the computer science community. The datasets used in this work are based on
Run 1 CMS data collected in 2012, which provide a rich and well-documented benchmark for
developing and testing machine learning models. These datasets are now also available on
bonndata [1] and described in this work.

This paper is structured as follows: the main concepts for the analysis of proton-proton
collisions at the LHC are summarized in Section 2. Section 3 explains the concepts of simula-
tion and detector effects, which are essential to understand potential machine learning tasks.
A detailed description of the content of the pandas DataFrames is provided in Section 4. The
paper concludes with a brief summary, while all technical details regarding the transformation
from the ROOT format to pandas DataFrames are included in the appendix.

2 A primer in experimental particle physics

2.1 Particles of the Standard Model and basic reactions

The Standard Model (SM) is the most successful theory describing the subatomic world, com-
bining the principles of quantum mechanics and special relativity into a quantum field theory.
While an in-depth exploration of the Standard Model is beyond the scope of this summary, a
brief overview will provide key insights into the fundamental particles that make up all matter.

Observable matter around us is composed of electrons, protons, and neutrons. Protons
and neutrons, in turn, are made of quarks, which exist in two types: up-quarks (u) and down-
quarks (d). A proton consists of two up-quarks and one down-quark, resulting in a total electric
charge of +1, as the up-quark carries a charge of +2/3 and the down-quark a charge of -1/3.
In contrast, neutrons are composed of one up-quark and two down-quarks, giving them a net
charge of 0. Thus, the basic building blocks of atomic nuclei are described by up and down
quarks.

Quarks are grouped into “doublets” based on their properties, with the up and down quarks
forming the first generation. Nature exhibits two additional generations of quarks: the charm
(c) and strange (s) quarks form the second generation, and the top (t) and bottom (b) quarks
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Figure 1: Schematic illustration of a tracking detector including three vertices and
several charged particles measured by a pixel detector.

Figure 2: Schematic illustration of an electromagnetic calorimeter and the energy
deposits in its cells.

make up the third. Although each generation shares similar characteristics, they differ signif-
icantly in mass, with higher-generation quarks being substantially heavier than those of the
first.

In addition to quarks, electrons — particles with a charge of -1 — are essential in atomic
structure. Electrons are paired in a doublet with the electron-neutrino (νe), a neutral particle
that is nearly massless. Similarly to quarks, leptons (such as the electron and neutrino) exist
in three generations. The second generation consists of the muon (µ) and muon-neutrino
(νµ), while the third generation consists of the tau (τ) and tau-neutrino (ντ). These particles
also follow a hierarchical mass structure, with higher-generation leptons being significantly
heavier than the first-generation electron.

In the Standard Model, neutrinos are assumed to be massless, although we know this is
not entirely true. However, this approximation holds for most high-energy calculations in the
theory.

Due to the nature of particle interactions, heavier particles are unstable and decay into
lighter particles, driven by the principle that systems tend to move towards lower energy states.
As a result, the only stable particles in the Standard Model are protons, electrons, and neutrinos
(and neutrons when bound within atomic nuclei). These stable particles form the foundation
of all matter we observe in the universe.

In addition to all mentioned particles, it turns out that each particle also has its own anti-
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particle. This is a natural consequence of combining quantum mechanics with special relativity,
as described by quantum field theory. Anti-particles have been known for decades and exhibit
exactly the same properties as their corresponding particles, i.e., the same mass, but have
opposite charges. For example, the anti-particle of the electron, e− is the positron, e+. The
anti-particle of the up-quark is the anti-up quark, which carries an electric charge of −2/3
instead of 2/3. The SM predicts that nearly equal amounts of particles and anti-particles exist
in the universe and it is one of the main unsolved questions in modern physics, why we are
surrounded nearly only by matter particles.

Having discussed the particles that describe the known matter in the universe, we now
turn to the forces that govern their interactions. The universe seems to be governed by four
fundamental forces: gravitational, electromagnetic, strong, and weak forces or interactions. Of
these, gravitational force is the weakest, yet it acts over distances on a cosmic scale and governs
large-scale structures like planets, stars, and galaxies. However, gravitation is not included in
the Standard Model of particle physics, as its effects are negligible at the subatomic level due
to its extreme weakness compared to other forces. The Standard Model focuses on the forces
that dominate the interactions of elementary particles, where gravity plays no significant role
and is therefore not discussed further.

The electromagnetic force governs the interactions between electrically charged particles
and is responsible for phenomena such as light, magnetism, and the structure of atoms. It is
mediated by photons, the quantum particles of light. The relevant charge for electromagnetic
interactions is the well-known electric charge, with particles carrying either a positive or neg-
ative charge. These particles interact by attracting or repelling each other depending on the
nature of their charge.

Several important concepts can be illustrated when discussing the electromagnetic force.
Consider two electrons in a vacuum separated by a certain distance. According to Coulomb’s
law, these electrons must repel each other. In a very naive - and absolutely wrong - picture,
the repulsion between the two electrons is transmitted by the exchange of photons, akin to
two people on skateboards throwing a ball to each other and moving apart as a result. While
this analogy might help in explaining repulsion, it fails to account for the attraction expected
between oppositely charged particles, such as an electron and a positron. In a more accurate
(still wrong, and any physicist will rightfully complain) picture, we begin from the field-lines
between the two charges. In a quantum field theory - as the name implies - the fields are
quantized, and the field-quanta correspond to a (virtual) photon. The effects of repulsion
and attraction can then be viewed as the exchange of wave-packages with differently ’signed’
amplitudes (this is also not correct, but it is easier to visualize). In this picture, those field-
quanta, i.e. photons, can only be exchanged by particles carrying electric charge, since they
have an associated electromagnetic field. Only electrically charged particles have field-lines,
thus can exchange photons. If a particle does not carry an electric charge, it will be “invisi-
ble”, consequently not interacting with any electric field-lines at all, thus not interacting with
photons.

The strong (nuclear) force binds quarks together to form protons and neutrons and holds
atomic nuclei together. This force is mediated by particles called gluons, and the charge asso-
ciated with the strong force is known as color charge, which comes in three types (red, green,
and blue) and their corresponding anti-colors. Quarks carry color charge, and gluons facil-
itate the force between them. In other words: the quanta of field of the strong interaction
are gluons. These gluons can only interact with particles carrying color charge. In fact, this
is the main difference between quarks and leptons: quarks carry color charge, hence they
can interact with gluons, while all leptons do not have any color charge and hence they do
not experience the strong force. An additional complexity arises from the fact that gluons
themselves carry color charge. If photons, the mediators of the electromagnetic force, carried
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electric charge, they would interact with each other. Similarly, the fact that gluons carry color
charge means that they can interact with one another. This self-interaction is thought to be
the reason why the strong force becomes stronger with distance, a phenomenon known as
confinement. Confinement prevents quarks from escaping a bound system, and this is why the
strong force has a very short range, playing a significant role only at the nuclear level.

The weak force is responsible for processes such as beta decay in radioactive atoms and the
conversion of neutrons into protons. In other words: Without the weak force, the sun would
not burn. This force is mediated by massive W+, W− and Z bosons, where the W+ particle
carries a positive electric charge, the W− particle carries a negative electric charge and the Z
boson is electrically neutral. The term “massive” refers to the fact that the W and Z bosons
have mass, unlike massless photons and gluons. This might be difficult to comprehend, but
imagine mass just as a further property of an object, similar to its electric charge. The weak
force has two types of charges, named weak isospin and weak hypercharge. These are less
intuitive than electric charge but are essential for distinguishing how particles interact with
the W and Z bosons. The weak force affects all fermions (quarks and leptons) and is unique
in that it can change one type of particle into another (e.g., turning a down-quark into an
up-quark, or changing an electron to a neutrino). The W bosons are responsible for these
particle transformations and enable heavier particles to decay into lighter ones. Due to the
large mass of the W and Z bosons, the weak force is short-ranged and much weaker than both
the electromagnetic and strong forces.

Finally, we have to introduce the Higgs Boson. The theory of the SM describes the mass of
the W and the Z boson in a naive way, by just writing their mass terms, mW and mZ into the
formulas which describe the corresponding quantum fields without breaking the predictive
power of the theory. A mathematical trick to describe the mass of those two bosons is the
introduction of a new field, which we call the Higgs-fields, interacting with the W and Z bosons
and ’generating’ their mass. This is typically pictured as the W and Z bosons having some form
of ’friction’ with the Higgs-field and consequently ’slowing down’. While this picture is an
oversimplification, it serves as a conceptual aid for understanding the underlying theory. It
turns out that this mass generation mechanism would then also give rise to the masses of all
quarks and charged leptons. In fact, the theory predicts that the coupling of the Higgs-field
is proportional to the mass of a particle. In other words: A particle interacts more with the
Higgs-field when its mass is large. Thus, the Higgs boson is simply the first quantized state
(or excitation) of the Higgs field. With this, all particles (or more precisely all fields) in the
Standard Model have been introduced and are summarized in Table 1.

In everyday life, the electron is the only fundamental matter particle that we can directly
observe. Together with protons and neutrons, electrons combine to form atoms, which explain
the structure of the periodic table and the foundations of chemistry and biology. As discussed
earlier, protons and neutrons are compound objects made up of quarks. However, quarks can
also combine to form particles other than protons and neutrons, such as mesons, which consist
of one quark and one antiquark. An overview of the most important compound quark systems
is given in Table 2. The careful reader will see that the masses of the proton and neutron are
roughly equal and about ≈ 1 GeV/c2.1 Since both particles are made up of three quarks, the
mass of one quark would therefore be roughly 0.3 GeV. However, a pion has a mass of ≈ 0.14
GeV, but is made up of two quarks. The reason for the difference in masses can be explained
by the following: The actual masses of the up and down quarks are very small (Table 1), but
when combined, they exchange numerous gluons, forming a bound system with substantial
binding energy. From Einstein, we know that energy equals mass. Therefore, the mass of the
proton or pion can be attributed almost entirely to binding energy rather than to the mass of
the fundamental quarks.

1The unit GeV will be discussed in Section 2.4, but is of secondary importance for the following discussion.
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Table 1: Fundamental Particles of the Standard Model: Masses, Electric charges, and
Lifetimes. The masses of the particles are given in units of GeV/c2, where one GeV
corresponds to 1.783 · 1027 kg.

Particle Mass (GeV/c2) Electric Charge (e) Lifetime (s)
Quarks (Carry Color Charge)

Up (u) 0.0022 +2/3 Stable
Down (d) 0.0047 -1/3 Stable
Charm (c) 1.27 +2/3 1.1× 10−12

Strange (s) 0.096 -1/3 1.2× 10−8

Top (t) 172.76 +2/3 5.4× 10−25

Bottom (b) 4.18 -1/3 1.5× 10−12

Leptons (Carry no Color Charge)
Electron (e) 0.000511 -1 Stable
Muon (µ) 0.105 -1 2.2× 10−6

Tau (τ) 1.776 -1 2.9× 10−13

Electron Neutrino (νe) < 2.2× 10−6 0 Stable
Muon Neutrino (νµ) < 0.17 0 Stable
Tau Neutrino (ντ) < 18.2 0 Stable

Gauge Bosons (Force Carriers)
Photon (γ) 0 0 Stable

W Boson (W±) 80.379 ±1 3.2× 10−25

Z Boson (Z) 91.1876 0 3.0× 10−25

Gluon (g) 0 0 Stable
Higgs (H) 125.10 0 1.6× 10−22

Table 2: Overview of selected particles that are compound systems of quarks, to-
gether with their quark content and further properties. The masses of the particles
are given in units of GeV/c2, where one GeV corresponds to 1.783 · 1027 kg.

Particle Quark Content Mass (GeV/c2) Charge (e) Lifetime (s)
Baryons

Proton (p) uud 0.938 +1 Stable
Neutron (n) udd 0.939 0 880s

Pions
Charged Pion (π±) ūd / ud̄ 0.13957 ±1 2.6× 10−8

Neutral Pion (π0) uū / dd̄ 0.13498 0 8.4× 10−17

Kaons
Charged Kaon (K±) us̄ / ūs 0.49367 ±1 1.24× 10−8

Neutral Kaon (K0
L) ds̄ 0.49761 0 5.1× 10−8

Neutral Kaon (K0
S ) ds̄ 0.49761 0 8.9× 10−11

Selected D Mesons
Charged D Meson (D±) cd̄ / c̄d 1.869 ±1 1.04× 10−12

Neutral D Meson (D0) cū 1.865 0 4.1× 10−13

Selected B Mesons
Charged B Meson (B±) ub̄ / ūb 5.279 ±1 1.64× 10−12

Neutral B Meson (B0) d b̄ 5.280 0 1.52× 10−12
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q

µ+

q̄

Z

µ−

Figure 3: Feynman diagram visualizing the qq̄→ Z → µ+µ− process.

q

q̄

q̄

g

q

Figure 4: Feynman diagram visualizing the qq̄→ g → qq̄ process.

2.2 Feynman diagrams and example processes

Proton-proton collisions, such as those observed at high-energy particle accelerators like the
Large Hadron Collider (LHC), provide a unique window into the fundamental interactions
that govern the subatomic world, i.e. enable testing the Standard Model of Particle Physics.
We already discussed that protons are composed of more elementary constituents: quarks
and gluons. At high energies, quantum fluctuations in protons become significant, and thus,
not only quarks but also antiquarks are found inside them. Thus, at high energies, a proton
becomes a very complicated object, as it is composed not only of its three constituent quarks
but also of gluon fields and additional quark-antiquark pairs.

When two protons collide at high energy, it is therefore not the protons themselves that
interact, but rather their constituent quarks and gluons. These interactions can result in a va-
riety of complex processes, including the production of new particles such as W and Z bosons,
Higgs bosons, and even the top quark. Many of these particles are unstable (Table 1), decay-
ing almost immediately into other particles, which can be detected using specialized detectors.
The nature of these interactions is described and visualized through Feynman diagrams, which
illustrate the initial state (the incoming particles), the interaction process (typically involving
intermediate virtual particles), and the final state (the observable products of the interaction).

The outcome of a proton-proton collision is inherently statistical, governed by quantum
probabilities. The likelihood of specific reactions, and thus the production of particular parti-
cles, is determined by quantum field theory. Some processes are significantly more probable
than others, resulting in the fact that for each collision, a different set of final particles may
emerge, though the probabilities of various outcomes are calculable.

To make this more concrete, we briefly discuss three examples. An important process that
can occur in proton-proton collisions is the creation of a Z boson, a neutral carrier of the weak
nuclear force. The process can be summarized as follows:

qq̄→ Z → µ+µ− .

8

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.96


SciPost Phys. Lect. Notes 96 (2025)

In this process, illustrated in Figure 3, a quark from one proton and an anti-quark from the
colliding proton annihilate to produce a Z boson. The Z boson is highly unstable, with an
extremely short lifetime ( 10−25 seconds). Consequently, it decays almost immediately. In this
specific case, the Z boson decays into a pair of oppositely charged muons: a muon and an
anti-muon.

The two muons are detectable in the final state, with their tracks and momenta measurable
using the detector’s tracking systems. The detection of these muons allows experimentalists to
infer the presence of the Z boson, even though its short lifetime prevents direct observation.

The most common process in proton-proton collisions involves the production of quark-
antiquark pairs through gluon interactions. This process can be expressed as:

qq̄→ g → qq̄ .

In this process, a quark and an anti-quark from the colliding protons annihilate to form a gluon,
which then decays into a new quark-antiquark pair (visualized in Figure 4). An important
aspect of this process is its high probability relative to other reactions. For example, this type
of quark-pair production is about 106 times more likely than the production of a Z boson.

Additionally, the same final state of quarks can result from other processes, such as gluon-
gluon fusion:

g g → g → qq̄ .

In this process, two gluons from the colliding protons interact to form an intermediate gluon,
which then decays into a quark-antiquark pair. Since experimental detectors can only observe
the final state of particles, distinguishing between these two processes (quark-antiquark anni-
hilation and gluon-gluon fusion) on an event-by-event basis is not possible. Both contribute
to the same signature in the detector.

We conclude the discussion with the creation of top quark pairs, as one of the most intrigu-
ing processes in high-energy collisions. The process is more complex and can be described as
follows:

g g → g → t t̄ .

In this interaction, two gluons merge to form a highly energetic gluon, which subsequently
decays into a top quark and an anti-top quark. The top quark is the heaviest known elementary
particle and decays rapidly because of its large mass. The top quark almost exclusively decays
via the weak force into a W boson and a bottom quark:

t →W+b .

The W boson, being unstable itself, decays further into lighter particles. In this example, the
W boson decays into an electron and an electron neutrino:

W+→ e+νe .

Similarly, the anti-top quark decays into a W boson and an anti-bottom quark:

t̄ →W− b̄ .

The W boson from this decay can, for instance, decay into a pair of quarks, such as an up quark
and a down antiquark:

W−→ ūd .

Thus, the complete process, which is also visualized using a Feynman diagram in Figure 5, can
be represented as:

g g → g → t t̄ →W+W−bb̄→ e+νe bb̄dū .
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g

g

b̄

e+

ū

g t
W+

t̄

W−

b

νe

d

Figure 5: Feynman diagram visualizing the g g→ g→ t t̄→W+W−bb̄→ e+νe bb̄dū
process.

The final state of this interaction consists of an electron, a neutrino, two b quarks, and two light
quarks (up and down). The detection of these final particles allows scientists to reconstruct
the original process and analyze the properties of the top quark, W boson, and other particles
involved.

The discussion above simplifies the interaction picture by assuming that only two funda-
mental particles within the colliding protons interact. However, a single collision between
two protons often involves not just one pair of interacting quarks or gluons, but multiple si-
multaneous interactions among the quarks, antiquarks, and gluons inside the protons. This
phenomenon is known as the underlying event. In our basic picture of a proton-proton col-
lision, we typically consider the primary interaction between a quark and an antiquark, or
between two gluons, which can lead to the production of interesting new particles such as
W and Z bosons, Higgs bosons, or top quarks. However, due to the composite nature of pro-
tons, other quarks and gluons from the same protons can also engage in separate interactions.
These secondary interactions may involve lower-energy exchanges between particles that do
not produce exotic or heavy particles but, nonetheless, contribute to the overall energy and
particle multiplicity in the final state. Fortunately, new particle production processes often
result in final state particles with significantly higher energies, making them easier to detect
and isolate from the softer, low-energy products of secondary interactions.

In addition to the underlying event, high-energy collider experiments must contend with
another complication known under the name pile-up. Pile-up occurs when many protons col-
lide simultaneously during a single event in the detector. This effect arises because protons
in the LHC are not accelerated as single individual particles, but in bunches of protons. Each
bunch is approximately 7.5 cm long and contains up to 1011 protons. Those bunches of pro-
tons are then brought to collision. Out of these 1011 protons, only a fraction actually collide
and all other protons just continue their travel in the accelerator. The reason for colliding
multiple protons in each bunch is the tiny probability of any individual proton-proton collision
to produce an interesting physics process. Therefore, to increase the likelihood of observing
rare physics processes, particle accelerators collide multiple protons in each collision event.
Hence, particle detectors do not only record one proton-proton collision, but several. For
example, during the 2012 data-taking period, between 5 and 40 collisions occurred simul-
taneously. Those additional proton-proton collisions are called pile-up. Since each recorded
event contains the superimposed outcomes of several proton-proton collisions, experimental-
ists must disentangle the products of the interaction of interest from the products of the other
simultaneous collisions.

10

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.96


SciPost Phys. Lect. Notes 96 (2025)

x

y

z
𝜃

𝜙

Figure 6: Polar coordinates θ and φ represented in the transverse plane of the de-
tector.

𝜙
x
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Figure 7: Polar coordinate φ represented in the xy-plane.

2.3 Particle detectors

As discussed previously, the only stable particles at the end of a particle collision are electrons,
positrons, neutrinos, protons, neutrons and photons. However, there are several other par-
ticles with an average lifetime long enough to allow them to travel several meters or more
before they decay. These include many hadrons (Table 2) as well as muons. The primary goal
of a typical particle detector, such as those used in high-energy physics experiments at the
LHC, is to measure the momentum vector, the energy, as well as the origin of all final-state
particles produced around the collision point. These detectors are constructed in a cylindrical
shape surrounding the interaction region. The central region is referred to as the barrel detec-
tor while the two ends of the cylinder are called the end-caps. The actual particle collisions
occur in the center. Figure 10 shows a generic particle detector at the LHC from different per-
spectives, while Figures 8 and 9 display actual images of the two largest detectors at the LHC:
ATLAS [2] and CMS [3]. As the protons are delivered by beam pipes to the collision point,
holes are needed on both sides to allow the beam passage. The detector can be schematically
divided into several concentric layers, each optimized to detect specific particles and measure
their properties. These layers include the inner detector, the electromagnetic calorimeter, the
hadronic calorimeter, and the muon chambers.
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Figure 8: Picture of the ATLAS Experiment at CERN [4].

Figure 9: Picture of the CMS Experiment at CERN [5].

Before discussing these individual detector components, the two main physical principles
which allow for an energy and momentum measurement are introduced. The basic idea be-
hind measuring the momentum of a charged particle relies on its motion within a magnetic
field: When charged particles transverse a magnetic field, they are bent and the bending ra-
dius depends on their momentum. By reconstructing the trajectory of charged particles in a
magnetic field, one can therefore determine both their momentum and their electric charge.
Hence, each particle detector at the LHC involves a large magnetic field. It is important to
note that the actual bending radius of particles that are produced at the LHC is large, given
their huge energies, and they can be approximated as straight lines. This also implies that
the relative resolution of the measured momenta, i.e. the relative precision of the measure-
ment, worsens with higher momenta, as the trajectories get more and more straight and the
difference to a bent line becomes smaller and smaller.

While one can measure the momentum of charged particles, this cannot be done for neutral
particles. However, the energy of electrons, photons, and hadrons can be determined through
calorimetric measurements. In simple terms, these particles interact with the detector mate-
rials and deposit their energy in complex processes, which in turn can be measured. Several
things are different compared to the momentum measurement: the relative precision improves
with increasing particle energy; the measurement is destructive, meaning the particle is fully
absorbed during the process; and to determine the particle’s trajectory and origin point, it is
typically assumed that the particle originated from a specific reference point in the collision,
known as the primary vertex—the location where the initial proton-proton collision occurs.
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Figure 10: Basic detector layout of an LHC detector with all its sub-detector systems
(left) and basic particle identification (right).

These features of momentum and energy measurements define the general layout of a
particle detector at the LHC: The innermost layer around the interaction point is equipped with
a tracking detector in a large magnetic field. This is followed by the so-called electromagnetic
and hadronic calorimeters and the muon system as the outermost layer, as illustrated in Figure
10, and detailed in the following:

• Inner Detector (ID): The inner detector typically starts from 5 cm away from the colli-
sion point around the beam pipes and extends up to 50 cm. It is designed to measure the
transverse momentum pT , i.e. the momentum transverse to the magnetic field which is
typically perpendicular to the beam-axis, and charge of all charged particles. The inner
detector can be seen as several layers of CCD-cameras, as they are used in smartphones.
Each charged particle traversing a pixel of the CCD-camera leaves a signal. When com-
bining those pixel-informations for several layers, the trajectory of the charged particle
can be reconstructed (Figure 1). The reconstructed trajectory can then be used to infer
the curvature and thus the charge and the momentum. Moreover, the impact parameter
as a measure of the origin of the track can be reconstructed.

• Electromagnetic Calorimeter (ECAL): The electromagnetic calorimeter extends from
approximately r = 1.5 m to r = 2.0 m in typical detectors and is built such that all
electrons and photons deposit their full energy there, i.e. they are “absorbed” when
transversing the ECAL. The calorimeter is divided into many cells, each measuring the
energy that was deposited in it. Once electrons and photons enter the ECAL, they gen-
erate an electromagnetic shower, which is a process in which electrons and photons pro-
duce more and more electrons and photons in an avalanche-like effect. The energy of
this shower is measured in the cells. By adding up the energies of all cells that can be
“clustered” together (i.e. are nearby), the total energy of the original electrons and pho-
tons can be determined. This process is illustrated in Figure 2. Photons and electrons
leave a characteristic shape of energy clusters in the calorimeter, however, one cannot
distinguish them by the cluster distribution itself. Those energy cluster distributions
are typically described by certain shower-shape variables, which for example reflect the
length or the width of the energy distribution in the calorimeter.

• Hadronic Calorimeter (HCAL): Beyond the electromagnetic calorimeter lies the
hadronic calorimeter, which typically extends from r = 2.0 m to r = 3.0 m. The HCAL
is designed to measure the energy of hadrons, such as protons, neutrons, and pions,
which interact via the strong force. Although hadrons may lose some energy in the elec-
tromagnetic calorimeter, they deposit the majority of their energy in the HCAL through
hadronic shower processes. While the underlying physics processes are different for
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electromagnetic showers, the avalanche-like showers and shapes are also present, how-
ever, significantly larger. The HCAL is also critical for measuring particle jets, which
are groups of hadrons traveling in the same direction. Importantly, it can detect both
charged and neutral hadrons, whereas the inner detector can only track charged parti-
cles. Hence the reconstruction of a particle jet typically relies on information from the
ID and all the calorimeter information, i.e. the ECAL and the HCAL.

• Muon System (MS): The only particles that make it beyond the hadronic calorimeter,
ignoring neutrinos for now, are muons. They leave a track in the inner detector and
lose only a very small amount of energy in the calorimeter system. The muon system is
therefore typically also made of tracking detectors, where the bending of muon tracks is
measured and an independent determination of their transverse momentum and their
corresponding impact parameters can be conducted.

The sub-detector systems are highly specialized and record a vast amount of data per col-
lision event. In fact, the rate of collision events at the LHC is yielding billions of proton-proton
collisions per second at each of the LHC detectors. The resulting data rates at the particle de-
tectors would be far too large to be recorded and stored. To solve this problem, each detector
has a dedicated trigger system that helps select and record interesting or potentially important
events from the vast number of proton-proton collisions, by combining very fast detectors and
algorithms that assess if an event meets certain criteria. For example, it is always interest-
ing when a highly energetic electron or muon with a transverse momentum above 30 GeV is
produced in an event. Additionally, it could be interesting to have two muons in the event,
where each of them has a minimal pT of 10 GeV. It could also be interesting to have an event
with two jets with an energy above 50 GeV. By requiring those event characteristics, most of
the collision events are not recorded, but only those collision events, where potentially in-
teresting physics processes have occurred. Different selection criteria correspond to different
Trigger Requirements. Those trigger requirements are chosen, such that the overall recorded
event rate is within the technological limits of the data acquisition system. Since each trigger
requirement introduces a certain selection bias, the trigger requirements are typically set as
minimal as possible. To allow for studies in a completely unbiased way, a certain rate of events
are recorded, which do not fulfill a predefined trigger requirement (fire a trigger).

Before discussing what exactly is measured and used for the consequent data analysis,
some specific notations need to be introduced.

2.4 Notations and four-vectors

One of the most famous equations in physics is Einstein’s formula for the equivalence of mass
and energy:

E = mc2 .

This equation, however, is a simplified form of a more general relationship that accounts
for both the energy and momentum of a particle. The full formula is:

E2 = (p⃗ · c)2 + (m · c2)2 .

In this equation, E represents the total energy of the particle, p⃗ is the particle’s momentum,
m is the rest mass of the particle (the mass when it is not moving), and c is the speed of light.
When the particle is at rest (p⃗ = 0), the formula reduces to the well-known E = mc2, which
describes the energy that is intrinsic to the particle due to its mass.

In high-energy physics, it is common practice to use a system of units called natural units,
where the speed of light is defined to be 1, i.e. c = 1. This simplifies many calculations since
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the speed of light no longer explicitly appears in the equations. The total energy formula then
becomes:

E2 = p⃗2 +m2 .

This equation relates the energy of a particle to its momentum and mass. For particles
moving at high speeds, meaning that their velocity is close to the speed of light, the momentum
can become much larger than the rest mass, and their energy is dominated by the momentum
term. In these cases, if E≫ m, the equation simplifies to:

E ≈ |p⃗| .

Thus, for high-energy particles, the energy and momentum are approximately equivalent,
and the mass can often be neglected when considering the final state particles in high-energy
collisions. However, this assumption breaks down for heavy particles, such as the W boson,
top quark, or Z boson, where the rest mass is comparable to the total energy.

In everyday life, masses of objects should be measured in kilograms (kg), momentum
should be measured in kg·m·s−1, and energy should be measured in kg·m2·s−2. These units are
impractical for the sub-atomic world, since the mass of a proton is mp = 1.6727 ·10−27 kg. It is
much more convenient to use the energy unit of electron volts (eV), where one eV corresponds
to the energy that a single electron acquires when flying through a potential difference of 1
Volt. In this unit, the mass can then be expressed as 0.938 GeV/c2, i.e. Giga (109) electron
Volt, divided by c2. Using natural units, the mass of the proton is therefore mp=0.938 GeV≈ 1
GeV.

To better illustrate the relationship between energy, momentum, and mass, we will discuss
two examples. The fundamental principle in all physical processes, including collisions of
fundamental particles, is the conservation of energy and momentum. As previously discussed,
a Z boson, with a mass of approximately 91 GeV/c2 (i.e., in natural units, this is equivalent
to 91 GeV), can decay into two muons (a muon and an anti-muon). In this decay, the total
energy of the Z boson must be conserved and shared between the two final-state muons. Since
the mass of each muon is around 100 MeV (0.1 GeV), this mass is negligible compared to the
total energy of the Z boson.

Since the Z boson has 91 GeV of energy and its decay products are two muons, we can
assume that each muon receives approximately half of the total energy, i.e., about 45.5 GeV.
Since the muon mass is negligible compared to this energy, the momentum of each muon can
be approximated as equal to its energy:

Eµ ≈ |p⃗µ| ≈ 45.5 GeV .

Thus, each of the two muons will carry approximately 45.5 GeV of energy and momentum.
As a second example, we consider the decay of a top-quark, with a mass of approximately

172 GeV/c2. When a top quark decays, it typically decays into a W boson and a bottom quark
(b-quark). For simplicity, we assume that the energy of the top quark is equally distributed
between the W boson and the b-quark, then each would receive approximately 86 GeV of
energy.

The mass of the b-quark is relatively small compared to this energy, so its momentum can
be approximated as equal to its energy:

Eb ≈ |p⃗b| ≈ 86GeV .

However, the W boson has a significant mass of approximately 80 GeV/c2, which is similar
to the 86 GeV of energy it receives from the top quark. In this case, the W boson’s momentum
will be smaller than its energy, because a larger fraction of its energy is tied up in its rest
mass. However, the W boson decays further into lighter particles, e.g. one muon and one

15

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.96


SciPost Phys. Lect. Notes 96 (2025)

muon neutrino. These particles will then have the full available energy of 86 GeV, and will
ultimately have energies (and momenta) of roughly 40 GeV. These approximations are not
completely accurate, as several mass and phase-space effects must also be taken into account.
However, they provide a first estimate of what can be expected.

Having introduced the relationship between energy and mass, we now turn to discussing
what can be measured with a particle detector. First, a coordinate system must be defined.
The origin of the coordinate system (0,0,0) is defined at the center of the detector. The z-axis
is placed along the beam-line, i.e. along the direction in which the protons enter the detector.
The y−direction points upwards, while the x−direct ion is defined to be orthogonal to y and
z. The x− and y−axis define a transverse plane, i.e. transverse to the beam line. The angle in
the transverse plane, starting from the x-axis is described by φ, the angle between the z-axis
and the radius is named θ (Figure 7). In practice, the angle θ is expressed with a quantity
named pseudo-rapidity2 η, which is defined by

η= −ln(tan(θ/2)) .

Thus, there exists a unique relationship between θ and η: η = 0 corresponds to an angle
of 90◦, η = 1.0 corresponds approximately to 45◦, and η = 2.5 corresponds to roughly 10◦.
A typical LHC particle detector can cover the full region of φ = [−π,π] and a region in η of
η= [−4,4].

With the definition of a coordinate system, we can define the transverse component of the
momentum of a particle as

p⃗T = (px , py) = (sinφ · pT , cosφ · pT ) ,

with
|pT |=
Ç

(p2
x + p2

y) .

Since the particle detector measures not only the transverse momentum, but also the tra-
jectory of a particle or the position of the energy cluster in the calorimeter, one gets a direction
measurement of the angles φ and θ , i.e. the pseudo-rapidity. Once those angles and the ab-
solute value of transverse momentum, pT , are known, one can calculate all three components
of the momentum vector, via

px = sinφ · pT , py = cosφ · pT , pz = tanθ · pT .

In case of massless particles, or particles whose rest mass is significantly smaller than their
momentum, the momentum is equivalent to the energy and we can define energy values in
three dimensions. At this point, this seems absurd since energy is a scalar quantity, however,
its usefulness will become apparent in section 2.5.

Ex = sinφ · ET , Ey = cosφ · ET , Ez = tanθ · ET .

The information of the energy of a particle, E, and its momentum vector p⃗ is combined in
special relativity in a four-vector object, defined as

p = (E, px , py , pz) .

The scalar product of one four-vector p1 and a second four-vector p2 is defined as

p1.p2 = E1 · E2 − p1
x · p

2
x − p1

y · p
2
y − p1

z · p
2
z = (m

12)2 ,

2The reason for this choice lies in the special relativity and the easier interpretation or particle properties for
physicists; most light particles at the LHC are produced in forward direction and the number of particles per unit
η stays roughly constant.
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and results in the so-called invariant mass m12 of the two four-vectors. The minus signs after
the energy are motivated by special relativity, which is beyond the scope of this introduction.
To interpret this expression, it is illustrative to calculate the scalar product of a four-vector
with itself, yielding

p.p = E · E − px · px − py · py − pz · pz = E2 − |p|2 = m2,

i.e. the rest mass of the particle. Now consider the decay of a Z boson into two muons and
assume the momentum vector of the two muons has been measured, i.e. we know px , py
and pz for the positively and negatively charged muon. Since the muon is nearly massless,
we know that the energy of one muon must be E =

q

p2
x + p2

y + p2
z , hence we can define the

four-vector for each muon separately. By adding those two four-vectors, we get the kinematics
of the mother particle, i.e. the four-vector of the Z boson. By taking the scalar product of this
four-vector, we obtain the rest mass (invariant mass) of the Z boson.

In summary, the relevant quantities are four-vectors of final state particles, since they allow
for a reconstruction of the properties of the intermediate states of a particle collision.

2.5 Primary objects, particle identification and derived observables

The raw data from energy clusters in the electromagnetic and hadronic calorimeters, along
with track information from the inner detector and muon system, can be combined to extract
additional information about the particles created in the collision. The basic idea is illus-
trated in Figure 10: electrons are expected to leave a track in the inner detector, which can
be matched to an energy deposit in the electromagnetic calorimeter system, while the photon
just leaves an energy cluster in the electromagnetic calorimeter but no track can be associated.
Similarly, protons would leave all their energy in a cluster in the hadronic calorimeter, where
a reconstructed track from the inner detector should point to. In contrast, a neutron is not
electrically charged, thus leaving no track in the inner detector instead just an energy deposit
in the hadronic calorimeter. Muons could be identified by tracks in the inner detector that can
be matched to tracks in the muon system. Clearly, the underlying concepts are more complex
and some of those aspects are discussed in more detail in the following.

Particle Flow Objects: In a first step, one tries to associate all tracks in the inner detector
and all clusters in the calorimeter systems. The matching is typically done using the η and φ
variables as well as the reconstructed momenta and energies. The result is a so-called parti-
cle flow object, containing not only basic variables pT , η, φ and charge, but also information
about the mass of the particle, the associated reconstructed energies of the clusters in the
electromagnetic and hadronic calorimeters, as well as the likelihood of the matching. Further-
more, its origin, i.e. the vertex, is saved. Clearly, some information might not be available,
e.g. when an association between a cluster and a track is not feasible, since - in this case -
either the energy information or the vertex are unavailable. Particle Flow Objects are the basis
for all subsequent objects, as they represent all primary objects that have been measured by
particle detector systems.

Electrons: Naively, each track that can be associated with an ECAL cluster, while containing
no corresponding energy deposit in the HCAL could be identified as an electron. Unfortu-
nately, some hadrons can also mimic a similar signature. In order to lower the probability that
a hadron is falsely identified as an electron, the very specific shower shapes of electrons in the
calorimeter are used to further separate electron from hadron processes. Sadly, this classifica-
tion is still not ideal. Not all real electrons are reconstructed and identified as electrons and
some reconstructed electron candidates are still caused by hadrons. The more stringent the
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selection criteria on the shower-shape variables, the smaller the fake-rate, although conversely
resulting in a reduced identification efficiency for electrons and photons.

Since the energy measurement of a calorimeter improves with higher energies, one typi-
cally takes the measurement of the energy from the calorimeter, while the measurements of η
and φ are taken from the inner detector. Another reason for this is that electrons can radiate
photons when transversing the material of the inner detector via the Bremsstrahlung process.
By emitting Bremsstrahlung photons, the charged particles lose energy, and the curvature of
the track increases, consequently making it difficult to correctly estimate their initial momen-
tum. However, the energy of these Bremsstrahlung photons is measured by the calorimeter,
and is therefore included in the energy measurement.

Photons: The signatures of photons are very similar to those of electrons, except that no
track in the inner detector can be associated with the reconstructed electromagnetic cluster.
However, some photons interact with the material of the inner detector system and split up
to an electron positron pair, which then leaves tracks in the inner detector system. Hence
a reconstructed photon also contains information on whether such a process has happened
previously. Similarly to electrons, hadrons can also fake photon signatures. Therefore, the
shape information of the deposited energies in the electromagnetic calorimeter is used for
improving the identification, i.e. lowering the probability that a hadron is incorrectly identified
as a photon, but still keeping the efficiency of identifying a photon relatively high.

Muons: Muons are all particle flow objects containing a corresponding track in the muon
system. The likelihood that other particles mimic a muon signature is extremely small, im-
plying that all reconstructed muon candidates are actually caused by muons. Although the
fake-rate is small, the track association, as well as the track reconstruction, is not perfect,
implying certain inefficiencies.

Vertices: In addition to the energy and momentum of particles, one can also determine the
positions where particles are produced or have been colliding. These positions are called
vertex and are described by three coordinates (vx ,vy ,vz). The vertex is reconstructed using
the reconstructed trajectory of a single charged particle by the inner detector. The minimal
distance of a trajectory to the z-axis is described by the so-called impact parameters, d0 and z0
for the transverse plane and the x y−plane respectively, as illustrated in Figures 6 and 7. By
combining the information of several trajectories, a common origin can be determined, which
in turn is defined as a vertex.

Typically, several vertices are reconstructed in each proton-proton collision. The so-called
primary vertex corresponds to the position of the initial proton-proton collision, where the
most interesting physics reaction took place, e.g. the creation or decay of a heavy particle,
such as the Higgs boson or a top-quark. The primary vertex is typically defined as the vertex
having the largest number of - or the highest energetic - tracks associated to it. Secondary
vertices are usually found close to the primary vertex and typically have two or three tracks
originating from them. They stem from decays of particles that were produced in the primary
vertex but are long-lived enough that they can travel a few mm before decaying further. Typical
examples are tau-leptons or B-mesons, i.e. bound systems which contain one b-quark.

In addition to the primary vertex and associated secondary vertices, there are also vertices
originating from the other proton-proton collisions that are recorded in the same event. Those
vertices are labeled as pile-up vertices. The reconstruction pile-up vertices can be used to mit-
igate the effect of pile-up events on the reconstructed quantities. For example, reconstructed
energy clusters in the calorimeter, which have an associated track that stems from a pile-up
vertex, can be ignored and excluded from further analysis. Nevertheless, pile-up will always
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reduce the detector performance, since neutral particles stemming from pile-up collisions will
lead to a signature in the calorimeter systems, but cannot be directly identified due to not
leaving a track in the ID.

Jets: Quarks and gluons in the final state hadronize, yielding a number of charged and neu-
tral hadrons, flying and spreading out as a group of particles along the direction of the original
quark or gluon. These hadrons deposit their energies in the form of energy-clusters in the ECAL
and the HCAL systems, as well as tracks of the charged hadrons in the inner detector. This
concept is illustrated in Figure 11.

In order to identify which energy deposits correspond to the signature of the original quark
or gluon, special algorithms have been developed. The most prominent one is the Anti-KT
algorithm, which can be applied to all particle flow objects in the η,φ-plane. Particle flow
objects that are grouped together following certain rules, are called a particle jet. A particle
jet can therefore have energy, momentum, and a direction described by η and φ. Moreover,
we can add up relativistic momenta of all particle flow objects, and subsequently define the
invariant mass for the particle-jet.

The number and properties of particle jets that have been found in a collision event depend
on a parameter R, which needs to be defined at the beginning of the Anti-KT algorithm. R is
defined between two particles as

R=
Æ

∆η2 +∆φ2 ,

i.e. it can be interpreted as a distance in the η,φ-plane. Its maximal value is typically set
to 0.4 or 0.6 in the Anti-KT , which governs the size of the particle jet and defines at which
distance other particle flow objects are no longer considered.

Jets originating from quarks and gluons yield very similar signatures in the calorimeters,
however, machine learning techniques can be used in order to find subtle differences, allowing
for a certain degree of separation. The separation between typical jets and those originating
from b-quarks (and to some extent from c-quarks) is significantly simpler, as those jets typically
have their origin with a certain displacement from the primary vertex, i.e., have reconstructed
secondary vertices.

Tau Leptons: Similarly to b- and c-quarks, τ leptons also have a very typical decay signa-
ture, which can be reconstructed directly using tracks from the inner detector system. Since
more advanced algorithms are required, we will not discuss this in detail. As a result of those
algorithms, we can reconstruct the kinematics of the tau-leptons, i.e. pT ,η,φ and its charge,
albeit, with a rather small efficiency and a significant fake-rate.

Neutrinos and Missing Transverse Energy: The interaction probability of neutrinos with
normal matter is vanishingly small, making it nearly impossible to detect them directly, as
they pass through the detector without leaving a measurable signal. However, since neutrinos
carry energy, their presence can be inferred indirectly through the principle of energy and
momentum conservation. When summing up the energies of all visible particles in a collision
event, any imbalance in energy can indicate the presence of neutrinos or other undetected
particles.

From the LHC settings, we know that each proton has an energy of 7000 GeV in the z-
direction and nearly zero transverse momentum in the x- and y-directions. However, the exact
fraction of the momentum carried by quarks and gluons (partons) inside each proton is un-
known. For instance, one quark might carry 30% of the proton’s momentum, while another
carries only 10%. Consequently, we do not have precise knowledge of the partonic momenta in
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Figure 11: Exemplary depiction of a jet reconstruction. This image was taken from
a news article: [6], by the CMS Collaboration.

the z-direction before the collision. However, we know that the total momentum of the protons
in the transverse plane (x- and y-directions) is zero before the collision. Consequently, through
momentum conservation, the sum of the transverse momenta of all final-state particles must
also be zero. Mathematically, this condition can be expressed as:

|
∑

i

E⃗ i
T |= |
∑

i

(E i
x , E i

y)|= 0 .

Any deviation from this expected zero sum in the transverse plane is referred to as missing
transverse energy (typically denoted as E⃗miss

T or M ET). This quantity serves as a proxy for the
transverse energy of neutrinos or other undetected particles that escaped the detector system
without depositing energy. M ET is a key observable in events involving weakly interacting
particles, such as neutrinos or hypothetical dark matter candidates.

Isolation: Electrons and muons originating directly from the decay of heavy particles, e.g.
the Z boson, appear isolated in the inner detector. Isolation means that no (or only a few
other) tracks or particle flow objects are in close proximity. This is very different for elec-
trons and muons produced during the creation of particle jets which have significant activity
around them. To quantify this, several isolation variables can be defined, e.g. as the sum of
all transverse momenta around the muon or electron within a ∆R < 0.2 cone radius. This
can then be used to place a requirement on the isolation of a reconstructed electron or muon,
isopt =
∑all t racks

i pi
T < maximal value GeV . Sometimes, not a definite maximal value, but a

relative definition, i.e. isopt/p
lepton
T is used for the isolation definition. The reason for this is

simple: electrons and muon signatures in the detector stemming from particle jets are much
more likely than those that come from resonance decays. Hence, one typically requires isolated
leptons when studying processes that involve direct decays into leptons.
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Figure 12: Event Display of a recorded proton-proton collision by ATLAS, showing a
candidate of a produced top-quark pair that decays into one muon and four particle
jets, while containing missing energy. This picture was taken from [7].

3 Simulation, detector response and machine learning tasks

3.1 Simulation of proton-proton collisions

Our current understanding of nature is based on a Quantum Field Theory named Standard
Model of Particle Physics, which was shortly introduced in section 2. The theory allows for
impressive predictions on a sub-atomic level, in particular, it can be used to predict what
happens when one collides two protons like at the LHC. Since the Standard Model is based on
quantum physics, only probabilities for certain reactions can be given. For example, it is very
likely that two particle jets will emerge in a proton-proton collision, but it takes more than 109

collisions to produce a single Z boson. Consequently, a vast amount of collisions need to be
analyzed to discover and study the few events where something intriguing occurs.

The Standard Model is formulated elegantly on a mathematical level, but in order to al-
low for predictions, several approximations and rather complex computational approaches are
necessary. Predictions on proton-proton collisions are carried out by programs called Event
Generators. Since Monte Carlo methods are used within those programs, the underlying simu-
lations are also referred to as MC Simulations. Several different programs are currently used,
each differing in the approximations made during their calculations. They all share the abil-
ity to predict the outcome of a given number of proton-proton collisions, i.e., they internally
simulate probabilistic outcomes to determine what could happen in a collision and repeat this
process for subsequent collisions. Given that the probability for something interesting hap-
pening is so small, one typically defines what kind of collision events should be produced, e.g.
one can define that one Z boson should be produced every time. The outcome of the simula-
tion of one proton-proton collision via an event generator is then the kinematics of all stable
particles after the collision. Since each collision is a random process, the amount, as well as
the kinematics of all stable particles will be different for the next proton-proton collision. The
information of the outcome of the simulation is called generator level, or MC truth level.
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3.2 Simulation of particle detectors and reconstruction of objects

If we were a god-like figure, then we would see nature at this MC truth level, i.e. we would
know exactly what happened in each collision event: which quarks and gluons have been
interacting, what their energy was, what they created, and which particles have been produced
in their decay. However, we are just physicists and hence we can only observe what can be
measured by our detector, which also needs to be simulated.

The starting point are simulated stable particles for a given event after the proton-proton
collision. Their path through the actual particle detector as well as the induced electronic
signals have to be simulated. At this point, a simulated event is treated exactly like an event
of a real collision and all reconstruction algorithms are applied. The electronic signals in the
inner detector are used to reconstruct trajectories of charged particles, the deposited energy
signals in the calorimeter are used to reconstruct particle jets and so forth. The reconstructed
objects at this stage are called detector level or reconstruction level objects.

The difference between generator level and detector level is an important point, which we
want to illustrate with a simple example. Assume a proton-proton collision where one electron
is expected to be produced. We know the kinematics of this electron from the event generator
program, i.e. we know its kinematics on generator level. The path of the electron is then
simulated in a second step through the detector, where its interaction with the inner detector
and the ECAL is estimated. Based on this information, we then try to reconstruct the kinematics
of the electron. Clearly, our measurements of the track momentum and track direction or the
energy in the calorimeter are not perfect. Hence, the reconstructed electron is close but not
identical to the original. Sometimes it might occur that we do not reconstruct an electron at
all, as it might fail certain identification criteria or just flies through an un-instrumented part
of the detector.

Therefore, there is a significant difference between the particles at generator level and
detector or reconstruction level, i.e. after the effect of the detector on the measurement. This
difference does not apply only to electrons, but to all measured quantities. In particular, the
difference between the two ’layers’ grows larger, when the detector resolution gets worse.

In real collisions, we can only see quantities on detector or reconstruction level but never at
generator level. Hence, it is crucial to have simulated samples of various processes in proton-
proton collisions, as they are needed to interpret what actually can be measured. In fact,
simulated MC samples of processes are used in three different ways: First, they are used such
that experimental physicists know what to expect when looking for a certain process. For ex-
ample, let us assume we want to select collision events where a W boson has been created
and decayed further to one electron and one neutrino. On detector level, we know from sim-
ulations what transverse momentum distributions the electron might have, what its isolation
properties are, and how the reconstructed missing transverse energy distribution E⃗miss

T looks
like. This allows defining selection criteria on data, e.g. by requiring a minimal transverse
momentum of the electron to be pT >25 GeV, an isolation isopt/p

lepton
T < 0.1 and a minimal

missing transverse energy of E⃗miss
T > 30 GeV. When having such a selection, one will realize that

other physics processes also pass this selection, which are not from the pp → W → eνe pro-
cess. An example would be the process pp→ Z → e+e−, i.e. the creation of a Z boson and its
decay into one electron and one positron. When one electron leaves the detector undetected,
for example through the beam-pipe, this electron would be interpreted on reconstruction level
as missing transverse energy, hence also passing the above described signal selection.

The second purpose of MC samples is, therefore, to estimate how often such background
processes pass the signal selection and also to optimize the signal selection criteria, such that
the ratio of signal over background events is improved. It is important to note that one can
never definitely conclude of any observed event signature about the underlying process. In-
stead, one calculates probabilities for various processes that yield a certain observed events

22

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.96


SciPost Phys. Lect. Notes 96 (2025)

characteristics. This is the reason why typically large statistics in data are necessary to draw
statistically significant conclusions.

Thirdly, MC simulated samples can be used to extract physics parameters. To illustrate
this, we discuss a possible determination of the mass of the Z boson: We can simulate the
expected reconstructed invariant mass distribution of Z boson events, which decay into two
electrons, and vary the assumed mass of the Z boson in the simulation. In a second step, the
reconstructed invariant mass distribution of Z boson candidate events in data is compared to
the different MC predicted distributions for various Z boson mass approximations. The best-
fitting approximation can then be used to determine the fundamental mass parameter in the
theory.

The simulation of proton-proton collisions does not fully resemble reality, since the mod-
eling of the proton-proton collisions suffers from theory uncertainties but also because the
detector response, i.e. the simulated signals within the detector are not described correctly.
The first kind of mismodeling can be tested by varying the theoretical assumptions made during
the event generation, or by simply using two different event generator programs. The second
kind of mismodeling, i.e. those on the detector level, are corrected by additional smearing
corrections or reweighting of events. Assume, for example, that the simulation predicts that
the measured muon momentum is always larger by 5% compared to reality, then one merely
rescales each reconstructed muon momentum in simulated samples by 1/1.05. If the recon-
struction efficiency of one muon is in simulation 95% but in reality only 92%, then the events
are weighted by a factor 0.92/0.95. Those corrections can be derived by studying processes
that are well known, and hence one knows exactly what should be measured in principle. In
fact, an enormous effort is put in by the LHC collaborations to derive such data/MC correction
factors. Without their detailed understanding, no serious data-analysis can be performed in
high energy physics.

4 Event records

The most important concepts of LHC collision data have been introduced, hence the actual data
structure can be discussed. In a first step, we present a simple example of a TopAnti − Top
pair produced in proton-proton collisions, which immediately decay semi-leptonically and dis-
cuss how such events are stored in principle. A semi-leptonic decay typically results in both a
hadron, and a lepton in the final state. We then delve into the full detailed event record infor-
mation and summarize all available samples of the CMS Open Data in the pandas DataFrame
format.

4.1 Simple example

We store extensive information about each collision in the form of variables, totaling 121 in
quantity. In this context, a single collision can also be called an event. These saved vari-
ables either retain information about the underlying event itself, or about the physical objects
encountered within the event. In the following example, we will focus mostly on variables
containing information about the objects encountered in an event. This category can be fur-
ther divided into the individual objects, namely Particle Flow (PF) objects, vertices, Monte
Carlo Truth (MCTruth) objects, electrons, muons, taus, photons, as well as jets. Here, we will
focus on muons and PF objects.

Now, depending on the collision-type, as well as the event itself, the amount of these objects
measured by the detector can vary significantly. In the DataFrames this is represented by the
variables prefixed with “n”, such as nPF, which for each event contain the amount of PF objects
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Table 3: Amount of certain objects observed in three distinct events of proton-proton
collisions.

Amount of certain objects observed.
Event nEle nMuon nTau nPhoton nPF nVertex nMcTruth nJets

1 0 3 64 0 1046 11 774 64
2 1 4 98 1 1820 26 591 98
3 0 7 96 0 1524 18 885 96
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Figure 13: Histograms visualizing the distributions of how many events contain
which amount of PF objects (left), muons (middle), and electrons (right) over 10000
events.

observed. If we consider three randomly selected events of the collisions described previously,
one could see results as depicted in Table 3.

On a larger scale, using 10000 events instead of just three, the distributions of how many
events contain certain amounts of objects can be visualized through histograms. As can be
inferred by looking at Table 3, there tend to be considerably more PF objects compared to
other objects such as Muons or Electrons. This is due to the fact that Particle Flow objects
act as a kind of super-object, which contains all other sub-objects. Another factor that can
influence the amount of certain objects encountered in a dataset is the underlying particle
collision or decay. For example, when considering a Z-Boson decaying to two electrons, one
would expect most events in this sample to have exactly 2 electrons.

This idea is visualized - for PF Objects, Muons, and Electrons - in the histograms found
in Figure 13, where the middle histogram shows the amount of muons encountered in a Top
Anti-Top pair decaying semi-leptonically, and the right one shows the amount of electrons
encountered in the same decay. When analyzing these distributions, one can observe that the
amounts of muons and electrons encountered in the events do not exactly match the expected
results. For the considered decay, one would expect to detect exactly one lepton per event, as
both muons and electrons are leptons, one would therefore expect to only encounter either 0
or exactly 1 muon / electron per event. These errors stem mostly from low energy objects that
get falsely detected. When looking at the histograms in Figure 14, one can see that there are
indeed many low energy muons and electrons for both datasets.

This error can be offset by applying cutoffs on the measured transverse momentum of the
respective objects, for example, by applying a cutoff of considering only muons and electron
which have a momentum of above 5 GeV, the distributions better represent the expected results.
These histograms can be seen in Figure 15.

As mentioned previously, the variables stored in the DataFrames are categorized into event-
information and object-information. To distinctly associate object-information variables with
specific objects, a naming convention has been applied. Here, the prefix is the general datatype
the variable is represented as within an event: vec for arrays, f for floats, and n for the integers
describing how many instances of an object are observed within the event. The infix then
names the precise object, for example, Muon, PF , or Jet. Then, separated by an underscore,
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Figure 14: Histograms visualizing the distributions of how many muons (left) / elec-
trons (right) have specific Transverse Momentum over 10000 events.
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Figure 15: Histograms visualizing the distributions of how many events contain
which amount of muons (left) / electrons (right) over 10000 events, after apply-
ing a 5 GeV cutoff on the Transverse Momenta of the encountered objects.

the suffix represents which variables information is saved, for example Eta for η or Phi for φ.
Putting all of this together, the information about the transverse momenta of the encountered
muons would be stored in the array vecMuon_PT . A full list of the variables using this naming
convention and their descriptions can be seen in Table 7. For the event-information, no real
naming convention is applied, however, the relevant variables and their descriptions can be
found in Table 13.

The length of the variables represented as arrays (prefixed with vec) depends on how
many of the related object were encountered in the given event. In Table 3 for example, the
first event contains three muons, hence all array variables for the muon are of length three
in this event. Here, a value v at index i in the respective array represents the value for the
variable of the i-th object in the event. Some variables are saved for multiple objects, such as
their transverse momentum, η, and φ. Their values, however, vary depending not only on the
event they belong to, but also which object they are related to. Consider for now the variables
pT , η, and φ. For the same three events listed in Table 3, their values for muons, electrons,
and PF objects are shown in Table 4. These three variables are in fact stored for each physical
object, as well as the MET, as they uniquely describe the direction, as well as the momentum
the respective object was either measured, or in the case of Monte Carlo Truth objects, how it
truly would be if the detector were perfect.

Increasing the sample size to 10000 events instead of three, the distribution of variables
for certain objects can once again be visualized using histograms. Histograms representing
said distributions for PF objects on their transverse momentum and their polar-coordinates η
and φ can be seen in Figure 16.
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Table 4: Schematic representation of how variables are saved depending on the num-
ber of objects observed in an event, based on PF objects, Muons, and Electrons in a
Z Z → 4µ decay.

Transverse momentum, η, and φ for multiple objects.

PF Objects

Event nPF pT0 η0 φ0 ... pT1046 η1046 φ1046 ... pT1819 η1819 φ1819

1 1046 0.4 -1.3 1.2 ... - - - ... - - -

2 1820 2.8 -1.2 -1.3 ... 0.2 -3.6 -0.4 ... 0.2 -0.9 -1.4

3 1524 0.9 -1.9 -0.9 ... 0.2 3.8 0.9 ... - - -

Muons

Event nMuon pT0 η0 φ0 ... pT2 η2 φ2 ... pT6 η6 φ6

1 3 70.2 -2.4 -2.8 ... 1.2 -1.9 -2.0 ... - - -

2 4 8.3 1.53 -0.0 ... 19.7 0.9 1.0 ... - - -

3 7 11.1 -0.3 2.8 ... 2.1 -1.9 0.3 ... 0.9 -1.9 2.8

Electrons

Event nEle pT0 η0 φ0 pT1 η1 φ1 ... pT6 η6 φ6 ...

1 0 - - - - - - ... - - - ...

2 1 - - - 2.8 -1.3 -1.2 ... - - - ...

3 0 - - - - - - ... - - - ...

A popular way of leveraging high energy physics data in deep learning approaches is en-
coding them as images. These images can then be used in powerful Convolutional Neural
Networks. To this end, a straightforward encoding of the available data in the DataFrames is
to use the three variables discussed previously: transverse momentum, η, and φ. The images
can then be created for each event by discretizing the η and φ ranges as bins and then sum-
ming up transverse momenta at the corresponding bin overlap. A resulting greyscale image
for the PF objects of a single event can be seen in Figure 17.

4.2 Detailed information

In this section, a complete list of variables within the pandas DataFrames will be provided in
tabular format, as well as a brief introduction into the objects. Multiple Tables are presented,
categorized by the type of variable they concern. Specifically, the variables are here categorized
into general variables (Table 13), muon variables (Table 7), vertex object variables (Table 9),
electron variables (Table 6), tau variables (Table 8), photon variables (Table 10), Monte Carlo
truth variables (Table 11), jet variables (Table 12), as well as PF object variables (Table 5).
Each table is constructed as follows: within the first column the name of the variable is stated.
In the second column, its datatype is given, i.e Integer, Float, or any numpy ndarray. Lastly,
the third column provides a brief description of what the variable entails physically.

26

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.96


SciPost Phys. Lect. Notes 96 (2025)

0 1 2 3 4 5 6 7 8
Transversal Impulse (pT) [GeV]

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
ti

on
 o

f 
ev

en
ts PF Transversal momentum (pT)

8 6 4 2 0 2 4 6 8
Pseudo-rapidity 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
a
ct

io
n
 o

f 
e
ve

n
ts Particle flow 

4 2 0 2 4
Polar coordinate 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
ac

ti
on

 o
f 

ev
en

ts Particle flow 

Figure 16: Histogram visualizing the distributions of pT (left) η (middle) and φ
(right) over 10000 events for PF objects.

Figure 17: Greyscale image of transverse momentum of a single events PF objects,
ranging over η and φ.

4.2.1 Particle flow objects

Particle Flow objects are special since they contain all of the other physical objects, such as
muons, electrons, photons, and tauons. Additionally, these PF objects are used to construct
high-level objects, such as the PF jets and the missing transverse momentum. For the PF objects
we store the respective pT , η, and φ values, as is done for every physical object in this context.
This is done since these three quantities can be used to uniquely define the point in space the
respective object was measured within the detector, as well as which momentum the object
had in the transverse plane during its measurement. A variable unique to PF objects is PfType,
which stores information about the particle IDs (pgdId) of the objects. This ID defines which
specific object the PF object is, e.g. an object having a pgdId of 11 is an electron, while a pgdId
of -11 would be linked to a positron. A complete list of the variables saved for the PF objects
can be found in Table 5.
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Table 5: Description of the variables associated with Particle Flow objects contained
in the pandas DataFrames.

Particle Flow (PF) Objects
Name Type Description

nPF Integer Number of PF objects in the respective event.
vecPF_PT Float-ndarray Array of the transverse momenta (pT ) of the PF objects

in the respective event.
vecPF_Eta Float-ndarray Array of the pseudorapidities (η) of the PF objects in

the respective event.
vecPF_Phi Float-ndarray Array of the azimuthal angles (φ) of the PF objects in

the respective event.
vecPF_E Float-ndarray Array of the energies of the PF objects in the respective

event.
vecPF_Q Float-ndarray Array of the electric charges of the PF objects in the

respective event.
vecPF_Mass Float-ndarray Array of the invariant masses of the PF objects in the

respective event.
vecPF_PfType Integer-ndarray Array containing the particle types (PDG IDs) of the PF

objects in the respective event.
vecPF_EcalE Float-ndarray Array of the energies measured in the Electromagnetic

Calorimeter (ECAL) for the PF objects in the respective
event.

vecPF_HcalE Float-ndarray Array of the energies measured in the Hadronic
Calorimeter (HCAL) for the PF objects in the respec-
tive event.

vecPF_ndof Float-ndarray Array of the number of degrees of freedom (ndof) of
the track fit associated with the PF objects (where ap-
plicable) in the respective event.

vecPF_Chi2 Float-ndarray Array of the chi-squared (χ2) values from the track fit
associated with the PF objects (where applicable) in
the respective event.

vecPF_pvId Integer-ndarray Array of the primary vertex IDs associated with the PF
objects in the respective event.

vecPF_X Float-ndarray Array of the x coordinates of the closest vertex associ-
ated with each PF object in the respective event.

vecPF_Y Float-ndarray Array of the y coordinates of the closest vertex associ-
ated with each PF object in the respective event.

vecPF_Z Float-ndarray Array of the z coordinates of the closest vertex associ-
ated with each PF object in the respective event.

vecPF_JetNum Integer-ndarray Array indicating the jet index to which each PF object
belongs (–1 if the PF object does not belong to any jet).
This is used to link PF jets to their constituent particles.
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4.2.2 Electrons

For electrons, in addition to saving their pT , η, and φ we also save their charge, denoted by
Q. For electrons, this can be either -1 for normal electrons, or +1 for anti-electrons, also called
positrons. A full list of the variables concerning electrons can be found in Table 6.

Table 6: Description of the variables associated to electrons contained in the pandas
DataFrames.

Electrons

Name Type Description

nEle Integer Amount of electrons measured in the respective
Event.

vecEle_PT Float-ndarray Array of the Transverse Momenta (pT ) of the mea-
sured electrons in the respective event.

vecEle_Eta Float-ndarray Array of the pseudo-rapidities η of the measured
electrons in the respective event.

vecEle_Phi Float-ndarray Array of the polar coordinates φ of the measured
electrons in the respective event.

vecEle_Q Float-ndarray Array of the charges of the measured electrons in
the respective event. -1 for electrons and +1 for
positron

vecEle_TrkIso03 Float-ndarray Array of the summed up Transverse Momenta (pT )
of the isolation of tracks within a radius of 0.3 for
the measured electrons.

vecEle_EcalIso03 Float-ndarray Array of the summed up Electromagnetic
Calorimeter Energies (EcalE) of the isolation
of tracks within a radius of 0.3 for the measured
electrons.

vecEle_HcalIso03 Float-ndarray Array of the summed up Hadronic Calorimeter En-
ergies (HcalE) of the isolation of tracks within a
radius of 0.3 for the measured electrons.

vecEle_D0 Float-ndarray Array of the impact parameters (d) in xy direction
in the respective event.

vecEle_Dz Float-ndarray Array of the impact parameters (d) in z direction
in the respective event.
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4.2.3 Muons

For muons, we also save their pT , η and φ, and their charge. Additionally, an array of the
errors associated to the Transverse Momenta is saved under the variable PTErr, as well as
saving information about measured standalone muons in the respective events, specifically
about the pT , η and φ, called StaEta, StaPhi, and StaPt respectively. Again, a full list of
variables pertaining to muons can be seen in Table 7.

Table 7: Description of the variables associated to muons contained in the pandas
DataFrames.

Muons

Name Type Description

nMuon Integer Amount of muons measured in the respective
Event.

vecMuon_PT Float-ndarray Array of the Transverse Momenta (pT ) of the mea-
sured muons in the respective event.

vecMuon_Eta Float-ndarray Array of the pseudo-rapidities η of the measured
muons in the respective event.

vecMuon_Phi Float-ndarray Array of the polar coordinate φ of the measured
muons in the respective event.

vecMuon_PTErr Float-ndarray Array of the errors associated to the Transverse
Momenta (pT ) of the measured muons in the re-
spective event.

vecMuon_Q Float-ndarray Array of the charges of the measured muons in
the respective event. -1 for muon and +1 for anti-
muon

vecMuon_StaPt Float-ndarray Array of the Transverse Momenta (pT ) of the mea-
sured standalone muons in the respective event.

vecMuon_StaEta Float-ndarray Array of the pseudo-radidity η of the measured
standalone muons in the respective event.

vecMuon_StaPhi Float-ndarray Array of the polar coordinates φ of the measured
standalone muons in the respective event.

vecMuon_TrkIso03 Float-ndarray Array of the summed up Transverse Momenta (pT )
of the isolation of tracks within a radius of 0.3 for
the measured muons.

vecMuon_EcalIso03 Float-ndarray Array of the summed up Electromagnetic
Calorimeter Energies (EcalE) of the isolation
of tracks within a radius of 0.3 for the measured
muons.

vecMuon_HcalIso03 Float-ndarray Array of the summed up Hadronic Calorimeter En-
ergies (HcalE) of the isolation of tracks within a
radius of 0.3 for the measured muons.
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4.2.4 Tauons

For tauons, in addition to saving the usual variables as for the previously discussed objects, we
also save information about the raw isolation of the objects in several variables, namely Raw-
Iso3Hits, RawIsoMVA3oldDMwoLT, RawIsoMVA3newDMwoLT, and RawIsoMVA3newDMwLT.
The full description of tauons variables can be seen in Table 8.

Table 8: Description of the variables associated to electrons contained in the pandas
DataFrames.

Tauons

Name Type Description

nTau Integer Amount of tauons measured in the respective Event.

vecTau_PT Float-ndarray Array of the Transverse Momenta (pT ) of the measured
tauons in the respective event.

vecTau_Eta Float-ndarray Array of the pseudo-rapidities η of the measured tauons
in the respective event.

vecTau_Phi Float-ndarray Array of the polar coordinatesφ of the measured tauons
in the respective event.

vecTau_Q Float-ndarray Array of the charges of the measured tauons in the re-
spective event. -1 for tauons and +1 for anti-tauons

4.2.5 Vertex objects

The position of a proton-proton collision in the detector is defined by three coordinates, called
the vertex. The vertex of a single proton-proton collision is estimated by extrapolating the
reconstructed particle tracks to a common origin, a process known as vertex reconstruction.
At the LHC, where many collisions occur in a single bunch crossing, multiple such vertices
can be reconstructed in one event. The primary vertex refers to the collision point of main
interest—typically the one with the highest track activity and most likely associated with the
hard scatter process being studied. In contrast, pile-up vertices originate from additional,
usually lower-energy proton-proton collisions occurring in the same bunch crossing and are
reconstructed separately to isolate the primary physics signal. Meanwhile, secondary vertices
are displaced from the primary vertex and result from the decay of long-lived particles, such as
B hadrons. Identifying and distinguishing between these different types of vertices is essential
for accurately reconstructing the event topology and suppressing background contributions.
A full description of vertex object variables can be found in Table 9.
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Table 9: Description of the variables associated with vertex objects contained in the
pandas DataFrames.

Vertex Objects

Name Type Description

nVertex Integer Number of reconstructed vertices in the respective
event.

vecVertex_nTracksfit Integer-ndarray Array of the number of tracks used in the fit of
each vertex in the respective event.

vecVertex_ndof Float-ndarray Array of the number of degrees of freedom (ndof)
from the vertex fit for each vertex in the respective
event.

vecVertex_Chi2 Float-ndarray Array of the chi-squared (χ2) values from the ver-
tex fit for each vertex in the respective event.

vecVertex_X Float-ndarray Array of the x coordinates of the fitted position of
each vertex in the respective event.

vecVertex_Y Float-ndarray Array of the y coordinates of the fitted position of
each vertex in the respective event.

vecVertex_Z Float-ndarray Array of the z coordinates of the fitted position of
each vertex in the respective event.

4.2.6 Photons

Photons introduce several new variables, such as Hovere (read as H over E). This vari-
able stores information about the energy deposited in the Electromagnetic (E) and Hadronic
Calorimeters (H) respectively. The full descriptions of the photon variables can be seen in
Table 10.
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Table 10: Description of the variables associated to photons contained in the pandas
DataFrames.

Photons

Name Type Description

nPhoton Integer Amount of photons measured in the respective
Event.

vecPhoton_PT Float-ndarray Array of the Transverse Momenta (pT ) of the
measured photons in the respective event.

vecPhoton_Eta Float-ndarray Array of the pseudo-radidities η of the mea-
sured photons in the respective event.

vecPhoton_Phi Float-ndarray Array of the polar coordinates φ of the mea-
sured photons in the respective event.

vecPhoton_Hovere Float-ndarray Array of the fraction of energy being deposited
in the hadronic (h) and electromagnetic (e)
calorimeter respectively, per event.

vecPhoton_Sthovere Float-ndarray Array of the fraction of energy being deposited
in the hadronic (h) and electromagnetic (e)
calorimeter respectively, per event.

vecPhoton_Has-
PixelSeed

Boolean-ndarray Array containing flags if the photon has left a
signature in the inner detector in the respective
event.

vecPhoton_IsConv Boolean-ndarray Array containing flags if the photon is converted
into one electron and one positron in the respec-
tive event.

vecPhoton_Pass-
ElectronVeto

Boolean-ndarray Array containing flags if the photon passed the
veto, that it is not identified as an electron in
the respective event.

4.2.7 Monte Carlo truth objects

Monte Carlo Truth objects are another special type of objects. They do not necessarily rep-
resent specific physical objects such as leptons or photons, instead they instead represent a
collection of multiple such objects. Specifically, Monte Carlo Truth objects represent the re-
spective objects as they would be observed in an ideal detector, or in this case they represent
the objects before the detector step (either with an actual or a simulated detector), therefore
immediately after the generation of the particles. Again, these Monte Carlo Truth objects store
the common variables such as pT , η, and φ. As was the case in PF objects, MC Truth objects
also contain a reference to the particles pgdId. Additionally, we save information about the
flavour codes of the primary and secondary mother vertices of the respective particle in the
variables Id_1 and Id_2. A full description of all MC Truth object variables can be found in
Table 11.
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Table 11: Description of the variables associated to MC truth contained in the pandas
DataFrames.

Monte Carlo (MC) Truth
Name Type Description

nMctruth Integer Number of MC truth particles (from the genera-
tor) in the respective event.

vecMctruth_PT Float-ndarray Array of the transverse momenta (pT ) of the MC
truth particles in the respective event.

vecMctruth_Eta Float-ndarray Array of the pseudo-rapidities η of the MC truth
particles in the respective event.

vecMctruth_Phi Float-ndarray Array of the azimuthal angles φ of the MC truth
particles in the respective event.

vecMctruth_Mass Float-ndarray Array of the masses of the MC truth particles in
the respective event.

vecMctruth_Mo-
thers.first

Integer-ndarray Array of indices identifying the first mother par-
ticle of each MC truth particle in the respective
event.

vecMctruth_Mo-
thers.second

Integer-ndarray Array of indices identifying the second mother
particle of each MC truth particle in the respec-
tive event.

vecMctruth_Id_1 Integer-ndarray Array containing the PDG ID of the incident par-
ton from the first proton beam participating in
the hard scattering (event-level quantity).

vecMctruth_Id_2 Integer-ndarray Array containing the PDG ID of the incident par-
ton from the second proton beam participating in
the hard scattering (event-level quantity).

vecMctruth_X_1 Float-ndarray Array containing the fractions of the beams mo-
mentum carried by the incident parton from the
first proton beam in the hard scattering.

vecMctruth_X_2 Float-ndarray Array containing the fractions of the beams mo-
mentum carried by incident parton from the sec-
ond proton beam in the hard scattering.

vecMctruth_PdgId Integer-ndarray Array containing the PDG IDs of the MC truth
particles in the respective event.

vecMctruth_Status Integer-ndarray Array of status codes specifying the generator-
level status of the MC truth particles in the re-
spective event.

vecMctruth_Y Float-ndarray Array of the rapidities of the MC truth particles
in the respective event.

4.2.8 Jets

A jet is a clustering of particles that, by some approximations, go in roughly the same direction
within the detector. In this context, the jets here are calculated using the PF objects, hence they
are Particle Flow Jets, however, the jet variables containing the prefix “Gen” hold information
about so-called generator-level jets (gen jets). These jets are similar to the MC Truth objects in
that they pertain to objects that are regarded before the detector was either simulated or really
used. As a jet is a clustering of particles, some variables of jets are used to store information
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about how many different types of particles are in a jet. For example, the variable nParticles
stores how many particles are in a jet in total, while the variable nNeutrals stores how many
particles in a jet have neutral charge (0). A full description of the variables stored for jet
objects can be found in Table 12.

Table 12: Description of the variables associated to Monte Carlo Truth contained in
the pandas DataFrames.

Jets
Name Type Description

nJets Integer Amount of particle jets in the respective Event.

vecJet_PT Float-ndarray Array of the Transverse Momenta (pT ) of the par-
ticle jets in the respective event.

vecJet_Eta Float-ndarray Array of the pseudo-rapidities η of the particle
jets in the respective event.

vecJet_Phi Float-ndarray Array of the polar coordinates φ of the particle
jets in the respective event.

vecJet_Q Float-ndarray Array of the charges of the particle jets in the re-
spective event.

vecJet_Mass Float-ndarray Array of the masses of the particle jets in the re-
spective event.

vecJet_D0 Float-ndarray Array of the impact parameters (d) in xy direc-
tion in the respective event.

vecJet_Dz Float-ndarray Array of the impact parameters (d) in z direction
in the respective event.

vecJet_nCharged Integer-
ndarray

Array of the amount of charged particles for the
given particle jet in the respective event.

vecJet_nNeutrals Integer-
ndarray

Array of the amount of neutrally charged par-
ticles for the given particle jet in the respective
event.

vecJet_nParticles Integer-
ndarray

Array of the amount of particles for the given par-
ticle jet in the respective event.

vecJet_Beta Float-ndarray Array containing the β-values of the jet in the re-
spective event (measure of how well the tracks
associated with a jet point back to the primary
vertex).

vecJet_BetaStar Float-ndarray Array containing the β∗-values of the jet in the
respective event (measure the contribution of
tracks not from the primary vertex).

vecJet_dR2Mean Float-ndarray Array containing the mean values of the ∆R dis-
tances between jet constituents in the respective
event.

vecJet_Area Float-ndarray Array containing the values for the area of the jet
in the R-plane in the respective event.

vecJet_Energy Float-ndarray Array of the energy of the particle jets in the re-
spective event.

vecJet_chEmEnergy Float-ndarray Array of the fraction of energy of the charged
particle jets being deposited into the electromag-
netic calorimeter.

35

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.96


SciPost Phys. Lect. Notes 96 (2025)

vecJet_neuEmEnergy Float-ndarray Array of the fraction of energy of the neurtal
particle jets being deposited into the electromag-
netic calorimeter.

vecJet_chHadEnergy Float-ndarray Array of the fraction of energy of the charged
particle jets being deposited into the hadronic
calorimeter.

vecJet_neuHadEnergy Float-ndarray Array of the fraction of energy of the neurtal
particle jets being deposited into the hadronic
calorimeter.

vecJet_mcFlavor Integer-
ndarray

Array of the McTruth flavor associated to the jets
in the given event.

vecJet_GenPT Float-ndarray Array of the Transverse Momenta of generator
level jets that are matched to the PF jets of a given
event.

vecJet_GenEta Float-ndarray Array of the pseudo-rapidities η of generator
level jets that are matched to the PF jets of a given
event.

vecJet_GenPhi Float-ndarray Array of the polar coordinates φ of generator
level jets that are matched to the PF jets of a given
event.

vecJet_GenMass Float-ndarray Array of the masses of generator level jets that
are matched to the PF jets of a given event.

vecJet_flavorMatchPT Float-ndarray Array of the Transverse Momenta of jets that are
matched by their flavor.

vecJet_ID Integer-
ndarray

Array of quality measurements of the jets for a
given event. 0 means no quality, 1 loose quality,
and 2 tight quality.

vecJet_Num Integer-
ndarray

Array of index of jets, in order of decreasing
Transverse Momentum of the PF jets in an event.

vecJet_MatchIdx Integer-
ndarray

Array referencing which generator level jets be-
long to which PF jet. Referenced by the jets in-
dex, in order of decreasing Transverse Momen-
tum of the generator jets.

vecJet_JEC Float-ndarray Array of the jet energy correction factors of the
PF jets in a given event.

4.2.9 General variables

Lastly, we also store some “general” variables, which contain meta-information about the un-
derlying collision, process, and dataset. Within this category, we store information regarding
the missing transverse energy, specifically its transverse momentum pT , as well as η and φ.
The missing transverse energy stored here is reconstructed using particle flow combines infor-
mation from all subdetectors to identify and reconstruct individual particles in an event. By
classifying particles as charged or neutral and associating tracks with calorimeter deposits, the
particle flow algorithm provides a more precise measurement of the momentum imbalance
in the transverse plane. This approach improves the resolution and pile-up robustness of the
missing transverse energy, especially in events with complex final states.

Additionally, we save trigger information, which are boolean variables stating whether the
respective event passed the selection trigger. A full list of general variables stored in the pandas
DataFrames can be found in Table 13.
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Table 13: Description of the general variables contained in the pandas DataFrames.

General Variables
Name Type Description

nEvent Integer Number of the event within a given DataFrame. Be-
tween 1 and 10000.

runNum Integer Run number of the underlying dataset.
evtNum Integer Number of the event within the underlying CMS

dataset.
lumisection Float Lumisection of the events collision.
fMET_PT Float Transverse Momentum (pT ) of the events Missing

Transverse Energy (MET).
fMET_Eta Float Pseudo-rapidity η of the events Missing Transverse En-

ergy (MET).
fMET_Phi Float Polar coordinateφ of the events Missing Transverse En-

ergy (MET).
HLT_Mu17_Mu8 Boolean Flag representing whether the HLT_Mu17_Mu8 trigger

has been met (True) or not (False).
HLT_Mu24 Boolean Flag representing whether the HLT_Mu24 trigger has

been met (True) or not (False).
HLT_MET120_v Boolean Flag representing whether the HLT_MET120_v trigger

has been met (True) or not (False).
HLT_Ele27 Boolean Flag representing whether the HLT_Ele27 trigger has

been met (True) or not (False).
HLT_HT350 Boolean Flag representing whether the HLT_HT350 trigger has

been met (True) or not (False).

4.3 Data and simulation samples

A large amount of datasets are available on the CERN Open Data platform. Broadly, one
can divide the entirety of the datasets into two categories, datasets coming from real particle
collisions measured at the LHC, which we will call data samples, as well as datasets containing
simulated samples, called simulation samples.

5 A simple data analysis

In order to give a more concrete feeling of a typical LHC data analysis, we will discuss the cross-
section measurements of W boson events in proton-proton collisions at an energy of 8 TeV. This
cross-section can be thought of as a measure of the probability that this process happens in a
proton-proton collision and can be calculated within the Standard Model. A full cross-section
measurement is quite complicated, so we will focus here on one aspect, namely the estimation
of the number of signal events in a given data-set. For this, we study the data-sets, summarized
in Table 14 and the reader is encouraged to implement the following discussion in Python. A
GitHub Repository to follow the code and reproduce results can be found here [13] and the
required datasets can be downloaded on Hugging Face [14].

We start by looking at one decay channel of the W boson into one muon and one muon-
neutrino, e.g. the process pp→W±→ µ±ν. In a first step, one needs to define certain signal
selection criteria. The final state already implies that we expect one muon in the detector,
however, we do not yet know which transverse momentum distribution we should expect.
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Table 14: Summary of CMS Open Data simulated and real datasets transformed to
pandas DataFrames that were used in the examplary data analysis.

Name DOI Sim. Cross Sec-
tion

Number of
Events

DYToMuMu_M-
20_CT10_TuneZ2star_v2
_8TeV [8]

10.7483
/OPENDATA.CMS.QGC3.PTZ9

Sim. 1870.4 pb 6̃00.000

QCD_Pt-
40_doubleEMEnriched
_TuneZ2star_8TeV [9]

10.7483
/OPENDATA.CMS.L4NC.EV0K

Sim. 1 pb 7̃.300.000

WplusToMuNu_CT10
_8TeV [10]

10.7483
/OPENDATA.CMS.I3N4.AVW3

Sim. 6706.74 pb 3̃00.000

Name DOI Data Int. Lumi-
nosity

Number of
Events

SingleMu [11] 10.7483
/OPENDATA.CMS.IYVQ.1J0W

Data 26278.9 pb−1 8̃.700.000

DoubleMu [12] 10.7483
/OPENDATA.CMS.RZ34.QR6N

Data 8385.73 pb−1 4̃.700.000

Figure 18 shows the pT distribution of all MC Truth muons that stem from the decay of a W
boson on the top-left side, while the bottom-left side shows the reconstructed pT distribution
of all reconstructed muons for all events. The differences in these two distributions are mainly
due to the limited detector resolution, i.e. the fact that the measured pT is always a bit different
than the true pT . Similarly, we can compare the pT distribution of the sum of the neutrinos
at MC truth level as well as the reconstructed missing transverse energy, shown in the same
figure on the right side. The differences are larger here, as the detector resolution for this
observable is significantly poorer. It can already be concluded that the signal must include
exactly one reconstructed muon and a certain minimal value of EMiss

T
However, the distributions of the signal sample alone will not allow drawing any conclu-

sions on possible selection criteria on the kinematics of the decay muon and the decay neutrino.
For this, possible background processes have also to be studied. In this example, the produc-
tion of particle jets, for example in the reaction pp→ Z → qq̄, as well as the decay of a Z boson
in two muons in the process pp→ Z → µ+µ− need to be considered. The first process is typi-
cally called multi-jet production. As discussed in Section 2, muons can also be produced during
the hadronization process. Hence, one muon might simply be produced within one particle
jet. Given the very limited detector resolution on EMiss

T , some events which do not even have a
neutrino in the final state might still be reconstructed with a significant EMiss

T value. Of course,
this would not happen if we had a perfect detector. The second process, pp→ Z → µ+µ− can
fake our signal of one muon and missing transverse energy, if one of the decay muons is not
detected, i.e. leaves the detector unseen. In this case, also only one muon would be recon-
structed in data and the second muon, which is not detected, would yield a missing transverse
energy. Several observables can be used to separate the signal from the two mentioned back-
ground processes. Four promising reconstructed observables are shown in Figure 19, namely,
the transverse momentum of the muon (vecMuon_PT), the missing transverse energy of the
event ( f M ET_PT), the isolation variable of the muon (vecMuon_TrkIso03), as well as the
pseudo-rapidity η of the muon (vecMuon_Eta) for all MC simulated events, which have ex-
actly one reconstructed muon. The distributions for Z → µ+µ− are similar to the distribution
of W → µν implying that this might be ’irreducible’ background. However, we see significant
differences in the multi-jet processes, which tend to have little missing transverse energy, low
muon transverse momenta and large isolation variables. A first guess on possible selection
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Figure 18: Upper row: MC Truth pT Muon left, MC Reco pT muon Right. Lower row:
MC Truth pT Neutrino left, ETMiss Reco Right.

criteria is therefore: pT (Muon)> 25 GeV, EMiss
T > 30 GeV and

∑

piso
T /pT (Muon)< 0.1.

Once the signal selection is defined, it is applied on all relevant MC simulated samples as
well as data. The different simulated processes are then weighted according to their predicted
probabilities and adjusted to the recorded size of the data-set. The distributions of MC signal
and background processes are then added and compared to the observed data distributions.
For example, the observed transverse momentum distribution of the reconstructed muon as
well as the missing transverse energy of the selected events are shown in Figure 20. The good
agreement between the prediction and the measurement illustrated the power the Standard
Model of particle physics. Clearly, full physics analyses are significantly more complex, how-
ever, the basic concepts have been illustrated.

6 Machine learning tasks

Machine learning applications in experimental collider physics span a wide range of tasks:
from classifying different physics processes, to reconstructing observables, simulating proton-
proton collisions, and detecting anomalies in data that might hint at new physics beyond our
current understanding. Below, we highlight a few illustrative tasks that demonstrate these
concepts and show the field’s diversity.

One central challenge in collider experiments is identifying different physical processes
based solely on the particles observed in the detector. For example, consider the case of top-
quark pair production. The top quark, the heaviest known elementary particle with a mass of
173 GeV, is nearly always produced in pairs and decays almost instantly into two b-quarks and
two W bosons. These, in turn, often decay into lighter quarks, resulting in a final state of six jets
of particles in the detector, two of which typically have displaced vertices (due to the b-quarks,
as discussed in Section 2.5). However, the Standard Model also allows for other processes
— such as the direct production of two c-quarks and two W bosons — that lead to similar
signatures. This overlap makes it impossible to determine from a single event whether top-
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Figure 19: Comparison of pT Muon (top-left), ETMiss (top-right), Isolation (bottom-
left), and η (bottom-right) for signal and background MC Processes. The area of all
distributions are normalized to unity.

quarks were involved. By collecting a large amount of such events and analyzing differences in
jet energies and angular distributions, we can statistically distinguish between these processes.
A simple feedforward neural network can be trained on Monte Carlo (MC) simulations to take
the kinematic properties of the six jets, along with displacement information, and output a
score indicating the likelihood of a top-quark event. Once trained, this network can be applied
to real data to perform signal-versus-background classification.

Another crucial task is the reconstruction of observables that are not directly measurable.
A key example is the missing transverse energy observable, ̸ET, introduced in Section 2.5.
This variable is sensitive to particles like neutrinos that do not interact with the detector. A
basic ̸ETreconstruction sums the transverse momentum of all observed particles, but this can
be refined by excluding noise contributions (e.g., from pile-up interactions) or by adjusting
for poorly modeled detector regions. Rather than manually crafting such corrections, a neural
network can be trained to regress the true ̸ETbased on all observable particle flow objects.
Here too, MC simulation provides the ground truth for training.

A growing frontier involves generative models, such as generative adversarial networks
(GANs) and normalizing flows, that can produce synthetic proton-proton collision events.
These models aim to complement the expensive full-simulation pipelines used in HEP, offering
event samples at a fraction of the computational cost. Other ML approaches seek to improve
detector performance itself, for instance by denoising signals in calorimeters or refining the
reconstruction of particle trajectories from detector hits, often using graph neural networks
that naturally fit the irregular detector geometries.

Additionally, anomaly detection is an active research area, where unsupervised or weakly
supervised ML models are trained on known Standard Model processes and then used to flag
events that deviate from expected patterns. Such techniques have the potential to discover
entirely new physics phenomena without requiring an explicit signal hypothesis in advance.

Beyond the diversity of tasks, the application of machine learning techniques to collider
physics presents unique challenges and opportunities. The LHC produces some of the largest
scientific datasets in the world, requiring scalable high-throughput algorithms. The data itself
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Figure 20: Top-left: Data/MC comparison for pT muon, top-right: Data/MC com-
parison for ETMiss, bottom-left: Data/MC comparison for Isolation, bottom-right:
Data/MC comparison for η.

is structured in complex ways, often prompting innovations in neural architectures that embed
physical symmetries (such as Lorentz invariance) or process irregular, sparse data (e.g., via set-
based or graph-based models). The field also benefits from exceptionally accurate simulators,
which enable supervised learning with high-quality labels. Another frontier is the deployment
of ML algorithms within hardware-based trigger systems, which must process up to 40 mil-
lion proton-proton collisions per second in real-time. These extreme latency and resource
constraints motivate active research into network compression and acceleration techniques —
such as pruning, quantization, knowledge distillation, and architecture search — to reduce the
size and computational complexity of deep neural networks while preserving their predictive
performance. These efforts not only enable real-time inference on specialized hardware like
FPGAs and ASICs but also contribute broadly applicable advances in efficient deep learning,
benefiting the wider ML community.

This landscape offers many avenues for computer scientists eager to contribute to funda-
mental physics using cutting-edge machine learning. For a more comprehensive overview of
the current research frontier, we recommend the HEPML Living Review [15], which maintains
an up-to-date catalog of developments in this vibrant and rapidly evolving field.
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7 Conclusion

Our intention is to encourage an efficient transfer of the latest developments in the context
of computer science to the field of fundamental physics. The primary objective of this paper
was therefore to provide an introduction to the data collected at the Large Hadron Collider
for computer scientists, allowing for a foundational platform for prospective interdisciplinary
collaborations.

Moreover, we transformed the publicly available data from the Large Hadron Collider,
which was initially stored in the ROOT data format—widely employed in high-energy
physics—into pandas DataFrames, a format well-recognized in the realm of computer science.
We hope that this significantly lowers the barrier of entry for future computer scientists at all
levels to join the effort of revealing the secrets of the universe.
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A Transformation of CMS open data to panda data frames

A.1 Pandas library

The Python library pandas [16, 17] was designed with the goal in mind to bridge the gap
between Python and more domain-specific statistical and data analytical languages such as
R. pandas is built on top of the NumPy library, enabling the use of fast and efficient methods
to work with scientific data. In order to bridge the gap between Python and other languages
such as R, the creators of pandas initially provided two new structured data sets, Series for
one-dimensional data and DataFrames for higher-dimensional data. In the context of this
paper, the more interesting structure of data sets are the DataFrames, which were inspired by
the R specific data.frame class. On top of replicating most functionalities of R’s data.frame
class, pandas DataFrames introduce enhancements such as automatic data alignment and hi-
erarchical indexing. DataFrames are flexible in size and can be used to store mixed-type data
as collections of columns, each column usually identified by a label. The indexing procedures
introduced by DataFrames can be used to efficiently index over rows and columns. Moreover,
the pandas library provides efficient ways to read and store DataFrames from and to memory.

On top of pandas efficient data sets, pandas also has a very active community, constantly
improving the open-source project and enhancing it with new functionality. As such, the pan-
das library has cemented its place in many data scientific fields such as statistical analysis,
financial analysis, and machine learning. Due to this popularity, a vast amount of documenta-
tion and additional resources, such as tutorials and usage examples, exist.

Therefore, we argue that the transformation of the CMS Open Data to pandas DataFrames
not only provides an efficient alternative to storing high energy physics data, additionally, due
to the library’s steadfast presence in the current machine learning environment and its vast and
engaged community, storing the data as pandas DataFrames enables a plethora of scientists
not familiar with the ROOT file format, such as computer scientists, to use these high energy
physics data in new analyses and deep learning models.
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Figure 21: Change of ordering of data from a per variable (red, V) basis, to a per event
(blue, E) basis during the transformation of ROOT TTrees to pandas DataFrames.

A.2 Transformation pipeline

The pipeline for transforming unfiltered ROOT files, available through the CERN Open Data
platform [18], into filtered pandas DataFrames is implemented within a custom CMSSW envi-
ronment (version CMSSW_5_3_32). For this study, CMS Open Data [19] from the 2011-2012
LHC run were used. The environment is configured to handle both AOD and AODSIM data
formats, ensuring compatibility with the available datasets.

The pipeline begins by reading a series of ROOT file paths listed in .txt files from the CMS
Open Data portal. Each .txt file contains multiple lines, with each line corresponding to a
specific ROOT file stored on the CERN storage system. The ROOT files are then processed
iteratively, one by one, within the CMSSW framework.

The next step involves filtering the data using a C++ EDAnalyzer within the CMSSW en-
vironment. This analyzer extracts a predefined set of variables from the events in each ROOT
file. These variables, which typically include around 100 different quantities such as energies,
momenta, and particle IDs, are written to a new ROOT file. The filtered variables are stored in
a ROOT TTree, a data structure that organizes the event-level information in a manner suitable
for further processing.

Once the filtered ROOT files are generated, a separate Python script is employed to read
them. The uproot library is used to access the TTree structure and extract the branches cor-
responding to the selected variables. These branches are then converted into NumPy arrays,
which are subsequently placed into pandas DataFrames. This transformation involves a sig-
nificant change in the data structure: the data, originally stored on a per-variable basis, is
restructured into a per-event format (shown in Figure 21). This reorganization is necessary
to align the data with the typical format required for machine learning applications, where
each row represents a single event and each column represents a variable associated with that
event.

After the transformation, the resulting pandas DataFrames are saved to disk using the
Feather file format, chosen for its high performance across various use cases, as discussed in
Section A.3. By default, the intermediary filtered ROOT files are deleted after being trans-
formed into DataFrames, though it is possible to retain these files by adjusting a flag within
the pipeline configuration.

Both the transformed DataFrames and, if retained, the filtered ROOT files are saved to a
mounted directory, making them accessible on the local machine for subsequent analysis. A
GitHub repository containing detailed instructions for setting up and running this pipeline,
along with the necessary code, is available at [20].
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Figure 22: Average memory usage of the given file format over four different datasets.

Figure 23: Average read and write speed of the given file format over four different
datasets.

A.3 Bench-marking

pandas DataFrames can be saved in a variety of different file formats using different compres-
sion method, each combination of file format and compression method providing different ad-
vantages and disadvantages. The following section seeks to determine a combination, which
- for the given data - presents the best overall performance. To this end, multiple datasets are
benchmarked on three different tasks, namely the disk space required to save them, as well
as their read and write speed. As a reference, the average disk usage of the initial filtered
ROOT files is stated. Firstly, the most commonly used file formats in the context of pandas
DataFrames were tested, using their default compression methods. The results can be seen in
Figures 22 and 23. Each of the datasets used in this benchmark contains 10000 events.

When using default compression methods, each of the five file formats requires more disk
space for saving the 10000 events as opposed to the ROOT files. The best performing file
format on this disk usage benchmark is Parquet, shortly followed by Feather. On the read-
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Figure 24: Average memory usage of the given file format and compression method
over four different datasets.

Figure 25: Average read and write speed of the given file format and compression
method over four different datasets.

speed benchmark, the Feather file format is the best performing one, followed by Parquet
and pickle. As the DataFrames are only written once after being transformed from ROOT
file to DataFrame, their write speed is not as important to us as their performance on the
aforementioned benchmarks of disk-space and read-speed. All of the tested file formats are
relatively close in performance on the write speed, except for the csv file format, which is
significantly worse. When considering especially the performance on the disk usage and the
read speed benchmarks, the two best file formats for our purposes appear to be Feather and
Parquet. However, the disk usage required to save both the Feather and the Parquet files is still
on average 10 to 15 percent larger than the disk usage required when saving the filtered ROOT
files. Hence, in order to combat this issue while ideally also keeping the read and write speed
as low as possible, different compression methods for the Feather and Parquet file formats
were tested. The resulting benchmarks can be seen in Figures 24 and 25.
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The Feather file format using zstd compression, as well as Parquet using gzip and brotli
compressions manage to outperform even the initial ROOT files on the benchmark of disk space
requirement, with the Parquet compressions requiring slightly less disk-space than the Feather
zstd compression. However, for the write and read speed benchmarks using these compression
methods, the Feather file format compressed using zstd outperforms all Parquet compression
methods on both benchmarks, especially on the write speed benchmark. Another aspect to be
considered is the compatibility of the discussed file formats. In this regard, the csv files offer
the largest compatibility, as they are basically universally compatible. The Feather and Parquet
file formats are both based on the Apache Arrow format, hence they are only compatible with
languages that support the Apache Arrow, namely C, C++, Go, Java, JavaScript, Julia, Python,
R, Ruby, and Rust.

After considering the benchmarking results gathered, the decision was made to save the
resulting DataFrames as Feather files, using the zstd compression, as this method appears to
offer the best overall performance on the data at hand, as well as providing decent compat-
ibility with many popular programming languages in the context of data science and deep
learning.

A.4 Tables

Table 15: Mean amount of objects encountered per event and their 90% energy in-
tervals for Top-Top Jets.

Amount of Objects encountered and their Energy for Top-Top Jets

Object Mean Amount Encountered
per Event

90% Energy Range, pT [GeV]

Muon 2.5582 0.8767 - 73.5747

Electron 17.4122 2.9442 - 88.9196

Vertex 1.6322 -

Tauon 78.2536 0.8626 - 21.9836

Photon 2.0526 10.3277 - 91.0337

McTruth 664.3001 0.0610 - 19.1225

Jets 78.2536 3.3669 - 37.9243

Particle Flow 1361.7938 0.1002 - 2.1753
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Table 16: Mean amount of objects encountered per event and their 90% energy in-
tervals for WW Jets.

Amount of Objects encountered and their Energy for WW Jets

Object Mean Amount Encountered
per Event

90% Energy Range, pT [GeV]

Muon 1.4928 0.8533 - 74.6767

Electron 15.2397 3.0247 - 90.3210

Vertex 0.9016 -

Tauon 71.1567 0.8094 - 16.3372

Photon 0.9956 10.8430 - 93.2002

McTruth 560.8589 0.0542 - 5.9356

Jets 71.1567 3.3061 - 24.2140

Particle Flow 1165.6494 0.0889 - 1.7910
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