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Abstract

The flavor violating leptonic decays of the τ and µ leptons into three lighter charged
leptons are revisited in the framework the Standard Model with massive neutrinos. In
contrast to the previous prediction, we have found strongly suppressed rates for the
τ− → µ−`+`− (` = µ, e) decays. Our results are in good agreement with the approxima-
tion of neglecting masses and momenta of the external particles in the loop integrals
made in the first computation for the µ−→ e−e+e− decay.

Copyright G. Hernández Tomé
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 14-11-2018
Accepted 09-01-2019
Published 19-02-2019

Check for
updates

doi:10.21468/SciPostPhysProc.1.017

Contents

1 Introduction 1

2 Z-Penguin contribution emission from internal neutrino line 3

3 Contributions of the box diagrams 7

4 Numerical results 9

5 Conclusion 10

References 10

17.1

https://scipost.org
https://scipost.org/SciPostPhysProc.1.017
mailto:ghernandez@fis.cinvestav.mx
http://dx.doi.org/10.21468/SciPostPhysProc.1
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysProc.1.017&amp;domain=pdf&amp;date_stamp=2019-02-19
http://dx.doi.org/10.21468/SciPostPhysProc.1.017


SciPost Phys. Proc. 1, 017 (2019)

1 Introduction

The absence of right-handed neutrinos in the original formulation of the Standard Model (SM)
implies massless neutrinos and lepton flavor conservation at any order in perturbation theory.
Conversely, the discovery of neutrino oscillations [1] has demonstrated that lepton flavor num-
bers are not conserved in the neutrino sector and claims for an extended model with massive
neutrinos.

In the simplest scenario of three light Dirac neutrinos, the mass matrix will be nondi-
agonal in the interaction (weak) basis, as occurs in the quark sector [2], and the mixing
could be described through the 3 × 3 unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix [3]. Thus, charged lepton flavor violation (cLFV) transitions could arise at one loop
level through charged flavor changing currents 1. Nevertheless, it turns out natural to expect
unobservable low rates, just as it has been reported for BR(`− → `′−γ) ∼ O(10−55) [4–6],
BR(Z → `−i `

+
j ) ∼ O(10−54) [7] and BR(h→ `−i `

+
j ) ∼ O(10−55) [8] which are far away from

the capacity of any current or foreseen experimental facility.
In contrast, the prediction for the τ− → µ−`+`− (` = µ, e) decays given by ref. [9] report

an unexpected value of BR(τ− → µ−`+`−) ≥ 10−14, but an updated evaluation using the
expression for the amplitude derived in ref. [9] and employing the latest global fit results
for neutrino mixing [10, 11] gives us a value of BR(τ− → µ−`+`−) ∼ 10−16. Furthermore,
according to the results reported in [9], a value of BR(µ− → e−e+e−) ∼ 10−21 would be
predicted. This latter prediction disagree with an older computation for the µ− → e−e+e−

decay in [5], where as a first approximation masses and momenta of the external particles are
equal to zero.

Even though the updated predictions in [9] are still far away for the current experimental
limits2 (see for example Table 1) it is worth revisiting the two previous computation since
there are at least some thirty orders of magnitude between both computations.

Table 1: Limits for the τ− → µ−µ+µ−, τ− → e+µ−µ− and τ− → e−µ+µ− decays set
by the Belle, BaBar and LCHb collaborations. The last two columns stands for the
projected sensitivity in Belle II and a tentative circular electron-positron collider. The
values of this table have been extracted from [12].

Decay channel Belle (10−8) BaBar (10−8) LHCb (10−8) Belle II (10−10) FCC-ee (10−12)
τ−→ µ−µ+µ− 2.1 3.3 4.6 4.7-10 5-10
τ−→ e+µ−µ− 1.7 2.6 - 3.6-4.7 5-10
τ−→ e−µ+µ− 2.7 3.2 - 5.9-12 5-10

The L− → `−`′−`′+ decays are induced through the diagrams depicted in fig. 1. Ref. [5]
found that the dominant amplitudes are those with two neutrinos propagators3, namely the
penguin diagram (d) and the box diagram (e) in fig. 1. Conversely, the author in ref. [9]
claims that only the penguin diagram (d) is relevant owing to the presence of a logarithmic
divergent term depending on the neutrino mass.

As is well known, considering the effects or processes that arise from quantum corrections
could involve divergent loop integrals. However, in any renormalizable theory, the possible
divergences must vanish order by order (in the loop or effective field theory expansion) to be
able to define (finite) observables. Furthermore, as neutrino oscillations, the LFV amplitudes

1There is still no evidence of cLFV, but strong constraints have been set in several channels. An extensive list of
cLFV limits can be found in [4].

2The best limit for BR(µ−→ e−e+e−)≤ 1.2 · 10−11 was set by the SINDRUM experiment [10].
3In ref. [5] the amplitudes for diagrams (d) and (e) are proportional to m2

ν
log(m2

ν
/m2

W ). Note that the presence
of m2

ν
in the amplitude is responsible for the strong suppression rates.

17.2

https://scipost.org
https://scipost.org/SciPostPhysProc.1.017


SciPost Phys. Proc. 1, 017 (2019)

νjL−(P )
W

ℓ−(p)

Z, γ

ℓ′+(p2)

ℓ′−(p1)

L−(P ) νj

Z, γ
ℓ′+(p2)

ℓ′−(p1)

ℓ−(p)

W

νj
L−(P )

Z, γ

ℓ′+(p2)

ℓ′−(p1)

ℓ−(p)
W

(a) (b) (c)

L−(P ) ℓ−(p)

Z(q)

W

ℓ′+(p2)

ℓ′−(p1)

νj

ℓ−(p)L−(P )

ℓ′−(p1) ℓ′+(p2)

WW

νj

νi

(d) (e)

Figure 1: Feynman diagrams for the L− → `−`′−`′+ decays in the presence of lep-
ton mixing. Similar diagrams replacing the W boson by the respective would-be
Goldstone must be added in renormalizable Rξ gauges. Additionally, when ` = `′

similar contributions (exchanging p↔ p1) to the amplitudes of diagrams (a) to (e)
must be subtracted in order to antisymmetrize the amplitude. On the other hand,
when ` 6= `′, since the vertices of the neutral bosons γ and Z with a pair of fermions
are flavor-conserving, only a similar (e) box diagram must be added interchanging
`(p)↔ `′(p1).

must vanish in the limit of degenerate neutrinos. Moreover, according to the Kinoshita-Lee-
Nauenberg (KLN) theorem [13], the amplitude for massless neutrinos can go to zero, but it
is impossible that it presents an IR divergence. This requirement is satisfied by the result of
Ref. [5], but it is not the case in Ref. [9] which behaves as

∑

j UL jU
∗
` j log(mν/mW ) for very

small neutrino masses.
The content of this work is the following, we first concentrate on the amplitude of the

diagram (d) We show that the seeming logarithmic divergent behavior of the LFV amplitude
reported in ref. [9] is not present, as the vanishing momentum transfer approximation consid-
ered in that paper lies outside the physical region. Then, in order to do a complete comparison
with the computation in [5]we review the box contributions. Finally, we present our numerical
results and conclusions.

2 Z-Penguin contribution emission from internal neutrino line

Following the convention used by the ref. [9] (see fig. 1) for masses and momenta of the
external leptons, the amplitude of the diagram (d) can be written as

Md ∼
i

m2
Z

lλL` × l`′`′λ, (1)
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where l`′`′λ = −i g/(2cW )ūp1
γλ(g`

′

v − g`
′

a γ5)vp2
4 is independent of the loop integration, where-

as the relevant effective Z L` transition is given as follows:

lλL` =
�−i g

4cW

�� −i g

2
p

2

�2 3
∑

j=1

U∗` jUL j ūpΓ
λ
j uP , (2)

where Uim are entries of the PMNS mixing matrix. In the Feynman-’t Hooft gauge, we have

Γλj =

∫

d4k
(2π)4

γρ(1− γ5)i
�

(/p+ /k) +m j

�

γλ(1− γ5)i
�

(/P + /k) +m j

�

γσ(1− γ5)(−i gρσ)
�

(p+ k)2 −m2
j

��

(P + k)2 −m2
j

�

�

k2 −m2
W

�

.

(3)

After making the loop integration using dimensional regularization in order to deal with
the (logarithmic) UV divergences, the Lorentz structure for the Γλj factor can be written as
follows,

Γλj = Faγ
λ(1− γ5) + Fbγ

λ(1+ γ5) + Fc(P + p)λ(1+ γ5)

+ Fd(P + p)λ(1− γ5) + Feq
λ(1+ γ5) + F f qλ(1− γ5),

(4)

where in general Fk = Fk(q2, m2
j ) (k = a, b..., f ) with qµ = (P − p)µ the momentum transfer

by the Z boson, and m j the mass of the neutrino. Of course Fk functions will also depend on
the mass of the W gauge boson and external masses, but these have well-defined values.

Neglecting the momenta of the external particles in eq. (3) simplifies considerably the
computation, as the only possible contribution is given by the F0

a function, where we are using
a superscript 0 in order to distinguish this approximation. In this simple case, the F0

a function
will not depend on q2 and the integrals turn easily to solve analytically using either Feyn-
man parameters or Passarino-Veltman method. In such a way that after making an expansion
around m2

j = 0 we obtained

F0
a =

1
2π2

�

m2
j

m2
W

log

�

m2
W

m2
j

�

−
m2

j

2m2
W

+
1
2

log

�

m2
W

µ2

�

+
1
4
+ ϑ

�

m2
j

m2
W

�2


 . (5)

From eq. (5) it turns clear that the amplitude is proportional to the neutrino mass squared,
and the dominant contribution, due to the big gap between the neutrino and W boson mass

scales, comes from the first term as it involves a relative factor log
�

m2
W

m2
j

�

compared to the

second one, whereas the independent terms of neutrino masses will vanish by a GIM-like
mechanism. Therefore, the structure of the matrix element for the contribution of the diagram
(d) in fig. 1 is given by

M0
d = −i

G2
F m2

WβF0
a

4
ūpγλ(1− γ5)uP × ūp1

γλ(1− γ5)vp2

+ iG2
F m2

W s2
WβF0

a
ūpγλ(1− γ5)u(P)× ūp1

γλvp2
, (6)

4 g is the SU(2)L coupling and cW (sW ) is short for the cosine(sine) of the weak mixing angle θW . In the SM,
g`
′

v = −1/2+ 2s2
W and g`

′

a = −1/2.
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where we have defined

βF0
a
=
∑

j

UL jU
∗
` j F

0
a (m

2
j ). (7)

Eq. (6) reproduces the result reported in ref. [5] considering only the first term in eq. (5)
and the simple case of two families.

Returning to the general case (non-zero masses and momenta of the external particles),
we obtained the Fk functions using both Feynman parametrization and the Passarino-Veltman
(PaVe) technique denoted by FFk

and FPVk
, respectively. We agree with the expressions previ-

ously reported in ref. [9] in terms of the Feynman parameters 5, namely the FFk
functions can

be written as

FFk
(q2, m2

j ) =
1

2π2

∫ 1

0

d x

∫ 1−x

0

fk(q
2, m2

j )d y, (8)

where

fa = 2+ log
�

Dj(q
2)/µ2

�

+
(q2 −m2)x(y − 1) +M2 x(x + y) + q2 y(y − 1)

Dj
, (9)

fb =
mM x

Dj
, (10)

fc = −
M x(x + y)

Dj
, (11)

fd = −
mx(1− y)

Dj
, (12)

fe =
M x(2− 3y − x)− 2M y(y − 1)

Dj
, (13)

f f =
xm(y − 1) + 2my(y − 1)

Dj
, (14)

and Dj is defined as

Dj(q
2, m2

j ) = −(x − 1)m2
j −m2 x y + xm2

W +M2 x(x + y − 1)− q2 y(1− x − y). (15)

We have omitted in fa the term associated with the UV divergence since it is independent
of m j and vanishes owing to the GIM-like mechanism.

In terms of the PaVe scalar functions the Fk functions are given as follows

FPVk
(q2, m2

j ) =
1

2π2

NFk

DFk

, (16)

with

DFa
= 2DFb

= −2λ(m2, M2, q2), DFc
= DFe

=
M
2

D2
Fa

DFd
= DF f

=
m
2

D2
Fa

, (17)

5We have found some irrelevant differences in the numerators of the fd and f f functions, as can be seen com-
paring eqs. (12) and (14) with the corresponding expressions in ref. [9].
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NFk
= ξk1

B0(m
2, m2

j , m2
W ) + ξk2

B0(M
2, m2

j , m2
W ) + ξk3

B0(q
2, m2

j , m2
j )

+ ξk4
B0(0, m2

j , m2
W ) + ξk5

C0(m
2, M2, q2, m2

j , m2
W , m2

j ) + ξk0
, (18)

where λ is the Kallen function λ(x , y, z) = x2 + y2 + z2 − 2(x y + xz + yz), and in order to
avoid lengthy expressions the ξk factors can be found in [14].

Unlike the approximation made in ref. [5], the presence of masses and momenta of the
external particles in the computation complicates the way for the derivation of analytical ex-
pressions for the integrals in eqs. (8) or (16). Nevertheless, in order to verify the equality
between both expressions we have done a numerical cross-check, where we have employed
the Looptools package [15,16] for the evaluation of the PaVe functions and a numerical Math-
ematica [17] routine for the evaluation of the parametric integrals.

At this point, we want to stress that we disagree with the approximation in ref. [9], where
an expansion around q2 = 0 is made in eq. (9) in order to estimate the relevant dependence on
the neutrino mass of the Fa function. We highlight that the dependence on q2 plays a crucial
role in the behavior of the Fk functions. Moreover, we are studying a process where q2 must
be non-vanishing and is indeed much larger than the neutrino squared mass. Then, taking
such expansion modifies substantially the behavior of the original functions in the interesting
physical region for the neutrino masses and, as a consequence, it gives rise to an incorrect
infrared logarithmically divergent behavior of the Fk functions when m j goes to zero, without
any possible cure. We point out the presence of a small imaginary part in the Fa function,
which emerges for the physical values 4m2

j < q2.

The q2 minimum in the L− → `−`′−`′+ decay is given by 4m2
`′

, which is much larger
than neutrinos masses. This, together with the difficulties in obtaining analytical expressions
directly for the Fk functions suggests employing some numerical approximation to deal with
the problem. Because of this, we approximate the Fk functions in the physical region for the
neutrinos masses by fitting the curves for the real and imaginary parts of the Fk functions
evaluated in terms of the PaVe function. We have found a reasonably good fit of the form

Fk =
1

2π2u

�

Qk +
m2

j

m2
W

Rk

�

,

where u = 1 for k = a, b and u = M for k = c, d, e, f and tables with the respective values for
the Qk =QRk

+ iQRI
and Rk = RRk

+ iRRI
factors of all considered channels are given in [14]. It

is clear that the Qk factors will not contribute owing to the GIM-like mechanism, whereas the
relevant contributions are given by the Rk factors. According to our numerical results, we find
that the Rk factors of the Fb, Fc and Fd functions are suppressed with respect to the Fa factor.
On the other hand, despite the respective factors of Fe and F f functions are larger than those
of the Fa function, when the momentum transfer becomes smaller and smaller their helicity
suppression makes them negligible. Thus, we will concentrate on the contribution of the Fa
function.

In order to check our results, we also have made an expansion for the PaVe functions in-
volved in eq. (18), following the same strategy that Cheng and Li for the µ→ eγ decay [6],
that is: expanding the loop integrals around m2

j = 0. It must be noted that, since neutrino
masses are the smallest energy scale in the problem, this is the expansion that is most effi-
cient for the considered decays. Using the Package-X program [18], we could rewrite the FPVa

contribution as follows:

FPVa
(q2, m2

j ) =
1

2π2

�

Qa +
m2

j

m2
W

Ra + ϑ

�

m4
j

m4
W

��

, (19)
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where

Qa = −λ(m2, M2, q2)−1
�

fQa1
C0(m

2, M2, q2, 0, m2
W , 0) + fQa2

log

�

m2
W

m2
W −m2

�

+ fQa3
log

�

m2
W

m2
W −M2

�

+ fQa4
log

�

m2
W

q2

�

+ fQa5

�

−
1
2
∆, (20)

Ra = −m2
Wλ(m

2, M2, q2)−1
�

fRa1
C0(m

2, M2, q2, 0, m2
W , 0) + fRa2

log

�

m2
W

m2
W −m2

�

+ fRa3
log

�

m2
W

m2
W −M2

�

+ fRa4
log

�

m2
W

q2

�

+ fRa5

�

, (21)

in which ∆ = 1
ε − γE + log(4π), and the fQ and fR factors can be found in [14]. We consider

the results obtained from eq. (21) for the effective vertices as our reference ones.
Finally, we can approximate the amplitude for the diagram (d) according to eq. (6) replac-

ing F0
a by

Fa ≈
1

2π2

m2
j

m2
W

Ra. (22)

3 Contributions of the box diagrams

Unlike the penguin diagram (d), which involves two neutrino propagators of the same mass
state, the box diagram (e) can involve two neutrino propagators with different mass states.
Thus, in full generality, the amplitude can be written as follows

Me =
� −i g

2
p

2

�4∑

i, j

UL jU
∗
l jU`′ iU

∗
`′ i Tσσ′ I

σσ′ , (23)

where we defined

Tσσ′ = 4 ūpγµγσγν(1− γ5)uP × ūp1
γνγσ′γ

µ(1− γ5)vp2
, (24)

and the relevant loop integral is given by (see fig. 1 (e))

Iσσ
′
=

∫

d4k
(2π)4

(P + k)σ(k+ p1)σ
′

(k2 −m2
W )[(p1 + p2 + k)2 −m2

W ][(P + k)2 −m2
j ][(k+ p1)2 −m2

i ]
. (25)

Since we have written the eq. (25) in terms of the momenta P, p1 and p2, the integral
must take the form

Iσσ
′
= i

�

gσσ
′
Ha + PσPσ

′
Hb + Pσpσ

′

1 Hc + Pσpσ
′

2 Hd + pσ1 Pσ
′
He + pσ1 pσ

′

1 H f

+ pσ1 pσ
′

2 Hg + pσ2 Pσ
′
Hh + pσ2 pσ

′

1 Hi + pσ2 pσ
′

2 H j

�

. (26)

In general Hk = Hk(s12, s13, m2
i , m3

j ), where s12 = (p1+p2)2 = q2, s13 = (p1+p)2. Again, in the
approximation where momenta of the external particles are neglected in eq. (25), the things
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go easily, since the only contribution is given by the H0
a function, which will not depend either

on s12 or s13. In this case, after solving analytically the loop integrals and making a double
Taylor expansion, first around m2

i = 0 and then around m2
j = 0, we obtained that

H0
a(m

2
i , m2

j ) =
1

64π2m4
W

�

�

m2
i +m2

j

�

�

log

�

m2
W

m2
j

�

− 1

�

+
m2

i m2
j

m2
W

�

2 log

�

m2
W

m2
j

�

− 1

�

− m2
W + ϑ

�

m4
i

m2
W

�

+ ϑ

�

m4
j

m2
W

��

. (27)

Using that Tσσ′ g
σσ′ = 16ūpγλ(1−γ5)uP × ūp1

γλ(1−γ5)vp2
, the amplitude in this approx-

imation is given by

M0
e = i8G2

F m4
WβH0

a
ūpγλ(1− γ5)uP × ūp1

γλ(1− γ5)vp2
, (28)

with

βH0
a
=
∑

j,i

UL jU
∗
` jU`′ iU

∗
`′ iH

0
a(m

2
i , m2

j ). (29)

Taking the first term in eq. (27) and considering only two families, the eq. (28) repro-
duces the expression reported in ref. [5]. Furthermore, this result is consistent with the pre-
vious expression reported in Ref. [19] for the box contribution associated with the effective
K+ → π+ν`ν̄` decay in the quark sector, where the approximation of taking masses and mo-
menta of the external particles equal to zero is excellent, owing to the presence of the heavy
top quark inside the loop.

In the general case, we obtained the Hk (k = a, b, ..., j) functions in terms of both Feynman
parameters integrals, HFk

, and PaVe functions, HPVk
. Using Feynman parametrization these

functions read

HFk
(s12, s13, m2

i , m2
j ) =

1
16π2

∫ 1

0

d x

∫ 1−x

0

d y

∫ 1−x−y

0

hkdz ,

(30)

where

ha = −
1

2M2
F

, hb =
z(z − 1)

M4
F

, hc = −
(z − 1)(x + z)

M4
F

, hd =
y(z − 1)

M4
F

, (31)

he = −
z(x + z − 1)

M4
F

, h f =
(x + z − 1)(x + z)

M4
F

, hg = −
y(x + z − 1)

M4
F

, (32)

hh =
yz

M4
F

hi = −
y(x + z)

M4
F

, h j =
y2

M4
F

, (33)

where we have defined M2
F as follows

M2
F = −m2

j (x + y − 1) +m2
`′(x + y − 1)(x + y) +m2

W (x + y)− s12 x y

+ z2
�

2m2
`′ +m2 +M2 − s12 − s13

�

+ z
�

m2
i −m2

j + (x + y)
�

3m2
`′ − s12 − s13

�

− 2m2
`′

+ m2(x − 1) +M2(y − 1) + s12 + s13

�

. (34)

17.8

https://scipost.org
https://scipost.org/SciPostPhysProc.1.017


SciPost Phys. Proc. 1, 017 (2019)

Expressions are rather lengthy in terms of the PaVe functions so that here we only present
the expression for the dominant Ha function, which can be written as

HPVa
(s12, s13, m2

j , m2
i ) =

1
16π2

NHa

DHa

, (35)

with

DHa
= 4

�

m4m2
`′ −m2

�

M2
�

2m2
`′ − s12

�

+ s12

�

m2
`′ + s13

��

+M4m2
`′ −M2s12

�

m2
`′ + s13

�

+ s12

�

− 2s13m2
`′ +m4

`′
+ s13

�

s12 + s13

���

, (36)

and

NHa
= χk1

C0(m
2, M2, s12, m2

W , m2
i , m2

W ) +χk2
C0(m

2
`′ , m2

`′ , s12, m2
W , m2

j , m2
W )

+ χk3
C0(M

2, m2
`′ , m2 +M2 + 2m2

`′ − s12 − s13, m2
i , m2

W , m2
j )

+ χk4
C0(m

2, m2
`′ , m2 +M2 + 2m2

`′ − s12 − s13, m2
i , m2

W , m2
j )

+ χk5
D0(m

2, M2, m2
`′ , m2

`′ , s12, m2 +M2 + 2m2
`′ − s12 − s13, m2

W , m2
i , m2

W , m2
j ),

(37)

again χk factors are reported in [14].
We can see that although there are additional contributions associated with the Hk func-

tions, with k = b, c, d, . . . j; they are expected to be suppressed, as they correspond to higher-
dimensional operators, with respect to the Ha function associated with a (V − A) × (V − A)
operator. Therefore, we will concentrate on the Ha function in order to estimate the box di-
agram contribution. We also have done a numerical cross-check between the expressions for
the Ha function given in terms of the Feynman parameters eq. (30) and the PaVe functions
eq. (35). In this case, it turns very complicated and far away of the purpose of this work to
obtain an analytical expression for the Ha function in eq. (37) making an expansion for the
respective scalar PaVe functions, owing to the number of propagators involved and the de-
pendence on two different neutrino masses. However, we can expect a good approximation
through our numerical results, as it happens with the penguin contribution.

We estimate the relevant dependence on the neutrino mass for the Ha function taking
several points evaluated and fitting the curve for the real and imaginary parts of the Ha func-
tion evaluated in terms of the PaVe functions considering fixed values for the mi , s12, and s13
parameters. We obtained a good fit of the form

Ha =
1

16π2

�

QHa
+

m2
j

m4
W

RHa

�

, (38)

where RHa
≈ 1.5+ i0.007, for all different τ→ `−`′−`′+ channels, whereas RHa

≈ 1.5, for the
µ−→ e−e−e+ channel. These numbers were obtained considering that ∆m2

i j = 10−3 eV2, and
representative values for s12 and s13 within the corresponding phase space.

4 Numerical results

In order to evaluate the respective branching fractions for the L− → `−`′−`′+ decays we
considered the state of the art best-fit values of the three neutrino oscillation parameters
[10, 11]. Without loss of generality, we assume the C P-conserving scenario, and we use the
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following values reported for the mixing angles sin2 θ12 = 0.307(13), sin2 θ23 = 0.51(4),
and sin2 θ13 = 0.0210(11), whereas the neutrino mass squared differences are taken as
∆m2

32 = 2.45(5) × 10−3eV2 and ∆m2
21 = 7.53(18) × 10−5eV2 6.We also assume a value of

m2
1 = (0.06)2eV 2.

Our final results, where the dominant penguin and box contributions are considered, are
collected in table 2, where they are compared to those obtained using Petcov’s results [5] with
updated input. Our predictions are smaller owing to the way of the expansion considered and
as a consequence of keeping external masses and momenta in our computations.

Table 2: Branching ratios including all contributions (interferences are not ne-
glected), which are obtained using the current knowledge of the PMNS matrix. The
last column values correspond to the approximation where external masses and mo-
menta are neglected [5]. Our results are smaller than those by around one (two)
orders of magnitude for the µ (τ) decays.

Decay channel Our Result Ref. [5]
µ−→ e−e+e− 7.4 · 10−55 8.5 · 10−54

τ−→ e−e+e− 3.2 · 10−56 1.4 · 10−54

τ−→ µ−µ+µ− 6.4 · 10−55 3.2 · 10−53

τ−→ e−µ+µ− 2.1 · 10−56 9.4 · 10−55

τ−→ µ−e+e− 5.2 · 10−55 2.1 · 10−53

5 Conclusion

Opposed to the previous calculation reported in ref. [9], we found that all the different ampli-
tudes for the L− → `−`′−`′+ decays are strongly suppressed (as they are proportional to the
neutrino mass squared). In the particular case of the penguin contribution with two neutrino
propagators, we highlight that it is crucial to maintain the dependence on the momentum
transfer in the Feynman integrals in order to evaluate the amplitude in the physical region
for the neutrino masses. This fact avoids the incorrect logarithmic divergent behavior in the
amplitude claimed in ref. [9]. As far as the box contribution is concerned, we found that the
dominant term comes from Ha function that is associated with a (V-A)×(V-A) operator. The
most important result of our analysis is the confirmation (in agreement with ref. [5]) that any
future observation of L−→ `−`′−`′+ decays would imply the existence of New Physics.
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