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Abstract

Hadronic light-by-light scattering in the anomalous magnetic moment of the muon aµ
is one of two hadronic effects limiting the precision of the Standard Model prediction
for this precision observable, and hence the new-physics discovery potential of direct
experimental determinations of aµ. In this contribution, I report on recent progress in
the calculation of this effect achieved both via dispersive and lattice QCD methods.
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1 Introduction

The magnetic moment of the muon is one of the most precisely measured quantities in particle
physics. In units of e

2mµ
· ħh2 , its value is given by the gyromagnetic factor g. The prediction that

g = 2 was an early success of the Dirac equation, applied to the electron. The relative devia-
tion of the gyromagnetic factor from the Dirac prediction is conventionally called anomalous
magnetic moment, and is denoted by aµ ≡ (g − 2)µ/2. Remarkably, the quantity aµ has been
directly measured to 0.54ppm of precision [1]. The Standard Model (SM) prediction for aµ,
see e.g. [2], is currently at a similar precision level, 0.37ppm [3]. The precision of the SM
prediction is entirely limited by the hadronic contributions. Specifically, the hadronic vacuum
polarisation, which enters at O(α2), and the hadronic light-by-light contribution ahlbl

µ , which

is of order α3, contribute in comparable amounts to the absolute uncertainty; their respective
depiction as Feynman diagrams is shown in Fig. 1. The new E989 experiment at Fermilab is
underway (see [4] and the presentation of A. Driutti at this conference), with the stated goal
of improving the precision of the measurement by a factor four, and the E34 experiment at
J-PARC (see [5] and the presentation of T. Mibe at this conference) plans to achieve a similar
precision with a very different technique. It is therefore essential to improve the precision of
the predictions for the hadronic contributions in order to enhance the new-physics sensitivity
of the upcoming experimental results.

In view of the observations above, the theory precision requirements for the short-term fu-
ture are the following: for the hadronic vacuum polarisation contribution, ahvp

µ ≈ 6900·10−11,
the goal is to consolidate the currently quoted [6] precision of 0.35% obtained using a disper-
sive representation with experimental e+e− data as input, and to approach that level of preci-
sion in lattice calculations [7]; while for ahlbl

µ ≈ 100 · 10−11 a precision of 10 to 15% suffices.

Clearly, both tasks are very challenging. In this talk, I focus on ahlbl
µ and refer the reader to the

talk of Ch. Lehner for the status of ahvp
µ .

The activities linked to the determination of ahlbl
µ can be divided into four classes:

1. Model calculations, which constituted the only approach until 2014, are based on pole-
and loop-contributions of hadron resonances, in some cases also on constituent quark
loops.

2. Dispersive approaches allow one to identify and compute individual hadronic contri-
butions in terms of physical observables, such as transition form factors and γ∗γ∗→ ππ
amplitudes.

3. A dedicated experimental program is needed to provide input for the model & disper-
sive approaches, e.g. (π0,η,η′)→ γγ∗ at virtualities Q2 ® 3GeV2; there is in particular
an active program at BES-III on this theme, see the talk by Y. Guo at this conference.

4. In terms of lattice calculations, two groups (RBC/UKQCD and Mainz) have been work-
ing on formulating and carrying out a direct lattice calculation of ahlbl

µ .

An important question is ultimately, how well the findings from the different approaches fit
together. We begin by reviewing aspects of the model calculations and describing how one
can test the assumptions underlying them; carry on to describe the status of the dispersive
approaches and finally discuss in more detail several aspects of the lattice calculations of ahlbl

µ .
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Figure 1: The hadronic contributions to (g − 2)µ dominating the theory uncertainty
budget. Left: the hadronic vacuum polarisation contribution. Right: the hadronic
light-by-light scattering contribution. A solid line represents the muon propagator,
the wavy lines represent photon propagators. The external magnetic field is repre-
sented by a photon line coming in from the top.

2 Learning from, and testing hadronic models

A recently updated estimate from the hadronic model calculations is [8]

ahlbl
µ = (103± 29) · 10−11. (1)

As compared to earlier estimates, the pole contribution of the axial-vector mesons has been
revised and is much smaller. Nevertheless, the central value of the estimate has changed little
since the 2009 ‘Glasgow consensus’ estimate of (105± 26) · 10−11 [9]. Beyond the numerical
result of the model calculations, it is worth recording some of the physics lessons learnt from
them [9]:

• A heavy (charm) quark loop makes a small contribution

ahlbl
µ =

�α

π

�3
NcQ4

c c4

m2
µ

m2
c

, c4 ≈ 0.62,

where Qc and mc are respectively the charm quark charge and mass, Nc = 3 is the
number of colors, mµ is the muon mass and α≈ 1/137 is the fine-structure constant.

• For light-quarks, the most relevant degrees of freedom are the pions. The leading contri-
bution in chiral perturbation theory, namely the charged-pion loop calculated in scalar
QED, depends only on mµ/mπ, with

ahlbl
µ

mµ�mπ
===

�α

π

�3
c2

m2
µ

m2
π

, c2 ≈ −0.065. (2)

Numerically, this contribution amounts to ahlbl
µ ≈ −45 · 10−11 for the physical value of

mµ/mπ. Secondly, the neutral-pion exchange is positive and sensitive to the confinement
scale [10,11],

ahlbl
µ =

�α

π

�3 N2
c m2

µ

48π2F2
π

�

log2
mρ
mπ
+O

�

log
mρ
mπ

�

+O(1)
�

. (3)

We note that, the pion decay constant Fπ ≈ 92 MeV being of order N1/2
c , the contribution

(3) is enhanced by a factor Nc relative to the pion loop, Eq. (2). On the other hand, the
latter is dominant in the limit mπ→ 0 with mµ/mπ fixed. The ρ meson mass appears as
the hadronic scale regulating an ultra-violet divergence, which appears if one assumes
a virtuality-independent π0→ γ∗γ∗ coupling.
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• For real-world quark masses, using form factors for the mesons is essential in obtaining
quantitative results, and resonances up to 1.5 GeV can still be relevant. This makes
ahlbl
µ sensitive to QCD at intermediate energies, which is difficult to handle by analytic

methods.

• Some information can be obtained from the operator-product expansion. Two closeby
vector currents

Vµ(x)Vν(0)
OPE∼ εµνρσ

xρ
(x2)2

Aσ(0) + . . . (4)

‘look like’ an axial current from a distance. For that reason, the doubly-virtual transi-
tion form factors of 0−+ and 1++ mesons only fall off like 1/Q2. This singles out the
poles associated with pseudoscalar and axial-vector mesons as being particularly rele-
vant. However, the coupling of an axial-vector meson to two real photons is forbidden
by the Yang-Landau theorem [12,13], suggesting that the pseudoscalar mesons π0,η,η′

are the most important pole contributions in ahlbl
µ due to their unsuppressed coupling to

two photons, in addition to their relatively light masses.

The applicability of the hadronic model to ahlbl
µ can be tested by predicting the relevant

four-point correlation function of the electromagnetic current jµ =
∑

f=u,d,s,... Q f q̄γµq and
confronting the prediction with non-perturbative lattice QCD data. The Euclidean momentum-
space four-point function at spacelike virtualities can indeed be computed in lattice QCD [14,
15],

Πµ1µ2µ3µ4
(P4; P1, P2)≡

∫

X1,X2,X4

e−i
∑

a Pa·Xa
¬

Jµ1
(X1)Jµ2

(X2)Jµ3
(0)Jµ4

(X4)
¶

(5)

and projected to one of the eight forward γ∗γ∗→ γ∗γ∗ scattering amplitudes, for instance

MTT(−Q 2
1 ,−Q 2

2 ,−Q1 ·Q2) =
e4

4
Rµ1µ3

Rµ2µ4
Πµ1µ3µ4µ2

(−Q2;−Q1,Q1). (6)

In this particular case, the projectors Rµν project onto the plane orthogonal to the vectors Q1
and Q2 and MTT thus corresponds to the amplitude involving transversely polarized pho-
tons. Dispersive sum rules have been derived for the forward amplitudes [16, 17]. With
ν = 1

2(s +Q2
1 +Q2

2), a crossing-symmetric variable parametrizing the center-of-mass energyp
s, we can write a subtracted dispersion relation,

MTT(q
2
1, q2

2,ν)−MTT(q
2
1, q2

2, 0) =
2ν2

π

∫ ∞

ν0

dν′

q

ν′2 − q2
1q2

2

ν′(ν′2 − ν2 − iε)
(σ0 +σ2)(ν

′), (7)

where σJ corresponds to the total cross-section for the photon-photon fusion reaction
γ∗γ∗→ hadrons with total helicity J .

While experimental data exists for the fusion of real photons into hadrons, no such data
is available for spacelike photons. In order to model the corresponding cross-section, we note
that the contribution of a narrow meson resonance is

σγ∗γ∗→resonance∝ δ(s−M2)× Γγγ ×
�FMγ∗γ∗(Q2

1,Q2
2)

FMγ∗γ∗(0, 0)

�2
. (8)

It is then interesting to test whether all eight forward LbL amplitudes obtained from lattice
computations can be described by such a sum of resonances via the dispersive sum rule.
Essential ingredients in this parametrization of σγ∗γ∗→hadrons are the transition form factors
FMγ∗γ∗(Q2

1,Q2
2), describing the coupling of the resonance to two virtual photons. In the case
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Figure 2: The subtracted forward hadronic light-by-light amplitude
MTT(−Q2

1,−Q2
2,ν) − MTT(−Q2

1,−Q2
2, 0), multiplied by 106, computed on a

483×96 lattice ensemble with mπ = 314MeV and lattice spacing a = 0.065 fm. Left:
contribution of the fully connected class of quark contractions. Right: contribution
of the (2+2) quark-contraction class [15].

of the neutral pion, a dedicated lattice QCD calculation of Fπ0γ∗γ∗ was performed [18], thus
allowing for a definite prediction for this contribution. For the other included hadronic reso-
nances, which have quantum numbers J PC = 0±+, 1++, 2++, a monopole or dipole parametriza-
tion of the virtuality-dependence of the transition form factors was chosen and fitted to the
lattice data for the forward LbL amplitudes. In addition to the resonances, the Born expres-
sion for σγ∗γ∗→ππ was included in the cross-section. A satisfactory description of the data was
obtained in this way; see Fig. 2.

The calculation of the four-point correlation function of a quark bilinear in lattice QCD re-
quires computing the Wick contractions of the quark fields, since the action is bilinear in these
fields. The major difference with perturbation theory is that the quark propagators have to
be computed in a non-perturbative gauge field background, which means inverting the sparse
matrix of typical size 108×108 representing the discretized Dirac operator, on a source vector.
The back-reaction of the quarks on the gauge field is taken into account in the importance
sampling of the gauge fields. Five classes of Wick contractions contribute to the full four-point
correlation function, as illustrated in Fig. 3. While the fully connected class of diagrams can
be computed cost-effectively using ‘sequential’ propagators, the other classes require the use
of stochastic methods. In [15], only the first two classes, denoted by the symbols (4) and
(2+2), were computed, because the other three classes (3+1), (2+1+1) and (1+1+1+1) are
expected to yield significantly smaller contributions. If this expectation is correct, and if the
LbL amplitude is dominated by resonance exchanges, one can infer with what weight factors
the isovector and the isoscalar resonances contribute to the leading contraction topologies (4)
and (2+2). The isoscalar resonances contribute (with unit weight) to the class (2+2); the
isovector resonances overcontribute with a weight factor 34/9 to class (4), while the (2+2)
contractions compensate with a weight factor of −25/9 [19]. These counting rules have been
used in describing the lattice data in Fig. 2. In particular, the large-Nc inspired counting rules
suggest that there is a large cancellation between the isovector resonances and the isoscalar
resonances in the (2+2) class of diagrams, with the exception of the pseudoscalar mesons, due
to the large mass difference between the π0 and the η′ meson. Therefore, the contribution
of the (2+2) diagrams to the light-by-light amplitudes was modelled as the η′ contribution,
minus 25

9 times the π0 contribution. Within the ∼ 30% uncertainties, the lattice data was
successfully reproduced1.

1In [15], it was also shown that in the SU(3) symmetric theory, similar arguments apply to the contribution of
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Figure 3: The five classes of quark Wick contractions contributing to the four-point
function of the vector current. From left to right: class (4), (2+2), (3+1), (2+1+1)
and (1+1+1+1). Figure by J. Green.

Thus the exploratory study [15] found that the LbL tensor (5) at moderate spacelike virtu-
alities can be described by a set of resonance poles, much in the same way that ahlbl

µ is obtained
in the model calculations. It would be worth exploring this avenue further, in particular by
increasing the precision of the lattice calculation.

3 Dispersive approach to ahlbl
µ and its input

Several dispersive approaches have been proposed to handle the complicated physics of hadronic
light-by-light scattering [20–22]. Here we will mainly review aspects of the ‘Bern approach’ [21],
which is the furthest developed at this point in time. It was shown that the full hadronic light-
by-light tensor can be decomposed into 54 Lorentz structures [23],

Πµνλσ(q1, q2, q3) = i3

∫

x ,y,z
e−i(q1 x+q2 y+q3z)〈0|T{ jµx jνy jλz jσ0 }|0〉=

54
∑

i=1

Tµνλσi Πi . (9)

The Lorentz-invariant coefficients Πi are entirely determined by seven functions of the invari-
ants qi · q j combined with crossing symmetry. The 54 Lorentz structures are redundant, but
they allow one to avoid kinematic singularities.

The HLbL contribution to (g − 2)µ is then computed using the projection technique, i.e.
directly at q = 0:

ahlbl
µ = −e6

∫

d4q1

(2π)4
d4q2

(2π)4

∑12
i=1 T̂i(q1, q2; p) Π̂i(q1, q2,−q1 − q2)

q2
1 q2

2 (q1 + q2)2 [(p+ q1)2 −m2
µ] [(p− q2)2 −m2

µ]
. (10)

The Π̂i are linear combinations of the Πi appearing in Eq. (9).
Performing all “kinematic” integrals using the Gegenbauer-polynomial technique after per-

forming a Wick rotation, the expression can be reduced to a three-dimensional integral,

ahlbl
µ =

2α3

3π2

∫ ∞

0

d|Q1| |Q1|3
∫ ∞

0

d|Q2| |Q2|3
∫ 1

−1

dτ
p

1−τ2
12
∑

i=1

Ti(|Q1|, |Q2|,τ) Π̄i(|Q1|, |Q2|,τ),

(11)
the master relation in this approach (τ=Q1 ·Q2/(|Q1| |Q2|)).

The contribution of the pole contributions associated with pseudoscalar mesons was worked
out explicitly and clarified the way that the corresponding transition form factors are to be ap-
plied in this framework; see subsection 3.1 below. As a further result obtained as part of this

the flavor-octet and singlet mesons, the octet contributing with a weight factor 3 to the diagram-class (4) and with
weight factor of (−2) to diagram-class (2+2), while the singlet only contributes (with unit weight) to diagram-class
(2+2).
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approach, it was shown [24] that certain contributions in the dispersive approach to the pion
loop could be handled rather accurately,

aπbox
µ + aππ,π−poleLHC

µ,J=0 = −24(1) · 10−11. (12)

The rescattering effects of the pions are being worked out for partial waves ` ≤ 2 [25]; first
results by the Bern group for the s-wave were presented at the (g −2) Theory Initiative Work-
shop [26]. An independent analysis of the γγ∗ → ππ process has also appeared very re-
cently [27].

3.1 The transition form factor of the pion

The field-theoretic definition of the transition form factor of the pion involves a time-ordered
product of two vector currents,

Mµν(p, q1)≡ i

∫

d4 x eiq1 x 〈Ω|T{ jµ(x) jν(0)}|π0(p)〉= εµναβ qα1 qβ2 Fπγ∗γ∗(q2
1, q2

2), (13)

with p = q1 + q2. A detailed dispersive analysis of the π0 → γ∗γ∗ transition form factor has
recently been carried out [28], leading to the rather accurate result

aHLbL,π0

µ = 62.6+3.0
−2.5 · 10−11. (14)

In addition to experiments, important input for the dispersive approaches can be provided
by lattice QCD. A first calculation of Fπγ∗γ∗(q2

1, q2
2) was carried out in lattice QCD with the two

lightest quark flavors [18] and used to calculate aHLbL,π0

µ , obtaining the result (65.0±8.3)·10−11.
A model parametrization of the transition form factor was used here which incorporates known
constraints at asymptotically large virtualities2. A second calculation in QCD, including also
the dynamical effects of the strange quark, and using a more model-independent conformal-
mapping parametrization of Fπγ∗γ∗(q2

1, q2
2), obtained the preliminary result

ahlbl
µ |π0 = (60.4 ± 3.6) · 10−11 [29]. The lattice and dispersive results are thus in excellent

agreement, and comparable in precision. It is somewhat surprising how close the central val-
ues are to older estimates based on the simplest vector-meson dominance model of the form
factor, e.g. ahlbl

µ |π0,VMD = 57.0 ·10−11 [10]; however, the uncertainty of the result is now much
better known.

4 The direct lattice calculation of HLbL in (g − 2)µ

The idea to directly calculate ahlbl
µ in lattice QCD was pioneered in [30]. At first, the task was

thought of as a combined QED+QCD calculation. Today’s viewpoint is that the calculation
amounts to a QCD four-point function, to be integrated over with a weighting kernel which
represents all the QED parts, i.e. muon and photon propagators. Two collaborations have so
far embarked on this challenging endeavour [7].

The RBC/UKQCD collaboration has performed calculations of ahlbl
µ using a coordinate-

space method in the muon rest-frame. The photon and muon propagators are either computed
on the same L × L × L × T torus as the QCD fields – this approach goes under the name of
QEDL and was first published in [31]; or they are computed in infinite volume in a method
called QED∞ [32].

2No use was made of the experimentally accurately known normalization, Fπγ∗γ∗(0,0), from the π0 width.
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QED kernel L̄[ρ,σ];µνλ(x , y)

⇒

Figure 4: Coordinate-space Feynman diagram for ahlbl
µ , where the QED part, on the

left, can be computed (semi-)analytically and treated as a kernel weighting the vertex
positions of the QCD four-point function of the vector current.

The Mainz group has used a manifestly Lorentz-covariant QED∞ coordinate-space strat-
egy, presented in [33], averaging over the muon momentum using the Gegenbauer polynomial
technique. This technique relies on the anomalous magnetic moment of the muon being a
Lorentz scalar quantity; a fact that has been used extensively in the phenomenology commu-
nity.

A theoretical advantage of using the QED∞ formulation is that no power-law finite-volume
effects appear, which arise in QEDL due to the massless photon propagators3. Specifically, in
the (Euclidean) notation used by the Mainz group, the master equation for computing ahlbl

µ is

ahlbl
µ =

me6

3

∫

d4 y
︸ ︷︷ ︸

=2π2|y|3d|y|

�

∫

d4 x L̄[ρ,σ];µνλ(x , y)
︸ ︷︷ ︸

QED

ibΠρ;µνλσ(x , y)
︸ ︷︷ ︸

= QCD “blob”

�

, (15)

ibΠρ;µνλσ(x , y) = −
∫

d4z zρ
¬

jµ(x) jν(y) jσ(z) jλ(0)
¶

. (16)

The QED kernel L̄[ρ,σ];µνλ(x , y) is computed in the continuum and in infinite-volume; it con-
sists of the muon and photon propagators depicted in Fig. 4. Once the two tensors appearing
in Eq. (15) are contracted, the integrand is a Lorentz scalar, and the integrals over x and y
reduce to an integral over three invariant variables, e.g. (x2, x · y, y2). In this sense, Eq. (15)
is the coordinate-space analogue of Eq. (11). In practical lattice calculations, one may carry
out the four-dimensional summation over one of the vertices (say x) in full, because this tends
to have a beneficial averaging effect. For fixed vertex position y , the four-dimensional sum-
mation over x can be arranged to be performed exactly on every gluon field configuration
with an affordable number of operations for the most important Wick contraction classes (4)
and (2+2). Sampling all values of the vertex position y would be computationally too costly;
reducing instead the integral over y to a one-dimensional integral [33] allows one to sample
the integrand reliably.

In order to get an idea of the length scales involved in the problem, one can inspect the
coordinate-space dependence of the integrand for the pion pole [34]. An example is shown in
the left panel of Fig. 5 for the physical pion mass. The curves correspond to different kernels,
which are equivalent in infinite volume. They differ by x- or y-independent terms which do
not contribute to the integral, but modify the integrand. In [32], where these subtraction
terms were first introduced, it was shown that they can drastically reduce lattice discretization

3Instead, the leading finite-size effects are expected to be of order exp(−mπL/2).
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Figure 5: Left: Continuum, infinite-volume integrand of the final integral over |y| to obtain
the π0 pole contribution to ahlbl

µ at the physical mass mπ = 135 MeV, assuming the VMD
form of the transition form factor. The integrand differs, depending on the precise choice of
QED kernel, without changing the result of the integral. The L(i) correspond to subtracting
different sets of x- or y-independent terms from the QED kernel. Right: The integrand of
the fully connected Wick-contraction diagrams yielding ahlbl

µ as a function of the integration
variable |y|, obtained on a 483 × 96 lattice at a pion mass of mπ = 340 MeV and lattice
spacing a = 0.064 fm. The kernel used is L(2), which vanishes by construction whenever
x or y vanishes. The integrals over the vertices in x and z (see Fig. 4) have already been
performed at this stage. For comparison, the corresponding (continuum, infinite-volume)
integrand for the π0 pole contribution to ahlbl

µ is displayed, multiplied by an enhancement
factor of 3 (lower edge of the band) and 34/9 (upper edge of the band) to account for the
absence of the disconnected diagrams; see the end of section 2 for an explanation of these
weight factors.

errors by forcing the kernel to vanish when some of the vertices coincide. From the left panel
of Fig. 5, it is clear that the integrand is rather long-range in all three cases shown.

4.1 Status of lattice results

The calculation of hadronic light-by-light scattering in (g − 2)µ is still work in progress. The
most recent refereed publication by the RBC/UKQCD collaboration [35] uses the QEDL for-
mulation and presents results for the Wick-contraction classes (4) and (2+2) on a 483 × 96
lattice at the physical pion mass with a lattice spacing of a−1 = 1.73 GeV. The contribution
of the fully connected class of diagrams is aHlbL (4)

µ = (116.0± 9.6)× 10−11, while the (2+2)

diagrams yields aHlbL (2+2)
µ = (−62.5± 8.0)× 10−11. Together, they amount to [35]

ahlbl
µ = (53.5± 13.5) · 10−11, (17)

where the quoted error is statistical. This represents the first lattice result for the two leading
Wick-contraction topologies. However, the authors acknowledge that “The finite-volume and
finite lattice-spacing errors could be quite large and are the subject of ongoing research.” We
note that the total is about a factor two lower than the model estimates. A possible explanation
is that in the latter, neglected contributions could be more important than so far expected; or,
since the QEDL method has O(1/L2) finite-size effects, the latter could be responsible for a
large systematic error. It was noted [15] that, based on the model estimate and large-Nc
inspired arguments, one would expect aHlbL (2+2)

µ to be dominated by the (π0,η,η′) exchange

and approximately −150 · 10−11 in size; the fully connected diagrams would then have to
amount to about 250 ·10−11 in order to recover the model result ahlbl

µ ≈ 100 ·10−11 discussed
in section 2.
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Figure 6: Recent results by the RBC/UKQCD collaboration [36] obtained on a
243×64 lattice at the physical pion mass and a−1 = 1.015 GeV. The integral yielding
ahlbl
µ as a function of its upper limit, the integration variable being the maximum dis-

tance between any two internal vertices. The QED∞ formulation including subtrac-
tions [32] was used. Separately (from left to right) for the Wick-contraction classes
(4), (2+2) and (3+1). In the latter case, only those Wick-contractions are included
in which the external photon is attached to the loop containing three vertices.
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Figure 7: Mainz group: the integral yielding ahlbl
µ as a function of the upper limit

of the integration variable |y| at a pion mass of mπ = 280MeV. The integrals over
the vertices in x and z have already been performed at this stage. The kernel used
is L(2), which vanishes by construction whenever x or y vanishes. The left panel
compares results from two different lattice volumes; the right panel compares two
different lattice spacings.

L. Jin presented an update of the RBC/UKQCD calculation at this year’s lattice conference.
An extrapolation to infinite volume and zero lattice spacing based on several ensembles yielded
the results aHlbL (4)

µ = (282± 40) · 10−11 and aHlbL (2+2)
µ = (−163± 34) · 10−11, resulting in the

sum ahlbl
µ = (119± 53) · 10−11. These values are much more in line with the expectation from

the model calculations, but the extrapolation, and the cancellation between the two Wick-
contraction topologies, enhances the relative error on the final result.

Both the RBC/UKQCD collaboration and the Mainz group have started generating lattice
results with their respective QED∞ method. As a very recent development, the RBC/UKQCD
collaboration has performed a calculation of the three leading diagram topologies (4), (2+2)
and (3+1) on a coarse lattice at the physical pion mass; see Fig. 6. The (3+1) topology is found
to make a negligible contribution [36]. The Mainz group has computed and analyzed the fully
connected set of diagrams (4) [37]. It uses rather fine lattices, with a typical lattice spacing
of a = 0.064 fm, on the other hand the simulated pion masses (mπ ¦ 200MeV) lie above
the physical value. The integrand obtained at mπ = 340MeV is displayed in the right panel
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of Fig. 5, and compared to the prediction corresponding to the neutral pion pole, including
the appropriate enhancement weight factor, as discussed at the end of section 2. The pion-
pole integrand, predicted with a VMD transition form factor, provides a surprisingly good
approximation to the lattice data. Tests of the systematic errors on the fully connected set of
diagrams at mπ = 280MeV are shown in Fig. 7: finite-size effects and discretization effects
appear to be under control. It remains to be seen how well controlled the extrapolation in the
pion mass will be. Restricting the sums over the vertex positions in a systematically controlled
way to the regions that contribute appreciably is likely to reduce the statistical noise.

5 Conclusion

The hadronic light-by-light scattering contribution is, along with the hadronic vacuum polar-
ization contribution, the leading source of uncertainty in the Standard Model prediction for
the anomalous magnetic moment of the muon, (g − 2)µ. For decades, a framework which
offers a systematically improvable prediction was lacking. This has now changed, with signif-
icant progress having been made in the dispersive as well as lattice QCD approaches. Even
though model calculations will soon become superseded, valuable lessons have been learnt
from them, which can help control the systematic errors in the ab initio approaches.

Given that the quantity ahlbl
µ involves three spacelike and one quasi-real photon, lattice

QCD is in a good position to provide a first-principles prediction – no analytic continuation
is required. At the same time, dealing with the four-point function of the vector current is
pushing the field into a territory on which the community has little prior experience, hence
dealing with the statistical and the systematic errors, such as the finite lattice spacing and finite-
volume errors, requires special attention. A cross-check between at least two independent
lattice collaborations is hence extremely valuable, as is a comparison of the lattice results with
the results of the dispersive approaches. In the latter case, it will be especially interesting to
see how the dispersive treatment ofππ intermediate states differs quantitatively from previous
estimates based on a narrow (scalar and tensor) resonance exchange approximation.
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