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Abstract

Recent jet and jet substructure measurements at the LHC, and of machine-learning-based
tagging techniques are presented using proton-proton collision data collected by the
ATLAS and CMS experiments at CERN’s Large Hadron Collider. These measurements are
crucial for precise tests of electroweak and pQCD calculations and searches for physics
beyond the Standard Model. The measurements are compared with several Monte Carlo
event generators predictions which provide valuable input to the tuning of perturbative
and non-perturbative models and to constraining model parameters of advanced parton-
shower Monte Carlo programs.
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1 Introduction

In this document, an overview of recent jet and jet substructure measurements at the LHC, and
of machine-learning (ML) based tagging techniques are presented. Analyses are performed
using proton-proton (pp) collision data recorded at the ATLAS [1] and CMS [2] experiments
at a center-of-mass-energy (

p
s) = 13 TeV. Comparisons of the results with various theoretical

predictions are presented.

2 Measurement of the Lund jet plane using charged particles

A double-differential cross-section measurement of the Lund jet plane of primary jet emissions
is performed using data collected with the ATLAS detector corresponding to an integrated
luminosity (Lint) of 139 fb−1 [3]. A two-dimensional space spanned by ln(1/z) and ln(1/θ),
where z is the momentum fraction of the emitted gluon relative to the primary quark or gluon
core and θ is the emission opening angle. This space is called the Lund plane (LP). The
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LP is not an observable but it can be approximated by using the softer (harder) proto-jet to
represent the emission (core) in the original theoretical depiction. For each proto-jet pair, at
each declustering step of jets formed using the Cambridge/Aachen algorithm, an entry is made
in the approximate LP (henceforth, the ‘primary Lund jet plane’ or LJP) using the observables
ln (1/z) and ln (R/∆R), R is the jet radius parameter, and∆R measures the angular separation.
Using this grooming procedure, individual jets are represented as a set of points within the LJP.
The schematic representation of the LJP is shown in Figure 1 (left). It is observed that varying
the default angle-ordered to dipole parton-shower (PS) model in Herwig 7.1.3 (hadronization
model in Sherpa 2.1.1) results in differences of up to 50% in the perturbative hard and wide-
angle emissions (softer and more collinear emissions at the boundary between perturbative
and non-perturbative regions). Varying the matrix element (ME) from leading order (LO) in
Pythia 8.230 to next-to-leading order (NLO) in Powheg+Pythia 8.230 causes small changes of
up to 10% in the region populated by the hardest and widest-angle emissions.

The measurement is performed on an inclusive selection of dijet events, with a leading jet
transverse momentum (pT )> 675 GeV and pseudorapidity (|η|)< 2.1. Particle-level charged
hadrons and their reconstructed tracks are also used. Tracks are required to have pT > 500
MeV and must be associated with the primary vertex with the largest sum of track p2

T in the
event. The average number of emissions in the fiducial region is measured to be 7.34 ± 0.03
(syst.) ± 0.11 (stat.). The data are compared with predictions from several Monte Carlo
(MC) generators for four selected horizontal and vertical slices through the LJP. Figure 1 (mid-
dle) shows the LJP region, where emissions change from wide-angled to more collinear, the
distribution passes through a region sensitive to the choice of PS model, and then enters a
region which is instead sensitive to the hadronization model. The differences between PS
(hadronization) algorithms implemented in Herwig 7.1.3 (Sherpa 2.2.5) are notable at large
(small) values of kT , where the two models disagree most significantly for hard emissions re-
constructed at the widest angles (soft-collinear splittings at the transition between perturbative
and non-perturbative regions of the plane). The Powheg+Pythia and Pythia predictions only
differ significantly for hard and wide-angle perturbative emissions, where ME corrections are
relevant. No prediction describes the data accurately in all regions, the Herwig 7.1.3 angle-
ordered prediction provides the best description across most of the plane. This measurement
illustrates the ability of the Lund jet plane to isolate various physical effects, and will provide
useful input to both perturbative and non-perturbative model development and tuning.

ln
(1

/z
)

hard & wide-

angle

soft-
collinear

hard-
collinear

UE,
MPI

ln(R/∆R)

non-pert. (small kt : zθ ≲ ΛQCD)

0 0.5 1 1.5 2 2.5 3 3.5 4
)R∆/Rln(

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8 ATLAS

-1 = 13 TeV, 139 fbs
 > 675 GeV

T,1
p

) < 2.08z1.80 < ln(1/

Data
Pythia 8.230
Powheg+Pythia 8.230
Sherpa 2.2.5 (AHADIC)
Sherpa 2.2.5 (String)
Herwig 7.1.3 (Ang. ord.)
Herwig 7.1.3 (Dipole)

0 0.5 1 1.5 2 2.5 3 3.5 4 )R∆/Rln(
0.6
0.8

1
1.2
1.4

  D
at

a
Ra

tio
 to

0 0.5 1 1.5 2 2.5 3 3.5 4
)R∆/Rln(

0

0.5

Un
ce

rta
int

y
  R

ela
tiv

e

Total Syst. MC Modeling Experimental

Pile-Up Unfolding Stat.

2−101−10
(emission, core)R∆ = R∆

)z
) d

ln(
1/

R∆/R
dln

(
em

iss
ion

s
N2 d

 
jet

s
N1

60 100 200 300 1000

 [GeV]jet

T
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n 

of
 g

lu
on

 je
ts

Central dijet region

Forward dijet region

Z+jet region

 Preliminary SimulationCMS 13 TeV

Figure 1: Schematic representation of the LJP (left). Unfolded LJP for 1.80< ln(1/z)
< 2.08 (middle) [3]. Fraction of AK4 gluon jets in the Z+jet region, and the central
and forward jets in the dijet region (right) [4].
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3 Study of quark and gluon jet substructure in dijet and Z+jet
events

A measurement of jet substructure observables describing the distribution of particles within
quark- and gluon-initiated jets is performed with the CMS detector corresponding to Lint of
35.9 fb −1 [4]. The fiducial phase space regions are defined by selecting Z boson with atleast
one inclusive jet in the Z+jet event sample and the atleast two jets in the dijet event sample at
reconstructed (generator)-level jets with pT > 30 (15) GeV and rapidity (|y|)< 2.4. Figure 1
(right) shows that Z+jet sample is dominated by 64–76% quark jets and central and forward
dijet jets are dominated by 69–72% (55–68% ) gluon (quark) jets at low (high) pT . In this
analysis, measurements of a set of five observables λκ

β
are also reported that distinguish quark-

and gluon-initiated jets. The generalized angularities are defined as:

λκβ =
∑

i∈ jet

�

zκi
(∆Ri

R
)β
�

, (1)

where zi is the fractional transverse momentum carried by the ith jet constituent, R is the jet
size parameter, and ∆Ri is the displacement of the constituent from the jet axis. The five ob-
servables are Les Houches angularity (LHA) (λ1

0.5), width (λ1
1), thrust (λ1

2), multiplicity (λ0
0),

and (pD
T )

2 (λ2
0). The LHA, width, and thrust are infrared and collinear safe and particularly

sensitive to the modelling of perturbative emissions in jets, while the other two have larger
contributions from non-perturbative effects. Experimental data distributions unfolded to the
particle-level. The mean of LHA, width, and thrust distributions decreases as a function of the
jet pT in both the Z+jet and central dijet regions, as a result of constituents being located closer
to the jet axis due to the larger Lorentz boost at higher pT . This trend is displayed by all gen-
erators. In the gluon-enriched sample, HERWIG7 CH3 [5] – [6], PYTHIA8 CP5 [7], PYTHIA8
CP2 [7], and SHERPA [8] generally provide a better description than either HERWIG++ [9]
– [10] or MG5+PYTHIA8 [11] – [12]. In the quark-enriched sample, MG5+PYTHIA8 pro-
vides the best description, followed by HERWIG7, PYTHIA8 CP2, SHERPA, HERWIG++, and
PYTHIA8 CP5. Improved modelling of gluon jets at the cost of poorer modelling of quark
jets is observed. The ratio of the means in the central dijet and Z+jet region are also com-
pared. There is similar data-to-simulation agreement for AK8 versus AK4 jets, charged-only
versus charged+neutral and groomed versus ungroomed observables. At low pT , the ratio is
found to be significantly larger than unity for LHA, width, thrust, and multiplicity, and signifi-
cantly smaller for (pD

T )
2. It indicates that these observables have significant separation power

between quark and gluon jets and clear need for improvements in the MC. The best overall
data-to-simulation agreement for the ratio is achieved by SHERPA, followed by HERWIG++,
MG5+PYTHIA8, HERWIG7 CH3, PYTHIA8 CP2, and PYTHIA8 CP5.

4 Mass regression of highly-boosted jets using graph neural net-
works

A novel technique based on machine learning for reconstructing the true mass in hadronic
decays of highly Lorentz-boosted top quarks and W, Z, and Higgs bosons [13] is presented. The
technique, commonly known as mass regression, is based on ParticleNet [14] – [16], a graph
neural network using an unordered set of jet constituent particles as the input. In ParticleNet
Mass Regression, the training sample consists of an equal mix of QCD and Higgs bosons events,
generated with MadGraph5 (hard scattering) and Pythia8 (PS and hadronisation) with 2018
data conditions. The Higgs boson sample has been generated with an equal mix of H →

022.3

https://scipost.org
https://scipost.org/SciPostPhysProc.10.022


SciPost Phys. Proc. 10, 022 (2022)

bb/cc/qq (q=u,d,s) decays and its MC mass has been taken from a uniform distribution in the
[15, 250] GeV range. The groomed jet mass obtained from the “modified mass drop tagger”
algorithm, also known as the “soft drop” algorithm [17] – [19], with angular exponent β =
0, soft cutoff threshold zcut = 0.1, is used to remove soft, wide-angle radiation from the jet.
The soft drop mass is calibrated in a top quark-antiquark sample enriched in hadronically
decaying W bosons. The target mass is defined as the “soft drop” mass of the associated truth
particle-level jet for the QCD sample and the Higgs boson generator mass (mH ∈ [15, 250]
GeV) for the Higgs boson sample respectively. The mass response for large-R (R=0.8) Higgs
boson jets with pT > 400 GeV and 100 < Mtar get < 150 GeV for H → bb jet compositions
is shown in Figure 2 (left). The resolution degrades for the heavier quark flavors due to the
larger presence of neutrinos. In addition, there is significant improvement in tails with the
mass regression, in particular at M≈0, where the soft drop algorithm incorrectly identifies the
large R jet as single-prong. The effective resolution (σe f f (m)/m) is computed as half of the
minimum interval containing the mode and 68% of the area under the response distributions
(defined as Mreco/Mtar get). This definition provides a robust estimate of the resolution in
particular for distribution with large skewness and fat-tails. The mass regression for H → cc
jet compositions shows a substantial improvement in the mass resolution and in the absolute
scale as compared to the more traditional grooming algorithms such as soft drop for all the jet
compositions AK8/15.

5 Boosted hadronic vector boson and top quark tagging

The latest development and optimization of taggers to identify high-pT (boosted) hadronic
decays of W and Z boson and top quarks, as well as their calibration is performed [20] using
data collected by the ATLAS experiment between 2015 and 2017 that correspond to Lint=80
fb−1. W and Z boson taggers are defined using selection criteria on individual hadronic jet
properties (cut-based algorithms) such as large-R jet mass, energy correlation function ratio
(Dβ=1.0

2 ) [21], and the ghost-associated track multiplicity (nt rack). Top quark taggers are de-
fined using deep neural networks that use jet substructure moments as input. The W and Z
taggers are evaluated in MC simulation and data for jets with 200 GeV< pT < 2.5 TeV and the
top tagger for jets with 350 GeV < pT < 4 TeV. The additional cut on nt rack has been found to
improve background rejection for a fixed signal efficiency due to the rejection of jets seeded
by gluons. In the case of the signal efficiency, the scale factors are derived using t t̄ events
in the muon+jets channel while γ+jet and multijet events are used to derive scale factors for
quark and gluon-initiated background jets covering the pT ranges [200, 2000] GeV and [500,
3500] GeV, respectively. The tagger signal efficiencies are extracted from distributions of the
leading large-R jet mcomb from candidate t t̄ events that are partitioned in pT bins covering the
ranges [350, 1000] GeV for top tagging and [200, 600] GeV for W tagging. The mcomb is the
weighted sum of masses from calorimeter information and from the mixed calorimeter and
tracking information. The deep neural-network scores for inclusive top taggers are shown in
Figure 2 (middle) for events that pass the top selection in data and MC. There is good agree-
ment between data and MC across the region within the uncertainties considered. Overall it is
observed that the signal efficiency scale factors range between 0.8 and unity and background
efficiency scale factors are close to unity for all the taggers considered. Figure 2 (right) shows
signal efficiency scale factors the for the inclusive top taggers. A method of extrapolating scale
factors and uncertainties using only MC is employed to extend the range of validity to pT ≤
2.5 TeV for the W and Z taggers and to pT ≤ 4 TeV for the top taggers. The reconstruction and
identification of boosted objects provide powerful handles for new physics searches as well as
precision measurements of SM processes.
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Figure 2: Performance of the ParticleNet regression (solid) and the soft drop algo-
rithm (dashed) [13]. The mass response is shown for 100 < Mtar get < 150 GeV for
H→ bb jet compositions (left). Distribution of the DNN score for the leading large-R
jets in top-enhanced single-muon t t̄ events (middle). The measured efficiencies for
the 80% for inclusive top taggers (right) [20].

6 Conclusion

The ATLAS and CMS experiments have a rich program of measurements related to jet and
their substructure. Here, we presented an overview of several recent measurements which are
sensitive to different theoretical approaches and useful to constrain the model parameters of
advanced Monte Carlo programs.
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