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Asymptotics of transverse momentum broadening
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Abstract

We study the asymptotic behaviour of the transverse momentum broadening distribu-
tion of an energetic quark or gluon propagating through dense QCD matter, in the large
system size L limit, taking into account radiative corrections in the double logarithmic
approximation. Thanks to a connection between the evolution of the jet quenching pa-
rameter q̂ and the formation of traveling wave fronts in nonlinear physics, we obtain a
formula for the L dependence of the characteristic transverse momentum scale Qs of the
distribution valid up to terms of order 1/ ln(L). We briefly discuss the physical implica-
tions of this formula for jet quenching and small-x phenomenology.
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1 Introduction

The jet quenching phenomenon, i.e. the strong suppression of high pt hadrons and jets in ul-
tra relativistic heavy ion collisions at RHIC and the LHC [1,2], is widely regarded as the main
signature of the creation of a deconfined QCD matter commonly referred to as the quark-gluon-
plasma (QGP) produced in the aftermath of these collisions. The perturbative QCD description
of jet quenching relies on the diffusion coefficient q̂ which relates the typical transverse mo-
mentum square 〈k2

⊥〉 acquired by a highly energetic parton propagating through the plasma
with the propagation time t via 〈k2

⊥〉 ∼ q̂t. In leading order QCD, this linear scaling is a conse-
quence of the random kicks in the plasma, via single gluon exchange with plasma constituents
(Coulomb scattering) that leads to an approximate brownian motion in transverse momentum
space. These frequent elastic collisions are responsible for interesting emergent phenomena
in QCD such as the radiative energy loss via a turbulent gluon cascade [3, 4], quantum color
decoherence of color single states [5–7] and suppression of phase space for Bremsstrahlung
radiations from a highly virtual parton [8].
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2 Non-linear evolution of the jet quenching parameter

Precision phenomenology of jet quenching leads to the study of the radiative corrections to the
coefficient q̂. Indeed, gluon emissions also increase the typical transverse momentum square of
the energetic parton due to recoil effects. In spite of being suppressed by the strong coupling
constant αs, it has been shown that these radiative corrections are enhanced by potentially
large double logarithms of the system size L, ∼ αs ln2 L [4,9–11]. The system size dependence
of such contributions is a consequence of the non local nature of quantum corrections.

When L is large, an all-order resummation of these corrections is necessary. In the dou-
ble logarithmic approximation (DLA), this resummation is achieved thanks to an evolution
equation for q̂(τ, k2

⊥) ordered in the lifetime τ of the real or virtual gluon fluctuation, with
transverse momentum k⊥ [9–11]:

∂ q̂(Y,ρ)
∂ Y

= ᾱs

∫ ρ

ρs(Y )
dρ′ q̂(Y,ρ′) , (1)

where the variables are defined as follows: Y = ln(τ/τ0), ρ = ln(k2
⊥/(q̂0τ0)) and ᾱs = αsNc/π.

The infrared cut-off τ0 � L is a microscopic scale of order of the mean free path [9], while
q̂0 is the tree-level value of the diffusion coefficient q̂. In principle, the tree-level q̂ has a k2

⊥
dependence, but we shall see that the asymptotic limit of q̂ for large Y is universal, and does
not depend on the details of the tree-level physics. A notable difference of Eq. (1) with re-
spect to the DGLAP evolution equation in the DLA is the presence of the saturation boundary
ρ � ρs(Y ) = ln(Q2

s (τ)/(q̂0τ0)), i.e. k2
⊥ � Q2

s (τ), that enforces the gluon fluctuations to be
triggered by a single scattering with plasma constituents. Indeed, the saturation scale Qs(τ)
is defined as the transverse momentum scale that controls the transition between the multiple
soft scattering regime and the single hard scattering one, which leads to the logarithmic en-
hancement of the gluon fluctuation. This scale is defined by the non-linear relation [12–14]

q̂(τ,Q2
s (τ))τ=Q2

s (τ)⇐⇒ q̂(Y,ρs(Y )) = q̂0eρs(Y )−Y . (2)

In this proceeding, we study the non-linear system of equations (1)-(2) in the large Y limit.
The transverse momentum broadening distribution is then related to q̂(τ, k2

⊥) by the Fourier
transform of the forward scattering amplitude S(x⊥) (see e.g. [4,15,16]),

P(k⊥) =
∫

d2x⊥ e−ik⊥x⊥S(x⊥), S(x⊥) = exp
�

−
1
4

CR

Nc
q̂(τL , 1/x 2

⊥)Lx 2
⊥

�

. (3)

In the scattering amplitude S, CR is the Casimir factor of the leading parton, and τ is evaluated
along the saturation boundary, i.e. at the time scale τL such Q2

s (τL) = 1/x 2
⊥ if τ < L and L

otherwise [17].

3 Scaling limit and sub-asymptotic corrections to q̂(Y,ρ)

Scaling limit. First, we notice that Eqs. (1)-(2) admit a scaling limit when Y goes to infinity.
In mathematical terms, the evolution of q̂ is said to possess a scaling limit if there exists a
function f0 such that

q̂(τ, k2
⊥)τ ∼

τ→∞
Q2

s (τ) f0

�

k2
⊥

Q2
s (τ)

�

. (4)

This scaling property is the analogous of the geometric scaling property of the gluon distribu-
tion at small x [18–20]. Assuming that such a scaling limit exists, it is straightforward to get
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the function f0 and the leading Y dependence of Qs from the differential equation (1), with
initial condition f0(0) = 1 as a consequence of Eq. (2) [21]:

f0

�

x ≡ ln

�

k2
⊥

Q2
s

��

= eβ x (1+ β x) , ρs(Y ) = cY + ... , (5)

where β = (c − 1)/(2c) and c = 1 + 2
Æ

ᾱs + ᾱ2
s + 2ᾱs is the velocity of the traveling wave

that propagates to the right on the ρ axis. In the DLA, we can approximate c ' 1+2
p

ᾱs and
β '

p

ᾱs.

Sub-asymptotic corrections. To derive the sub-asymptotic corrections to q̂(Y,ρ) and Qs(Y ),
we exploit an analogy with the physics of front propagation into unstable states [22], as at
stake for instance in the FKPP equation [23, 24]. This is very similar to the calculation of
the asymptotic expansion of the saturation scale and solutions to the BK equation [25, 26] in
the small-x limit [27–29]. Following the method of Ebert and Van Saarloos [30], we consider
two distincts expansions around the scaling limit called "front interior expansion" and "leading
edge expansion":

Front interior: q̂(Y,ρ) = q̂0eρs(Y )−Y eβ x
�

e−β x f0(x) +
1

Y α
f1(x) + ...+

1
Y nα

fn(x) + ...
�

, (6)

Leading edge: q̂(Y,ρ) = q̂0eρs(Y )−Y eβ x
�

Y αFα
� x

Y α

�

+ F0

� x
Y α

�

+ Y−αF−α
� x

Y α

�

+ ...
�

, (7)

for a power α > 0 to be determined. As in the traveling waves solutions to the FKPP problem
[31], the front interior expansion describes the behaviour of the front in its rest frame (x
fixed), whereas the leading edge expansion focuses on the regime where x ∼ Y α, which is large
when Y →∞. The matching of these two expansions enables one to extract the asymptotic
expansion of the velocity of the pulled front:

dρs(Y )
dY

= c +
b1

Y
+

b2

Y 3/2
+ ... , (8)

beyond the first term provided by the scaling limit. Plugging these two expansions inside
Eq. (1), one obtains a triangular system of differential equations for fn and Fm respectively.
The homogeneity of the equation satisfied by Fα gives α= 1/2 [21]. The non-linear equation
(2) provides the initial conditions that fix all the constants of integration. On the other hand,
the boundary conditions at z = x/Y α→∞ determines the constants 1

b1 = −
3c

1+ c
, b2 =

3c
p

2π(c − 1)
(1+ c)2

. (9)

We find that the functions fn(x) are all polynomials in x , with leading powers in x giving the
analytic series of F1/2, the sub-leading powers giving the analytic series of F0 and so on. More
concretely, the first two terms read [21]

f1(x) = 0 , f2(x) =
b1 x
c2

�

1+
(c − 1)(3+ c)

8c
x +
(c − 1)2(1+ c)x2

48c2

�

, (10)

while the leading edge expansion reads [21]

F1/2(z) = βz exp

�

−
βz2

4c

�

, F0(z) = exp

�

−
βz2

4c
,

�

h(z2) , (11)

1The details of this calculation will be reported and discussed elsewhere [32].
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with h solution of 32c4uh′′ + 4c2(4c2 + (1− c)u)h′ − 4c2(1− c)h = b2(1− c)2(1+ c)
p

u and
initial conditions h(u) = 1+O(u).

Finally, we obtain the following universal behaviour of the saturation scale that controls
the transverse momentum distribution:2

ρs(Y ) = cY −
3c

1+ c
ln(Y )−

6c
p

2π(c − 1)
(1+ c)2

1
p

Y
+O

�

1
Y

�

, (12)

which is the main result of this proceeding. We emphasize that this result is different from
the one obtained in [33, 34] for which the lower boundary of the ρ′ integral in (1) is set to
Y instead of ρs(Y ). The difference is parametrically of order

p

ᾱs ln ln L [21], and therefore
dominant over single-logarithmic corrections that we do not consider in this analysis.

4 Discussion and conclusion

The scaling limit of the quenching parameter q̂ and the resulting transverse momentum distri-
bution has a nice physical interpretation in terms of a special kind of random walk followed by
the leading parton in transverse momentum space known as Levy flight [21]. Levy flight leads
notably to a super-diffusive behaviour [35]: the typical width of the transverse momentum
distribution scales like 〈k2

⊥〉 ∝ Lc . Since c > 1, this scale grows with time faster than stan-
dard (Brownian) diffusion, as a result of the non-linearity and self-similarity of multiple gluon
radiations. On the other hand, the transverse momentum broadening distribution exhibits
power law tail at large k⊥, with a weaker power than the Rutherford one 1/k4

⊥, characteristic
of point-like interactions [21]:

P(k⊥) ∝
k2
⊥�Q2

s

1

k4−2β
⊥

. (13)

This heavy tail is also characteristic of the probability density for the position of a particle
undergoing a Lévy flight process in two dimensions.

Remarkably, the asymptotic expansion (12) is universal [21], as well as the form of the sub-
asymptotic corrections provided by the functions f0, f2, F1/2 and F0. It means that these results
are independent of the tree-level initial condition for the transverse momentum broadening
distribution. In the context of small-x physics, it can therefore provide a pQCD motivated
functional form for the initial conditions [36, 37] to the BK equation, that includes gluon
fluctuations enhanced by double logs of the nucleus target size to all orders.

Finally, we point out that even though the expression (12) is an asymptotic expansion,
it provides a good approximation of the saturation scale down to small values of L, close to
those relevant in heavy-ion phenomenology, thanks to the determination of the sub-leading
terms up to corrections of order 1/ ln(L). Nevertheless, precise phenomenology requires to go
beyond the double logarithmic approximation, including at least running coupling effects. We
leave this calculation for an upcoming publication [32].
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