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Abstract

To assess the properties of the quark-gluon plasma formed in nuclear collisions, the Pear-
son correlation coefficient between flow harmonics and mean transverse momentum,
ρ
�

v2
n , [pT]

�

, reflecting the overlapped geometry of colliding atomic nuclei, is measured.
ρ
�

v2
2 , [pT]

�

was found to be particularly sensitive to the quadrupole deformation of the
nuclei. We study the influence of the nuclear quadrupole deformation on ρ

�

v2
n , [pT]

�

in
Au+Au and U+U collisions at RHIC energy using AMPT transport model, and show that
the ρ

�

v2
2 , [pT]

�

is reduced by the quadrupole deformation β2 and turns to change sign in
ultra-central collisions (UCC).
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1 Introduction

A hot and dense phase of Quantum Chromodynamics (QCD) matter, so-called quark-gluon
plasma (QGP) [1], is naturally created in the nuclear collisions studied at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC). The QGP expands due to pressure
gradients between the medium and the outside vacuum. During this expansion, the initial
spatial anisotropies lead to final-state momentum anisotropies. The large azimuthal modula-
tions in the final distributions of the produced particles are typically characterized as a Fourier
series [2]: dN

dφ ∝ 1+2Σ∞n=1vn cos (n (φ −Φn)), where vn and Φn represent the magnitude and

event-plane angle of the nth-order harmonic flow. Interestingly, the shape and orientation of
the deformed nuclei characterized by the nuclear deformation, if taken into account for the
generation of the initial state geometry, could result in the non-trivial behavior of final-state
bulk observables [3–5].
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Recently, the correlation between flow harmonics (vn) and mean transverse momentum
([pT ]), ρ(vn{2}2, [pT ]) [6], was proposed to be sensitive to distinguish the nuclear deforma-
tion [7]. Of particular interest is a significantly negative correlation in central U+U collisions
at STAR Collaboration [8] due to the quadrupole deformation β2 where the β2 values are
obtained from the measured reduced electric transition probability B(En) ↑ via the standard

formula β2 =
4π

3ZR2
0

Ç

B(E2)↑
e2 [9]. Comparison with the β2 scan in phenomenological study can

explore the sensitivity of ρ
�

v2
n , [pT]

�

to the fluctuations in the initial geometry arising from
nuclei shape at a much shorter time scale (∼ 10−24) in relativistic heavy-ion collisions. To
further constrain the initial conditions and transport properties in hydrodynamic evolution,
ATLAS [10,11] and ALICE Collaboration [12] have also reported this measurements in system
scan pp, p+Pb, Xe+Xe, and Pb+Pb collisions.

In this proceeding, The influences of the nuclear quadrupole deformation on ρ
�

v2
n , [pT]

�

in Au+Au and U+U collisions at
p

sNN = 200 GeV are studied with the framework of AMPT
transport model.

2 Analysis

The ρ
�

v2
n , [pT]

�

is quantified by a three-particle correlator defined as:
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�
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�

, (1)

where the indices i, j and k loop over distinct particles to account for all unique triplets, and
the 〈〉 denotes average over events. In this analysis, we use all particles within |η| < 2 and
0.2 < pT < 2 GeV/c for the benefit of statistical precision and the centrality is defined using
the number of participants Npart. We use the AMPT model v2.26t5 [13] with string-melting
mode and partonic cross section of 3.0 mb, which we check reasonably reproduce Au+Au flow
data at RHIC. The systematic study of short-range “non-flow” effect from resonance-decays,
jets and dijets was checked in Ref. [14].

3 Result

Figures 1 shows the Pearson correlation coefficients ρ
�

v2
n , [pT]

�

for n=2 and 3 calculated in
standard method using final-state hadrons in Au+Au and U+U collisions with different β2. The
ρ
�

v2
2 , [pT]

�

shows strong non-trivial dependence on β2. In particular, we observe the strongest
sensitivity in the UCC region, where a large positive β2 leads to a negative ρ

�

v2
2 , [pT]

�

due to
the orientation of the colliding deformed nuclei. In the mid-central and peripheral regions, the
magnitudes of ρ

�

v2
2 , [pT]

�

always decrease with increasing magnitude of β2. The ρ
�

v2
3 , [pT]

�

are positive for both collision systems since triangular flow v3 is purely fluctuation driven which
is insensitive to the nuclear geometric effect. The detailed study can be found in Ref. [15].
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Figure 1: The Npart dependence of the Pearson correlation coefficient ρ
�

v2
n , [pT]

�

for
n = 2 (left) and 3 (right) in Au+Au and U+U collisions with different deformation
parameter β2.

4 Conclusion

We studied the influence of the nuclear quadrupole deformation on the ρ
�

v2
n , [pT]

�

in Au+Au
and U+U collisions at RHIC energy using the AMPT transport model. ρ

�

v2
2 , [pT]

�

shows a
strong dependence on β2 and turns to change sign in the ultra-central collisions, while the
ρ
�

v2
3 , [pT]

�

are always similar and positive. Detailed comparison of the model prediction
with the results from STAR experimental data in Au+Au and U+U collisions could allow us to
constrain the β2 values of uranium nucleus.
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