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Abstract

We discuss sum-rule determinations of αs from non-strange hadronic τ-decay data. We
investigate, in particular, the reliability of the assumptions underlying the “truncated
OPE strategy,” which specifies a certain treatment of non-perturbative contributions, and
which was employed in Refs. [1–3]. Here, we test this strategy by applying the strategy
to the R-ratio obtained from e+e− data, which extend beyond the τ mass, and demon-
strate that the assumptions underlying this strategy are not, in general, valid. We then
present a brief overview of new results on the form of duality-violating non-perturbative
contributions, which are conspicuously present in the experimentally determined spec-
tral functions. As we show, with the current precision claimed for the extraction of αs,
including a representation of duality violations is unavoidable if one wishes to avoid
uncontrolled theoretical errors.
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1 Introduction

As is well known, the determination of αs from finite-energy sum-rule (FESR) analyses of
hadronic τ-decay data provides one of the most precise determinations of αs. Because of its
low scale, this determination, moreover, plays an important role in testing the evolution of the
strong coupling predicted by QCD. In this paper we pull back the curtain on, and subject to
further scrutiny, certain issues and subtleties connected with the treatment of non-perturbative
effects; issues which the precision now claimed for these determinations makes it important
to understand in more quantitative detail.

In what follows, we first demonstrate that certain highly non-trivial assumptions made
in treating non-perturbative contributions in common implementations of the FESR analysis
framework can be tested (and shown to fail) via analogous analyses of electromagnetic (EM)
hadroproduction cross-sections, which, unlike hadronic τ-decay distributions, are not kine-
matically restricted to hadronic invariant-squared-masses s ≤ m2

τ. These observations imply
that τ-decay analyses cannot avoid employing weighted spectral integrals with variable upper
endpoints, s0 ≤ m2

τ. Given that significant duality violations (DVs) are clearly observed in the
experimental differential non-strange hadronic τ-decay distributions, this necessitates provid-
ing estimates for the size of residual DV effects, which in turn necessitates the use of models
for the DV components of the hadronic spectral functions. Recent progress in determining the
form of these components expected in QCD, relevant to carrying out such analyses, is then
also reviewed.

In the Standard Model, defining

Rud;V/A ≡
Γ [τ→ ντ hadronsud;V/A (γ)]

Γ [τ−→ ντe−ν̄e(γ)]
, (1)

one has [4]

dRud;V/A

ds
=

12π2 |Vud |2SEW

m2
τ

�

wτ (yτ) ρ
(0+1)
ud;V/A(s)− wL (yτ) ρ

(0)
ud;V/A(s)

�

, (2)

where yτ = s/m2
τ, wτ(y) = (1− y)2(1+ 2y), wL(y) = 2y(1− y)2, Vud is the ud element of

the CKM matrix, SEW is a known short-distance electroweak correction [5], and ρ(J)ud;V/A(s) are

the spectral functions of the J = 0,1 hadronic vacuum polarizations (HVPs), Π(J)ud;V/A, of the
flavor ud, vector (V ) and axial-vector (A) current-current two-point functions. The continuum
parts of ρ(0)ud;V/A(s) are suppressed by factors of (md ∓mu)2, and hence numerically negligible,

leaving the well-determined pion-pole contribution to ρ(0)ud;A as the only numerically relevant

J = 0 contribution. The J = 0 + 1 sums ρ(0+1)
ud;V/A(s) are thus directly determinable from the

experimental dRud;V/A/ds distributions.

The spectral function combinations ρ(0+1)
ud;V/A(s) and sρ(0)ud;V/A(s) correspond to HVP combi-

nations, Π(0+1)
ud;V/A(s) and sΠ(0)ud;V/A(s), which are free of kinematic singularities. For any s0 ≤ m2

τ,
and any weight w analytic inside and on |s|= s0, Cauchy’s theorem, applied to the contour in
Fig. 1 then ensures the validity of the FESR relation [6–12]

∫ s0

0

ds
s0

w(s/s0)ρ
(0+1)
ud;V/A(s) =

−1
2πi

∮

|s|=s0

ds
s0

w(s/s0)Π
(0+1)
ud;V/A(s) . (3)

The basic idea of the τ-based determination of αs is to employ experimental results for
dRud;V/A/ds on the LHS of Eq. 3 and, for sufficiently large s0, the Operator Product Expan-

sion (OPE) representation of Π(0+1)
ud;V/A(s) on the RHS. The OPE, of course, represents only an
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Re q2

Figure 1: Contour used in the derivation of Eq. (3). The cut shown on the positive
real s = q2 = −Q2 axis starts at s = 4m2

π for Π(0+1)
ud;V and s = 9m2

π for Π(0+1)
ud;A . Π(0+1)

ud;A ,

of course, also has a pole at s = m2
π.

approximation to Π(0+1)
ud;V/A. In general, in addition to perturbative (dimension D = 0 OPE) and

higher dimension non-perturbative OPE condensate contributions,

�

Πud;V/A(s)
�N P

OPE =
∑

D=4,6,8,···

CV/A
D

QD
, (4)

with Q2 = −s, and the CV/A
D effective condensates of dimension D, non-OPE, DV contributions,

�

Π
(0+1)
ud;V/A(s)

�

DV
, defined by

Π
(0+1)
ud;V/A(s)≡

�

Π
(0+1)
ud;V/A(s)

�

OPE
+ΠDV

ud;V/A(s) , (5)

are needed to provide a full representation of Π(0+1)
ud;V/A(s).

If m2
τ were sufficiently large that, relative to perturbative contributions, all non-perturbative

contributions (both DV and OPE) were negligible on the circle |s| = m2
τ, the inclusive experi-

mental non-strange hadronic τ decay width would provide an immediate determination of αs.
Unfortunately, this is not the case, at the level of precision desired (and claimed) in current
τ-based analyses.

Two key qualitative points should be emphasized regarding non-perturbative contributions
to the RHS of Eq. (3). First, since the cut inΠ(0+1)

ud;V/A extends to s =∞ (z = 1/Q2 = 0), the OPE

(an expansion in z about z = 0) cannot be convergent. Second, DV contributions toΠ(0+1)
ud;V/A(s),

which are exponentially suppressed for large spacelike Q2 = −s, are expected to develop an
additional oscillatory behavior on the Minkowski axis [13, 14]. Such oscillations are clearly
seen in ρ(0+1)(s)

ud;V/A = 1
π ImΠ(0+1)

ud;V/A(s) but their properties are not captured by the OPE. They
reflect the incipient presence of resonances as the energy is lowered from the parton-model
regime.

The fact that the OPE is not convergent means that it is not true that higher dimension
OPE contributions to the RHS of Eq. (3) scale simply as ΛD

QC D/s
D/2
0 and hence form a rapidly

converging series in D for s0 ' m2
τ. Assuming, on such “dimensional” grounds, that integrated

higher-D OPE contributions in principle present for a given weight w can be neglected requires
experimental justification if one wishes to avoid incurring unquantifiable systematic errors.
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Figure 2: ALEPH spectral functions for the V , A and V + A channels [20].

AωV/A(s0):

AωV (s0) = F

s0−∆s0
2∑

si

∆NV (si)

N
ωi(si, s0)H(s0, si) , (18)

AωA(s0) = F

s0−∆s0
2∑

si

∆NA(si)

N
ωi(si, s0)H(s0, si) ,

+ F
m2
τ

s0

(
1− m2

π

m2
τ

)−2

Bπ ωi(m
2
π, s0) , (19)

where
F =

[
12π SEW |Vud|2Be

]−1
(20)

collects all normalization factors,

H(s0, si) =
m2
τ

s0

(
1− si

m2
τ

)−2(
1 +

2si
m2
τ

)−1

(21)

and ∆s0 is the bin width of the bin centered at s0 − ∆s0
2

.
In Figure 2 we show the updated spectral functions measured by the ALEPH collabo-

ration [20]. Together with the experimental data points, the figure shows the naive parton-
model expectations (horizontal green lines) and the massless perturbative QCD predictions,
using αs(m

2
τ ) = 0.329 (blue lines). This comparison shows beautifully, how the data ap-

proach the QCD predictions at the highest available energy bins, without any obvious need
for non-perturbative corrections at s = m2

τ . Resonance structures are clearly visible at
lower values of the hadronic invariant mass, specially the prominent ρ(2π) and a1(3π) peaks,
but as s increases the opening of higher-multiplicity hadronic thresholds results in much
smoother inclusive distributions, as expected from quark-hadron duality considerations [71].
The flattening of the spectral distribution is specially good in the most inclusive channel,
V + A, where perturbative QCD seems to work even at s ∼ 1.2 GeV2, a surprisingly low
value. The onset of the asymptotic perturbative QCD behaviour appears obviously later in
the semi-inclusive V and A distributions. In the vector case perturbative QCD seems to

9
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Figure 2: Left panel: the ud V + A spectral function, as shown in Ref. [1]. Right
panel: the same (in the normalization of [15]) but now with the αs-independent
parton-model contribution subtracted.

The fact that DV effects are not, in general, negligible in hadronic τ decays is evidenced
by the size of the observed DV oscillations in the V , A and V + A spectral functions. It is often
argued [1] that DV oscillations are “small” for the V+A combination on the basis of plots show-
ing the size of such oscillations on the scale of the full V +A spectral function, ρ(0+1)

ud;V+A(s), as in

the left panel of Fig. 2. Such a plot is, however, highly misleading, since ρ(0+1)
ud;V+A(s) contains

a large parton-model contribution completely independent of αs, i.e., of all QCD dynamics.
The FESR determination of αs is driven entirely by the dynamical, αs-dependent part of the
perturbative contribution to the weighted spectral integrals, and the relevant measure of the
relative size of perturbative and DV contributions to the spectral functions entering those inte-
grals, from the point of view of a determination of αs, is the size of the DV oscillations relative
to the αs-dependent part of the perturbative representation of ρ(0+1)

ud;V+A(s). The right panel of
Fig. 2 shows this more relevant comparison. One immediately sees, for example, that the non-
parton-model part of ρ(0+1)

ud;V+A(s) is ' 0 for s ' 2 GeV2, indicating that DV and αs-dependent
perturbative contributions are, in fact, equal in magnitude in this region, essentially cancelling
each other out. This is also true in the vicinity of the next DV peak, where, however, the two
contributions combine constructively, as expected given the oscillatory nature of DVs. While
it is true that DV oscillations are smaller for the V + A combination than for the individual V
and A spectral functions, this rather obviously does not mean that the V + A oscillations are
small in an absolute sense.

DV contributions, though important in hadronic spectral functions, certainly for the range
of s accessible in τ decays, may be suppressed relative to perturbative contributions when one
considers the integrated quantities appearing on the RHSs of Eq. (3). From the arguments
of Ref. [16], DV contributions on |s| = s0 at intermediate s0 are expected to be localized to
the vicinity of the timelike axis. Given the asymptotic nature of the OPE, and the oscillatory
behavior of the DVs, the parametrization [17–19]

1
π

ImΠDV
ud;V/A(s) = e−δV/A−γV/As sin

�

αV/A+ βV/As
�

, (6)

for s large enough, represents a very natural choice.1 In fact, this expression has recently been
confirmed [14] under the mild assumption of an asymptotic Regge behavior for the meson

1Recall how renormalons give rise to a e−b/αs behavior from the asymptotic nature of perturbation theory. Here
the expansion parameter is 1/s rather than αs and αs is thus parametrically replaced by 1/s.
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spectrum. We discuss this in more detail in section 3 below.
The contribution from ΠDV

ud;V/A(s) in Eq. (5) to the FESR (3) can be shown to take the
form [17,20]

−1
2πi

∮

|s|=s0

ds
s0

w(s/s0)Π
DV
ud;V/A(s) = −

∫ ∞

s0

ds
s0

w(s/s0)
1
π

ImΠDV
ud;V/A(s) , (7)

and, using the parametrization (6), this form of the DV contributions on the RHS of (7) will
be very useful in the following discussion.

Because of the exponential suppression at large s in Eq. (6), and localization of DV con-
tributions to the vicinity of the timelike axis at intermediate and large s, the use of “pinched
weights” w (those with a zero at s = s0) in Eq. (3) is thus expected to yield RHSs in the FESRs
(3) in which residual integrated DVs play a reduced role relative to integrated OPE contribu-
tions, with the level of suppression typically increasing with the degree of pinching (the order
of the zero at s = s0). This general expectation is confirmed empirically [21], and can also
be seen on average, over a range of s0, when one integrates explicitly the asymptotic DV form
(6) [20]. While increased pinching increasingly suppresses DVs on average, given the size
of DV contributions to the spectral functions, and the precision claimed for current versions
of the determination of αs, it remains an open question how large this suppression is for the
doubly and triply pinched weights employed in typical determinations of αs.

The analyses of Refs. [1–3], all implicitly assume the scale s0 = m2
τ is high enough that

integrated DVs can be neglected for the doubly and triply pinched weights entering those anal-
yses. Ref. [22] also assumes integrated DVs can be neglected for the doubly pinched weights
it employs, testing this assumption for self-consistency by studying the s0 dependence of the
resulting fits. In contrast, the analysis of Ref. [23–25] employs the model for DV contributions
to the V and A spectral functions of Eq. (6), and finds a systematic downward shift in the αs
obtained when this representation of DV effects is included.

Of particular relevance to the results of Refs. [1, 22], where attempts are made to inves-
tigate the self-consistency of the assumed neglect of DVs, are the results of Ref. [15], where
the tests employed in Ref. [1] are applied to a model based on mock data which accurately
matches the experimental ud V + A spectral function and which has, by construction, a lower
input value of αs as well as numerically relevant DV contributions at higher s. It is found that
what were hoped to be self-consistency tests in Ref. [1], applied to this model, are unable to
identify the presence of the model DV contributions and the lower input αs value, establishing
that these tests are, in general, insufficient to establish the absence of numerically significant
DVs. A comparison of the results of Refs. [22] and [23] suggests this same caveat is relevant
to assessing the results of the s0-dependence tests employed in Ref. [22]. In fact, Refs. [15]
as well as [23] and [24, 25] contain extensive arguments for the non-negligible influence of
DVs in the extraction of αs from τ decay.

The failure of nominal self-consistency tests of Ref. [1] when applied to the model de-
scribed above still leaves open the logical possibility that DV contributions to the actual spec-
tral functions in the region s > m2

τ might be smaller than those in the model, leading to smaller
integrated DV contributions in the real world than in the model. This possibility can be investi-
gated, at least for the I = 1 V component, using e+e− hadroproduction cross-section data [26].
The reason is that the I = 1 component of the EM current is related by CVC to the charged
I = 1 V current acting in τ decays. The predictions of the τ-based model of Ref. [15] for
the I = 1 spectral function in the region s0 ≥ m2

τ, where it cannot be measured in τ decays,
can then be tested against the I = 1 component of the EM spectral function obtained from a
G-parity based isovector/isoscalar separation of the I = 0 and I = 1 contributions to the EM
spectral function. This separation was carried out in the region up to s = 4 GeV2 in Ref. [27].
The result of the comparison to the prediction shown in Fig. 5 of Ref. [27] shows good agree-
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ment: the DV oscillations predicted by the τ-decay based model are, indeed, seen in the e+e−

data.
One can also use the electroproduction R(s) data to test the “truncated OPE strategy" which

is the foundation for the analysis of Refs. [1, 2]. The problem with the truncation of the
OPE arises as follows. The spectral integral for the s0 = m2

τ version of the FESR involving
the kinematic weight wτ(y), with y ≡ s/s0, can directly be determined from the inclusive
branching fraction for hadronic τ decays. This result, however, is insufficient to allow one
to determine αs since wτ has degree 3, and the theorem of residues then implies that the
right-hand (theory) side of the wτ FESR involves OPE contributions up to D = 8. While the
D = 4 contribution is strongly suppressed by the absence of a term linear in y in wτ(y), three
OPE parameters, αs, and the D = 6 and 8 effective condensates, C6 and C8, are still required
to fix the theory side. Since C6 and C8 are not known from external sources, the inclusive
non-strange branching fraction itself cannot provide a determination of αs.

A strategy employed to try to get around this problem [1–3] is to consider additional
s0 = m2

τ FESRs involving new, higher-degree weights, with at least the level of pinching of
wτ. The goal is to use the additional weighted spectral integrals as inputs to an extended
multi-weight analysis in which non-perturbative condensates like C6 and C8 are also fit.

This strategy, however, has a fundamental shortcoming. If one considers, for example,
using one additional FESR involving a polynomial weight of degree 4, that FESR now receives
a contribution from a new effective OPE D = 10 condensate, C10. Adding a weight with degree
5 similarly brings into play a contribution proportional to another new D = 12 condensate,
C12, etc. As long as one aims to suppress as much as possible residual integrated DV effects by
considering spectral integrals with s0 = m2

τ with at least doubly pinched weights only, one has,
at every stage, more OPE parameters to fit than weighted spectral integrals to use in fitting
them.

For this strategy to work in practice, one thus needs to make the strong additional assump-
tion that, for a set of weights whose maximum degree is N , and which, therefore, requires
knowledge of OPE condensates up to dimension D = 2N + 2, the OPE can be truncated at a
dimension smaller than 2N +2 sufficiently low to leave the number of OPE fit parameters less
than the number of spectral integrals to be used in fitting them. Though this truncation leads
to a proper fit in the statistical sense, it is really only justified if the asymptotic OPE series
behaves, at the scales of the analysis, as if it were convergent. This approach to determining
αs from hadronic τ-decay data, which we refer to as the “truncated OPE strategy,” has been
employed, for example, in Refs. [1–3].

The truncated OPE strategy is therefore predicated on the assumptions that s0 = m2
τ is

large enough that (i) integrated DV contributions can be neglected for FESRs involving doubly
and triply pinched weights and (ii) the OPE, though asymptotic at best, behaves as if it were
rapidly convergent for dimensions up to 2N + 2, where N is the degree of the highest-degree
weight entering the analysis in question.

It is important to stress that integrated DV contributions are expected to be exponentially
damped with increasing s0, and that integrated higher-dimension D = 2k OPE contributions
scale as 1/sk

0 and hence also decrease, relative to the leading D = 0 perturbative contributions,
with increasing s0.2 It therefore follows that, if the assumptions of the truncated OPE strategy
were valid for s0 = m2

τ, they would be even more so for higher s0. The kinematic restriction
s0 ≤ m2

τ unfortunately prevents this prediction from being tested using τ-decay data but,
fortunately, the R-ratio data obtained from e+e−→ hadrons allow for such tests.

Analogous EM FESRs, employing results for R(s) obtained in Ref. [26], thus allow us to
investigate the reliability of the assumptions underlying the truncated OPE strategy by applying

2 Although the asymptotic nature of the OPE leads to the expectation of a rapid increase of the condensate
contribution with its dimension D.
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the same fits to the correspondingly weighted s0 = m2
τ versions of the EM spectral integrals,

and then testing whether the resulting OPE fit results provide a good representation of the
actual EM spectral integrals for s0 > m2

τ. This investigation will be the subject of the next
section.
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Figure 3: EM FESR tests of the optimal weight version of the truncated OPE strategy.
Comparisons of differences between general s0 and s0 = m2

τ versions of the OPE and
spectral integrals, with OPE results corresponding to OPE parameter values obtained
from the optimal-weight implementation of the truncated OPE strategy using s0 = m2

τ

only in the fits. Top left: w(21); top right: w(22); middle left: w(23); middle right:
w(24); bottom: w(25).

53.7

https://scipost.org
https://scipost.org/SciPostPhysProc.1.053


SciPost Phys. Proc. 1, 053 (2019)

2 e+e−-based tests of the truncated-OPE FESR strategy

In this section we focus our investigation of the assumptions underlying the truncated OPE
strategy on two of the sets of weights employed in the nominal self-consistency studies of
Ref. [1], namely the conventional “(kl) spectral weight” set,

wkl(y) = y l(1− y)k wτ(y) , (8)

with (kl) = (00), (10), (11), (12) and (13), and the set of so-called “optimal weights”,

w(2n)(y) = 1− (n+ 2)yn+1 + (n+ 1)yn+2 , (9)

with n= 1, · · · , 5.
The (00) spectral weight is doubly pinched and the remainder of the (kl) spectral weights

triply pinched, while the optimal weights are all doubly pinched. Since both the (kl) spectral
weight and optimal weight sets include weights up to degree 7, the corresponding sets of
FESRs involve, in principle, OPE contributions, unsuppressed by additional factors of αs, up
to D = 16. In order to leave one more s0 = m2

τ spectral integral than OPE parameter in the
corresponding multi-weight fits, spectral-weight analyses fit αs, C4, C6 and C8 and assume
contributions proportional to C10, C12, C14 and C16 can be neglected. The absence of a term
linear in y in the weights w(2n)(y) means that contributions proportional to C4 are strongly
suppressed. The five s0 = m2

τ optimal-weight-set spectral integrals are then used to fit the
four OPE parameters, αs, C6, C8 and C10, with contributions proportional to C12, C14 and C16
assumed negligible.

We consider spectral-weight and optimal-weight FESRs, in which the ud V or A spectral
functions and HVPs appearing in Eq. (3) are replaced by the corresponding spectral function,
ρEM (s), and HVP, ΠEM (s), of the three-flavor EM current. The spectral function, ρEM (s), is
related to the well-known R(s) ratio by

ρEM (s) =
1

12π2
R(s) . (10)

We employ the results and covariances for R(s) provided by the authors of Ref. [26]. Full
details of our own implementation of such EM FESRs may be found in Ref. [27].

We stress that (i) in the isospin limit, CVC implies that the I = 1 part of ΠEM (s), ΠI=1
EM is

equal to 1
2 Π

(0+1)
ud;V (s), where the 1/2 is a trivial Clebsch-Gordon factor, and (ii) the I = 0 part

of ΠEM (s) is, up to a factor of 1/3, the SU(3)F hypercharge partner of the I = 1 component.
Higher dimension I = 0 EM OPE condensate contributions to ΠEM (s) should thus be ∼ 1/3
of the corresponding I = 1 EM OPE condensate contributions, up SU(3)F breaking effects. If
I = 1 condensates of a given dimension yielded contributions which are negligible, relative
to perturbative contributions, for s0 ≥ m2

τ, this should be equally true of the corresponding
I = 0 contributions. It follows that, if the truncated-OPE-strategy assumptions were reliable
at s0 = m2

τ for τ-decay-based FESRs, they should be similarly reliable at s0 = m2
τ for the

corresponding EM FESRs, and they should then be even more reliable for s0 > m2
τ, though this

expectation can only be tested in the EM case.
Of course, the EM case allows us to consider only the V channel, whereas Ref. [1] considers

V+A to be the optimal choice for the truncated OPE strategy. We note, however, that (i) there is
not a vast difference between the amplitude of the DV oscillations in the V and V +A channels,
relative to the parton model, and (ii), that, in particular for the optimal weights, the results for
αs obtained in Ref. [1] on the basis of the truncated OPE strategy are in excellent agreement
between fits to the V and V +A channels, while the corresponding agreement for the spectral
weights is also very good. So, while we recognize that the e+e− channel is different from

53.8

https://scipost.org
https://scipost.org/SciPostPhysProc.1.053


SciPost Phys. Proc. 1, 053 (2019)

the τ-decay one, we believe it is very instructive to check the hypotheses which are at the
foundation of the truncated-OPE strategy even with the e+e− data. Therefore, we will turn
our attention to these checks next.

We test the truncated OPE strategy by first performing truncated-OPE-strategy fits to the
s0 = m2

τ versions of either the five wkl -weighted EM spectral integrals or the five w(2n)-weighted
EM integrals, and then comparing the weighted EM spectral integrals and OPE integrals ob-
tained using the resulting fitted OPE parameters at s0 > m2

τ.
Very strong correlations exist between weighted spectral integrals for different s0, as well

as between weighted OPE integrals for different s0. In order to take these correlations into
account in assessing, visually, how successful the resulting s0 > m2

τ OPE integrals are in pre-
dicting the actual values of the corresponding EM spectral integrals, it is useful to plot not the
spectral and OPE integrals themselves, but rather the difference between their values at gen-
eral s0 and s0 = m2

τ. Both the OPE and spectral integral differences are thus zero, by definition,
at s0 = m2

τ. The errors on the spectral integral differences are straightforwardly obtainable
from the covariance matrix of the R(s) data provided by the authors of Ref. [26].

The results of this test are shown in Fig. 3, for the optimal-weight set of Ref. [1].3 The
OPE integral differences produced using the truncated-OPE-strategy fit assumptions obviously
provide an, in general, very poor representation of the corresponding spectral integral differ-
ences in the region above s0 = m2

τ. For the sake of brevity, the OPE-spectral integral matches
of the analogous spectral-weight test, which are similarly bad above s0 = m2

τ, are not shown
here.

From these results it is clear that the assumptions underlying the truncated OPE strategy
are, simply, not valid, and thus that results obtained from the truncated OPE strategy are
unreliable. Since the weights involved in these tests are doubly and/or triply pinched, and
hence expected to have suppressed integrated DV contributions, especially above s0 = m2

τ, the
poor OPE-spectral integral matches imply a breakdown of the assumption that the OPE can be
truncated as it would were the OPE a rapidly converging expansion up to at least D = 16.

The consequences of this observation for τ-based analyses are (i) that the truncations in
dimension of the OPE employed in the truncated OPE strategy are completely unsafe and (ii)
that, in order to have fewer OPE parameters than spectral integrals required to fit them, one
must consider also spectral integrals involving whatever set of weights one is employing at s0
different from m2

τ, which, for analyses of τ-decay data, means s0 < m2
τ. Since quite sizeable

DV oscillations about perturbation theory are observed in the spectral functions in this region,
even when one considers the ud V+A sum, it becomes important to use some representation of
DV contributions to estimate the impact of possible residual DV effects, even in FESRs involving
doubly and triply pinched weights.

3 Duality Violations and Hyperasymptotics: The Regge Connec-
tion

Although one expects DVs to behave as in Eq. (6) for large s on general grounds, it would be
nice to derive an expression such as Eq. (6) from QCD. Regrettably, this is still not possible
from first principles but, recently, in Ref. [14], progress has been made under two plausible
assumptions: (i) that the radial spectrum of QCD shows a leading Regge behavior in the vector

3We would like to emphasize that, as we already said above, because we are plotting differences, the numerical
values on the vertical axis are not meaningful in an absolute sense. What is relevant is that the black OPE curves
for s0 > m2

τ
do not agree within errors with the red experimental data points.
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channel for asymptotically large excitation number n, i.e.,

M2(n) = Λ2
QC D n+ b log n+ c +O

�

1
n

,
1

log n

�

, (11)

F(n)
F0

= 1+O
�

1
n

,
1

log n

�

, (n� 1) ,

where M(n) is the spectrum of masses and F(n) are the corresponding decay constants ap-
pearing in the vector two-point function, in the large-Nc limit; and (ii) that the ratio of the
width over the mass goes to a constant also in the same asymptotic limit, i.e.,

Γ

M(n)
=

a
Nc

�

1+O
�

1
Nc

,
1
n

��

, (n� 1) . (12)

The scale ΛQC D is related to the string tension and is expected to be of order 1 GeV (see also
below). The scale F0 sets the normalization of the two-point function.

Both assumptions are supported by the solution of two-dimensional QCD [28], the string
picture of hadrons [29] and phenomenology [30]. The picture that emerges is the following.

Starting from the dispersive representation obeyed by the Adler function, it is convenient
to express it as a Borel–Laplace transform

A(q2) = −q2 dΠ(q2)
dq2

= −q2

∫ ∞

0

d t ρ(t)

∫ ∞

0

dσ σ e−σ(t−q2) (13)

= −q2

∫ ∞

0

dσ eσq2
σB[ρ](σ) ,

where

B[ρ](σ) =
∫ ∞

0

d t ρ(t) e−σt (14)

is the Laplace transform of the spectral function. The OPE corresponds to an expansion of
B[ρ](σ) around σ = 0. We see that B[ρ](σ) is well-defined for Re σ > 0, since ρ(t) (i.e., the
spectral function) must go to a constant as t →∞, for finite Nc . Any singularities of B[ρ](σ)
thus have to reside in the half-plane Re σ ≤ 0. This representation of the Adler function in
terms of B[ρ](σ) is valid for Re(σq2) < 0, and for σ > 0 this means q2 < 0. This is the key
point: as one rotates σ in the complex plane from Reσ > 0 to Reσ < 0, one is analytically
continuing in the q2 complex plane from q2 < 0 to q2 > 0. This is what we want.

If the spectrum ρ(t) were to vanish for t > t0, the function B[ρ](σ) would be analytic in
the whole complex plane, and the above rotation in σ would produce an OPE convergent for
|q2| > t0. Of course, the spectrum goes all the way to infinity, as Eq. (11) clearly shows. The
existence of an infinite number of poles of Π(q2) on the Minkowski axis for Nc =∞ produces
singularities for B[ρ](σ) on the imaginary axis in the σ plane which, for the spectrum in
Eq. (11), are branch points [14]. As Nc evolves from infinity down to 3, the location of these
poles recedes into the next Riemann sheet an angle given by

ϕNc
= −

Γ

M(n)
= −

a
Nc

�

1+O
�

1
Nc

,
1
n

��

, (15)

turning what were poles on the real q2 > 0 axis into resonance peaks. Since σ and q2 are
locked together, through Eq. (13), to satisfy Re(σq2) < 0, this forces all branch points in the
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Figure 4: Schematic representation of the connection between the singularities in
the q2 and σ complex planes. The thick gray arrow in the right panel depicts the
initial path taken in the si gma integral in Eq. (13).

σ plane off the imaginary axis, with the one closest to the origin moving to a position given
by

σ = σ̂ ≈
2π

Λ2
QC D

eiΦ0 ,

Φ0 ≈
π

2
+ |ϕNc

| . (16)

The position of the branch point is signaled by a blue arrow in Fig. 4.
In this situation, as the path in the σ plane is rotated in the integral (13) from argσ = 0

to argσ = π, one sweeps through the blue line in Fig. 4, picking up a contribution given by

ImΠDV (q
2)∼ e

−2π a
Nc

q2

Λ2
QC D sin

�

2π

Λ2
QC D

�

q2 − c − b log
q2

Λ2
QC D

��

�

1+O
�

1
Nc

,
1
q2

,
1

log q2

��

. (17)

This expression can be parametrized as in Eq. (6), up to a small logarithmic corrections (since,
for large q2, q2� b log q2). In fact, QCD Regge phenomenology is consistent with this term b
being absent.

Besides the branch point (16), in principle there may be other branch points located in the
same quadrant further away from the origin but, since the exponent in Eq. (17) is governed by
the radial distance of these points to the origin, their contribution to ImΠDV will correspond-
ingly contain a stronger exponential suppression. In this way, the expansion at large q2 of
ImΠDV becomes a combined series in 1/q2 and exponentials e−q2

, of decreasing importance,
as in the Theory of Hyperasymptotics [34–36].

Equation (17) connects the parameters from the radial Regge trajectories (11) to the pa-
rameters αV , βV , γV and δV of Eq. (6), which were obtained from fits involving the vector
spectral function in τ decay. On the other hand, fits to meson spectroscopy give [30]4

Λ2
QC D = 1.35(4) GeV2 ,

Γ

M
= 0.12(8) , (18)

which translate into

βV =
2π

Λ2
QC D

= 4.7(2) GeV2 , γV =
2π

Λ2
QC D

a
Nc
= 0.6(4) GeV−2 . (19)

4For example, in the case of the ρ, one finds Γ/M ' 0.19.

53.11

https://scipost.org
https://scipost.org/SciPostPhysProc.1.053


SciPost Phys. Proc. 1, 053 (2019)

These numbers are to be compared to the results from the fit involving τ data [23]:

βV = 4.2(5) GeV−2 , γV = 0.7(3) GeV−2 . (20)

The agreement is rather satisfactory. Notice in particular the importance of having the factors
of 2π in Eq. (19). It would be interesting to find an independent determinations also of the
other two parameters, αV and δV , to compare with, but, to the best of our knowledge, those
are not available in the literature.

4 Conclusion

We have argued that the mass of the τ lepton is not high enough to be able to dismiss the DV
term (5) in the FESR (3) and that, because of that, one has to use a parametrization of the DV
term which is physically sound, such as that given in Eq. (6). Attempts to work only at s0 = m2

τ,
assuming integrated DVs are negligible at this s0 for doubly and triply pinched weights, run
into the problem that the number of OPE parameters to be fit exceeds the number of spectral
integrals available as input, unless, as in the truncated OPE strategy, one neglects sufficiently
many higher-D OPE contributions present in the analysis. We tested the reliability of the trun-
cated OPE strategy, which neglects such higher-D contributions, using EM FESRs employing
recent R(s) data as input, and found that this strategy, and the assumptions underlying it, fail
badly. This leads us to the conclusion that one must take advantage of the s0 dependence of τ-
based spectral integrals to have enough input to fit all relevant OPE parameters which, in turn,
forces us to work at lower scales, where it becomes more important to take DVs into account.
We conclude that an accurate extraction of αs using τ-decay data not subject to uncontrolled
systematic errors requires a reasonable description of the DVs.

These conclusions stand in sharp contrast to what is stated in Ref. [1]. The authors of
Ref. [1] assert that DVs are sufficiently suppressed in the ud V+A two-point function to be able
to neglect them altogether when using doubly or triply pinched weights, and when working
at the highest available scale, s0 = m2

τ. The use of such weights, with their higher degrees,
however, forces the authors of Ref. [1] to make strong assumptions about the behavior of the
(asymptotic) OPE series, in particular, that contributions from higher-D condensates present in
the FESRs they employ can be neglected. These assumptions have been tested in the analogous
case of the EM FESRs and found to fail badly there. This raises serious questions about their
reliability, and hence the reliability of the truncated OPE strategy, as a method for use in the
determination of αs from hadronic τ decay data.
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